函数信号发生器设计报告
电子技术课程设计实验报告--函数信号发生器
电子技术课程设计实验报告--函数信号发生器函数信号发生器一般用于产生基本的常用信号,如正弦波、三角波、方波等,用于生物、医学、通信、音频和模拟电路调试和测量等。
本文介绍了函数信号发生器的结构和特性,以及利用函数信号发生器实验的操作步骤,对这一实验作了详细介绍。
一、结构和特点函数信号发生器是一款多用途的信号发生器,它是由数字电子芯片和模拟元件组成的,具有输出波形数量多、偏差小、功耗低等特点,它的性能特性好,能产生不同波形信号,灵活多变,具有稳定可靠的输出。
二、实验步骤1、打开万用表,将探头连接输出接口,将万用表切换到 AC 档,设置 200mV 档,同时将频率表中频率调节到 10kHz;2、连接信号发生器,打开电源开关,调节波形类型选择按钮使之处于正弦波,将频率表中频率调节到 10kHz;3、调节占空比调节按钮,可将其调节到饱和状态,观察波形并绘图;4、将频率表中频率再次调节到 10kHz,占空比按钮设置为50%,在衰减平调中调节输出信号,观察波形并绘图;5、按此类推,可实现其他波形的输出,可视性观察波形变化,以此可以了解整体系统性质。
三、实验结果实验中,我用函数信号发生器分别调节了正弦波和相应占空比的三角波和方波,用万用表观察波形的变化,为验证系统的性能,我用万用表测量各调试波形的参数,如电压大小、频率和占空比,结果如下:1、测试的正弦波的频率为:10kHz;占空比为:50%;电压大小为:150mV;在本次实验中,我们通过调节函数信号发生器,成功地验证函数信号发生器能够输出基本的常用信号,如正弦波、三角波、方波等,并通过万用表对其调节参数进行测试,得出的结果与理论设计的基本一致,可以表明函数信号发生器的稳定性、可靠性良好,这证实了函数信号发生器的功能设计正确性及其使用的可行性。
信号发生器课程设计报告完整版
信号发生器课程设计报告HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】目录一、课题名称 (2)二、内容摘要 (2)三、设计目的 (2)四、设计内容及要求 (2)五、系统方案设计 (3)六、电路设计及原理分析 (4)七、电路仿真结果 (7)八、硬件设计及焊接测试 (8)九、故障的原因分析及解决方案 (11)十、课程设计总结及心得体会 (12)一、课题名称:函数信号发生器的设计二、内容摘要:函数信号发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。
在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。
信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。
它可以产生多种波形信号,如正弦波,三角波,方波等,因而此次课程设计旨在运用模拟电子技术知识来制作一个能同时输出正弦波、方波、三角波的信号发生器。
三、设计目的:1、进一步掌握模拟电子技术知识的理论知识,培养工程设计能力和综合分析能力、解决问题的能力。
2、基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力。
3、学会运用Multisim仿真软件对所做出来的理论设计进行仿真测试,并能进一步解决出现的基本问题,不断完善设计。
4、掌握常用元器件的识别和测试,熟悉万用表等常用仪表,了解电路调试的基本方法,提高实际电路的分析操作能力。
5、在仿真结果的基础上,实现实际电路。
四、设计内容及要求:1、要求完成原理设计并通过Multisim软件仿真部分(1)RC桥式正弦波产生电路,频率分别为300Hz、1KHz、10KHz、500KHz,输出幅值300mV~5V可调、负载1KΩ。
(2)占空比可调的矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。
电路实验报告 函数信号发生器
电子电路综合设计实验实验一函数信号发生器的设计与调测班级: 2009211108**: ***学号: ********小班序号: 26课题名称函数信号发生器的设计与实现一、摘要函数信号发生器是一种为电子测量提供符合一定要求的电信号的仪器, 可产生不同波形、频率和幅度的信号。
在测试、研究或调整电子电路及设备时, 为测定电路的一些电参量,用信号发生器来模拟在实际工作中使用的待测设备的激励信号。
信号发生器可按照产生信号产生的波形特征来划分:音频信号源、函数信号源、功率函数发生器、脉冲信号源、任意函数发生器、任意波形发生器。
信号发生器用途广泛, 有多种测试和校准功能。
本实验设计的函数信号发生器可产生方波、三角波和正弦波这三种波形, 其输出频率可在1KHz至10KHz范围内连续可调。
三种波形的幅值及方波的占空比均在一定范围内可调。
报告将详细介绍设计思路和与所选用元件的参数的设计依据和方法。
