大学物理作业学生新版答案
大学物理(西南交大)作业参考答案1
NO.1 质点运动学和牛顿定律班级 姓名 学号 成绩一、选择1. 对于沿曲线运动的物体,以下几种说法中哪种是正确的: [ B ] (A) 切向加速度必不为零. (B) 法向加速度必不为零(拐点处除外). (C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零. (D) 若物体作匀速率运动,其总加速度必为零.(E) 若物体的加速度a为恒矢量,它一定作匀变速率运动.2.一质点作一般曲线运动,其瞬时速度为V ,瞬时速率为V ,某一段时间内的平均速度为V,平均速率为V ,它门之间的关系为:[ D ](A )∣V ∣=V ,∣V ∣=V ; (B )∣V ∣≠V ,∣V∣=V ; (C )∣V ∣≠V ,∣V ∣≠V ; (D )∣V ∣=V ,∣V∣≠V .3.质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,a τ表示切向加速度,下列表达式中, [ D ](1) d /d t a τ=v , (2) v =t r d /d , (3) v =t S d /d , (4) d /d t a τ=v .(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的.(C) 只有(2)是对的. (D) 只有(1)、(3)是对的.(备注:经过讨论认为(1)是对的)4.某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为0v ,则速度v 与时间t 的函数关系是 [ C ](A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt 5.质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率) [ D ](A) t d d v .(B) 2v R . (C) R t 2d d vv +.(D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R t v v .6.质点沿x 方向运动,其加速度随位置的变化关系为:a=31+3x 2. 如在x=0处,速度v 0=5m.s -1,则在x=3m处的速度为:[ A ](A )9 m.s -1; (B )8 m.s -1; (C )7.8 m.s -1; (D )7.2 m.s -1 .7.如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的,在从A 至C 的下滑过程中,下面哪个说法是正确的?[ E ](A) 它的加速度大小不变,方向永远指向圆心. (B) 它的速率均匀增加.(C) 它的合外力大小变化,方向永远指向圆心. (D) 它的合外力大小不变.(E) 轨道支持力的大小不断增加.8.物体作圆周运动时,正确的说法是:[ C ] (A )加速度的方向一定指向圆心;(B )匀速率圆周运动的速度和加速度都恒定不变; (C )必定有加速度,且法向分量一定不为零;(D )速度方向一定在轨道的切线方向,法向分速度为零,所以法向加速度一定为零;9.以下五种运动形式,a保持不变的运动是 [ E ]A(A )单摆的运动;(B )匀速圆周运动;(C )圆锥摆运动;(D )行星的椭圆轨道运动;(E )抛体运动; 二、填空1.已知一质点在Oxy 平面内运动,其运动学方程为22(192)r ti t j =++;r的单位为m ,t 的单位为s ,则位矢的大小rv = 24i t j + ,加速度a =4(/)j m s 。
大学物理学练习册参考答案全
大学物理学练习册参考答案单元一 质点运动学四、学生练习 (一)选择题1.B2.C3.B4.B5.B (二)填空题1. 0 02.2192x y -=, j i ρρ114+, j i ρρ82-3.16vi j =-+v v v ;14a i j =-+v vv;4. 020211V kt V -;5、16Rt 2 4 6 112M h h h =-v v(三)计算题1 解答(1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m .(3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).2.解答 1)由t y t x ππ6sin 86cos 5==消去t 得轨迹方程:1642522=+y x 2)tdt dy v t dtdx v y x ππππ6cos 486sin 30==-==当t=5得;πππππ4830cos 48030sin 30===-=y x v vt dt dv a t dtdv a y y xx ππππ6sin 2886cos 18022-==-==当t=5 030sin 28818030cos 180222=-==-=-=πππππdt dv a a yy x 3.解答:1)()t t dt t dt d t tvv 204240+=+==⎰⎰⎰则:t t )2(42++=2)()t t t dt t t dt d ttr )312(2)2(4322++=++==⎰⎰⎰t t t )312()22(32+++=4. [证明](1)分离变量得2d d vk t v=-, 故020d d v tv vk t v =-⎰⎰, 可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.5.解答(1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).6.解答:当s 2=t 时,4.022.0=⨯==t βω 1s rad -⋅ 则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n单元二 牛顿运动定律(一)选择题 1.A 2.C 3.C 4.C 5 A 6.C (二)填空题 1. 022x F t COS F X ++-=ωωω2.略3. )13(35-4. 50N 1m/s5.21m m t f +∆ )()(212122221m m m t m t m t m f +∆+∆+∆6. 0 18J 17J 7J7. mr k rk (三)计算题1.解答:θμθcos )sin (f f mg =- ; θμθμsin cos +=mgf0cos sin =+=θμθθd df; 0tan =θ ; 037=θ θsin hl ==037sin 5.12. 解答;dtdvmkv F mg =--分离变量积分得 0ln(1)v tktm mdvmg F kvktmg F dt v e mg F kv mg F m k-----=??----蝌 3解答:烧断前 2221211();a L L a L w w =+=烧断后,弹簧瞬间的力不变,所以2a 不变。
济南大学大学物理大作业完整答案
