抛物线定义及性质
高三第一轮复习 抛物线的定义及几何性质
第42讲抛物线第100课时抛物线的定义及几何性质【提纲挈领】(请阅读下面文字,并在关键词下面记着重号)主干知识归纳1.抛物线的定义(1)平面内与一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.(2)其数学表达式:|MF|=d(其中d为点M到准线的距离).2.抛物线的标准方程与几何性质(1)图形与方程2124p x x =;(212y p =-;13|)2sin p AB x x x =++=)以AB 为直径的原与准线(5)/090AC B ∠=; (6)//090A FB ∠=;(7)A 、O 、/B 三点共线;(8)B 、O 、/A 三点共线; (9)112||||AF BF P +=;(10)22sin ABOp Sα=等等。
方法规律总结1. 抛物线的定义是抛物线问题的本质,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.2.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置,开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.3.在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.【指点迷津】【类型一】抛物线的定义及其应用【例1】:已知点A (3,4),F 是抛物线y 2=8x 的焦点,M 是抛物线上的动点,当|AM |+|MF |最小时,M 点坐标是( )A .(0,0)B .(3,26)C .(2,4)D .(3,-26)【解析】:由题知点A 在抛物线内.设M 到准线的距离为|MK |,则|MA |+|MF |=|MA |+|MK |,当|MA |+|MK |最小时,M 点坐标是(2,4). 答案:C.【例2】:已知点A (2,0),抛物线C :x 2=4y 的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则|FM |∶|MN |=( ).A .2∶ 5B .1∶2C .1∶ 5D .1∶3【解析】:如图所示,由抛物线定义知|MF |=|MH |,所以|MF |∶|MN |=|MH |∶|MN |.由△MHN ∽△FOA ,则|MH ||HN |=|OF ||OA |=12, 则|MH |∶|MN |=1∶5,即|MF |∶|MN |=1∶ 5. 答案:C.【例3】:已知点P 是抛物线y 2=4x 上的动点,点P 在y 轴上的射影是M ,点A 的坐标是(4,a ),则当|a |>4时,|PA |+|PM |的最小值是________. 【解析】:将x =4代入抛物线方程y 2=4x ,得y =±4,|a |>4,所以A 在抛物线的外部,由题意知F (1,0),则抛物线上点P 到准线l :x =-1的距离为|PN |,由定义知,|PA |+|PM |=|PA |+|PN |-1=|PA |+|PF |-1.当A ,P ,F 三点共线时,|PA |+|PF |取最小值,此时|PA |+|PM |也最小,最小值为|AF |-1=9+a 2-1. 答案:9+a 2-1.【类型二】抛物线的标准方程【例1】:如果抛物线的顶点在原点,对称轴为x 轴,焦点在直线3x -4y -12=0上,那么抛物线的方程是( )A .y 2=-16xB .y 2=12xC .y 2=16xD .y 2=-12x【解析】:由题设知直线3x -4y -12=0与x 轴的交点(4,0)即为抛物线的焦点,故其方程为y 2=16x . 答案:C .【例2】:已知圆x 2+y 2+mx -14=0与抛物线y =14x 2的准线相切,则m =( ).A .±2 2B. 3C. 2 D .± 3【解析】:抛物线的标准方程为x 2=4y ,所以准线为y =-1.圆的标准方程为⎝ ⎛⎭⎪⎫x +m 22+y 2=m 2+14,所以圆心为⎝ ⎛⎭⎪⎫-m 2,0,半径为m 2+12.所以圆心到直线的距离为1,即m 2+12=1,解得m =± 3.答案:D.【例3】:如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( ).A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x 【解析】:如图,分别过A ,B 作AA 1⊥l 于A 1,BB 1⊥l 于B 1, 由抛物线的定义知:|AF |=|AA 1|,|BF |=|BB 1|, ∵|BC |=2|BF |,∴|BC |=2|BB 1|,∴∠BCB 1=30°,∴∠AF x =60°,连接A 1F ,则△AA 1F 为等边三角形,过F 作FF 1⊥AA 1于F 1,则F 1为AA 1的中点,设l 交x 轴于K ,则|KF |=|A 1F 1|=12|AA 1|=12|AF |,即p =32,∴抛物线方程为y 2=3x . 答案:C.【类型三】抛物线的几何性质【例1】:已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A 、B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( )A .18B .24C .36D .48【解析】:设抛物线方程为y 2=2px ,当x =p2时,y 2=p 2, ∴|y |=p .∴p =|AB |2=122=6,又点P 到AB 的距离始终为6,∴S △ABP =12×12×6=36.故选C.答案:C.【例2】:已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 24-y 25=1的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|AK |=2|AF |,则A 点的横坐标为( ).A .2 2B .3C .2 3D .4【解析】:抛物线的焦点为⎝ ⎛⎭⎪⎫p 2,0,准线为x =-p 2.双曲线的右焦点为(3,0),所以p2=3,即p =6,即y 2=12x .过A 做准线的垂线,垂足为M ,则|AK |=2|AF |=2|AM |,即|KM |=|AM |,设A (x ,y ),则y =x +3,代入y 2=12x ,解得x =3. 答案:B.【例3】:过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点.若|AF |=3,则|BF |=________.【解析】:法一 由1|AF |+1|BF |=2p .得|BF |=32.法二 设∠BFO =θ,则⎩⎨⎧|AF |=p +|AF |cos θ,|BF |=p -|BF |cos θ,由|AF |=3,p =2,得cos θ=13,∴|BF |=32. 答案:32.【同步训练】【一级目标】基础巩固组 一、选择题1.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( ).A.12B.32C .1 D.3 【解析】:抛物线y 2=4x 的焦点F (1,0),双曲线x 2-y 23=1的渐近线方程是y =±3x ,即3x ±y =0,故所求距离为|3±0|32+2=32. 答案:B.2.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p 的值为( ).A .1B .2 C.12D .4【解析】:圆的标准方程为(x -3)2+y 2=16,圆心为(3,0),半径为4.圆心到准线的距离为3-⎝ ⎛⎭⎪⎫-p 2=4,解得p =2.答案:B.3.