二、关键词函数信号发生器迟滞电压比较器积分器差分放大电路波形变换三、设计任务要求:1、(1)基本要求:2、设计一个可输出正弦波、三角波和方波信号的函数信号发生器。
3、输出频率能在1-10KHZ范围内连续可调, 无明显是真;4、方波输出电压Uopp≥12V, 上升, 下降沿小于10us, 占空比可调范围30%-70%;5、三角波输出电压Uopp≥8V;6、正弦波输出电压Uopp≥1V;设计该电源的电源电路(不要求实际搭建), 用PROTEL软件绘制完整的电路原理图(SCH)。
(2)提高要求:1.三种输出波形的峰峰值Uopp均在1V-10V范围内连续可调。
2.三种输出波形的输出阻抗小于100Ω。
3.用PROTEL软件绘制完整的印制电路板图(PCB)。
(3)探究环节:1.显示出当前输入信号的种类、大小和频率(实验演示或详细设计方案)。
2.提供其他函数信号发生器的设计方案(通过仿真或实验结果加以证明)。
四、设计思路和总体结构框图(1)原理电路的选择及总体思路:根据本实验的要求, 用两大模块实现发生器的设计。
简易函数信号发生器设计报告
简易函数信号发生器设计报告一、引言信号发生器作为一种测试设备,在工程领域具有重要的应用价值。
它可以产生不同的信号波形,用于测试和调试电子设备。
本设计报告将介绍一个简易的函数信号发生器的设计方案。
二、设计目标本次设计的目标是:设计一个能够产生正弦波、方波和三角波的函数信号发生器,且具有可调节频率和幅度的功能。
同时,为了简化设计和降低成本,我们选择使用数字模拟转换(DAC)芯片来实现信号的输出。
三、设计原理1.信号产生原理正弦波、方波和三角波是常见的函数波形,它们可以通过一系列周期性的振荡信号来产生。
在本设计中,我们选择使用集成电路芯片NE555来产生可调节的方波和三角波,并通过滤波电路将其转换为正弦波。
2.幅度调节原理为了实现信号的幅度调节功能,我们需要使用一个可变电阻,将其与输出信号的放大电路相连。
通过调节可变电阻的阻值,可以改变放大电路的放大倍数,从而改变信号的幅度。
3.频率调节原理为了实现信号的频率调节功能,我们选择使用一个可变电容和一个可变电阻,将其与NE555芯片的外部电路相连。
通过调节可变电容和可变电阻的阻值,可以改变NE555芯片的工作频率,从而改变信号的频率。
四、设计方案1.正弦波产生方案通过NE555芯片产生可调节的方波信号,并通过一个电容和一个电阻的RC滤波电路,将方波转换为正弦波信号。
2.方波产生方案直接使用NE555芯片产生可调节的方波信号即可。
3.三角波产生方案通过两个NE555芯片,一个产生可调节的方波信号,另一个使用一个电容和一个电阻的RC滤波电路,将方波转换为三角波信号。
五、电路图设计设计的电路图如下所示:[在此插入电路图]六、实现效果与测试通过实际搭建电路,并连接相应的调节电位器,我们成功地实现了信号的幅度和频率调节功能。
在不同的调节范围内,我们可以得到稳定、满足要求的正弦波、方波和三角波信号。
七、总结通过本次设计,我们成功地实现了一个简易的函数信号发生器,具有可调节频率和幅度的功能。
函数信号发生器设计报告
函数信号发生器设计报告目录一、设计要求 .......................................................................................... - 2 -二、设计的作用、目的 .......................................................................... - 2 -三、性能指标 .......................................................................................... - 2 -四、设计方案的选择及论证 .................................................................. - 3 -五、函数发生器的具体方案 .................................................................. - 4 -1. 总的原理框图及总方案 ................................................................. - 4 -2.各组成部分的工作原理 ................................................................... - 5 -2.1 方波发生电路 .......................................................................... - 5 -2.2三角波发生电路 .................................................................... - 6 -2.3正弦波发生电路 .................................................................. - 7 -2.4方波---三角波转换电路的工作原理 ................................ - 10 -2.5三角波—正弦波转换电路工作原理 .................................. - 13 -3. 总电路图 ....................................................................................... - 15 -六、实验结果分析 ................................................................................ - 16 -七、实验总结 ........................................................................................ - 17 -八、参考资料 ........................................................................................ - 18 -九、附录:元器件列表 ........................................................................ - 19 -函数信号发生器设计报告一、设计要求1. 用集成运放组成正弦波、方波和三角波发生器。
函数信号发生器设计报告
函数信号发生器设计报告设计要求设计制作能产生正弦波、方波、三角波等多种波形信号输出的波形发生器,具体要求:(1)输出波形工作频率范围为2HZ-200KHZ且连续可调;(2)输出频率分五档:低频档:2HA 20HZ中低频档:20HZ- 200HZ 中频档:200HQ2KHZ中高频档:2KHZ-20KHZ高频档:20KHZ- 200KHZ(3)输出带LED指示。
设计的作用、目的1. 掌握函数信号发生器工作原理。
2. 熟悉集成运放的使用。
3. 熟悉Multisim软件。
三、设计的具体实现3.1函数发生器总方案采用分立元件,设计出能够产生正弦波、方波、三角波信号的各个单元电路,利用Multisim 仿真软件模拟,调试各个参数,完成单元电路的调试后连接起来,在正弦波产生电路中加入开关控制,选择不同档位的元件,达到输出频率可调的目的。
总原理图:正弦波方波三角波3.2单元电路设计、仿真I、RC桥式正弦波振荡电路正弦波振荡器是在只有直流供电、不加外加输入信号的条件下产生正弦波信号的电路。
正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。
其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。
因此,正弦波产生电路一般包括:放大电路、反馈网络、选频网络、稳幅电路四个部分。
根据选频电路回路的不同,正弦波振荡器可分为RC正弦波振荡器、LC正弦波振荡器和石英晶体振荡器。
其中,RC正弦波振荡器主要用于产生中低频正弦波,振荡频率一般小于1MHz满足本次设计要求,故选用RC 正弦波振荡器。
产生正弦振荡的条件:确定R、C的值为了使选频网络的选频特性尽量不受集成运算放大器的输入电阻叫和输出电阻心的影响,应使R满足下列关系式:R f»R>>。
,一般叫约为几百千欧以上,九仅为几百欧以上。
故确定I =10KQ ,针对不同档位设置不同的C:当f rnajt=20Hz时,由f=而疋,其中R=n血=10K Q,得到8 0.79卩F;再将"』=2Hz, C"0.79卩F代入,得到R=99.5 K Q ,所以将电阻R接成由固定电阻叫鈕=10 K Q 和120 K Q的滑动变阻器串联形式,使电路变成频率由:=2Hz到=20Hz可调的正弦波发生电路;同理可以计算出20Hz〜200Hz. 200Hz〜2kHz、2kHz〜20kHz、20kHz〜200kHz 的R C值。
函数信号发生器课程设计报告
淮海工学院课程设计报告书课程名称:电子技术课程设计题目:函数信号发生器学院:电子工程学院学期: 2012-2013-2 专业班级:通信工程111 姓名:彭孟瑶学号: 2011120688函数信号发生器1.引言在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。
可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量需要。
波形发生器就是信号源的一种,能够给被测电路提供所需要的波形,传统的波形发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,不能根据实际需要灵活扩展。
