医药数理统计方法假设检验共71页文档

合集下载

医学统计学假设检验

医学统计学假设检验
第18页/共72页
(4) 作出推断结论
当P≤α时,统计学结论为按所取α检验水 准拒绝H0,接受H1,称“差异有显著性”(“差 异有统计学意义”)。
当P >α时,没有理由怀疑H0的真实性,统 计学结论为按所取α检验水准不拒绝H0,称“差 异无显著性”(“差异无统计学意义”)。
第19页/共72页
第20页/共72页
第12页/共72页
(1)建立假设,选定检验水准:
假设两种:一种是检验假设,假设差异完全由抽样误差造成,常称无效假设, 用H0表示。另一种是和H0相对立的备择假设,用H1表示。假设检验是针对H0进 行的。
确定双侧或单侧检验: H0:此类脾虚病对脉搏数无影响,H0:μ=72次/分 H1:脾虚病人的脉搏数不同于正常人,H1:μ≠72次/分
• 参数检验(parametric test):若总体分布类型 已知,需要对总体的未知参数进行假设检验。
• 非参数检验:若总体分布类型未知,需要对未 知分布函数的总体的分布类型或其中的某些未 知参数进行假设检验。
第3页/共72页
假设检验(hypothesis test)的基本思想
亦称显著性检验(significance test)是先对总体的特征(如总体的参数 或分布、位置)提出某种假设,如假设总体均数(或总体率)为一定值、总 体均数(或总体率)相等、总体服从某种分布、两总体分布位置相同等等, 然后根据随机样本提供的信息,运用“小概率原理”推断假设是否成立。
第30页/共72页
2、小样本
【例5-3】已知中学一般男生的心率平均为74 次/分钟。为了研究常参加体育锻炼的中学生 心脏功能是否与一般的中学生相同,在某地区 中学生中随机抽取常年参加体育锻炼的男生16 名,测量他们的心率,结果均数为65.63次/分 , 标准差为7.2次/分。

医学统计学课件:假设检验

医学统计学课件:假设检验

数据展示
不同职业人群的身高和体重数据。
统计方法
方差分析,推断不同职业人群的身 高和体重是否具有统计学差异。
06
总结与展望
医学统计学在假设检验中的重要性
数据驱动决策
医学统计学在假设检验中扮演着核心角色,其原理和方法为数 据驱动的决策提供了基础框架。
提高诊断准确性
通过假设检验,医学统计学可以帮助医生做出更准确的诊断, 从而更好地制定治疗方案。
详细描述
方差分析的步骤包括提出假设、计算统计 量F值、确定临界值和作出结论。该方法可 以分析多个样本数据之间的差异,推断出 各样本所代表的总体的平均值之间是否存 在显著差异。
04
假设检验的注意事项
假设检验的前提条件
ห้องสมุดไป่ตู้样本与总体
样本是总体的代表,总体是样本的来源。在进行假设检验时,必须清楚定义总体和样本, 并考虑样本的代表性、样本大小和效应大小等因素。
研究目的
探讨该地区高血压与年龄的关系。
研究设计
收集该地区各年龄组人群的高血压患病率 数据,进行分析。
数据展示
各年龄组高血压患病率数据。
统计方法
卡方检验,探索不同年龄组之间高血压患 病率是否存在差异。
实例三
研究目的
探讨该地区不同职业人群的身高与 体重是否存在差异。
研究设计
收集不同职业人群的身高和体重数 据,进行对比分析。
02
假设检验的统计学原理
概率论与统计学关系
1
概率论是数学的一个分支,主要研究随机事件 发生的可能性。
2
统计学是利用概率论研究随机数据的方法和原 理的一门学科。
3
假设检验是统计学中利用概率论原理对未知的 总体参数进行推断的方法。