点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的方程是( ). A .y =12x 2 B .y =12x 2或y =-36x 2C .y =-36x 2 D .y =112x 2或y =-136x 2 【解析】:分两类a >0,a <0可得y =112x 2,y =-136x 2. 答案:D.4.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )A.12B .1C .2D .4 【解析】:由题知抛物线的准线为x =-p2,圆心为(3,0)、半径为4,由准线与圆相切得圆心到准线的距离d =3+p2=4,解得p =2.答案:C.5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( ). A .1 B.32C .2D .3【解析】:由已知得双曲线离心率e =c a=2,得c 2=4a 2,∴b 2=c 2-a 2=3a 2,即b =3a .又双曲线的渐近线方程为y =±ba x =±3x ,抛物线的准线方程为x =-p2,所以不妨令A ⎝ ⎛⎭⎪⎫-p 2,32p ,B ⎝ ⎛⎭⎪⎫-p 2,-3p 2,于是|AB |=3p .由△AOB 的面积为3可得12·3p ·p 2=3,所以p 2=4,解得p =2或p =-2(舍去).答案:C. 二、填空题6.若点P 到直线y =-1的距离比它到点(0,3)的距离小2,则点P 的轨迹方程是________.【解析】:由题意可知点P 到直线y =-3的距离等于它到点(0,3)的距离,故点P 的轨迹是以点(0,3)为焦点,以y =-3为准线的抛物线,且p =6,所以其标准方程为x 2=12y . 答案:x 2=12y.7.已知抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF |=4,则点M 的横坐标x 0=________.【解析】:抛物线y 2=4x 的焦点为F (1,0),准线为x =-1. 根据抛物线的定义,点M 到准线的距离为4,则M 的横坐标为3. 答案:3.8.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________. 【解析】:如图,在等边三角形ABF 中,DF =p ,BD =33p , ∴B 点坐标为⎝ ⎛⎭⎪⎫33p ,-p2.又点B 在双曲线上,故13p 23-p 243=1.解得p =6.答案:6. 三、解答题9.已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离为5,求抛物线的方程和m 的值.【解析】:法一:根据已知条件,抛物线方程可设为y 2=-2px (p >0),则焦点F ⎝ ⎛⎭⎪⎫-p 2,0.∵点M (-3,m )在抛物线上,且|MF |=5,故⎩⎨⎧m 2=6p ,⎝⎛⎭⎪⎫-3+p 22+m 2=5,解得⎩⎨⎧p =4,m =26或⎩⎨⎧p =4,m =-2 6.∴抛物线方程为y 2=-8x ,m =±2 6.法二:设抛物线方程为y 2=-2px (p >0),则准线方程为x =p2,由抛物线定义,M点到焦点的距离等于M 点到准线的距离,所以有p2-(-3)=5,∴p =4.∴所求又∵点M (-3,m )在抛物线上,故m 2=(-8)×(-3),∴抛物线方程为y 2=-8x ,m =±2 6.答案:抛物线方程为y 2=-8x ,m =±2 6.10.已知倾斜角为θ的直线过抛物线y 2=2px(p>0)的焦点F ,与抛物线交于A 、B 两点,求证:(1)|AB|=2p sin 2θ; (2)S △AOB =p 22sin θ; (3)以AB 为直径的圆与抛物线的准线相切.【解析】:(1)由抛物线的定义知|AF|等于点A 到准线x =-p2的距离,所以|AF|=x 1+p 2.同理,|BF|=x 2+p2.所以|AB|=|AF|+|BF|=x 1+x 2+p ①又设焦点弦的方程为y =k(x -p 2)(k≠0),所以x =1k y +p2,故x 1+x 2=1k (y 1+y 2)+p.y 2-2p k y -p 2=0,y 1+y 2=2p k .所以x 1+x 2=2pk2+p ② 将②代入①得:|AB|=2p k 2+2p =2p(1+1k 2)=2p(1+1tan 2θ)=2psin 2θ(2)如图,S △AOB =S △AOF +S △BOF =12|OF|·|AF|·sin(π-θ)+12|OF|·|BF|·sin θ=12|OF|·sin θ(|AF|+|BF|)=12|OF|·|AB|·sin θ=12·p 2·2p sin 2θ·sin θ=p 22sin θ. (3)设线段AB 的中点为M ,分别过A 、M 、B 作准线的垂线,垂足为C 、N 、D ,则|MN|=12(|AC|+|BD|)=12(|AF|+|BF|)=12|AB|.所以以AB 为直径的圆与准线相切. 答案:略.【二级目标】能力提升题组 一、选择题1.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( ).A .x 2=833y B .x 2=1633y C .x 2=8y D .x 2=16y 【解析】:∵x 2a 2-y 2b 2=1的离心率为2,∴c a =2,即c 2a 2=a 2+b 2a 2=4,∴ba = 3.x 2=2py 的焦点坐标为⎝⎛⎭⎪⎫0,p 2,x 2a 2-y 2b 2=1的渐近线方程为y =±b a x ,即y =±3x .由题意,得p21+32=2,∴p =8.故C 2:x 2=16y ,选D. 答案:D.2.(2014·洛阳统考)已知P 是抛物线y 2=4x 上一动点,则点P 到直线l :2x -y +3=0和y 轴的距离之和的最小值是( ).A. 3B. 5 C .2 D.5-1【解析】:由题,抛物线的焦点为F (1,0).设点P 到直线l 的距离为d ,由抛物线的定义可知,点P 到y 轴的距离为|PF |-1,所以点P 到直线l 的距离与到y 轴的距离之和为d +|PF |-1.易知d +|PF |的最小值为点F 到直线l 的距离,故d +|PF |的最小值为22)1(2|32|-++=5,所以d +|PF |-1的最小值为5-1.答案:D. 二、填空题3.已知椭圆C :x 24+y 23=1的右焦点为F ,抛物线y 2=4x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.如果直线AF 的倾斜角为120°,那么|PF |=________.【解析】:抛物线的焦点坐标为F (1,0),准线方程为x =-1.因为直线AF 的倾斜角为120°,所以tan 120°=y A -1-1,所以y A =2 3.因为PA ⊥l ,所以y P =y A=23,代入y 2=4x ,得x A =3,所以|PF |=|PA |=3-(-1)=4. 答案:4. 三、解答题4. 如图,抛物线()2212:4,:20C x y C x py p ==->,点()00,M x y 在抛物线2C 上,过M 作1C 的切线,切点为,A B (M 为原点O 时,,A B 重合于O)01x =,切线.MA 的斜率为12-.(I)求p 的值;(II)当M 在2C 上运动时,求线段AB 中点N 的轨迹方程.(),,.A B O O 重合于时中点为③,【高考链接】1.(2010年全国Ⅱ卷理15文15)已知抛物线2:2(0)C y px p =>的准线为l ,过(1,0)M l 相交于点A ,与C 的一个交点为B .若AM MB =,则p = .【解析】:过B 作BE 垂直于准线l 于E ,∵AM MB =,∴M 为中点,∴1BM AB 2=0BAE 30∠=, ∴1BE AB 2=,∴BM BE =,∴M 为抛物线的焦点,∴p =2. 答案:2.2.(2009年广东理科第19题)已知曲线2:C y x =与直线:20l x y -+=交于两点(,)A A A x y 和(,)B B B x y ,且A B x x <.