随着微电子技术的发展,运用单片机技术,通过巧妙的软件设计和简易的硬件电路,产生数字式的正弦波、方波、三角波、锯齿等幅值可调的信号。
与现有各类型波形发生器比较而言,产生的数字信号干扰小,输出稳定,可靠性高,特别是操作简单方便。
2.设计要求设计一个能够输出正弦波、三角波和矩形波的信号源电路,电路形式自行选择。
输出信号的频率可通过开关进行设定,具体要求如下:输出信号的频率范围为1000~2000Hz,步进为50Hz。
要求输出信号无明显失真,特别是正弦波信号。
图1函数信号发生器方框图3.函数信号发生器的方案3.1 方案一由555定时器组成的多谐振荡器产生方波,然后由积分电路将方波转化为三角波,最后用低通滤波器将方波转化为正弦波。
图2 方波、三角波、正弦波、信号发生器的原理框图但这样的输出将造成负载的输出正弦波波形变形,因为负载的变动将拉动波形的崎变。
3.2方案二先通过RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。
图3 正弦波、方波、三角波信号发生器的原理框图此电路具有良好的正弦波和方波信号。
函数信号发生器实验报告
函数信号发生器实验报告函数信号发生器实验报告引言函数信号发生器是一种广泛应用于电子实验室中的仪器设备,用于产生各种形式的电信号。
本实验旨在通过对函数信号发生器的使用和实验验证,进一步了解信号发生器的原理和应用。
一、实验目的本实验的主要目的是:1. 熟悉函数信号发生器的基本操作;2. 掌握函数信号发生器产生不同形式信号的方法;3. 通过实验验证信号发生器的输出特性。
二、实验原理函数信号发生器是一种能够产生各种形式信号的仪器,其基本原理是通过内部电路将直流电压转换为不同形式的交流信号。
常见的信号形式包括正弦波、方波、三角波等。
三、实验步骤1. 打开函数信号发生器的电源,并将输出连接到示波器的输入端。
2. 调节函数信号发生器的频率、幅度和偏置等参数,观察示波器上的波形变化。
3. 逐步调节函数信号发生器的参数,产生不同形式的信号,并记录下相应的参数设置和观察结果。
4. 将函数信号发生器的输出连接到其他电路中,观察信号在不同电路中的响应情况。
四、实验结果与分析在实验过程中,我们通过调节函数信号发生器的频率、幅度和偏置等参数,成功产生了正弦波、方波和三角波等不同形式的信号。
通过示波器观察到的波形,我们可以看出不同形式的信号在频率和振幅上的差异。
在进一步的实验中,我们将函数信号发生器的输出连接到其他电路中,例如放大电路和滤波电路。
观察到信号在不同电路中的响应情况,我们可以了解到信号发生器在实际应用中的作用和效果。
五、实验总结通过本次实验,我们对函数信号发生器的基本操作和原理有了更深入的了解。
我们学会了如何通过调节函数信号发生器的参数来产生不同形式的信号,并通过连接到其他电路中观察信号的响应情况。
在实验过程中,我们也遇到了一些问题和困难,例如在调节参数时需要注意避免过大的幅度和频率,以免对电路和仪器造成损坏。
此外,我们还需要注意信号发生器的精度和稳定性,以保证实验结果的准确性。
通过本次实验,我们进一步认识到函数信号发生器在电子实验中的重要性和广泛应用。
简易函数信号发生器的设计报告
简易函数信号发生器的设计报告设计报告:简易函数信号发生器一、引言函数信号发生器是一种可以产生各种类型函数信号的设备。
在实际的电子实验中,函数信号发生器广泛应用于工程实践和科研领域,可以用于信号测试、测量、调试以及模拟等方面。
本文将着重介绍一种设计简易函数信号发生器的原理和方法。
二、设计目标本设计的目标是实现一个简易的函数信号发生器,能够产生包括正弦波、方波和三角波在内的基本函数信号,并能够调节频率和幅度。
同时,为了提高使用方便性,我们还计划增加一个显示屏,实时显示当前产生的信号波形。
三、设计原理1.信号源函数信号发生器的核心是信号发生电路,由振荡器和输出放大器组成。
振荡器产生所需的函数信号波形,输出放大器负责放大振荡器产生的信号。
2.振荡器为了实现多种函数波形的产生,可以采用集成电路作为振荡器。
例如,使用集成运算放大器构成的和差振荡器可以产生正弦波,使用施密特触发器可以产生方波,使用三角波发生器可以产生三角波。
根据实际需要,设计采用一种或多种振荡器来实现不同类型的函数信号。
3.输出放大器输出放大器负责将振荡器产生的信号放大到适当的电平以输出。
放大器的设计需要考虑到信号的频率范围和幅度调节的灵活性。
4.频率控制为了能够调节信号的频率,可以采用可变电容二极管或可变电阻等元件来实现。
通过调节这些元件的参数,可以改变振荡器中的RC时间常数或LC谐振电路的频率,从而实现频率的调节。
5.幅度控制为了能够调节信号的幅度,可以采用可变电阻作为放大电路的输入阻抗,通过调节电阻阻值来改变信号的幅度。
同时,也可以通过增加放大倍数或使用可变增益放大器来实现幅度的控制。
四、设计步骤1.确定电路结构和信号发生器的类型。
根据功能和性能需求,选择合适的振荡器和放大器电路,并将其组合在一起。