济南大学大学物理大作业答案完整版第1章 质点运动学§1.3 用直角坐标表示位移、速度和加速度一.选择题和填空题1. (B)2. (B)3. 8 m10 m4. ()[]t t A t ωβωωωββsin 2cos e 22 +--()ωπ/1221+n (n = 0, 1, 2,…) 5. h 1v /(h 1-h 2)二.计算题1解: (1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m2解: =a d v /d t 4=t ,d v 4=t d t⎰⎰=vv 00d 4d tt tv=2t 2v=dx/dt=2t 2t t x txx d 2d 020⎰⎰=x 2=t 3 /3+x 0 (SI)§1.5 圆周运动的角量描述 角量与线量的关系一.选择题和填空题 1. (D) 2. (C)3. 16R t 24rad /s 24. -c(b -ct )2/R二.计算题1. 解: ct b t S +==d /d v c t a t ==d /d v ()R ct b a n /2+=根据题意: a t = a n 即 ()R ct b c /2+=解得 cbc R t -=§1.6 不同参考系中的速度和加速度变换定理简介一.选择题和填空题1. (C)2. (B)3. (A)4.0321=++v v v二.计算题1.解:选取如图所示的坐标系,以V表示质点的对地速度,其x 、y 方向投影为:u gy u V x x +=+=αcos 2v ,αsin 2gy V y y ==v当y =h 时,V的大小为: ()2cos 222222αgh u gh uy x ++=+=V V V V 的方向与x 轴夹角为γ,ugh gh xy +==--ααγcos 2sin 2tg tg 11V V第2章 牛顿定律§2.3 牛顿运动定律的应用一.选择题和填空题 1. (C) 2. (C) 3. (E)4. l/cos 2θ5. θcos /mgθθcos sin gl二.计算题1. 解:质量为M 的物块作圆周运动的向心力,由它与平台间的摩擦力f和质量为m 的物块对它的拉力F的合力提供.当M 物块有离心趋势时,f 和F 的方向相同,而当M 物块有向心运动趋势时,二者的方向相反.因M 物块相对于转台静止,故有F + f max =M r max ω2 2分 F - f max =M r min ω2 2分m 物块是静止的,因而F = m g 1分 又 f max =μs M g 1分 故2.372max =+=ωμM Mgmg r s mm 2分 4.122min=-=ωμM Mg mg r s mm 2分γ v2. 解:球A 只受法向力N 和重力g m,根据牛顿第二定律法向: R m mg N /cos 2v =-θ ① 1分 切向: t ma mg =θsin ② 1分由①式可得 )/c o s (2R g m N v +=θ 1分 根据牛顿第三定律,球对槽压力大小同上,方向沿半径向外. 1分 由②式得 θsin g a t = 1分三.理论推导与证明题 证:小球受力如图,根据牛顿第二定律tm ma F k mg d d vv ==--t mF k mg d /)(d =--v v初始条件: t = 0, v = 0.⎰⎰=-tt F)/m k mg 00d (d v -v v∴ k F mg mkt /)e1)((/---=v第3章 功和能§3.3 动能定理一.选择题和填空题 1. (B) 2. (C)3. 1.28×104 J4. 18 J 6 m/s二.计算题1. 解:用动能定理,对物体⎰⎰+==-402402d 610d 021x x x F m )(v 3分3210x x +==168解出 v =13 m/s 2分§3.4(1)势能一.选择题和填空题1.(C)2. 20kx2021kx -2021kx3. R GmM 32RG m M 3-4. 保守力的功与路径无关W = -ΔE P二.计算题1. 解:(1) 外力做的功=31 J 1分(2) 设弹力为F ′= 5.34 m/s 1分(3) 此力为保守力,因为其功的值仅与弹簧的始末态有关. 2分§3.4(2)机械能守恒定律一.选择题和填空题1. (C)2.)(mr k )2(r k -二.计算题1. (1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为g lymf μ= 1分 摩擦力的功 ⎰⎰--==00d d a l a l f y gy lmy f W μ 2分=022a l y l mg -μ =2)(2a l lmg--μ 2分 (2)以链条为对象,应用质点的动能定理 ∑W =222121v v m m-其中 ∑W = W P +W f ,v 0 = 0 1分W P =⎰la x P d =la l mg x x l mg la 2)(d 22-=⎰ 2分al -a⎰⎰⋅+==21d )4.388.52(d 2x x xx x xF W ⎰⎰⋅=-==1212d d 21'2x x x x Wx F x F m v 3分3分由上问知 la l mg W f 2)(2--=μ所以222221)(22)(v m a l l mg l a l mg =---μ 得 []21222)()(a l a l lg ---=μv 2分 2. 解:把卸料车视为质点.设弹簧被压缩的最大长度为l ,劲度系数为k .在卸料车由最高点下滑到弹簧压缩最大这一过程中,应用功能原理有h G kl h G 12121sin 2.0-=-α ① 2分对卸料车卸料后回升过程应用功能原理,可得:22221sin 2.0kl h G h G -=-α ② 2分由式①和②联立解得: 372.030sin 2.030sin 21=-︒+︒=G G 1分第4章 冲量和动量§4.2 质点系的动量定理一.选择题和填空题 1. (D) 2. (C)3. 18 N ²s二.计算题1. 解:设在某极短的时间t ∆内落在传送带B 上矿砂的质量为m ,即m=q mt ∆,这时矿砂动量的增量为(参看附图)图1分12v v vm m m -=∆)( 1212221s m kg 98.375cos 2)(-⋅⋅∆=︒-+=∆t q m m m v v v v v 2分设传送带作用在矿砂上的力为F,根据动量定理)(v m t F ∆=∆ 于是 N 2.213.98/)(==∆∆=m q t m F v2分 方向: ︒==︒∆2975θ,sin sin )(θm m 2v v 2分由牛顿第三定律,矿砂作用在传送带B 上的(撞击)力与F大小相等方向相反,即等于2.21 N ,偏离竖直方向1︒,指向前下方. 1分§4.3 质点系动量守恒定律一.选择题和填空题 1. (C)2. 4.33 m/s ;与A 原先运动方向成 -30° 3.二.计算题1. 解:这个问题有两个物理过程:第一过程为木块M 沿光滑的固定斜面下滑,到达B 点时速度的大小为θsin gl 21=v 1分方向:沿斜面向下第二个过程:子弹与木块作完全非弹性碰撞.在斜面方向上,内力的分量远远大于外力,动量近似守恒,以斜面向上为正,则有V v v )(cos M m M m +=-1θ 3分Mm gl M m +-=θθsin cos 2v V 1分2. 解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v方向为正方向) 2分负号表示冲量方向与0v方向相反. 2分第5章 刚体力学基础 动量矩§5.2 力矩 刚体绕定轴转动微分方程量一.选择题和填空题 1. (C) 2. (B) 3.(B)4. 6.54 rad / s 24.8 s5. 62.51.67s6. 0.25 kg ²m 2二.计算题1. 解:(1) ∵ mg -T =ma 1分TR =J β 2分 a =R β 1分 ∴ β = mgR / (mR 2+J )()R M m mgMR mR mgR +=+=222122 =81.7 rad/s 2 1分 方向垂直纸面向外. 1分211m m t F +∆22211m t F m m t F ∆∆++(2) ∵βθωω2202-=当ω=0 时, rad 612.0220==βωθ物体上升的高度h = R θ = 6.12³10-2 m 2分(3)==βθω210.0 rad/s方向垂直纸面向外. 