记曲线C 在点A 和点B 之间那一段L 与线段AB 所围成的平面区域(含边界)为D .设点(,)P s t 是L 上的任一点,且点P 与点A 和点B 均不重合.(1)若点Q 是线段AB 的中点,试求线段PQ 的中点M 的轨迹方程;(2)若曲线22251:24025G x ax y y a -+-++=与点D 有公共点,试求a 的最小值. 【解析】:(1)联立2x y =与2+=x y 得2,1=-=B A x x ,则AB 中点)25,21(Q ,设线段PQ 的中点M 坐标为),(y x ,则225,221ty s x +=+=,即252,212-=-=y t x s ,又点P 在曲线C 上,∴2)212(252-=-x y 化简可得8112+-=x x y ,又点P 是L 上的任一点,且不与点A 和点B 重合,则22121<-<-x ,即4541<<-x ,∴中点M 的轨迹方程为8112+-=x x y (4541<<-x ).(2)曲线22251:24025G x ax y y a -+-++=,即圆E :2549)2()(22=-+-y a x ,其圆心坐标为)2,(a E ,半径57=r由图可知,当20≤≤a 时,曲线22251:24025G x ax y y a -+-++=与点D 有公共点;当0<a 时,要使曲线22251:24025G x ax y y a -+-++=与点D 有公共点,只需圆心E 到直线:20l x y -+=的距离572||2|22|≤=+-=a a d ,得0527<≤-a ,则a 的最小值为527-.答案: (1) M 的轨迹方程为8112+-=x x y (4541<<-x ). (2) a 的最小值为527-.3.(2013年福建数学(理))如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与i OB 交于点*(,19)i P i N i ∈≤≤.(1)求证:点*(,19)i P i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程; (2)过点C 做直线与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线的方程.【解析】:(Ⅰ)依题意,过*(,19)∈≤≤i A i N i 且与x 轴垂直的直线方程为=x i(10,)i B i ,∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y ,由10=⎧⎪⎨=⎪⎩x iiy x 得:2110=y x ,即210=x y , ∴*(,19)∈≤≤i P i N i 都在同一条抛物线上,且抛物线E 方程为210=x y(Ⅱ)依题意:直线的斜率存在,设直线的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000--=x kx [来源:学*科*网] 此时2100+4000∆=>k ,直线与抛物线E 恒有两个不同的交点,M N设:1122(,)(,)M x y N x y ,则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆=OCM OCN S S ∴124=x x 又120⋅<x x ,∴124=-x x 分别代入21010=+⎧⎨=⎩y kx x y,解得32=±k 直线的方程为3+102=±y x ,即32200-+=x y 或3+2200-=x y .答案: (Ⅰ) 抛物线E 方程为210=x y ;(Ⅱ) 直线的方程为 32200-+=x y 或3+2200-=x y .。
高中数学选修2-1-抛物线的方程及性质
抛物线的方程及性质知识集结知识元抛物线的定义知识讲解1.抛物线的定义【概念】抛物线是指平面内到一个定点和一条定直线l距离相等的点的轨迹.他有许多表示方法,比如参数表示,标准方程表示等等.它在几何光学和力学中有重要的用处.抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线.抛物线在合适的坐标变换下,也可看成二次函数图象.【标准方程】①y2=2px,当p>0时,为右开口的抛物线;当p<0时,为左开口抛物线;②x2=2py,当p>0时,为开口向上的抛物线,当p<0时,为开口向下的抛物线.【性质】我们以y2=2px(p>0)为例:①焦点为(,0);②准线方程为:x=﹣;③离心率为e=1.④通径为2p(过焦点并垂直于x轴的弦);⑤抛物线上的点到准线和到焦点的距离相等.【实例解析】例1:点P是抛物线y2=x上的动点,点Q的坐标为(3,0),则|PQ|的最小值为解:∵点P是抛物线y2=x上的动点,∴设P(x,),∵点Q的坐标为(3,0),∴|PQ|===,∴当x=,即P()时,|PQ|取最小值.故答案为:.这个例题其实是一个求最值的问题,一般的解题思路就是把他转化为求一个未知数的最值,需要注意的是一定要明确这个未知数的定义域,后面的工作就是求函数的最值了.例2:已知点P是抛物线y2=4x上的一个动点,点P到点(0,3)的距离与点P到该抛物线的准线的距离之和的最小值是.解:如图所示,设此抛物线的焦点为F(1,0),准线l:x=﹣1.过点P作PM⊥l,垂足为M.则|PM|=|PF|.设Q(0,3),因此当F、P、Q三点共线时,|PF|+|PQ|取得最小值.∴(|PF|+|PQ|)min=|QF|==.即|PM|+|PQ|的最小值为.故答案为:.这是个经典的例题,解题的关键是用到了抛物线的定义:到准线的距离等于到焦点的距离,然后再根据几何里面的两点之间线段最短的特征求出p点.这个题很有参考价值,我希望看了这个例题的同学能把这个题记下了,并拓展到椭圆和双曲线上面去.【考点分析】抛物线是初中高中阶段重要的一个知识点,高中主要是增加了焦点、准线还有定义,这也提示我们这将是它的一个重点,所以在学习的时候要多多理会它的含义,并能够灵活运用.例题精讲抛物线的定义例1.'已知动圆过定点F(2,0),且与直线x=-2相切,求动圆圆心C的轨迹.'例2.'平面内哪些点到直线l:x=-2和到点P(2,0)距离之比小于1.'例3.'点M到点F(3,0)的距离等于它到直线x=-3的距离,点M运动的轨迹是什么图形?你能写出它的方程吗?能画出草图吗?'抛物线的标准方程知识讲解1.抛物线的标准方程【知识点的认识】抛物线的标准方程的四种种形式:(1)y 2=2px ,焦点在x 轴上,焦点坐标为F(,0),(p 可为正负)(2)x 2=2py ,焦点在y 轴上,焦点坐标为F (0,),(p 可为正负)四种形式相同点:形状、大小相同;四种形式不同点:位置不同;焦点坐标不同.下面以两种形式做简单的介绍:标准方程y 2=2px (p >0),焦点在x 轴上x 2=2py (p >0),焦点在y 轴上图形顶点(0,0)(0,0)对称轴x 轴焦点在x 轴长上y 轴焦点在y 轴长上焦点(,0)(0,)焦距无无离心率e =1e =1准线x =﹣y =﹣例题精讲抛物线的标准方程例1.'已知Q(1,1)是抛物线x2=2py(p>0)上一点,过抛物线焦点F作一条直线l与抛物线交于不同两点A,B.在点A处作抛物线的切线l1,在点B处作抛物线的切线l2,直线l1、l2交于P 点.(Ⅰ)求p的值及焦点F的坐标;(Ⅱ)求证PA⊥PB.'例2.'根据下列条件求抛物线的标准方程:(1)已知抛物线的焦点坐标是F(0,-2);(2)焦点在x轴负半轴上,焦点到准线的距离是5。
抛物线的定义与性质
抛物线的定义与性质抛物线是由平面上一点P到一个定点F的距离与点P到一条直线L的距离相等的轨迹。
在平面直角坐标系中,抛物线的方程可以表示为y = ax² + bx + c,其中a、b、c是常数,a ≠ 0。
抛物线具有许多有趣的性质,下面将逐一介绍。