医学统计学课件:假设检验

医学统计学课件:假设检验

统计推断基础
参数估计
用样本数据估计总体参数的方法。
显著性检验
理解显著性检验的基本原理和方法。
假设检验
根据样本数据对总体参数进行检验的方法。
置信区间
掌握置信区间的概念和计算方法。
03
参数假设检验
单参数假设检验
定义
单参数假设检验是当我们只有一个总 体参数需要检验时的假设检验。例如 ,我们可能需要确定一个药物是否对 一组患者的平均血压有降低作用。
应用场景:例如,检验某种新药的疗效是否显著优于安 慰剂。
案例二:两样本t检验
总结词:两样本t检验是一种常用的假设检验方 法,适用于比较两个独立样本的平均数是否存在 显著差异。
详细描述
1. 定义假设:通常包括零假设(H0,即两个样本的 平均数无差异)和对立假设(H1,即两个样本的平 均数存在差异)。
02
假设检验的数学基础
概率基础
概率定义
表示随机事件发生的可能性程度。
概率运算
掌握加法、乘法和条件概率等运算方法。
独立性和互斥性
理解事件之间的独立性和互斥性。
分布基础
分布定义
描述随机变量取值的概率规律。
连续型和离散型分布
理解连续型和离散型分布的概念和特点。
常用分布
掌握常用的分布及其性质,如正态分布、二项分布等。
假设检验步骤
根据符号分布,计算临界值和p值,判断假设是 否成立。
05
假设检验的注意事项与误用
假设检验的注意事项
明确研究目的和背 景
在假设检验前,需要明确研究目 的和背景,以便确定合适的假设 和检验方法。
合理选择样本量和 样本类型
样本量和样本类型的选择对假设 检验的结果具有重要影响。在确 定样本量时,需要考虑研究目的 、研究设计、误差概率等因素。

医药数理统计

医药数理统计

医药数理统计1. 引言医药数理统计是应用数理统计学方法和技术,研究医药领域的数据分析、实验设计和统计推断等问题的学科。

它将数理统计学的理论和方法与医药学科的实际问题相结合,旨在为医药研究和临床实践提供科学的统计支持。

医药数理统计的研究内容广泛,涉及药物研发、临床试验、生物药学等多个领域。

本文将从以下三个方面介绍医药数理统计的应用:数据分析、实验设计和统计推断。

2. 数据分析数据分析是医药数理统计的核心内容之一。

医药研究和临床实践中产生大量的数据,通过对这些数据的统计分析,可以揭示数据背后的规律和趋势,为医药决策提供科学依据。

常用的数据分析方法包括描述统计、推断统计和多变量分析等。

描述统计主要用于对数据的清理和整理,计算数据的中心趋势和离散程度等指标;推断统计则通过对样本数据的分析来对总体进行推断;多变量分析则用于研究多个变量之间的关系。

3. 实验设计实验设计是医药数理统计的另一个重要组成部分。

医药研究和临床试验通常需要进行严格的实验设计,以保证实验结果的可靠性和可解释性。

在实验设计中,需要考虑到实验对象的选择、处理的设置、实验的随机化和重复等因素。

合理的实验设计可以降低实验误差,提高实验的效力和精确性。

常见的实验设计方法包括完全随机设计、随机区组设计、因子设计等。

这些方法可以根据实验目的和实验条件的不同来选择。

4. 统计推断统计推断是医药数理统计的重要应用领域之一。

通过样本数据的分析,可以对总体进行推断和预测,从而为医药决策提供科学依据。

统计推断方法包括参数估计和假设检验。

参数估计用于对总体参数进行估计,如均值、比例等;假设检验用于判断统计假设的真实性,如总体均值是否符合某个数值。

统计推断的应用场景包括临床试验结果的解释、药物疗效评价和生物统计模型建立等。

5. 结论医药数理统计是医药学科中不可或缺的一部分,它通过数据分析、实验设计和统计推断等方法,为医药研究和临床实践提供科学的统计支持。

数据分析可以帮助揭示数据背后的规律和趋势,指导医药决策的制定;实验设计可以保证实验结果的可靠性和可解释性;统计推断可以对总体进行推断和预测,为医药决策提供科学依据。