2分2. 解:(1) 0=ω 0+β tβ=-ω 0 / t =-0.50 rad ²s -2 2分 (2) M r =ml 2β / 12=-0.25 N ²m 2分 (3) θ10=ω 0t +21β t 2=75 rad 1分§5.3 绕定轴转动刚体的动能 动能定理一.选择题和填空题 1. (D) 2. (A) 3.(D)4. 6π rad/s 237 J5. 角动量gl mM 334二.计算题1.解:选泥团和杆为系统,在打击过程中,系统所受外力对O 轴的合力矩为零,对定轴O 的角动量守恒,设刚打击后两者一起摆起的角速度为ω,则有 1分ωJ lm lm +=v v 110 ① 2分其中 2/l ⋅=ωv ② 1分在泥团、杆上摆过程中,选杆、泥团、地球为系统,有机械能守恒.当杆摆到最大角度θ 时有()()222121cos 121ωθJ m l g m M +=-+v ③ 3分联立解以上三式可得()()⎥⎦⎤⎢⎣⎡++-=-gl M m m M m 4331cos 221v θ 3分2.解:(1) 将转台、砝码、人看作一个系统,过程中人作的功W 等于系统动能之增量: W =∆E k =212210222204)21(214)21(21n ml J n ml J π+-π+2 4分 这里的J 0是没有砝码时系统的转动惯量.(2) 过程中无外力矩作用,系统的动量矩守恒:2π(J 0+2121ml ) n 1 = 2π (J 0+2221ml ) n 2 ∴ ()()1222212102n n n l n l m J --= 4分(3) 将J 0代入W 式,得 ()2221212l l n mn W -π= 2分a§5.4 动量矩和动量矩守恒定律一.选择题和填空题 1. (C) 2. (B) 3.(C) 4.(D)5. 031ω6. ()212m R J m r J ++ω 7. ()l m M /3460+v二.计算题1. 解:将杆与两小球视为一刚体,水平飞来小球与刚体视为一系统.由角动量守恒得 1分ωJ l m lm +-=3223200v v (逆时针为正向) ① 2分 又 22)3(2)32(l m l m J += ② 1分将②代入①得 l230v =ω 1分2. 解:(1) 设当人以速率v 沿相对圆盘转动相反的方向走动时,圆盘对地的绕轴角速度为ω,则人对与地固联的转轴的角速度为R R v v221-=-='ωωω ① 2分 人与盘视为系统,所受对转轴合外力矩为零,系统的角动量守恒. 1分设盘的质量为M ,则人的质量为M / 10,有:ωωω'⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+22022211021211021R M MR R M MR ② 2分 将①式代入②式得:R2120v+=ωω ③ 1分(2) 欲使盘对地静止,则式③必为零.即ω0 +2v / (21R )=0 2分 得: v =-21R ω0 / 2 1分式中负号表示人的走动方向与上一问中人走动的方向相反,即与盘的初始转动方向一致.1分3. 解:(1) 角动量守恒:ω⎪⎭⎫ ⎝⎛'+='2231l m ml l m v 2分∴l m m m ⎪⎭⎫ ⎝⎛'+'=31vω=15.4 rad ²s -1 2分(2) -M r =(231ml +2l m ')β 2分0-ω 2=2βθ 2分∴ rM l m m 23122ωθ⎪⎭⎫ ⎝⎛'+==15.4 rad 2分答案 第六章 振动§6.1-1简谐振动 振幅 周期和频率 相位1-2.BB3. 1.2 s 1分; -20.9 cm/s 2分.4. 0.05 m 2分; -0.205π(或-36.9°)2分.5. )212cos(π-πT t A 2分; )312cos(π+πT t A 2分.二计算题1. 解: (1) v m = ωA ∴ω = v m / A =1.5 s -1∴ T = 2π/ω = 4.19 s 3分(2) a m = ω2A = v m ω = 4.5³10-2m/s 2 2分(3) π=21φ x = 0.02)215.1cos(π+t (SI) 3分 2. 解:(1) 1s 10/-==m k ω 1分, 63.0/2=π=ωT s 1分(2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0 由 2020)/(ωv +=x A 得 3.12020-=--=x A ωv m/s 2分π=-=-31)/(tg 001x ωφv 或 4π/3 2分;∵ x 0 > 0 ,∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI) 2分§6.1-2简谐运动的能量1-3:DBD4. b ,f 2分; a ,e 2分.5. 9.90³102 J 3分§9-3旋转矢量1-6:BBBBCA7. π 1分; - π /2 2分; π/3. 2分.8. 10 cm 1分; (π/6) rad/s 1分; π/3 1分. 二.计算题1. 解:旋转矢量如图所示. 图3分由振动方程可得 π21=ω,π=∆31φ 1分667.0/=∆=∆ωφt s 1分2. 解:(1) 设振动方程为 )cos(φω+=t A x-由曲线可知 A = 10 cm , t = 0,φcos 1050=-=x ,0sin 100<-=φωv 解上面两式,可得 φ = 2π/3 2分由图可知质点由位移为 x 0 = -5 cm 和v 0 < 0的状态到x = 0和 v > 0的状态所需时间t = 2 s ,代入振动方程得 )3/22c o s (100π+=ω(SI) 则有2/33/22π=π+ω,∴ ω = 5 π/12 2分 故所求振动方程为:)3/212/5cos(1.0π+π=t x (SI) 1分 3. 解:依题意画出旋转矢量图3分。
大学物理力学一、二章作业答案
大学物理力学一、二章作业答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 质点运动学一、选择题1、一质点在xoy 平面内运动,其运动方程为2,ct b y at x +==,式中a 、b 、c 均为常数。
当运动质点的运动方向与x 轴成450角时,它的速率为[ B ]。
A .a ;B .a 2;C .2c ;D .224c a +。
2、设木块沿光滑斜面从下端开始往上滑动,然后下滑,则表示木块速度与时间关系的曲线是图1-1中的[ D ]。
3、一质点的运动方程是j t R i t R rωωsin cos +=,R 、ω为正常数。
从t =ωπ/到t =ωπ/2时间内该质点的路程是[ B ]。
A .2R ;B .R π;C . 0;D .ωπR 。
4、质量为0.25kg 的质点,受i t F =(N)的力作用,t =0时该质点以v=2j m/s 的速度通过坐标原点,该质点任意时刻的位置矢量是[ B ]。
A .22t i +2j m ; B .j t i t2323+m ;C .j t i t343243+; D .条件不足,无法确定。
二、填空题1、一质点沿x 轴运动,其运动方程为225t t x -+=(x 以米为单位,t 以秒为单位)。
质点的初速度为 2m/s ,第4秒末的速度为 -6m/s ,第4秒末的加速度为 -2m/s 2 。
2、一质点以π(m/s )的匀速率作半径为5m 的圆周运动。
该质点在5s 内的平均速度的大小为 2m/s ,平均加速度的大小为 22m /5s π 。