性质一:焦点和直线L抛物线的焦点是定点F,直线L是平行于y轴的直线,距离焦点F的垂直距离是h。
根据抛物线的定义,对于任意一点P(x, y)在抛物线上,我们可以得到以下关系:PF = PL√[(x - p)² + (y - q)²] = |y - h|其中,(p, q)是抛物线的顶点。
性质二:焦半径焦半径是从焦点F到抛物线上任意一点P的线段。
根据性质一中的等式,我们可以得到焦点与抛物线上的任意一点之间的距离PF与抛物线切线的夹角θ满足以下关系:PF = |PC|cosθ其中,切线的斜率可以通过抛物线的方程求出。
性质三:对称轴抛物线的对称轴是直线x = p,其中p是抛物线的顶点的横坐标。
对称轴将抛物线分成两个对称的部分,具有关于对称轴的对称性。
性质四:焦点的坐标对于抛物线y = ax² + bx + c,焦点的横坐标可以通过以下公式计算:p = -b / (2a)焦点的纵坐标可以通过以下公式计算:q = c - b² / (4a)性质五:切线与法线抛物线上的任意一点P的切线与该点的法线垂直,并且共线。
对于抛物线y = ax² + bx + c,点P(x0, y0)处的切线的斜率可以通过以下公式计算:m = 2ax0 + b点P处的切线的方程可以表示为:y - y0 = m(x - x0)该切线的法线与切线斜率的乘积为-1。
性质六:焦点的几何意义抛物线的焦点F到任意一点P的线段PF的长度与FP的长度相等。
这说明,焦点是抛物线上各点到抛物线的一条对称轴的距离之差的等分点。
性质七:离心率离心率是抛物线焦点到抛物线对称轴的距离与焦点到抛物线上任意一点P的距离之比的绝对值。
1、抛物线的定义、标准方程、几何性质
1、抛物线的定义、几何性质学习目标:理解掌握抛物线的定义、几何性质,并能解决有关问题 重点: 抛物线的定义、几何性质难点:利用抛物线的定义、几何性质解决有关问题 知识梳理:抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线(点F 不在直线l 上). 注意:点F 在直线l 上时,轨迹是过点F 且垂直于直线l 的一条直线 2.抛物线四种标准方程的几何性质:轴)轴轴)轴3.抛物线)0(22>=p px y 的几何性质:(1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧,当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸. (2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),焦点(,0)2p F ,准线2px -=,焦准距p . (4) 焦半径:抛物线 )0(22>-=p px y 上一点),(00y x P 到焦点(,0)2p F 的距离2||||0px PF += 抛物线 )0(22>±=p py x 上一点),(00y x P 到焦点(,0)2p F 的距离 2||||0py PF +=(5) 焦点弦长:抛物线)0(22>=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||.4.焦点弦的相关性质:焦点弦AB ,),(11y x A ,),(22y x B , 焦点(,0)2p F (1)以抛物线的焦点弦为直径的圆和抛物线的准线相切(2) 221p y y -=,4221p x x =(3)pBF AF 211=+ (4)通径:过焦点垂直于焦点所在的轴的焦点弦叫做通径.抛物线的通径长:2p . 5.弦长公式:),(11y x A ,),(22y x B 是抛物线上两点,则221212()()AB x x y y =-+-||11||1212212y y kx x k -+=-+= 分类例析: 一、 抛物线的定义、几何性质及应用 例1(1)过抛物线x y 82=的焦点F 作倾斜角是π43的直线,交抛物线于A,B 两点,则||AB = A .8B .28C .216D .16(2)(2020新课标1理4)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .9(3)经过抛物线)0(22>=p px y 的焦点作一直线l 交抛物线 于),(11y x A ,),(22y x B ,则2121x x y y 的值为__________。
初中抛物线知识点
初中抛物线知识点抛物线是初中数学中一个重要而又有趣的概念,它是曲线中的一种特殊形式。
在学习抛物线时,我们需要掌握它的定义、性质以及一些常见的应用场景。
下面,我将为大家介绍有关初中抛物线知识点。
首先,我们来了解什么是抛物线。
抛物线是由平面上一动点P与定点F之间的距离等于动点P到一条定直线l之间的距离的所有点P构成的曲线。
在抛物线上存在两个重要的特殊点,分别是顶点和焦点。
顶点是抛物线的最低点或最高点,而焦点则是定点F到抛物线的任意一点P的最近的距离。
接下来,我们了解抛物线的性质。
抛物线具有对称性,即关于抛物线的轴对称。
抛物线的轴是通过顶点且与抛物线垂直的一条直线。
我们可以通过求解抛物线的轴方程来确定抛物线的轴线位置和方程。
另外,抛物线还具有单调性,也就是说抛物线在轴上的左侧单调递增,在轴上的右侧单调递减。
这一性质在抛物线的应用中非常重要。
抛物线的应用非常广泛,下面就来探讨一些常见的应用场景。
首先是物理学中的抛物线运动。
在自由落体运动中,当物体以一定初速度在无空气阻力下抛出时,其轨迹就是一个抛物线。
通过学习物理抛物线运动,我们可以了解自由落体运动的规律,如最大高度、最大射程等。
此外,在工程学中,抛物线也有很多应用。
例如,在建筑设计中,拱形结构的建筑物就常常采用抛物线形状,因为抛物线能够均匀承载压力,具有结构稳定性。
除了物理和工程学,抛物线还在数学中有广泛的应用。
例如,我们可以通过抛物线来求解一些几何问题。
当给定一抛物线和一定点,我们可以利用抛物线性质推导出与这个点相关的特定性质。
此外,抛物线还被广泛应用于数学模型中。
例如,抛物线方程可以用于描述电磁波在天线中的传播情况,或者用于描述流体中的涡流等。
总结起来,初中抛物线知识点是我们数学学习中的重要部分。
我们需要了解抛物线的定义、性质和常见应用,以此来应对日后的相关问题和挑战。
通过学习抛物线知识点,可以培养我们的思维能力和解决实际问题的能力。
在今后的学习和生活中,我们要注重探索抛物线的更多应用,不断提升自己的数学素养。
抛物线及其性质知识点大全
抛物线及其性质1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质:图形参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔.开口方向 右左上下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p =>22(0)x py p =->焦 点位 置 X 正X 负Y 正Y 负焦 点坐 标 (,0)2p (,0)2p -(0,)2p(0,)2p -准 线方 程 2p x =-2p x =2p y =-2p y =范 围 0,x y R ≥∈0,x y R ≤∈0,y x R ≥∈0,y x R ≤∈对 称轴 X 轴X 轴Y 轴Y 轴顶 点坐 标 (0,0)离心率 1e =通 径 2p焦半径11(,)A x y 12p AF x =+12p AF x =-+12p AF y =+12p AF y =-+焦点弦长AB12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++焦点弦长AB 的补充11(,)A x y22(,)B x y以AB 为直径的圆必与准线l 相切若AB 的倾斜角为α,22sin p AB α=若AB 的倾斜角为α,则22cos pAB α=2124p x x = 212y y p =-112AF BF AB AF BF AF BF AF BF p++===•• 3.抛物线)0(22>=p px y 的几何性质:(1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.(2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),离心率:1=e ,焦点(,0)2p F ,准线2px -=,焦准距p . (4) 焦点弦:抛物线)0(22>=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||. 弦长|AB|=x 1+x 2+p,当x 1=x 2时,通径最短为2p 。