2.根据所选振荡器电路进行参数计算和元件的选择。
例如,根据需要的频率范围选择适合的振荡器电路和元件,并计算所需元件的数值。
3.设计输出放大器电路。
高频实验函数信号发生器设计报告
目录一.设计1.设计指标2.设计目的二.总电路及原理三.各部分组成及原理1.原理框图2.方波发生电路3.三角波产生电路4. 正弦波电路四.实物图五.原件清单六.心得体会一.设计设计指标1)可产生方波、三角波、正弦波。
并测试、调试、组装。
2)方波幅值<=24V且频率可调在10hz-10khz,三角波幅值可调为8V,正弦波幅值可调为2V3)使用741芯片完成此电路4)电路焊接美观大方,走线布局合理设计目的1).掌握电子系统的一般设计方法2).掌握模拟IC器件的应用3).培养综合应用所学知识来指导实践的能力4).掌握常用元器件的识别和测试5).熟悉常用仪表,了解电路调试的基本方法二.总电路及原理由RC构成振荡电路,反相滞回比较器产生矩形波,两者构成方波发生电路,方波经积分器产生三角波,三角波由滤波器产生正弦波,两级滤波产生更好的正弦波。
三.各部分组成及原理原理框图1.方波发生电路方波发生电路三角波正弦波电路简介方波发生电路主要由两部分构成1.反相输入滞回比较器2.RC振荡电路若开始滞回比较器输出电压为U1,此时运放同相输入端电压为UP=U1*R3/(R3+R4)同时U1通过R2对电容充电,当电容电压达到同相端的电压时输出电压变为-U1,同时同相端电压变为-UP,由于电容电压大于输出端电压所以电容通过R1放电,当电容电压等于-UP时输出电压又变为U1,同相端电压变为UP,此时输出电压通过R1对电容进行充电,整个过程不断重复形成自激振荡,由于电容充电时间与放电时间相同,故占空比为50%,形成方波。
利用一阶电路的三要素法列方程求得振荡周期为T=2R1C5in(1+2R3/R4)运放采用双电源+12V、-12V,输出正弦波幅值为14V左右注意事项电路中的稳压管可以起到调节电压幅值并稳定电压的作用,经运放输出端接的R2可以起到稳定波形的作用,但不宜过大,此电路中应不超过500Ω。
另外由于运放为741芯片,故波的频率不会很高,此电路应为一个低频电路。
函数信号发生器论文设计报告
目录摘要 (1)一、方案设计与论证 (2)1、信号发生电路方案论证 (2)2、电压连续可调电路方案论证 (2)3、单片机的选择论证 (2)4、显示方案论证 (2)5、键盘方案论证 (2)二、总体系统设计及模块实现 (3)1、总体系统设计 (3)2、系统各模块的理论分析和实际设计 (3)2.1波形产生模块设计 (3)2.1.1波形选择 (3)2.1.2频率调整 (3)2.2电压调整模块设计 (4)2.3电压放大模块 (4)2.4电源电路模块设计 (4)三、软件设计 (5)1、软件功能 (5)2、频率步进流程图 (5)四、频率稳定性测试分析 (5)1、主要测量仪器:稳压电源,示波器,计数器,数字万用表 (5)2、测试方法: (5)3、测试结果: (5)五、结论 (6)参考文献 (6)附录 (7)摘要本设计采用C8051单片机为核心,设计制作了可以步进调节频率的多波形信号发生器。
芯片MAX038产生信号的频率可以通过调整电流、电压、电阻分别控制。
该信号发生器能在100Hz~100kHz范围能输出可调的正弦波、方波、三角波。
输出稳定性良好。
电压可在0~5V连续调节。
信号输出部分采用低损耗电流反馈型宽带运放作电压放大,很好地解决了带宽和带负载能力的要求。
通过芯片C8051F005控制数据采集和硬件电路的电压及频率显示,通过键盘控制完成频率调节,操作简便,实现效果良好。
关键词:C8051芯片,MAX038芯片,LED数码显示管,741运放一、方案设计与论证1、信号发生电路方案论证方案一:通过单片机控制D/A,输出三种波形。
此方案输出的波形不够稳定,抗干扰能力弱,不易调节。
方案二:使用传统的锁相频率合成方法。
通过芯片IC145152,压控振荡器搭接的锁相环电路输出稳定性极好的正弦波,再利用过零比较器转换成方波,积分电路转换成三角波。
此方案,电路复杂,干扰因素多,不易实现。
方案三:利用MAX038芯片组成的电路输出波形。
函数信号发生器电子设计报告_2
电子综合设计报告设计题目:函数信号发生器一、综合设计方案要求:可以输出正弦波、方波、三角波;频率范围200Hz~10KHz;方波输出电压幅度UP-P =5V, UP-P≈3V。
函数信号发生器由以下两部分组成:(1)、±12v稳压电源电路使用变压器、全桥、LM7812、LM7912设计出±12v稳压电源电路。
(2)、波形产生电路用集成函数发生器ICL8038、集成运算放大器 LF353设计出能产生方波、三角波、正弦波的信号发生器。
二、有关电子器件介绍1、LM7812和LM7912LM7812是正12v三端稳压器,LM7912是负12V三端稳压器,如下图所示2、LF353集成运算放大器 LF353为二运算放大器,该集成电路内含两个独立的运算放大器。