3、一质点沿半径为0.1m 的圆周运动,其运动方程为22t +=θ(式中的θ以弧度计,t 以秒计),质点在第一秒末的速度为 0.2m/s ,切向加速度为 0.2m/s 2 。
4、一质点沿半径1m 的圆周运动,运动方程为θ=2+3t 3,其中θ以弧度计,t 以秒计。
T =2s 时质点的切向加速度为 36m/s 2 ;当加速度的方向和半径成45º角时角位移是 38rad 。
大学物理练习册参考答案
大学物理练习册参考答案大学物理练习册是大学物理的重要教材之一,它的主要作用是为大学物理课程提供题目和习题,使学生能够更好地掌握和理解物理知识。
本文将为大家提供几个大学物理练习册的参考答案,供大家参考。
第一题:有一块长度为20cm,宽度为10cm,厚度为2cm的矩形金属板,重量为3N。
请问这块金属板的密度是多少?答案:首先我们需要知道密度的定义,密度是单位体积内物质的质量。
因此,我们可以根据这个公式计算出这块金属板的密度:密度=质量/体积其中,这块金属板的质量为3N,体积为20cm × 10cm × 2cm = 400cm³。
把质量和体积带入公式中,可以得到这块金属板的密度为:密度=3N/400cm³=0.0075N/cm³因此,这块金属板的密度为0.0075N/cm³。
第二题:有一个长度为4m的绳子,一个人沿着绳子向上爬,绳子的质量是忽略不计的。
如果人的体重为600N,他在绳子上爬行的过程中,绳子的张力是多少?答案:在求解这个问题之前,我们需要知道牛顿第二定律的公式:力=质量× 加速度根据牛顿第二定律,可以得到人在绳子上爬行时绳子所受的力等于绳子的张力减去重力。
因此,我们可以得到以下公式:绳子的张力=人的重力+绳子的重力其中,人的重力为600N,绳子的重力可以根据绳子的长度和重力加速度计算得出。
在地球上,物体的重力加速度大约为9.8m/s²。
因此,绳子的重力可以用下面的公式计算:绳子的重力=绳子的质量× 重力加速度因为绳子的质量可以根据绳子的长度和线密度计算得出,我们可以得到以下公式:绳子的质量=绳子的长度× 线密度假设绳子的线密度为ρ,绳子的质量可以表示为:绳子的质量=ρ × 面积× 长度根据绳子的面积和长度,可以得到:面积=长度× 直径/4因此,绳子的质量可以通过以下公式计算得出:绳子的质量=ρ × 直径² × 长度/16把绳子的质量和重力加速度带入公式中,可以得到绳子的重力为:绳子的重力=ρ × 直径² × 长度/16 × 重力加速度把人的重力和绳子的重力带入公式中,可以得到绳子的张力为:绳子的张力=人的重力+绳子的重力=600N+ρ × 直径² × 长度/16 × 重力加速度因此,如果已知绳子的线密度、直径、长度和重力加速度,就可以计算出绳子在负责人上爬行时所受的张力。
大连理工大学大学物理 作业及答案详解
丝线与一块很大的带电平面成 30° 角。若带电平面上电荷分布均匀, q 很小,不影响带电平
面上的电荷分布,求带电平面上的电荷面密度。
解:方法一: 受力分析:小球在重力
G
=
mg
(垂直方向),绳中张力
T
(与带电平面成
30
度角)及静电
f = qE(水平方向)的共同作用下而处于受力平衡状态。其中 E 为无限大均匀带电平面(电
电量为 Q1 = 2πRλ )在圆心处产生的场强 E1 与放在空隙处长为 l ,电荷线密度为 − λ 的均 匀带电棒(可以看成是点电荷 q = −λl )在圆心产生的场强 E2 的叠加。即:
E0 = E1 + E2
;
E1
= 0,∴ E0
=
E 2
=
q 4πε 0 R 2
(−Rˆ )
E0
=
− λl 4πε 0 R 2
7.线电荷密度为 λ 的“无限长”均匀带电细线,弯成图示形状,若圆弧半径为 R ,试求 O
点的场强。
答案:按题给坐标, O 点 的场强可以看作是两个半无限长直导线、半圆在 O 点产生场强的 叠加。即: E0 =E1 + E2 + E3
由对称性, E1 和 E2 在 y 方向的矢量和为零;在 x 方向矢量和是单根的 2 倍。 上半无限长导线取电荷元 dq1 = λdx ,它在 O 点的场强沿 x 方向的分量:
答案: 【B】
[解]定义。场强的大小只与产生电场的电荷以及场点有关,与试验电荷无关,A 错;如果
试验电荷是负电荷,则试验电荷受的库仑力的方向与电场强度方向相反,C 错;电荷产生
的电场强度是一种客观存在的物质,不因试验电荷的有无而改变,D 错;试验电荷所受的
华东理工大学大学物理作业答案2
所以
I4 1 COS 6 30 0 21 .1% I0 2
47
大学物理习题册解答
13、自然光射到叠放在一起的两偏振片上(1)如透射光的最大强度为最大透射光强度 的 , 则两偏振片的偏振方向的夹角为多少? (2) 如果透射光的强度为入射光强度的 , 则两偏振片的偏振化方向的夹角又为多少? 解: 设入射光为 I0,通过偏振片的光强为 I1、I2 (1)透射光最大 即 I 2 I 1 据题意任一角度时可得:
2 2 2 x a sin Байду номын сангаас a 4 f
2f 2 1 600 10 9 3 10 3 m a 0.4 10 3 (2)由 a sin k (k 1) 得 x sin 1.5 10 3 r a d a
8、波长λ =600nm 的单色光垂直入射到光栅上,已知第二级主极大出现在θ =30 处,第 三级缺级。求: (1)光栅常数 a+b; (2)光栅每个缝的宽度 a; (3)光屏上可以看到的明条纹数 N。 解: (1) (a+b)sin =2λ
2 2 600 2400 nm sin sin 30 0 ab 3 (2)由第三级缺级可知 a a 800 nm d ab
i 48 010 / 对 O 光线 sin i n 0 sin 0 1.66 sin 48 010'
600
0 26 0 40 /
e光 光 路 图 o光
18、如图所示,一束自然光入射到方解石晶体上,其光轴垂直于纸面,已知方解石对 O 光的折射率 n0=1.658,对 e 光的折射率 ne=1.486。 (1)在图中标出哪一束是 O 光?哪一束是 e 光?并画出光矢量的振动方向。 (2)若方解石晶体的厚度 t=1.0cm,自然光入射角 i = 450,求 a、b 两束光的折射角。
《大学物理AII》作业 No.06光的衍射(参考答案)
《大学物理AII 》作业 No.06 光的衍射班级 ________ 学号 ________ 姓名 _________ 成绩 _______------------------------------------------------------------------------------------------------------- ****************************本章教学要求****************************1、理解惠更斯-菲涅耳原理以及如何用该原理解释光的衍射现象。
2、理解夫琅禾费衍射和菲涅耳衍射的区别,掌握用半波带法分析夫琅禾费单缝衍射条纹的产生,能计算明暗纹位置、能大致画出单缝衍射条纹的光强分布曲线;能分析衍射条纹角宽度的影响因素。
3、理解用振幅矢量叠加法求单缝衍射光强分布的原理。
4、掌握圆孔夫琅禾费衍射光强分布特征,理解瑞利判据以及光的衍射对光学仪器分辨率的影响。
5、理解光栅衍射形成明纹的条件,掌握用光栅方程计算主极大位置;理解光栅衍射条纹缺级条件,了解光栅光谱的形成以及光栅分辨本领的影响因素。
6、理解X 射线衍射的原理以及布拉格公式的意义,会用它计算晶体的晶格常数或X 射线的波长。
-------------------------------------------------------------------------------------------------------一、填空题1、当光通过尺寸可与(波长)相比拟的碍障物(缝或孔)时,其传播方向偏离直线进入障碍物阴影区,并且光强在空间呈现(非均匀分布)的现象称为衍射。