医药数理统计方法6-2假设检验的常用方法

医药数理统计方法6-2假设检验的常用方法

数理统计
小结:置信区间法 临界值法 P 值法
06-02-10
(=0.05)
数理统计
在假设 H0:=0 成立的前提下
ux0 ~N(0,1) n
06-02-06
数理统计
06-02-07
P 值法 是用统计量的样本值,作为相
应的临界值,所确定的概率水平。
数理统计
06-02-08
例 有作用强烈的某种药物,按规定
每片的有效成分含量为0.5mg。今随 机 抽 取 某 厂 生 产 的 这 种 药 品 12 片 ,
(=0.05)
数理统计
06-02-04
总体均数 的 1 置信区间为
Байду номын сангаас
(xu ,xu )
2n
2n
数理统计
06-02-05
例 有作用强烈的某种药物,按规定
每片的有效成分含量为0.5mg。今随 机 抽 取 某 厂 生 产 的 这 种 药 品 12 片 , 测得片平均有效成分含量为 0.4938mg 。 假 定 药 片 有 效 成 分 含 量 服 从 标 准 差 为 0.01mg 的 正 态 分 布 。 问这个厂家的产品是否符合要求?
测得片平均有效成分含量为 0.4938mg 。 假 定 药 片 有 效 成 分 含 量 服 从 标 准 差 为 0.01mg 的 正 态 分 布 。 问这个厂家的产品是否符合要求?
数理统计
06-02-09
例 有作用强烈的某种药物,按规定
每片的有效成分含量为0.5mg。今随 机 抽 取 某 厂 生 产 的 这 种 药 品 12 片 , 测得片平均有效成分含量为 0.4938mg 。 假 定 药 片 有 效 成 分 含 量 服 从 标 准 差 为 0.01mg 的 正 态 分 布 。 问这个厂家生产的药片每片的有效 成分含量是否低于规定标准0.5mg?

医学统计学 第五讲 计量资料的统计推断-假设检验

医学统计学 第五讲 计量资料的统计推断-假设检验

可计算出样本标准误:3.8/10=0.38
(3) n = 100;
假设检验:
▲ 建立假设: 检验假设:某校女大学生身高均数与一般女子身高 均数相同; H0:μ=μ 0; 备择假设 :某校女大学生身高均数与一般女子身高 均数不同; H1:μ≠μ0
▲ 确定显著性水平( ):0.05
24
▲ 计算统计量:u 统计量: u = ▲ 确定概率值:
25
二、小样本 已知中学一般男生的心率平均为74次/分钟。 为了研究常参加体育锻炼的中学生心脏功能
是否与一般的中学生相同,在某地区中学生
中随机抽取常年参加体育锻炼的男生16名,
测量他们的心率,得平均心率为65.63次/分钟,
标准差为7.2次/分钟。
▲目的:比较一个小样本均数所代表的未知总 体均数与已知的总体均数有无差别。
20
一、样本均数与总体均数的比较
实质是一个未知总体与一个已知总体均数的比较
(一)、大样本
一般女性平均身高160.1 cm。某大学 随机抽取100名女大学生,测量其身高,身 高的均数是163.74cm,标准差是3.80cm。 请问某大学18岁女大学生身高是否与一般 女性不同。
21
▲目的:比较样本均数所代表的未知总体均数 与已知的总体均数有无差别
(3)计算统计量
根据资料类型与分析目的选择适当的
方法,使用适宜的公式计算出统计量,比
如计量资料分析常用 u 、t 或F检验。
注意:在检验假设成立的情况下,才 会出现的分布类型或公式。
(4)确定概率值(P)
将计算得到的u值或 t值与查表得到u或t,ν , 比较 ,得到 P值的大小。 根据u分布和t分布我们知道,
n4
. . . . . .