抛物线的定义及其标准方程
抛物线的定义及其标准方程抛物线是一种常见的平面曲线形状,它形似一条弯曲的碗,也可以理解为一弹出物飞行时所经过的曲线。
抛物线有许多重要的应用,如机械运动、射击学、光学和电子学等领域。
本篇文章将介绍抛物线的定义及其标准方程。
一、抛物线的定义抛物线可以由一个固定点(称为焦点)和一条直线(称为准线)所确定。
以焦点为原点,以准线到焦点的垂线长度为 x 轴的正半轴,则抛物线的反比例距离与该垂线长度成正比。
抛物线的几何性质:1. 抛物线有轴线对称性。
2. 抛物线的定点为焦点。
3. 抛物线上各点P到准线的距离等于该点到焦点的距离。
4. 抛物线上的点P到焦点F的距离等于P到直线的距离。
二、抛物线的标准方程为了描述抛物线更加方便,我们引入直角坐标系,坐标系原点是焦点,x 轴是准线,y 轴垂直 x 轴,向上取正。
设一个参数 p>0,焦点为 F(p,0),准线为 x = -p,抛物线上任意一点 P(x,y) 到焦点的距离是:PF = √[(x-p)² + y²]抛物线上任意一点 P 到准线 x=-p 的距离是:PD = |x+p|由于抛物线上各点到焦点的距离等于该点到直线的距离,因此:PF = PD将 PF 的表达式代入,得:√[(x-p)² + y²] = |x+p|平方两边,得:(x-p)² + y² = (x+p)²化简得到标准方程:y² = 4px这个方程被称为抛物线的标准方程。
其中参数 p>0 决定了焦点与准线之间的距离。
若正抛物线,焦点在 y 轴下方;若负抛物线,焦点在 y 轴上方。
标准方程的性质:1. 抛物线的顶点位于原点。
2. 抛物线开口方向由参数 p 确定:当 p > 0 时,抛物线向右开口,当 p < 0 时,抛物线向左开口。
3. 抛物线的对称轴为 y 轴。
抛物线在实际应用中具有广泛的应用,如光学中的抛物面镜头、瞬时动作线、射流的发射、弹道轨迹以及天体运动等。
抛物线的简单几何性质教案
抛物线的简单几何性质教案抛物线是一种经典的二次函数,具有许多独特的几何性质。
它是数学中的重要概念,也常常出现在物理等实际应用中。
本文将介绍抛物线的一些简单几何性质,并设计一个教案,帮助学生理解和掌握这些性质。
一、抛物线的定义与性质1. 抛物线的定义:抛物线是一组与一直线和一个点的距离比例关系相符的点的轨迹。
2. 抛物线的特点:(1) 对称性:抛物线关于与其对称轴垂直的直线对称。
(2) 相同距离比例:抛物线上任意一点到焦点的距离与该点到准线的距离的比例始终相等,即反映了抛物线的几何性质。
(3) 焦点和准线:抛物线上的焦点与准线的距离相等,且焦点位于对称轴上。
(4) 抛物线开口方向:开口向上或向下取决于二次函数的二次项系数的正负。
二、教案设计1. 教学目标:(1) 理解抛物线的定义;(2) 掌握抛物线的对称性、焦点和准线的性质;(3) 理解抛物线开口方向与二次项系数的关系。
2. 教学过程:(1) 导入:提问学生对抛物线的认识,引导学生思考距离比例的概念,并通过图片和实物示例展示抛物线的形状。
(2) 概念解释:向学生介绍抛物线的定义和性质,让学生了解对称性、焦点和准线等概念,激发学生的兴趣。
(3) 教学演示:通过数学软件或手绘,展示抛物线的对称性和焦点、准线的位置,并解释相同距离比例的特点。
(4) 学生练习:提供抛物线的图形,让学生找出其对称轴、焦点和准线,并计算相同距离比例。
(5) 小组合作:学生分小组讨论并解决抛物线开口方向与二次项系数的关系问题,并向其他小组进行解释和讨论。
(6) 总结复习:学生总结抛物线的简单几何性质,并展示在教室内或墙壁上。
3. 教学评价:(1) 课堂回答问题:老师通过提问检查学生对抛物线性质的理解和掌握情况。
(2) 练习册作业:让学生在练习册上完成相关练习题,检测学生对抛物线性质的理解和应用能力。
三、教学展望通过这节课的教学,学生应能够理解抛物线的基本几何性质,并能够应用这些性质解决简单的问题。
抛物线的标准方程及性质
抛物线的标准方程及性质一、抛物线定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线。
其中定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线 想一想: 定义中的定点与定直线有何位置关系?点F 不在直线L 上,即过点F 做直线垂直于l 于F ,|FK|=P 则P 〉0 求抛物线的方程解:设取过焦点F 且垂直于准线l 的直线为x 轴,线段KF 的中垂线y 轴 设︱KF ︱= p 则F (0,2p ),l :x = —2p 。
设抛物线上任意一点M (X ,Y )定义可知 |MF|=|MN| 即:2)2(22px y P x +=+-化简得 y 2 = 2px (p >0) 二、标准方程把方程 y 2 = 2px (p >0)叫做抛物线的标准方程,其中F (2P ,0),l :x = — 2P而p 的几何意义是: 焦 点 到 准 线 的 距 离|FK|一条抛物线,由于它在坐标平面内的位置不同,方程也不同,所以抛物线的标准方程还有其它形式。
1.四种抛物线的标准方程对比图形 标准方程焦点坐标准线方程)0(22>=p px y⎪⎭⎫ ⎝⎛0,2p 2p x -=)0(22>-=p px y⎪⎭⎫⎝⎛-0,2p 2px =)0(22>=p py x⎪⎭⎫ ⎝⎛2,0p2py -=)0(22>-=p py x⎪⎭⎫ ⎝⎛-2,0p2py =2、怎样把抛物线位置特征(标准位置)和方程的特点(标准方程)统一起来? 顶点在原点三、抛物线的性质设抛物线的标准方程y 2=2px (p >0),则(1)范围:抛物线上的点(x ,y )的横坐标x 的取值范围是x ≥0。
,在轴右侧抛物线向右上方和右下方无限延伸。
(2)对称性:这个抛物线关于轴对称,抛物线的对称轴叫做抛物线的轴。
抛物线和它的轴的交点叫做抛物线的顶点.(3)顶点:抛物线和它的交点叫做抛物线的顶点,这个抛物线的顶点是坐标原点。
高三数学第一轮复习抛物线的定义性质及标准
高三数学第一轮复习:抛物线的定义、性质及标准方程【本讲主要内容】抛物线的定义及相关概念、抛物线的标准方程、抛物线的几何性质【知识掌握】【知识点精析】1. 抛物线定义:平面内与一个定点和一条直线的距离相等的点的轨迹叫做抛物线,点叫做抛物线的焦点,直线叫做抛物线的准线,定点不在定直线上。
它与椭圆、双曲线的第二定义相仿,仅比值(离心率e)不同,当e=1时为抛物线,当0<e<1时为椭圆,当e>1时为双曲线。
2. 抛物线的标准方程有四种形式,参数的几何意义,是焦点到准线的距离,掌握不同形式方程的几何性质(如下表):其中为抛物线上任一点。
3. 对于抛物线上的点的坐标可设为,以简化运算。
4. 抛物线的焦点弦:设过抛物线的焦点的直线与抛物线交于,直线与的斜率分别为,直线的倾斜角为,则有,,,,,,。
说明:1. 求抛物线方程时,若由已知条件可知曲线是抛物线一般用待定系数法;若由已知条件可知曲线的动点的规律一般用轨迹法。
2. 凡涉及抛物线的弦长、弦的中点、弦的斜率问题时要注意利用韦达定理,能避免求交点坐标的复杂运算。
3. 解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何性质。