形成衍射的原因可用惠更斯-菲涅耳原理解释,即波阵面上各点都可以看成是(子波的波源),其后波场中各点波的强度由各子波在该点的(相干叠加)决定。
2、光源和接收屏距离障碍物有限远的衍射称为(菲涅尔衍射或近场衍射);光源和接收屏距离障碍物无限远的衍射称为(夫琅禾费衍射)或者远场衍射。
《大学物理AII》作业 No.11 热力学第一定律(参考答案)
V2
V1
ò p d V 来直接求解做功,但可以
答: (1)不可能。等容加热过程中,系统吸热且不对外做功,根据热力学第一定律其内能一 定增加。 (2)不可能。等温压缩过程中,系统内能不变,对外做负功,根据热力学第一定律系统一 定是经历放热过程。 (3)不可能。等压压缩过程中,系统温度降低,内能减少,同时对外做负功,根据热力学 第一定律系统一定是经历放热过程。 (4)可能。绝热压缩过程,吸热为零,外界对系统做功,系统内能一定增加。
氢气是双原子分子,其自由度为 5,而氦气是单原子分子,其自由度为 3,因此氢气与氦气
5 RT 2 ,所以 3 2 E2 = m RT 4 2 E1 =
m1 2
的内能分别为:
E1 = 5/ 3 E2 ;
7 R 2 ,当它们吸收相同的热量,意味着它们的温度变 5 = R 2
氢气与氦气的等压热容分别为:
Aab = 0
b—c 等压过程: Qbc =
m i+2 3 CP (Tc - Tb ) = ( PcVc - PbVb ) = (i + 2) P 1V1 M 2 8
Abc =
1 3 P1 ( Vc - Vb ) = P1V1 4 4
m V 1 RTa ln A = PaVa ln = - P 1V1ln 4 M VC 4
大学物理作业答案(下)
65. 如图所示,几种载流导线在平面内分布,电流均为I ,求:它们在O 点的磁感应强度。
1 RIB 80μ=方向 垂直纸面向外2 R I R I B πμμ2200-= 方向 垂直纸面向里 3 RI R I B 4200μπμ+= 方向 垂直纸面向外 66. 一半径为R 的均匀带电无限长直圆筒,电荷面密度为σ,该筒以角速度ω绕其轴线匀速旋转。
试求圆筒内部的磁感应强度。
解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , σωσωR R i =ππ=)2/(2作矩形有向闭合环路如图中所示.从电流分布的对称性分析可知,在ab 上各点B的大小和方向均相同,而且B 的方向平行于ab ,在bc 和fa 上各点B的方向与线元垂直,在de , cd fe ,上各点0=B.应用安培环路定理∑⎰⋅=I l B 0d μ可得 ab i ab B 0μ=σωμμR i B 00==圆筒内部为均匀磁场,磁感强度的大小为σωμR B 0=,方向平行于轴线朝右.67.在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a (如图)。
今在此导体内通以电流I ,电流在截面上均匀分布,求:空心部分轴线上O ' 点的磁感应强度的大小。
解:)(22r R IJ -=π10121r J B ⨯=μ 20221r J B ⨯-=μJa O O J r r J B B 021********21)(21μμμ=⨯=-⨯=+=r R Ia)(2220-=πμ68.一无限长圆柱形铜导体,半径为R ,通以均匀分布的I 今取一矩形平面S (长为L ,宽为2R ),位置如图,求:通过该矩形平面的磁通量。
解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得:)(220R r rRIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通1为⎰⎰⋅==S B S B d d 1 Φr rL RI Rd 2020⎰π=μπ=40LIμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通2为⎰⋅=S B d 2Φr r IL R Rd 220⎰π=μ2ln 20π=ILμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40LIμ2ln 20π+ILμ69.如图所示,载有电流I 1和I 2的无限长直导线相互平行,相距3r ,今有载有电流I 3的导线MN = r 水平放置,其两端M 、N 分别与I 1、I 2距离均为r ,三导线共面,求:导线MN 所受的磁场力的大小与方向。
大学物理力学一、二章作业答案
第一章 质点运动学一、选择题1、一质点在xoy 平面内运动,其运动方程为,式中a 、b 、c 均为常数。
当运动质点得运动方向与x 轴成450角时,它得速率为[ B ]。
A 。
a ; B.; C.2c; D 。
2、设木块沿光滑斜面从下端开始往上滑动,然后下滑,则表示木块速度与时间关系得曲线就是图1—1中得[ D ]。
3、一质点得运动方程就是,R 、为正常数。
从t =到t =时间内该质点得路程就是[ B ]。
A 。
2R;B .; C. 0; D 。
4、质量为0、25kg 得质点,受(N)得力作用,t =0时该质点以=2m/s 得速度通过坐标原点,该质点任意时刻得位置矢量就是[ B ]。
A.2+2m ; B .m;C 。
; D.条件不足,无法确定。
二、填空题1、一质点沿x 轴运动,其运动方程为(x 以米为单位,t 以秒为单位)。
质点得初速度为2m/s ,第4秒末得速度为 -6m /s ,第4秒末得加速度为 —2m/s2 .2、一质点以(m/s)得匀速率作半径为5m 得圆周运动。
该质点在5s 内得平均速度得大小为 2m/s ,平均加速度得大小为 .3、一质点沿半径为0、1m 得圆周运动,其运动方程为(式中得θ以弧度计,t 以秒计),质点在第一秒末得速度为 0、2m/s ,切向加速度为 0、2m/s 2 。
4、一质点沿半径1m 得圆周运动,运动方程为θ=2+3t 3,其中θ以弧度计,t 以秒计。
T=2s 时质点得切向加速度为 36m/s 2 ;当加速度得方向与半径成45º角时角位移就是ra d 。
5、飞轮半径0、4m ,从静止开始启动,角加速度β=0、2rad /s 2。
t =2s 时边缘各点得速度为 0、16m /s ,加速度为 0、102m/s 2 。
6、如图1—2所示,半径为R A 与RB得两轮与皮带连结,如果皮带不打滑,则两轮得角速度 ,两轮边缘A 点与B 点得切向加速度 1:1 。
三、简述题1、给出路程与位移得定义,并举例说明二者得联系与区别。
大学物理作业(三)答案
班级___ ___学号____ ____姓名____ _____成绩______________ 一、填空题1. 一旋转齿轮的角加速度β=4at 3-3bt 2 ,式中a 、b 均为恒量,若齿轮具有初角速度为ω0,则任意时刻t的角速度 ,转过的角度为 .2. 质量为m ,半径为R 的均质圆盘,平放在水平桌面上,它与桌面的滑动摩擦系数为μ,试问圆盘绕中心轴转动所受摩擦力矩为 。
3. 一长为L 质量为m 的均质细杆,两端附着质量分别为m 1和m 2的小球,且m 1>m 2 ,两小球直径d 1 、d 2都远小于L ,此杆可绕通过中心并垂直于细杆的轴在竖直平面内转动,则它对该轴的转动惯量为 , 若将它由水平位置自静止释放,则它在开始时刻的角加速度为多大: 。