医药数理统计方法6-1假设检验的基本思想

医药数理统计方法6-1假设检验的基本思想

数理统计
06-01-12
(2)在原假设成立条件下,构造一 个与本问题密切相关且分布已知的 统计量
数理统计
06-01-13
(3)对于给定的 值做出检验结
论,并给以专业解释 先由样本值计算出统计量的值,
若此值落在拒绝域中,就拒绝假设 H0,反之,则不能拒绝假设 H0。
数理统计
06-01-14
拒绝域(critical region) 拒绝假设的区域,称为拒绝域,
性,以最后决定对该假设的取舍。
这种关于总体的种种假设称为统计
假设,处理假设的统计方法称为统
计假设检验,简称假设检验,也称 显著性检验(significance test)。
数理统计
06-01-07
参数检验(parametric test) 已知总体分布类型对其未知参
数的假设作假设检验,称为参数检 验。
数理统计
小结:假设检验 小概率原理 假设检验的一般步骤 原假设,备择假设 拒绝域 双侧检验,单侧检验 两类错误 假设检验的目的
06-01-25
(type I error) ,犯这类错误的概率就
是显著性水平 。
(2)H0 实际不真,而我们接受了它, 这类“取伪”的错误称为第二类错误
(type II error),犯这类错误的概率记
为 。
数理统计
06-01-21
判断
实际情况
H0 为真
H0 为不真
接受 H0 正确 1 第二类错误
拒绝 H0 第一类错误 正确 1
医药数理统计方法6-1假设检验的基 本思想
数理统计
06-01-02
第一节 假设检验 的基本思想
数理统计
一、问题的提出 二、小概率原理 三、假设检验的一般步骤 四、两类错误

医药应用统计-假设检验

医药应用统计-假设检验

19:46
我们总希望犯两类错误的概率、都很小,但在 样本容量n确定时,同时使、都很小是不可能的。 故在实际应用中,通常先限制犯第一类错误的概率, 再适当增加样本容量来减少犯第二类错误的概率 。 一般选取=0.05或0.01、0.1。
19:46
四、假设检验的一般步骤 综上所述,我们可得到进行假设检验的一般步骤: (1)建立原假设H0和备择假设H1; (2)确定检验统计量及其分布,并由给定样本值计算 检验统计量的值; (3)根据显著性水平,确定拒绝域; (4) 作出统计判断,若统计量的值落在拒绝域内,则 拒绝原假设H0,接受备择假设H1;否则,就接受原假设 H 0。
/ n
~ N (0,1)
19:46
并计算 Z 检验统计量的观测值 z; (3)对于给定的显著性水平,查N(0,1) 分 位数表(附表4) ,得到临界值z/2,使得
P (| Z | z / 2 ) , (对应地,有 P( Z z / 2 ) 2 )
19:46
(4)统计判断:当|z|> z/2时,拒绝H0,接受H1,即 认为与0有显著差异; 当|z|≤z/2时,接受H0,认为与0无显著差异。 该检验运用服从标准正态分布N(0,1)的检验统计 量Z,故称为Z检验(Z test )或U检验 (U test)。 在上述检验中,原假设是 H0: =0,
19:46
案例5.1是正态总体均值的参数检验问题, 在方差2已知和原假设H0成立下,考虑的无偏 估计量 X 的抽样分布,有
X ~ N ( 0 ,
2
n
),
故可以取
Z X 0

n
~ N (0,1)
作为检验统计量。
19:46
Hale Waihona Puke 下面我们就可利用上述原理来解决案例5.1的问题 案例5.1(续) 解:应检验原假设H0:=500;备择假设H1:≠500。 由题中条件得 x =504.5,0=500,2=6.52。 则检验统计量Z的观测值为

医学统计学 假设检验

医学统计学 假设检验

2023/12/7
计量资料的统计推断
30
t检验注意事项
4. 假设检验的结论不能绝对化
不能拒绝H0,有可能是样本数量不够 拒绝H0 ,有可能犯第Ⅰ类错误
3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54
4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98
5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76
6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60
(X1 X1)2 (X2 X2)2 n1 n2-2
例 3-9 白血病组 ( X1) :12.3 13.2 13.7 15.2 15.4 15.8 16.9 正常组 ( X 2 ) : 10.8 11.6 12.3 12.7 13.5 13.5 14.8
问正常鼠和白血病鼠脾脏中 DNA 平均含量(mg/g)是否不同?
5.41
0.04
2.06
1.24
0.82
1.64
1.83
-0.19
1.06
1.45
-0.39
0.77
0.92
-0.15
--
--
1.34
d2
0.1521 0.0196 0.7569 0.0400 0.0196 0.2401 0.5184 0.0016 0.6724 0.0361 0.1521 0.0225 2.6314
3. 自身对比。即同一受试对象处理前后的结果进行比 较。
2023/12/7
计量资料的统计推断
19
二、配对样本t 检验
目的:判断不同的处理是否有差别