【解题方法指导】例1. 已知抛物线的顶点在坐标原点,对称轴为轴,且与圆相交的公共弦长等于,求此抛物线的方程。
解析:设所求抛物线的方程为或设交点(y1>0)则,∴,代入得∴点在上,在上∴或,∴故所求抛物线方程为或。
例2. 设抛物线的焦点为,经过的直线交抛物线于两点,点在抛物线的准线上,且∥轴,证明直线经过原点。
解析:证法一:由题意知抛物线的焦点故可设过焦点的直线的方程为由,消去得设,则∵∥轴,且在准线上∴点坐标为于是直线的方程为要证明经过原点,只需证明,即证注意到知上式成立,故直线经过原点。
证法二:同上得。
又∵∥轴,且在准线上,∴点坐标为。
于是,知三点共线,从而直线经过原点。
证法三:如图,设轴与抛物线准线交于点,过作,是垂足则∥∥,连结交于点,则又根据抛物线的几何性质,∴因此点是的中点,即与原点重合,∴直线经过原点。
抛物线的标准方程与性质
抛物线的标准方程与性质一、抛物线定义平面与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线.其中定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线 想一想: 定义中的定点与定直线有何位置关系?点F 不在直线L 上,即过点F 做直线垂直于l 于F ,|FK|=P 那么P>0 求抛物线的方程解:设取过焦点F 且垂直于准线l 的直线为x 轴,线段KF 的中垂线y 轴设︱KF ︱= p 那么F 〔0,2p 〕,l :x = -2p 。
设抛物线上任意一点M 〔X ,Y 〕定义可知 |MF|=|MN| 即:2)2(22px y P x +=+-化简得y 2 = 2px 〔p >0〕 二、标准方程把方程y 2 = 2px 〔p >0〕叫做抛物线的标准方程,其中F 〔2P ,0〕,l :x = - 2P而p 的几何意义是: 焦 点 到 准 线 的 距 离|FK|一条抛物线,由于它在坐标平面的位置不同,方程也不同,所以抛物线的标准方程还有其它形式.1.四种抛物线的标准方程比照图形 标准方程焦点坐标准线方程)0(22>=p px y⎪⎭⎫ ⎝⎛0,2p 2p x -=)0(22>-=p px y⎪⎭⎫⎝⎛-0,2p 2px =)0(22>=p py x⎪⎭⎫ ⎝⎛2,0p2py -=)0(22>-=p py x⎪⎭⎫ ⎝⎛-2,0p2py =2、怎样把抛物线位置特征〔标准位置〕和方程的特点〔标准方程〕统一起来? 顶点在原点三、抛物线的性质设抛物线的标准方程y 2=2px (p >0),那么〔1〕围:抛物线上的点(x ,y )的横坐标x 的取值围是x ≥0.,在轴右侧抛物线向右上方和右下方无限延伸。
〔2〕对称性:这个抛物线关于轴对称,抛物线的对称轴叫做抛物线的轴.抛物线和它的轴的交点叫做抛物线的顶点.〔3〕顶点:抛物线和它的交点叫做抛物线的顶点,这个抛物线的顶点是坐标原点。
抛物线其性质知识点大全
抛物线及其性质1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质:图形参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔.开口方向 右左上下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p =>22(0)x py p =->焦 点位 置 X 正X 负Y 正Y 负焦 点坐 标 (,0)2p (,0)2p -(0,)2p(0,)2p -准 线方 程 2p x =-2p x =2p y =-2p y =范 围 0,x y R ≥∈0,x y R ≤∈0,y x R ≥∈0,y x R ≤∈对 称轴 X 轴X 轴Y 轴Y 轴顶 点坐 标 (0,0)离心率 1e =通 径 2p焦半径11(,)A x y 12p AF x =+12p AF x =-+12p AF y =+12p AF y =-+焦点弦长AB12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++焦点弦长AB 的补充11(,)A x y22(,)B x y以AB 为直径的圆必与准线l 相切若AB 的倾斜角为α,22sin p AB α=若AB 的倾斜角为α,则22cos pAB α=2124p x x = 212y y p =-112AF BF AB AF BF AF BF AF BF p++===•• 3.抛物线)0(22>=p px y 的几何性质:(1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.(2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),离心率:1=e ,焦点(,0)2p F ,准线2px -=,焦准距p . (4) 焦点弦:抛物线)0(22>=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||. 弦长|AB|=x 1+x 2+p,当x 1=x 2时,通径最短为2p 。
抛物线及其性质知识点大全
抛物线及其性质1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质:3.抛物线)0(22>=p px y 的几何性质:(1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.(2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),离心率:1=e ,焦点(,0)2p F ,准线2px -=,焦准距p . (4) 焦点弦:抛物线)0(22>=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||. 弦长|AB|=x 1+x 2+p,当x 1=x 2时,通径最短为2p 。
4.焦点弦的相关性质:焦点弦AB ,),(11y x A ,),(22y x B ,焦点(,0)2pF (1) 若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-。
(2) 若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。
(3) 已知直线AB 是过抛物线22(0)y px p =>焦点F ,112AF BF AB AF BF AF BF AF BF p++===∙∙ (4) 焦点弦中通径最短长为2p 。
通径:过焦点垂直于焦点所在的轴的焦点弦叫做通径.(5) 两个相切:○1以抛物线焦点弦为直径的圆与准线相切.○2过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
5.弦长公式:),(11y x A ,),(22y x B 是抛物线上两点,则AB =||11||1212212y y k x x k -+=-+=6.直线与抛物线的位置关系 直线,抛物线,,消y 得:(1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时,Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。
高中数学解析几何抛物线性质与定义(精)
抛物线抛物线也是圆锥曲线中的一种, 即圆锥面与平行于某条母线的平面相截而得的曲线。
抛物线是指平面内到一个定点和一条定直线 l 距离相等的点的轨迹。
1、抛物线的定义平面内到一个定点 F 和不过 F 的一条定直线 l 距离相等的点的轨迹 (或集合称之为抛物线。
F 称为 " 抛物线的焦点 ", l 称为 " 抛物线的准线 " 。
如图:设定点 F 到定直线 l 距离 FN 为 p , M为 x 轴,建立坐标系,设动点 M 的坐标为 (x,y 若 M 到直线 l 的距离与到定点 F 的距离相等, 则有:2222p x y p x +=+⎪⎭⎫⎝⎛-整理可得抛物线的标准形式为:px y 22= 对应的焦点坐标为( , 2p 对应的准线方程为 2p x -=对应的顶点坐标为(0, 0 离心率 e=1抛物线的形式一共有以下四种:2、抛物线的性质设抛物线的标准方程 y 2=2px (p >0 ,则(1 . 范围:则抛物线上的点 (x , y 的横坐标 x 的取值范围是x ≥0., 在轴右侧抛物线向右上方和右下方无限延伸。
(2 . 对称性:这个抛物线关于轴对称, 抛物线的对称轴叫做抛物线的轴 . 抛物线和它的轴的交点叫做抛物线的顶点 .(3 .顶点:抛物线和它的交点叫做抛物线的顶点,这个抛物线的顶点是坐标原点。
(4 .离心率;抛物线上的点与焦点的距离和它的准线的距离的比叫做抛物线的离心率, 其值为 1.(5 . 在抛物线 y 2=2px (p >0中,通过焦点而垂直于 x 轴的直线与抛物线两交点的坐标分别为 , 2(, , 2(p p p p -,连结这两点的线段叫做抛物线的通径,它的长为 2p .(6 . 平行于抛物线轴的直线与抛物线只有一个交点 . 但它不是双曲线的切线 . (7 焦点弦长公式:过焦点弦长 121222p p P Q x x x x p =+++=++抛物线和椭圆、双曲线的比较(1 . 抛物线的性质和椭圆、双曲线比较起来,差别较大 . 它的离心率等于 1;它只有一个焦点、一个顶点、一条对称轴、一条准线;它无中心,也没有渐近线 .(2 . 椭圆、双曲线都有中心,它们均可称为有心圆锥曲线 . 抛物线没有中心,称为无心圆锥曲线 .3. 习题讲解例 1(1 如图 5, 已知定直线 l 及定点 F , 定直线上有一动点 N , 过 N 垂直于 l 的直线与线段 N F 的垂直平分线相交于点 M ,则点 M 的轨迹是什么形状的曲线? (2 点 M 与 (4,0 F 的距离比它到直线 :50l x +=的距离小 1, 点 M 的轨迹是什么形状的曲线? (3 已知圆 22:(3 1C x y -+=, 动圆 M 与圆 C 外切且与 y 轴相切 (图 6 , M 的轨迹是什么形状的曲线?例 2. 过抛物线焦点 F 的直线与抛物线交于 A 、 B 两点,若 A 、 B 在抛物线准线上的射影分别为 A 1、 B 1,则∠ A1FB 1=__________。
抛物线的简单几何性质(综合)
外切
总结词
当抛物线的焦点在圆外,且圆心在抛物线上 时,抛物线与圆相切于两点,即外切。
详细描述
外切的情况发生在抛物线的焦点位于圆心所 在直线的另一侧时。此时,圆心到抛物线准 线的距离等于圆的半径,因此抛物线与圆相 切于两点。
相交
总结词
当抛物线的焦点在圆内或圆在抛物线上时, 抛物线与圆有两个交点,即相交。
抛物线的简单几何性质(综合)
目 录
• 抛物线的定义与基本性质 • 抛物线的对称性 • 抛物线的几何变换 • 抛物线与直线的交点 • 抛物线与圆的位置关系 • 抛物线的实际应用
01 抛物线的定义与Байду номын сангаас本性质
定义
01
抛物线是一种二次曲线,其方程为 $y = ax^2 + bx + c$,其中 $a, b, c$ 是常数,且 $a neq 0$。
关于原点的对称性
总结词
抛物线关于原点的对称性表现为,将抛物线绕原点旋转180度,其形状和位置 保持不变。
详细描述
当抛物线绕原点旋转180度时,抛物线的开口方向发生改变,顶点的位置也发生 改变,但抛物线的形状和位置保持不变,即关于原点对称。
03 抛物线的几何变换
平移
总结词
平移不改变抛物线的形状和开口方向,只是沿垂直或水平方向移动抛物线。
联立方程法
将抛物线的方程与直线的 方程联立,解出交点的坐 标。
判别式法
利用二次方程的判别式来 判断直线与抛物线是否有 交点,以及交点的个数。
参数方程法
利用抛物线的参数方程, 将参数表示为交点的坐标。
交点与弦长
弦长公式
根据抛物线与直线的交点坐标,利用弦长公式计算弦长。
抛物线的概念
抛物线的概念抛物线的概念及其应用1. 引言抛物线是数学中一个重要的曲线,其形状独特而美妙。
在几何学和物理学中,抛物线广泛应用于各种领域,包括力学、光学、天文学等。
本文将深入探讨抛物线的概念、性质和应用,以便更深入地理解这一曲线。
2. 抛物线的定义抛物线是所有离一个定点(称为焦点)距离与其到一条直线(称为准线)的距离成正比的点构成的曲线。
准线和焦点之间的距离称为焦距,并用字母p表示。
3. 抛物线的性质3.1 对称性抛物线具有关于准线对称的性质。
如果抛物线上的点P到准线的距离为d,则点P'到准线的距离也为d并且两点在准线的同一侧。
3.2 焦点与准线的距离关系对于抛物线上的任意一点P,其距离焦点的距离与其到准线的距离之间存在以下关系:d = |PF| = |PL| = p,其中PF表示点P到焦点的距离,PL表示点P到准线的距离。
3.3 焦点的确定方法通过对称性和焦点与准线的距离关系,可以确定焦点的位置。
以焦点为圆心、焦距为半径作圆与准线相交于点O,连接PO即可确定焦点的位置。
4. 抛物线的方程抛物线的方程可以通过焦点、准线和直角坐标系来求得。
一般来说,抛物线的顶点位于坐标轴上,其坐标表示为(h,k)。
根据抛物线的定义,可以得到一般式方程:y = ax^2 + bx + c。
5. 抛物线的重要应用5.1 物体的抛射运动在力学中,抛物线被广泛应用于描述物体的抛射运动。
当物体在水平面上以一定初速度和发射角度被抛出时,其运动轨迹正是一个抛物线。
通过抛物线方程,可以计算物体的运动轨迹、最大高度和最远距离等参数。
5.2 反射聚焦在光学中,抛物线被用于反射聚焦。
抛物面反射器是一种利用抛物线形状的曲面来聚焦光线的光学器件。
这种曲面具有将接近光轴的入射平行光束反射到焦点上的特点,因此被广泛应用于望远镜、卫星接收器等光学设备中。
5.3 天体运动轨迹在天文学中,抛物线也用于描述天体的运动轨迹。
彗星经常沿着抛物线轨道绕太阳运行,其中太阳位于焦点上。
抛物线的标准方程及性质
设A(x1,y1)、B(x2,y2),则 y1、y2 是该方程的两根,∴y1y2=-p2.
∵BC∥x 轴,且点C在准线 x=- p 上,∴点 C 的坐标为(- p ,y2).
2
2
∴直线OC 的斜率为k= y2 2 p y1 ,即 k 也是直线OA的斜率. p y1 x1 2
∴直线AC 经过原点 O. 6、A、B 是抛物线 y2=2px(p>0)上的两点,满足 OA⊥OB(O 为坐标原点).求证:
(1)A、B两点的横坐标之积、纵坐标之积分别为定值; (2)直线 AB 经过一个定点. 证明(1)设 A(x1,y1)、B(x2,y2),则y12=2px1、y22=2px2. ∴OA⊥OB,∴x1x2+y1y2=0,y12y22=4p2x1x2=4p2·(-y1y2). ∴y1y2=-4p2,从而 x1x2=4p2也为定值.
xP ,
yG
y0 y1 yP 3
x02 x12 x0 x1 3
(x0
x1 )2 x0 x1 3
4xP2 yp 3
,
∴ y p 3yG 4xG2 ,结合 x p = xG 代入点 P 所在在直线方程,得到重心 G 的轨迹方程为:
x (3y 4x2 ) 2 0,即y 1 (4x2 x 2). 3
则 y=|PQ|-1=|PF|-1,|PA|+y=|PA|+|PF|-1,问题转化为:求|PA|+|PF|的最
小值,易见:
|PA|+|PF|≥|AF|=3,当且既当 F、P、A 共线时等号成立,故:|PA|+y 的最小值为 2。
3、求证:以抛物线 y 2 2 px 过焦点的弦为直径的圆,必与此抛物线的准线相切。
【解析】设 M(x1,y1),N(x2,y2),设抛物线方程为 y2=2px.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D.(0,1)
答案 B 解析 因为抛物线的准线方程为 x=-p2=-1,∴p2=1, ∴焦点坐标为(1,0),故选 B.
3.(2014·安徽文)抛物线 y=14x2 的准线方程是(
)
A.y=-1
B.y=-2
C.x=-1
D.x=-2
答案 A 解析 抛物线 y=14x2 的标准方程为 x2=4y,所以其准线方程 为 y=-1.
距离相等的点的轨迹为( A )
(A)直线 (B)抛物线 (C)双曲线 (D)椭圆
求标准方程 想 一 想
如何建立直角坐标系?
l N
M·
· F
过F做直线FK垂直于直线l,垂足为K。以直线KF为x轴,线段KF的垂直平分线为y轴,建立如图所 示的直角坐标系xOy。
设︱KF︱= p
p 则F( ,0),l:x = -
p
2
2
设动点M的坐标为(x,y),
由定义可知,
(xp)2y2 xp
2
2
y l
M· N
·
x
o
K
F
化简得 y2 = 2px(p>0)
方程 y2 = 2px(p>0)叫做 抛物线的标准方程。
其 中 焦 点 F 2 p ,0 ,准 线 方 程 为 x 2 p ,开 口 向 右
其中 p 为正常数,它的几何意义是:
x p 2
3、抛物线的顶点:
抛物线和轴的交点。原点O(0,0)
F ( p ,0) x 2
4、抛物线的离心率 y2=2px离心率都是 1
图形 y l
OF
方程
y2 = 2px (p>0) x
y FO
l
y2 = -2px (p>0) x
焦点
准线
F ( p ,0) x p
2
2
F ( p ,0) x p
抛物线定义及性质
一、定义 平面内到一个定点F和一条定直线l的距离相等的点的轨迹叫做抛 L
物线。
▲定点F 叫做抛物线的焦点。
F
o
x
▲定直线l 叫做抛物线的准线
注:如果定点F在定直线l上,所求的轨迹是? 过定点F垂直于直线l的一条直线
1.平面上到定点 A(1,1) 和到定直线 l : x 2 y 3
(3)焦点到准线的距离是2.
y 2 4 x ,y 2 4 x ,x 2 4 y ,x 2 4 y
例3 (1)抛物线
y 2 px 2
上一点M到焦点的距离是
a ( a p ) ,则点M到准线的距离是________,
a
2
点M的横坐标是_____.
a p
2
(2)抛物线
y 1 2 x 上与2 焦点的距离等于9的点的坐标是___________;
因为|AF|+|BF|=3,根据抛物线的定义,|AG|=|AF|,|BE| =|BF|,
所以|AG|+|BE|=3,所以|MD|=|BE|+2 |AG|=32, 所以线段 AB 的中点到 y 轴的距离为32-14=54,故选 C.
【答案】 C
探究 1 “看到准线想到焦点,看到焦点想到准线”,许多 抛物线问题均可根据定义获得简捷、直观的求解.“由数想形, 由形想数,数形结合”是灵活解题的一条捷径.
y
P (x0, y0 )
OF
x
通径的长度:2P
P越大,开口越开阔
3、焦半径:连接抛物线任意一点与焦点的线段叫做抛物线的焦半径。
焦半径公式:
|PF|=x0+p/2
下面请大家推导出其余三种标准方程抛物线的焦半径公式。
例1 求下列抛物线的焦点坐标和准线.
1、 y 2 4 x
2、 x 4 y 2
练习1 求下列抛物线的焦点坐标和准线方程:
2
2
范围 x≥0 y∈R
x≤0 y∈R
y F
O
y
O F
x2 = 2py (p>0) x l
l x2 = -2py
x (p>0)
F (0, p ) y p
y≥0 x∈R
2
2
F (0, p ) 2
y p 2
y≤0 x∈R
顶点 (0,0)
对称轴
e
x轴
1 y轴
2、通径:
通过焦点且垂直对称轴的直线, 与抛物线相交于两点,连接这 两点的线段叫做抛物线的通径。
(6,6 2)
练习2
如图,M点是抛物线
y 4 x 上一点,F是抛2 物线
的焦点, 以Fx为始边,FM为终边的角
,求
.
FM
4
xFM60o
y M
OF
x
2.(2015·陕西文)已知抛物线 y2=2px(p>0)的准线经过点
(-1,1),则抛物线焦点坐标为( )
A.(-1,0)
B.(1,0)
C.(0,-1)
【答案】 D
(2)已知 F 是抛物线 y2=x 的焦点,A,B 是该抛物线上的两
点,|AF|+|BF|=3,则线段 AB 的中点 D 到 y 轴的距离为( )
3
A.4
B.1
5
7
C.4
பைடு நூலகம்
D.4
【解析】 因为抛物线 y2=x 的准线方程为 x=-14.
如图所示,过点 A,B,D 分别作直线 x=-14的垂线,垂足分别为 G,E,M,
焦点到准线的距离
图 形﹒ y
焦点
o
x
﹒
y
﹒o
x
y
o
x
﹒
y
o
x
准线
标准方程
二、抛物线的性质
抛物线
y 2px 的2几何性质:
(p>0)
1、抛物线的范围
y
y 它在 轴的右边,向右上方
和右下方无限伸展。 .
2、抛物线的对称性: O
x 关于 轴对称
这条对称轴叫抛物线的轴
注意:
抛物线只有一条对称轴; 没有对称中心
4.设抛物线 y2=8x 上一点 P 到 y 轴的距离是 4,则点 P 到 该抛物线焦点的距离是________.
答案 6
例4.点M与点F(4,0)的距离比它到直线l:x+5=0的距离小1,求点M的轨迹方程.
分析: 如图可知 原条件等价于M点到F(4,0)和到x=-4距离相等,
由抛物线的定义,点M的 轨迹是以F(4,0) 为焦点,x=-4为准线 的抛物线.所求方程是 y2=16x.
(1)y2 20x;
(5,0),x5
(3)2y25x0;
(5 , 0), x 5
8
8
(2)y 2x2;
(0, 1), y 1
8
8
(4)x2 16y0.
(0,4),y4
例2 根据下列条件写出抛物线的标准方程:
(1)焦点是F(0,-2);
x2 8 y
(2)准线方程是
;
y 1 .
x2 4y
y
M (x , y )
-4
-5
F(4,0) x
题型一 抛物线定义的应用
例 1 (1)动圆与定圆 A:(x+2)2+y2=1 外切,且和直线
x=1 相切,则动圆圆心的轨迹是( )
A.直线
B.椭圆
C.双曲线
D.抛物线
【解析】 设动圆的圆心为 C,则 C 到定圆 A:(x+2)2+y2 =1 的圆心的距离等于动圆的半径 r+1,而动圆的圆心到直线 x =1 的距离等于 r,所以动圆到直线 x=2 距离为 r+1,根据抛物 线的定义知,动圆的圆心轨迹为抛物线,所以答案为 D.