4. 质量为m ,半径为r 的均质圆盘,绕通过其中心且与盘垂直的固定轴以角速度ω匀速转动,则对其转轴来说,它的动量为____________,角动量为__________.三、计算题:1. 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴OO ’转动,设大小圆柱的半径分别为R 和r ,质量分别为M 和m ,绕在两柱体上的细绳分别与物体m 1和物体m 2 相连,m 1和m 2则挂在圆柱体的两侧,如图所示,设R =0.20m ,r =0.10m ,m =4kg ,M =10kg ,m 1=m 2=2kg ,求柱体转动时的角加速度及两侧绳中的张力. 解:设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度,方向如图(如图b).题2-26(a)图 题2-26(b)图(1) 1m ,2m 和柱体的运动方程如下:2222a m g m T =- ①1111a m T g m =- ②12T R T r I α''-= ③rRO ’Om 2m 1式中 112221,,,T T T T a r a R αα''==== 而 222121mr MR I += 由上式求得122212222220.220.129.811100.2040.1020.2020.10226.13rad s Rm rm gI m R m r β--=++⨯-⨯=⨯⨯⨯+⨯⨯+⨯+⨯=⋅(2)由①式 22220.10 6.1329.820.8T m r m g α=+=⨯⨯+⨯=N 由②式11129.820.2. 6.1317.1T m g m R α=-=⨯-⨯⨯=N2. 计算题3-13图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg ,2m =200 kg,M =15 kg, r =0.1 m解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有a m T g m 222=- ① a m T 11= ②对滑轮运用转动定律,有α)21(212Mr r T r T =- ③又, αr a = ④联立以上4个方程,得 2212s m 6.721520058.92002-⋅=++⨯=++=M m m g m a题3-13(a)图 题3-13(b)图3. 如图质量为M ,长为L 的均匀直杆可绕O 轴在竖直平面内无摩擦地转动,开始时杆处于自由下垂位置,一质量为m 的弹性小球水平飞来与杆下端发生完全弹性碰撞,若M >3m ,且碰撞后,杆上摆的最大角度为θ=30,则求:(A)小球的初速度v 0,(B)碰撞过程中杆给小球的冲量. (教材)解: (1)设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mvl I l mv +=ω0 ①2220212121mv I mv +=ω ② 上两式中231Ml I =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③ 由③式得 2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=l g I Mgl ω 由①式 mlI v v ω-=0 ④ 由②式 mI v v 2202ω-= ⑤所以 22001)(2ωωmv ml I v -=-求得glmM m m Ml ml I l v +-=+=+=31232(6)311(2)1(220ωω(2)相碰时小球受到的冲量为 ⎰-=∆=0d mv mv mv t F由①式求得 ωωMl l I mv mv t F 31d 0-=-=-=⎰gl M 6)32(6--=负号说明所受冲量的方向与初速度方向相反.m v MOL。
大学物理大作业答案(2024)
引言概述:正文内容:一、力学1.牛顿三定律的应用解释牛顿第一定律的原理,并给出实际应用的例子。
找出物体的质心,并计算其位置坐标。
利用牛顿第二定律计算物体所受的合力和加速度。
2.作用力和反作用力解释作用力和反作用力的概念,并给出相关案例。
计算物体所受的作用力和反作用力的大小和方向。
应用牛顿第三定律解决实际问题。
3.动能和动能守恒计算物体的动能,并解释其物理意义。
说明动能守恒定律的原理,给出相应的实例。
利用动能守恒定律解决能量转化问题。
4.力学振动和波动解释简谐振动的特征和公式,并计算相关参数。
介绍波的基本概念和性质,并给出波动方程的解释。
分析机械波的传播和干涉现象。
5.万有引力和天体运动介绍万有引力定律的公式和原理。
计算引力和重力的大小和方向。
描述行星运动的轨道和速度,并解释开普勒定律。
二、热学1.理想气体定律和状态方程解释理想气体和实际气体的区别。
推导理想气体定律,解释每个变量的含义。
计算理想气体的性质和状态。
2.热力学第一定律和功解释热力学第一定律的原理,并给出相应公式。
计算系统的内能变化和热量的传递。
分析功的定义和计算方法。
3.热力学第二定律和熵介绍热力学第二定律的概念和表述方法。
计算熵的变化和热力学过程的可逆性。
解释热力学第二定律对能量转化的限制。
4.热传导和热辐射分析热传导的机制和方法,并计算热传导的速率。
描述热辐射的特性和功率密度。
利用热传导和热辐射解决实际问题。
5.热力学循环和效率给出常见热力学循环的定义和示意图。
计算热力学循环的效率和功率输出。
分析热力学循环的改进方法和应用。
三、电磁学1.静电场和电势描述静电场的特性和形成原理,并给出电势的定义。
计算电场和电势的大小和方向。
利用电势差解决电荷移动和电场中的工作问题。
2.电场和电场强度推导库仑定律和电场强度公式。
计算由点电荷、带电导体和带电平面产生的电场。
分析电场中带电粒子受力和加速度。
3.电容和电容器解释电容和电容器的概念和原理,并计算其电容量。
《大学物理AII》作业 No.05光的干涉(参考答案)
《大学物理AII 》作业 No.05光的干涉班级 ________ 学号 ________ 姓名 _________ 成绩 _______ ------------------------------------------------------------------------------------------------------- ****************************本章教学要求****************************1、理解光的相干条件及利用普通光源获得相干光的方法和原理。
2、理解光程及光程差的概念,并掌握其计算方法。
理解什么情况下有半波损失,理解薄透镜不引起附加光程差的意义。
3、掌握杨氏双缝干涉实验的基本装置及其条纹位置、条纹间距的计算。
4、理解薄膜等倾干涉。
5、掌握薄膜等厚干涉实验的基本装置(劈尖、牛顿环),能计算条纹位置、条纹间距,能理解干涉条纹形状与薄膜等厚线形状的关系。
6、理解迈克耳孙干涉仪原理及应用。
-------------------------------------------------------------------------------------------------------一、填空题1、光的相干条件需满足(频率相同、振动方向相同、相位差恒定);利用普通光源获得相干光的方法可分为:(分波阵面法)和(分振幅法)。
2、光在折射率为n 的介质中传播几何路程为x ,其相位改变与真空中经过(nx )的几何路程产生的相位改变相同,该几何路程称为光程或者(等效真空程);如果两个相干光源的初相分别为21ϕϕ、,利用光程差∆计算相位改变的一般公式为(∆+-=∆λπϕϕϕ212)。
当光从光疏介质向光密介质反射时,反射光有2π的相位突变,相当于光程增加了(2λ)。