假设检验-医学统计学

假设检验-医学统计学
▪ 有可能得到手头的结果,故根据现有的样本无法拒绝事先的假设。
12
假设检验的一般思想
假设检验的意义 假设检验的基本思想 假设检验的一般步骤
定量资料均数的t检验
样本均数与总体均数比较的 t 检验 两个样本均数的 t 检验 配对样本的 t 检验 t 检验的应用条件 假设检验应用的注意事项
13
样本:随机抽查25名男炊事员的血清总胆固醇,求得其均数为 5.1mmol/L,标准差为0.88mmol/L。
▪ 医学统计学
1
假设检验的一般思想
假设检验的意义 假设检验的基本思想 假设检验的一般步骤
定量资料均数的t检验
样本均数与总体均数比较的 t 检验 两个样本均数的 t 检验 配对样本的 t 检验 t 检验的应用条件 假设检验应用的注意事项
2
假设检验的一般思想
假设检验的意义 假设检验的基本思想 假设检验的一般步骤
总体参数
未知
样本统计量
统计 推断
已知
风险
总体Α是100例正常成年男子的血红蛋白(单位:g/L),从中随机抽
取从样中本随机a1抽和取样样本本ab2
;总体B是另外100例正常成年男子的血红蛋白, ;三个样本的含量均为10例,有关数值如下:
µ
σ
a1/b1
a2
A
130
7.5
131.9
128.3
B
140
8.2
138.2
6
▪ 在知道A和B总体的参数时
a1-a2 a1-b1
抽样误差 本质差别
7
▪ 假如事先不知道A和B是不是同一个总体
a1-b1
抽样误差

本质差别
A=B A≠B

医学统计学课件:假设检验

医学统计学课件:假设检验
拒絕H0 2) 有可能得到現在的結果(不是小概率)
沒有理由拒絕H0
例4.4
大規模調查表明健康成年男子血清總膽固醇的 均數為4.6mmol/L,今隨機調查某單位食堂成 年男性炊事員25名,測得血清總膽固醇均數為 5.1mmol/L,標準差為0.88mmol/L,試問該單 位食堂成年男性炊事員血清總膽固醇的均數與 健康成年男子血清總膽固醇的均數有無差別?
0.10
0.05
0.02
6.314 12.706 31.821
2.920 2.353 2.132 2.015
4.303 3.182 2.776 2.571
6.965 4.541 3.747 3.365
1.943 1.895 1.860 1.833 1.812
2.447 2.365 2.306 2.262 2.228
乳猪号 1 2 3 4 5 6 7
合计
表 4.3 两组乳猪脑组织钙泵含量( g/g)
对照组
实验组
差值 d
0.3550
0.2755
0.0795
0.2000
0.2545
-0.0545
0.3130
0.1800
0.1330
0.3630
0.3230
0.0400
0.3544
0.3113
0.0431
0.3450
0.2955
t X 0 5.1 4.6 2.841
s n 0.88 25
計算概率P(與統計量t值對應的概率)
在H0成立的前提下,獲得現有這麼大的 標準t離差以及更大離差 的可能性。
P=P(|t|≥2.841) ?
按 =25-1=24查附表2的t界值表
-t
0

医学统计学:假设检验

医学统计学:假设检验

THANKS
谢谢您的观看
04
假设检验的常见错误与注意 事项
第一类错误与第二类错误
第一类错误
当原假设为真时,拒绝原假设,即错误地认 为原假设是错误的。其概率通常用α表示, 也称为显著性水平。
第二类错误
当原假设为假时,不拒绝原假设,即错误地 认为原假设是正确的。其概率通常用β表示
。ห้องสมุดไป่ตู้
差异检验与趋势检验的注意事项
• 差异检验:主要用于比较两组或多组数据的均值是否存在显著差异。注意事项包括 • 确定样本是否独立:在进行t检验或方差分析时,样本应是独立取得的,否则将影响结果的准确性。 • 确定总体方差是否已知:在进行t检验时,如果总体方差未知,则应采用t'检验或Welch t检验。 • 正确理解p值:p值是假设检验的核心,它表示观察到的数据与原假设之间的矛盾程度。一般来说,如果p值
04 第四步
根据样本数据和临界值进行推断。 如果检验统计量大于临界值,则拒 绝原假设;如果检验统计量小于临 界值,则不拒绝原假设。
假设检验的意义与应用
意义
假设检验是统计学中最重要的方法之一,它可以帮助我们科 学地推断样本数据所反映的总体的性质,从而为科学研究提 供依据。
应用
假设检验广泛应用于各个领域,如医学、社会科学、自然科 学等。在医学领域中,假设检验被广泛应用于临床试验、流 行病学研究、病因学研究等方面。
要点三
多因素方差分析:这种检验方法用于 比较两个或更多个分类变量的均值是 否存在显著差异。多因素方差分析常 用于研究多个分类变量对连续变量的 影响,其中每个分类变量的取值均为 两个或更多水平。
回归分析
回归分析是一种常用的统计分析方法 ,主要用于研究连续变量与分类变量 之间的关系。在回归分析中,我们需 要确定回归系数以及它们的显著性水 平,以揭示自变量对因变量的影响程 度和方向。