LF353主要用途:适用于各种稳压电源电路。
主要特点:输出稳定性好、使用方便、输出过流、过热自动保护。
极限值:( Tc=25 ℃)电特性:( Tc=25 ℃)最大输入电压VI 35 V最大输出电流Io 1.5 A最大耗散功率PD 20 W最高结温Tjm 150 ℃贮存温度Tstg -55~150 ℃3、ICL8038ICL8038精密函数发生器是采用肖特基势垒二极管等先进工艺制成的单集成电路芯片,电源电压范围宽、稳定度高、精度高、易于用等优点,外部只需接入很少的元件即可工作,可同时产生方波、三角波和正弦波,其函数波形的频率受内部或外电压控制,当调节外部电路参数时,还可以获得占空比可调的矩形波和锯齿波。
因此,广泛用于仪器仪表之中。
(1)ICL8038性能特点ICL8038是性能优良的集成函数发生器。
可用单电源供电,即将引脚11接地,引脚6接+VCC ,VCC为10~30V;也可双电源供电,即将引脚11接-VEE,引脚6接+VCC,它们的值为+5~+15V。
频率的可调范围为0.001Hz~300KHz。
输出矩形波的占空比可调范围2%~98%,上升时间为180ns,下降时间为40 ns。
函数信号发生器课程设计报告
《模拟电子技术》课程设计函数信号发生器姓名:学号:系别:专业:年级:指导教师:年月日函数信号发生器摘要利用集成电路LM324设计并实现所需技术参数的各种波形发生电路。
根据电压比较器可以产生方波,方波再继续经过基本积分电路可产生三角波,三角波经过低通滤波可以产生正弦波。
经测试,所设计波形发生电路产生的波形与要求大致相符。
关键词:波形发生器;集成运放;RC充放电回路;滞回比较器;积分电路目录中文摘要 ............................................................. 错误!未定义书签。
1.系统设计 (4)1.1设计指标 (4)1.2方案论证与比较 (4)2.单元电路设计 (5)2.1方波的设计 (5)2.2三角波的设计 (8)2.3正弦波的设计 (7)3.参数选择 (11)3.1方波电路的元件参数选择 (11)4.结果分析 (11)5.工作总结 (12)6.附录 (12)1.系统设计1.1设计指标1.1.1 电源特性参数 ①输入:双电源 12V②输出:正弦波pp V >1V ,方波pp V ≈12 V ,三角波pp V ≈5V ,幅度连续可调,线性失真小。
1.1.2工作频率工作频率范围:10 HZ ~100HZ ,100 HZ ~1000HZ1.2方案论证与比较1.2.1 方案1:采用集成运放电路设计方案产生要求的波形主要是应用集成运放LM324,其芯片的内部结构是由4个集成运放所组成的,通过RC 文氏电桥可产生正弦波,通过滞回比较器能调出方波,并再次通过积分电路就可以调试出三角波,此电路方案能实现基本要求和扩展总分的功能,电路较简单,调试方便,是一个优秀的可实现的方案。
1.2.2 方案2:采用集成运放电路设计方案产生要求的波形主要是应用集成运放LM324,其芯片的内部结构是由4个集成运放所组成的, 通过电压比较器可以形成方波,方波经过积分之后可以形成三角波,三角波再经过低通滤波可以形成正弦波,此电路方案能实现基本要求和扩展总分的功能,电路较简单,调试方便,相比第一方案,其操作成功率较低.2.单元电路设计2.1方波的设计2.1.1原理图2.1.2工作原理矩形波发生电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要成分;因为产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈,因为输出状态应按一定时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间.图所示的矩形波放生电路,它由反相输入的滞回比较器和RC电路组成.RC回路既作为延迟环节,又作为反馈网络,通过RC充放电实现输出状态的自动转换.设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+Ut。
函数信号发生器设计报告
函数信号发生器设计报告
以下是一份函数信号发生器设计报告的范本,供参考:
设计报告:函数信号发生器
一、概述
函数信号发生器是一种能够产生各种波形(如正弦波、方波、三角波等)的电子设备。
本设计报告将介绍如何设计一个简易的函数信号发生器。
二、设计原理
函数信号发生器的核心是波形生成电路。
本设计采用基于555定时器的波形生成电路,通过调节电阻和电容的值,可以生成不同频率和幅值的波形。
三、电路设计
1.电源电路:采用7805稳压芯片,为整个电路提供稳定的5V电源。
2.波形生成电路:基于555定时器,通过调节R1、R2和C1的值,可以生成不
同频率和幅值的波形。
3.输出电路:采用OP07运算放大器,将波形信号放大后输出。
四、测试结果
经过测试,本设计的函数信号发生器能够产生正弦波、方波和三角波三种波形,频率范围为1Hz~10kHz,幅值范围为0~5V。
在测试过程中,未发现明显的失真现象。
五、结论
本设计报告成功地介绍了一种简易的函数信号发生器的设计和制作过程。
测试结果表明,该函数信号发生器能够产生高质量的波形,具有较宽的频率和幅值调节范围。
在实际应用中,可以根据需要调节波形、频率和幅值,以满足不同的
需求。
函数信号发生器实验报告
函数发生器设计(1)一、设计任务与指标要求1、可调频率范围为10Hz~100Hz。
2、可输出三角波、方波、正弦波。
3、三角波、方波、正弦波信号输出得峰-峰值0~5V可调.4、三角波、方波、正弦波信号输出得直流电平-3V~3V可调。
5、输出阻抗约600Ω。
二、电路构成及元件参数得选择1、振荡器由于指标要求得振荡频率不高,对波形非线性无特殊要求。
采用图1所示得电路。
同时产生三角波与方波。
图1 振荡电路根据输出口得信号幅度要求,可得最大得信号幅度输出为:VM=5/2+3=5、5V采用对称双电源工作(±V CC),电源电压选择为:V CC≥VM+2V=7、5V 取VCC=9V选取3、3V得稳压二极管,工作电流取5mA,则:VZ=V DZ+V D=3、3+0、7=4V为方波输出得峰值电压。
取680Ω.取8、2KΩ。
R1=R2/3=8、2/1、5=5、47(KΩ)取5、1KΩ.三角波输出得电压峰值为:VOSM=VZ R1/R2=4×5、1/8、2=2、489(V)R 4=R 1∥R 2=3、14 K Ω取3K Ω。
取10K Ω。
R 6=RW/9=10/9=1、11(K Ω)取1K Ω.积分时间常数:取C=0、1uF ,则:R5=4、019/0、1=40、19K Ω取39K Ω.取R 7=R 5= 39K Ω.转换速率Z 1max OSM max 24V R f 44 5.1100SR 4V f =0.995mS R 8.2⨯⨯⨯≥==(V/)一般得集成运算放大电路都能满足要求。
兼顾波形转换电路集成电路得使用。
集成电路选用四运放LM 324。
LM324内含四个相同得运算放大器,其中两个用于振荡器,两个用于波形变换。
三、振荡电路工作原理利用集成运算放大电路也可实现产生方波与三角波得信号发生器,电路主要由比较器与积分器构成.电路中,有源积分器由运算放大器2A 及其外围电路积分电容C 与电阻R 5、R 7组成。
函数信号发生器设计实验报告
函数信号发生器的设计实验报告院系:电子工程学院班级:2012211209**:***班内序号:学号:实验目的:设计一个设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。
1,输出频率能在1—10KHz范围内连续可调,无明显失真;2,方波输出电压Uopp = 12V,上升、下降沿小于10us(误差<20%);3,三角波Uopp = 8V(误差<20%);4,正弦波Uopp≥1V。
设计思路:1,原理框图:2,系统的组成框图:分块电路和总体电路的设计:函数发生器是指能自动产生方波、三角波和正弦波的电压波形的电路或者仪器。
电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。
根据用途不同,有产生三种或多种波形的函数发生器,本课题采用由集成运算放大器与晶体差分管放大器共同组成的方波—三角波、三角波—正弦波函数发生器的方法。
本课题中函数信号发生器电路组成如下:第一个电路是由比较器和积分器组成方波—三角波产生电路。
单限比较器输出的方波经积分器得到三角波;第二个电路是由差分放大器组成的三角波—正弦波变换电路。
差分放大器的特点:工作点稳定,输入阻抗高,抗干扰能力较强等。
特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波波形变换的原理是利用差分放大器的传输特性曲线的非线性。
传输特性曲线越对称,线性区域越窄越好;三角波的幅度Uim应正好使晶体接近饱和区域或者截至区域。
Ⅰ、方波—三角波产生电路设计方波输出幅度由稳压管的稳压值决定,即限制在(Uz+UD)之间。
方波经积分得到三角波,幅度为Uo2m=±(Uz+UD)方波和三角波的震荡频率相同,为f=1/T=āRf/4R1R2C,式中ā为电位器RW 的滑动比(即滑动头对地电阻与电位器总电阻之比)。
即调节RW可改变振荡频率。
根据两个运放的转换速率的比较,在产生方波的时候选用转换速率快的LM318,这样保证生成的方波上下长短一致,用LM741则会不均匀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数信号发生器设计报告
一、 设计要求
设计制作能产生正弦波、方波、三角波等多种波形信号输出的波形发生器,具体要求:
(1) 输出波形工作频率范围为2HZ ~200KHZ ,且连续可调;
(2) 输出频率分五档:低频档:2HZ ~20HZ ;中低频档:20HZ ~200HZ ;
中频档:200HZ ~2KHZ ;中高频档:2KHZ ~20KHZ ;高频档:20KHZ ~200KHZ 。
(3) 输出带LED 指示。
二、 设计的作用、目的
1. 掌握函数信号发生器工作原理。
2. 熟悉集成运放的使用。
3. 熟悉Multisim 软件。
三、 设计的具体实现
3.1函数发生器总方案
采用分立元件,设计出能够产生正弦波、方波、三角波信号的各个单元电路,利用Multisim 仿真软件模拟,调试各个参数,完成单元电路的调试后连接起来,在正弦波产生电路中加入开关控制,选择不同档位的元件,达到输出频率可调的目的。
总原理图:
3.2单元电路设计、仿真
Ⅰ、RC桥式正弦波振荡电路
图1:正弦波发生电路
正弦波振荡器是在只有直流供电、不加外加输入信号的条件下产生正弦波信号的电路。
正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。
其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。
因此,正弦波产生电路一般包括:放大电路、反馈网络、选频网络、稳幅电路四个部分。
根据选频电路回路的不同,正弦波振荡器可分为RC正弦波振荡器、LC正弦波振荡器和石英晶体振荡器。
其中,RC正弦波振荡器主要用于产生中低频正弦波,振荡频率一般小于1MHz,满足本次设计要求,故选用RC 正弦波振荡器。
产生正弦振荡的条件:
确定R、C的值
为了使选频网络的选频特性尽量不受集成运算放大器的输入电阻和输出电阻的影响,应使R满足下列关系式:>>R>>,一般约为几百千欧以上,仅为几百欧以上。
故确定=10KΩ,针对不同档位设置不同的C:
当=20Hz时,由f=,其中R=10KΩ,得到C≈0.79μF;再将=2Hz,C≈0.79μF代入,得到R=99.5 KΩ,所以将电阻R接成由固定电阻=10 KΩ和120 KΩ的滑动变阻器串联形式,使电路变成频率由=2Hz 到=20Hz可调的正弦波发生电路;
同理可以计算出20Hz~200Hz、200Hz~2kHz、2kHz~20kHz、20kHz~200kHz 的R、C值。
确定、
RC选频网络对于频率f的放大倍数为F=1/3,而回路起振条件为>=1。
故放大电路的电压放大倍数A=(+)/>=3,即/>=2,取/=2。
而=+//,其中,为二极管的正向动态电阻。
实验证明,取≈时,既能够减少二极管特性的非线性而引起的波形失真,又能起一定的稳幅作用,取=5.1KΩ,=24 KΩ,=45.5 KΩ。
Multisim仿真电路与结果:
Ⅱ.方波发生电路
从一般原理来分析,可以在滞回比较器电路的基础上,靠正反馈和RC充放电回路组成矩形波发生电路,由于滞回比较器的输出只有两种可能的状态,高电平或低电平,两种不同的输出电平式RC电路进行充电和放电,于是电容上的电压降升高或降低,而电容的电压又作为滞回比较器的输入电压,控制其输出端状态发生跳变,从而使RC电路由充电过程变成放电过程或相反,如此循环往复,周而复始,最后在滞回比较器的输出端即可得到一个高低电平变化周期性交替的方波信号。
Multisim仿真电路与结果:
Ⅲ.三角波发生电路
在产生方波之后,输入到一个积分电路便可得到三角波。
图中滞回比较器的输出电压=±,他的输入电压时积分电路的输出电压,根据叠加原理,集成运放同相输入端电位
令,则阈值电压
因此,滞回比较器的电压传输特性如图所
示。
积分电路的输入电压时滞回比较器的输出
电压,而且不是+,就是-,所以
输出电压的表达式为
式中为初态时的输出电压。
设初态时正好从-跃变为+,则上式应写成
积分电路反向积分,随时间的增长线性下降,根据图2的电压传输特性一旦,再稍减小,将从+跃变为-。
使得上式变为
为产生跃变时的输出电压。
积分电路正向
积分,随时间的增长线性增大,根据图2的电压
输出特性,一旦,再稍增大,将从-
跃变为+,回到初态,积分电路又开始反向积分。
电路重复上述过程,因此产生自激震振荡。
由以上分析可知,是三角波,幅值为±;
是方波,幅值为±,如图所示,因此也可称图所示电路为三角波—方波发生电路。
由于积分电路引入了深度电压负反馈,所以在负载电阻相当大的变化范围里,三角波电压几乎不变。
Multisim仿真电路与结果:
3.3总电路图
四、心得体会及建议
本课设根据设计中要实现的功能,经过认真地分析、实践,确立方案,书写文档,设计出电路,在设计过程中翻阅了大量资料,通过对所得的各种资料的分析,提炼出自己需要的信息,从而提高自己的分析能力;通过对主要技术指标的分析,认真体会了设计时的各项技术政策;通过对设计时出现的各种问题的分析与解决,锻炼了独立分析,进行工程设计的能力;
通过对电路设计中的某些问题的较为深入的探索,培养了自己的科研工作能力;通过课设报告的书写,进一步锻炼了文字表达能力和对工作的认真态度。
在设计中遇到了一些实际困难,通过自己与同组同学多次查找参考资料,以及指导老师的点拨,终于豁然开,感受到了完成作品时那种学以致用的成就感,并且加深了对老师课上内容的理解。
五、附录
六、参考文献。