3、杨氏双缝实验、(菲涅尔双棱镜)、(菲涅耳双面镜)和(劳埃德镜)都属于分波阵面实验法。
大学物理课后习题答案(全册)
《大学物理学》课后习题参考答案习题11-1. 已知质点位矢随时间变化函数形式为)ωtsin ωt(cos j i R r其中为常量.求:(1)质点轨道;(2)速度和速率。
解:1)由)ωtsin ωt(cos j i R r知t cos R x ωtsin R yω消去t 可得轨道方程222Ryx2)jr vt Rcos sin ωωt ωR ωdtd iRωt ωR ωt ωR ωv2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j ir )t 23(t 42,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0t到1t 秒的位移;(3)0t 和1t 秒两时刻的速度。
解:1)由j ir)t 23(t 42可知2t 4x t23y消去t 得轨道方程为:2)3y(x2)jir v 2t 8dtd jij i v r 24)dt2t 8(dt101Δ3)jv 2(0)jiv 28(1)1-3. 已知质点位矢随时间变化的函数形式为j ir t t 22,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:1)ji r v2t 2dtd iv a2dtd 2)212212)1t(2]4)t 2[(v1tt 2dtdv a 2t22221nta aat 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121att v y (1)图 1-420221gttv h y (2)21y y (3)解之2d tg a 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的td dr ,td dv ,tv d d .解:(1)t v x 0式(1)2gt21hy 式(2)jir )gt 21-h (t v (t)20(2)联立式(1)、式(2)得22v 2gx hy (3)ji r gt -v td d 0而落地所用时间gh 2t所以j i r 2gh -v t d d 0jv g td d 2202y2x)gt (vvvv 211222222[()](2)g ghg t dv dtvgt vgh 1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。
大学物理下作业答案.docx
静电场(一)一. 选择题:1.解:在不考虑边缘效应的情况下,极板间的电场等同于电荷均匀分布,密度为o = ±q/S的两面积无限大平行薄板之间的电场一-匀强电场,一板在另一板处之电场强度为£ = o/(2s0),方向垂直于板面.所以,极板间的相互作用力F =q・E = q2 /(2件)。
故选(B)。
2.解:设置八个边长为a的立方体构成一个大立方体,使A(即Q)位于大立方体的中心.所以通过大立方体每一侧面的电场强度通量均为q/(6&o),而侧面abed是大立方体侧面的1/4,所以通过侧面abed的电场强度通量等于q/(24%).选(C)。
3.解:寸亘•丞=jpdV/£°适用于任何静电场.选(A)。
4.解:选(B)。
5.解:据高斯定理知:通过整个球面的电场强度通=q/&. ■内电荷通过昂、&的电通量相等且大于零; 外电荷对品的通量为负,对&的通量为正. 所以0>1 <0>2 •故(D)对。
二. 填空题:1.解:无限大带电平面产生的电场E= —2&oA L 八(5 2(5 3(5A 区:E A= ------------------ = ------2s0 2s02g0CL L b 2b bB 区:E R = ------------ = ------2s0 2s 02s0C区"c=三+至=至2s n 2s n 2s n2.解:据题意知,P点处场强方向若垂直于OP,则入在P点场强的OP分量与Q在P点的场强E QP一定大小相等、方向相反.即Jcp = ------------- c os——= ----------- =也冲= -------- , O — aA .2%。
3 4%。
4%。
之3. 解:无限长带电圆柱体可以看成由许多半径为r 的均匀带电无限长圆筒叠加而成,因此 其场强分布是柱对称的,场强方向沿圆柱半径方向,距轴线等距各点的场强大学相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级________学号_________姓名_________成绩_______
一、选择题
1.一质点在平面上作一般曲线运动,其瞬时速度为 ,瞬时速率为 ,某一段时间内的平均速度为 ,平均速率为 ,它们之间的关系有
[](A) (B)
(C) (D)
2.某物体的运动规律为 ,式中的k为大于零的常数。当t=0时,初速为 ,则速度v与t的函数关系是
(C)顶点a、c处是正电荷,b、d处是负电荷.
(D)顶点a、b、c、d处都是负电荷.
6、下面说法正确的是:
[](A)等势面上,各点场强的大小一定相等;
(B)在电势高处,电势能也一定高;
(C)场强大处,电势一定高;
(D)场强的方向总是从电势高处指向电势低处。
7、两个薄金属同心球壳,半径各为 和 ( ),分别带有电荷 和 ,两者电势分别为 和 (设无穷远处为电势零点),将两球壳用导线连起来,则它们的电势为:
[ ](A) (B)
(C) (D)
3.在带电量为-Q的点电荷A的静电场中,将另一带电量为q的点电荷B从a点移到b点,a、b两点距离点电荷A的距离分别为r1和r2,如图所示。则在电荷移动过程中电场力做的功为
[](A) ;(B) ;
(C) ;(D) 。
4.某电场的电力线分布情况如图所示,一负电荷从M点移到N点。有人根据这个图得出下列几点结论,其中哪点是正确的?
(A)1>2,S=q/0.
(B)1q/0.
(D)1<2,S=q/0
4、关于高斯定理的理解有下面几种说法,其中正确的是()
(A)如果高斯面上 处处为零,则该面内必无电荷;
(B)如果高斯面内无电荷,则高斯面上 处处为零;
(C)如果高斯面上 处处不为零,则该面内必有电荷;
(1)质点的轨道方程,并画出轨道曲线
(2)t=0s~0.25s之间质点的位移
(3)t=0.125s时质点的速度
(4)t=0.25s时质点的加速度
(注:计算过程和结果中 保留)
《大学物理》作业No.2狭义相对论
一、选择题
1.按照狭义相对论的时空观,判断下列叙述中正确的是:[]
(A)在一个惯性系中,两个同时的事件,在另一个惯性系中一定是同时事件
(B)在一个惯性系中,两个同时的事件,在另一个惯性系中一定是不同时事件
(C)在一个惯性系中,两个同时同地的事件,在另一个惯性系中一定是同时同地事件
(D)在一个惯性系中,两个同时不同地的事件,在另一个惯性系中只可能同时不同地
(E)在一个惯性系中,两个同时不同地的事件,在另一个惯性系中只可能同地不同时
2.在狭义相对论中,下列说法正确的是[]
[](A) (B)
(C) (D)
3.一质点在平面上运动,已知质点位置矢量的表示式为 (其中a、b为常量)则该质点作
[](A)匀速直线运动(B)变速直线运动
(C)抛物线运动(D)一般曲线运动
4.一运动质点在某瞬时位于矢径 的端点处,其速度大小为
[](A) (B)
(C) ( D)
二、填空题
1.一质点的运动方程为 ,则在t由0至4s的时间间隔内,质点的位移大小为,在t由0到4s的时间间隔内质点走过的路程为。
(A)N上有负电荷入地.