假设检验-医学统计学

假设检验-医学统计学
3、确定概率值(P),作出推断结论

所谓P值,是指在H0成立的前提下,出现目前 样本数据对应的统计量(如Z、t、F值等)数 值乃至比它更极端数值的概率 将计算得到的z值或t值与查表得到检验临界值 zα或tα,ν 比较 ,得到 P值的大小

假设检验的步骤
3、确定概率值(P),作出推断结论
做出统计学推断结论主要有两种方法:

检验水准α就是我们用来区分大概率事件和小概率事 件的标准 α是人为规定的,通常取0.05 或 0.01 在统计学上,当某事件发生的概率小于α时,则认为 该事件为小概率事件,其意义为对于一次随机抽样, 是不太可能发生的事件

假设检验的基本步骤
2. 选择检验方法,计算检验统计量

检验方法的选用,应根据分析目的、研究设计、 资料类型、样本量大小等选择适当的公式计算出 检验统计量 常用的检验统计量:z (u )、t、F、x 2
2



样本所对应的总体与某一统计学分布相同
2)备择假设 (Alternative Hypothesis): H1

其它译法:备选假设、研究假设 H1是与H0相反的假设。如果拒绝H0,则顺其自然地 接受H1,即H1是拒绝H0后选择的一种假设


假定两个总体参数不相等(μ1 ≠ μ2,叫双侧检验 ) 若依据专业知识(对总体的了解)认为可排除某一侧
假设检验的基本步骤
3. 确定P值,作出推断结论
单侧检验: P (t≥ tα,ν )= α |t|<t |t|>t
α,ν α,ν
,则 P>α ,接受H0 ,则 P≤α ,拒绝H0
t 分布曲线
t1
t α,ν
检验临界值

医学统计学计量资料统计推断假设检验

医学统计学计量资料统计推断假设检验
45
4、下结论不能绝对化。假设检验的结论与 选择的检验水准、单双侧检验有关;与两 类错误的概率大小有关;还与专业的特点 有关。尤其是概率值接近检验水准时,下 结论更要慎重。
5、注意检验方法的应用条件。如作t检验或 F检验时,要注意作正态性检验或方差齐 性检验,以免得出错误结论。
46
计量资料假设检验之二
样本与总体的关系
N(μ0,σ 02)
n1 x 1
x n2
2
x n3
3
x n4
4
... ...
n
xn
N(μ,σ 2)
x
2
假设检验的一般步骤
▲ 建立假设(反证法): ▲ 确定显著性水平( ? ): ▲ 计算统计量:u, t ,?2 ▲ 确定概率值: ▲ 做出推论
3
第三节 t 检验和u检验
SX1 2 ? SX2 2
S12 ? S22
n1 n2
15
(1)建立假设:H0:? 1=? 2,H1:? 1?? 2, (2)检验水准 ? =0.05
(3)计算统计量u值:
u?Βιβλιοθήκη X1 ? X2?S2 X1
?
S2 X2
X1 ? X2
S
2 1
?
S
2 2
n1
n2
u ? 73 . 07 ? 80 . 30 ? ? 4 . 58
Satterthwaite法公式如下
t'?
??
X1 ? X 2
S
2 1
?
S
2 2
n1
n2
(S
2 X1
?
S
2 X2
)2
s4
x1
?
n1 ? 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档