(2015届通信工程毕设)OFDM调制解调系统仿真与结果分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 系统仿真与性能分析
4.1 仿真参数设置
结合OFDM调制解调系统原理图与仿真流程图,基于MATLAB软件平台,设置系统仿真参数,如表4-1所示:
由OFDM系统原理和仿真流程可知,由信源产生一个待传输的二进制随机信号。此处,我们以QPSK调制为例,根据表4-1设置的系统默认仿真参数,子载波数目1024个,每个子载波中OFDM符号数为50个,每OFDM符号数所含的比特数为2 bit,信噪比(SNR)为2 dB,经过运算、取整等操作,可产生一组包含20000(子载波数⨯符号数/载波⨯位数/符号)个由0和1构成的一维随机二进制数组,即待传信号,截取待传信号的前101(0—100)个码元,其对应的波形与经过OFDM系统传输、解调还原后所得到的信号波形,如图4-1所示:
图4-1 待传输信号与解调还原信号对比图
由图4-1可知,经过系统发送、传输、解调过后的信号经过并串变换后,还原后所得到的信号与原信号相比,存在数据出错的情况,即产生误码,此时的误码率如图4-3所示:
图4-2 默认参数下QPSK调制的系统误码率
误码率(SER)是衡量数据在规定时间内数据传输精确性的指标。即,数据经过通信信道传输以后,接收端所接收到的数据与发送端发送的原始数据相比,发生错误的码元个数占发送端发送的原始数据的总码元个数之比,误码率的计算公式如下所示:
误码率=错误码元数/传输总码元数
一个通信系统在进行数据传输时的误码率越小,则说明该通信系统的传输精确度越高。
4.2 OFDM系统仿真实现
以QPSK调制为例,系统的仿真参数为默认值。即,子载波数目1024个,每个子载波中OFDM符号数为50个,每OFDM符号数所含的比特数为2 bit,信噪比(SNR)为2 dB。
4.2.1 待传信号与还原信号
图4-3 待传信号与还原信号码元波形
由仿真参数默认值及仿真程序,信源产生的随机序列的长度为20000(子载波数⨯符号数/载波⨯位数/符号),大小介于0到 1之间,经过取整后即得到长度为20000,大小为0或1的待发送的一维随机二进制数组。将待传信号通过发送端输入OFDM系统,通过系统传输后,到达接收端,还原后得到的一组二进制数组即为完成OFDM调制解调和传输的信号。
4.2.2 发送端OFDM载波幅度谱和相位谱
图4-4 OFDM载波幅度谱与相位谱
待传信号经过OFDM系统发送端输入系统后,经过QPSK调制产生调制信息,通过串/并变换后加入子载波,再通过快速傅里叶逆变换(IFFT)生成OFDM符号,其载波幅度谱和相位谱如图4-3所示。在OFDM调制解调系统中,若在IFFFT间隙内的子载波都存在整数个周期,则子载波之间完全正交。然而,当出现频偏时,IFFFT间隙内的子载波周期个数不再是整数倍,从而导致载波间干扰的产生。
4.2.2 分离的OFDM符号子载波波形
图4-5 分离的OFDM符号子载波时域波形
如图4-5表示一个符号周期内的OFDM符号的子载波波形,子载波之间相互正交,是OFDM正交性根本体现。在时间间隔t内,每一个子载波恰好有整数个周期,即每一个子载波的频率是基本频率的整数倍,在一个符号周期内,两个相邻子载波的周期数相差一个周期,两者之间相互正交,保证了每一个子载波都能够被单独的接收并且独立的解调,而不受其他载波的干扰影响。
4.2.2 OFDM信号功率密度谱
图4-6 载波数200的OFDM信号频谱密度谱
如图4-6所示,子载波个数为200的OFDM符号的功率密度谱,图中横轴表示归一化频率,纵轴表示归一化幅度衰减(单位:dB)。我们知道,OFDM符号功率密度谱下降速度,随着OFDM子载波个数的增加而增快。为加速OFDM信号功率谱带外衰减部分的下降,通常采取对每个OFDM时域符号加窗的方式,使OFDM符号周期边缘的幅度值逐渐过渡到零,这与成型滤波的原理相似。成型滤波是在频域加平方根升余弦窗,降低时域信号的拖尾振荡,而OFDM符号则是在时域加升余弦窗,降低频域信号拖尾振荡,使带外衰减速度加快。
4.2.2 接收端OFDM载波幅度谱和相位谱
图4-7 OFDM载波幅度谱和相位谱
OFDM信号通过信道传输后,到达接收端,在接收端经过串并变换和快速傅里叶变换,得到并行的频域的OFDM符号,其幅度谱和相位谱如图4-7所示。
4.3仿真性能分析
4.3.1 在不同调制方式下,系统误码率(BER)与信噪比(SNR)的关系
1.OFDM系统在QPSK调制方式下系统误码率(BER)与信噪比(SNR)的关系曲线:
SNR(dB) 1 2 3 4 5 6 7 8
BER(%)42 14.29 10.17 6.69 4.63 2.09 01.36 0.37 0.14 SNR(dB)9 10 11 12 13 14 15 16 BER(%)0.055 0.005 0 0 0 0 0 0
由表4-2中数据可绘制出系统误码率(BER)与信噪比(SNR)的关系曲线如下图所示:
图4-8 系统误码率(BER)与信噪比(SNR)的关系曲线
2.OFDM系统在BPSK调制方式下系统误码率(BER)与信噪比(SNR)的关系曲线:
SNR(dB) 1 2 3 4 5 6 7 8 BER(%)
SNR(dB)9 10 11 12 13 14 15 16 BER(%)
由表4-3中数据可绘制出系统误码率(BER)与信噪比(SNR)的关系曲线如下图所示:
图4-9 系统误码率(BER)与信噪比(SNR)的关系曲线
由上面的误码率曲线图可以看出,在系统参数一致的情况下,对OFDM系统分别进行QPSK和BPSK两种调制,随着系统信噪比的不断增大,系统误码率在不断的减小,当信噪比达到某一临界值时,系统误码率达到零值。因为伴随系统信噪比的增加,系统噪