(B)N上有正电荷入地.
(C)N上的电荷不动.
(D)N上所有电荷都入地.
二、填空题:
1、电荷面密度为 的均匀带电平板,以平板上的一点O为中心,R为半径作一半球面,如图1所示,则通过此半球面的电通量为。
2、在高斯定理 中,在任何情况下,式中 的是否完全由高斯面包围的电荷 激发?。(填“是”或“否”)
(1)求内、外球面上所带电量;
(2)在两个球面之间何处的电势为零?
《大学物理》作业No.5电容
班级:学号:姓名:
一、选择题:
1、面积为S的空气平行板电容器,极板上分别带上电量±q,忽略边缘效应,则两极板间的作用力为:()
(A) (B) (C) (D)
2、如图所示,当两极板带上恒定的等量异号电荷时,有一个质量为 ,带电量为 的质点,平衡在极板间的空气区域中。此后,若将平行板电容器中的电介质抽去,则该质点:()
(D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零。
5、两个同心的均匀带电球面,内球面半径为 、带电量 ,外球面半径为 、带电量 ,则在内球面里面、距离球心为 处的P点的场强大小E为:()
(A) ;(B) ;(C) ;(D) 。
6.一带正电荷的物体M,靠近一原不带电的金属导体N,N的左端感生出负电荷,右端感生出正电荷.若将N的左端接地,如图所示,则()
《大学物理》作业No.3静电场
一、选择题:
1、下列几个说法中哪一个是正确的?()
(A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向;
(B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同;
(C)场强方向可由 定出,其中q为试验电荷的电量, 为试验电荷所受电场力;
(D)以上说法都不正确。
三、计算题
1.图中所示为一沿X轴放置的长度为 的不均匀带电细棒,其电荷线密度为 , 为一常量。取无穷远处为电势零点,求坐标原点O处的电势。
2.图示为一个均匀带电的球层,其电荷体密度为 ,球层内表面半径为 ,外表面半径为 。设无穷远处为电势零点,求空腔内任一点的电势。
3.两个同心的均匀带电球面,半径分别为 ,已知内球面的电势为 外球面的电势 。
[](A) (B) (C)
(D) (E)
二、填空题
1.AC为一根长为2 的带电细棒,左半部均匀带有负电荷,右半部均匀带有正电荷。电 荷线密度分别为 和 ,如图所示。O点在棒的延长线上,距A端的距离为 ,P点在棒的垂直平分线上,到棒的垂直距离为 。O点电势U0=;P点电势UP=。
2.图示为一边长均为a的等边三角形,其三个顶点分别放置着电量为q、2q、3q的三个正点电荷。若将一电量为Q的正点电荷从无穷远处移至三角形的中心O处,则外力需作功A=。
一、选择题
1.关于静电场中某点电势值的正负,下列说法中正确的是:
[](A)电势值的正负取决于置于该点的试验电荷的正负;
(B)电势值的正负取决于电场力对试验电荷作功的正负;
(C)电势值的正负取决于电势零点的选取;
(D)电势值的正负取决于产生电场的电荷的正负。
2.真空中一半径为R的球面均匀带电Q,在球心O处有一带电量为q的点电荷,如图所示。设无穷远处为电势零点,则在球内离球心O距离为r的P点处电势为:
(A)保持不动(B)是否运动不能确定
(C)向上运动(D)向下运动
3、C1和C2两空气电容器并联以后接电源充电,在电源保持联接的情况()
下,在C1中插入一电介质板,则
( A )C1极板上电量增加,C2极板上电量减少。
( B )C1极板上电量减少,C2极板上电量增加。
( C )C1极板上电量增加,C2极板上电量不变。
3.在某地发生两件事,静止位于该地的甲测得时间间隔为4 s,若相对于甲作匀速直线运动的乙测得时间间隔为5 s,则乙相对于甲的运动速度是(c表示真空中光速)[]
(A) (4/5) c.(B) (3/5) c.
(C) (2/5) c.(D) (1/5) c.
4.有一直尺固定在K′系中,它与Ox′轴的夹角′=45°,如果K′系以匀速度沿Ox正方向相对于K系运动,K系中观察者测得该尺与Ox轴的夹角
粒子速度等于0.8c,其动能等于静能的__倍。
4.根据相对论力学,动能为0.25MeV的电子,其运动速度等于_________c。
(已知:电子静能为0.5MeV)
三、计算题
1.半人马星座星是距离太阳系最近的恒星,它距离地球S= 4.3×1016m.设有一宇宙飞船自地球飞到半人马星座星,若宇宙飞船相对于地球的速度为v= 0.999c,按地球上的时钟计算要用多少年时间飞船才能到达目的地?如以飞船上的时钟计算,所需时间又为多少年?
三、计算题:
1、(p30习题10.6)一均匀带点直线段长为 ,线电荷密度为 。求直线段的延长线上距 中点为 处的场强。
2、一带电细线弯成半径为R的半圆形,电荷线密度为 ,式中 为半径R与X轴所成的夹角, 为一常数,如图所示,试求环心O处的电场强度。
3、(p31习题10.14)两无限长同轴圆柱面,半径分别为 和 ( ),带有等值异号电荷,单位长度的电荷量为 和 ,求距轴线 处的场强,当(1) ;(2) ;(3) 。
2、如图所示,一个带电量为q的点电荷位于正方体的A角上,则通过侧面abcd的电场强度通量等于:()
(A) ;(B) ;
(C) ;(D) 。
3.有两个电荷都是+q的点电荷,相距为2a.今以左边的点电荷所在处为球心,以a为半径作一球形高斯面.在球面上取两块相等的小面积S1和S2,其位置如图所示.设通过S1和S2的电场强度通量分别为1和2,通过整个球面的电场强度通量为S,则()
5、两个平行的“无限大”均匀带电平面,其电荷面密度分别为 和 ,如图2所示。设方向向右为正,则A、B、C三个区域的电场强度分别为:
, , 。
图1图2
6.电荷为-5×10-9C的试验电荷放在电场中某点时,受到20×10 -9N的向下的力,则该点的电场强度大小为_____________________,方向____________.
(A)大于45°(B)小于45°(C)等于45°(D)无法确定
[]
5.粒子在加速器中被加速,当其质量为静止质量的3倍时,其动能为静止能量的[]
(A) 2倍.(B) 3倍.(C) 4倍.(D) 5倍.
6.设某微观粒子的总能量是它的静止能量的K倍,则其运动速度的大小为(以c表示真空中的光速)[]
(A) .(B) .
4、如图所示,一厚为 的“无限大”带电平板,电荷体密度 , 为一正常数。求: