1.1 热力学基本概念、热、功介绍

合集下载

热力学基本概念和公式

热力学基本概念和公式

第一章热力学基本概念一、基本概念热机:可把热能转化为机械能的机器统称为热力发动机,简称热机。

工质:实现热能与机械能相互转换的媒介物质即称为工质。

热力系统:用界面将所要研究的对象与周围环境分割开来,这种人为分割的研究对象,称为热力系统。

边界:系统与外界得分界面。

外界:边界以外的物体。

开口系统:与外界有物质交换的系统,控制体(控制容积)。

闭口系统:与外界没有物质的交换,控制质量。

绝热系统:与外界没有热量的交换。

孤立系统:与外界没有任何形式的物质和能量的交换的系统。

状态:系统中某瞬间表现的工质热力性质的总状况。

平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变,系统内外同时建立热和力的平衡,这时系统的状态就称为热力平衡状态。

状态参数:温度、压力、比容(密度)、内能、熵、焓。

强度性参数:与系统内物质的数量无关,没有可加性。

广延性参数:与系统同内物质的数量有关,具有可加性。

准静态过程:过程进行的非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近于平衡状态。

可逆过程:当系统进行正反两个过程后,系统与外界都能完全回复到出示状态。

膨胀功:由于系统容积发生变化(增大或者缩小)而通过系统边界向外界传递的机械功。

(对外做功为正,外界对系统做功为负)。

热量:通过系统边界向外传递的热量。

热力循环:工质从某一初态开始,经历一系列中间过程,最后又回到初始状态。

二、基本公式⎰⎰=-=02112dx x x dx理想气体状态方程式:RT pV m =循环热效率1q w nett =η 制冷系数netw q 2=ε 第二章 热力学第一定律一、基本概念热力学第一定律:能量既不能被创造,也不能被消灭,它只能从一种形式转换成另一种形式,或从一个系统转移到另一个系统,而其总量保持恒定。

热力学能:储存在系统内部的能量(内能、热能) 外储存能:宏观动能和重力位能。

热力学知识:热力学中热力学的基本概念和热力学的法则

热力学知识:热力学中热力学的基本概念和热力学的法则

热力学知识:热力学中热力学的基本概念和热力学的法则热力学是研究热和能量转移的学科,应用广泛,涉及到机械工程、化学工程、环境科学、生物学等领域。

本文将从热力学的基本概念和热力学的法则两个方面进行解析。

一、热力学的基本概念1.热:是物质内部分子的运动状态的表现,是能量的形式之一。

2.温度:是物质内部分子运动状态的一种量化描述,是热的量度单位。

3.热量:是在物体之间传递的能量。

4.功:是物体克服外部阻力所做的能量转移工作。

5.内能:物体中分子的运动状态的总和,包括分子的动能和势能。

6.热力学第一定律:能量守恒定律,能量在系统内可以相互转化,但总能量不变。

7.热力学第二定律:热量只能从高温物体向低温物体传递,不可能实现温度无限制提高或降低的过程。

同时,系统中的熵量增加,在孤立系统中不可逆过程的熵增加定律,表明自然界趋向于混沌无序的趋势。

二、热力学的法则1.热力学第一定律热力学第一定律又称为能量守恒定律,表明在任何物理或化学变化中,能量都必须得到守恒。

能够实现一个系统的内部能量的增加或减少,但能量不会被消失或产生。

因此,热力学第一定律是所有热力学问题的基础。

2.热力学第二定律热力学第二定律又称为热力学不可能定律,是热力学领域最基本的性质之一。

这个定律表明,热会自然地从高温物体流向低温物体,而不会自然地从低温物体流向高温物体。

这就是为什么人们需要用加热器加热房间,在使用机器的内部需要用冷却器来降温的原因。

这个定律还表明,任何热量转换为功的过程都是不完美的,因为它们都会产生一些热量。

3.熵增定律热力学第二定律中提出的熵增定律是热力学的基本法则之一。

熵是一种物理量,表示系统的混乱程度。

热力学第二定律表明,系统内的熵总是增加,系统始终趋向于混沌无序。

例如,一杯水细心地倒入一匀净的玻璃杯中,水会保持有序结构,但是把水撒到桌子上,水会漫无目的地散云化开来,这就是熵增的过程。

总之,热力学是一个研究热和能量转移的学科,这些热力学的基本概念和热力学的法则是全球科学研究和工业实践的基础。

物化知识点

物化知识点

1.1热力学基本概念1. 系统和环境系统(system),是热力学研究的对象。

包括指定的物质和空间。

可分为:(1)敞开系统(2)封闭系统(3)隔离系统环境是指系统以外的物质和空间。

2. 广度性质(n, V, U, H, A, G)和强度性质(T, p, H m等)3. 热和功热Q, 系统得到热量时,Q>0,Q sy =-Q su体积功W V,系统得到体积功(被压缩)时,W V>04. 相和相变只要物质的存在形式有任何一种物理或化学性质不同,它们便属于不同的相。

相变,是指物质从一种聚集形态转变为另一种聚集形态,包括液体的气化(vaporization),气体的液化(liquefaction),液体的凝固(freezing),固体的熔化(fusion),固体的升华(sublimation),气体的凝华,固体不同晶型间的转化(crystal form transition)等。

5. 液体的正常沸点和标准沸点液体在正常压力(101.325 kPa)下的沸点称为该液体的正常沸点;在标准压力(100 kPa)下的沸点称为该液体的标准沸点。

6. 状态函数和过程函数状态函数的特点是,其改变量只取决于系统的始态和终态,而与系统变化的途径无关。

过程函数的特点是,其正负和大小是和过程直接相关的。

7. 系统的典型变化过程:(1)定温过程:T1=T2=T su。

(2)定压过程:p1=p2=p su。

(3)定容过程:d V= 0。

系统体积始终保持恒定。

(4)绝热过程:Q = 0。

(5)对抗恒外压过程:p su=常数。

气体向真空的膨胀过程属于对抗恒外压过程. (6)循环过程:系统经多次变化后又回到原来的始态,即系统的终态和始态是同一状态。

对于循环过程,所有状态函数的改变值一定为0。

1.2体积功的计算几种典型过程的体积功:(1)定容过程:(2)对抗恒定外压膨胀过程:3)气体自由膨胀过程:(4)定温准静态膨胀过程(p=p su):给出了体积功计算实例两个:(1)有状态方程的(2)化学反应的1.4可逆途径与可逆过程多个相继的过程称为途径。

热力学基本概念

热力学基本概念

热力学基本概念热力学是研究热能与其他形式能量之间转化和传递规律的科学学科。

它涉及到一系列基本概念和定律,这些概念和定律是理解和应用热力学的基础。

本文将介绍热力学中的几个基本概念,包括热、温度、功、热容和熵。

一、热热是一种能量传递方式,当物体与外界存在温度差时,热就会从高温物体传递到低温物体。

热是热力学系统与外界之间的能量交换形式之一。

热的单位是焦耳(J)。

二、温度温度是表征物体热状态的物理量,它反映了物体中分子的平均热运动程度。

温度用开尔文(K)作为单位,也可以使用摄氏度(℃)或华氏度(℉)进行表示。

热力学中的零绝对温标是绝对零度,对应着开尔文的0K。

三、功功是热力学系统与外界相互作用过程中的能量传递形式之一。

当一个物体受到外力作用,同时沿着力的方向发生位移时,就会进行功的交换。

功的单位也是焦耳(J)。

四、热容热容描述了物体受热后温度变化的程度。

它是指单位质量物体温度升高1K(或1℃)所需要吸收或放出的热量。

热容的单位可以是焦耳/开尔文(J/K)、焦耳/摄氏度(J/℃)或卡路里/开尔文(cal/K)。

五、熵熵是用来描述系统无序程度的物理量。

它是热力学第二定律的核心概念,表示系统的混乱程度或无序程度。

熵的增加代表着系统趋于混乱,反之则代表着系统趋于有序。

熵的单位是焦耳/开尔文(J/K)。

在热力学中,这些基本概念相互联系、相互影响,通过热力学定律加以描述和解释。

例如,热力学第一定律表示能量守恒,即能量可以从一种形式转化为另一种形式,但总能量的数量保持不变。

热力学第二定律则说明了在孤立系统中热流只会从高温物体流向低温物体,并且系统的熵将不断增加。

通过对这些基本概念的理解和应用,我们可以更好地理解和研究能量的转化和传递过程。

热力学在能源、化学、物理等领域都有广泛的应用,并对相关工程和技术的发展起到了重要的推动作用。

总结起来,热力学基本概念包括热、温度、功、热容和熵。

这些概念相互联系、相互作用,通过热力学定律来描述和解释。

物理化学1.1-热力学基本概念

物理化学1.1-热力学基本概念
第一章 化学热力学基础
●在确定条件下,变化是自发还是非自发?变化的 限度?从确定的自发变化可以获得多少功?要实现 确定的非自发变化,必须注入多少功?
三峡大坝 发电机组
化学电池 化学激光 ……
农田灌溉
电解反应 光化学反应 ……
§1.1 热力学基本概念
1.系统和环境
系统(system) ——热力学研究的对象,包括指定的物质和空间。
非均相系统(多相系统)
(heterogeneous system)
CaCO3 (s) =CaO(s)+CO2(g) NH4HCO3 (s) = NH3(g) + H2O(g) + CO2(g)
相变(phase transformation)
——物质从一种聚集形态转变为另一种聚集形态。
气体
液化
升华

封闭系统(Closed system) ×

隔离系统(Isolated system) ×
×
2.描述系统状态的热力学函数
抽开插板
n,p,V,T
n, p,V,T
Sy(I)
Sy(II)
强度性质函数(intensive properties) 数值大小与系统中所含物质的量无关, 无加和性(如 p,T);
p、V、T 变化过程 相变化过程 化学变化过程
典型p、V、T变化过程
① 定温过程:T1=T2=Tsu ② 定压过程: p1= p2= psu ③ 定容过程: V1=V2 ④ 绝热过程: Q = 0 ⑤ 对抗恒外压过程:psu=常数(包括0)
p1,T1 psu
⑥ 循环过程 :系统的始态和终态为同一状态。
1、苯的正常沸点为80.1 ℃。你知道苯在80.1 ℃ 的饱和蒸汽压吗?

第01章-热力学基本定律1-资料

第01章-热力学基本定律1-资料
themegallery
[例题]:
在等压下,一定量理想气体B由10 dm3膨胀到16 dm3,并吸热700J,求W与ΔU ? 解: 初态,p 10 dm3 等 压 过 Q 程 7 0J, 0终态, p 16 dm3
Wp(V2V 1)[10136215 03]J60J8
themegallery
3. 准静态过程
定义:在过程进行中的任何时刻系统都处于平衡态 的过程。
4. 可逆过程
定义:由一系列非常接近于平衡的状态所组成 的,中间每一步都可以向相反的方向进行而不在环 境中任何痕迹的过程称为可逆过程。
themegallery
特点: ①可逆过程是由一系列非常接近于平衡的状态所 组成. ②过程中的任何一个中间态都可以从正、逆两个方 向到达。 ③经历可逆过程后,当系统复原时,环境也完全 复原而没有留下任何影响和痕迹。
1. 热力学第一定律表述: 热力学第一定律即能量守恒与转化定律:自然界 的一切物质都具有能量,能量有各种不同的形式, 能够从一种形式转化为另一种形式,在转化中, 能量的总值保持不变。 经验表述:第一类永动机是造不成的。
themegallery
2. 热力学第一定律的数学表达式
ΔU = Q + W 对一微小表化,
例题:教材第10页
在298.15K 下1mol C2H6 完全燃烧时,过程所 作的功是多少(反应系统中的气体视为理想气 体)?
解: C2H6 (g) + 3.5O2 (g) = 2CO2 (g) + 3H2O (l)
WRT B(g)= [- (2 - 3.5 - 1)×8.314×298.15]J
欢迎
第一章 热力学基本定律
1.1 热力学基本概念 1.2 热力学第一定律 与内能、焓、功、热 1.3 气体系统典型过程分析 与可逆过程、热机效率 1.4 热力学第二定律与熵、熵判据 1.5 熵变的计算与应用:典型可逆过程和可逆途径的设计 1.6 自由能函数与自由能判据:普遍规律与具体条件的结合 1.7 封闭系统热力学函数间的关系:4个基本方程 1.8 自由能函数改变值的计算及应用:可逆途径的设计

工程热力学(讲义)

工程热力学(讲义)

1 课程学习1.1 热力学基本定律1.1.1 热力学基本概念及定义第一节热力系热力系:由界面包围着的作为研究对象的物体的总和。

按热力系与外界进行物质交换的情况可将热力系分为:闭口系(或闭系)--与外界无物质交换,为控制质量(c.m.);开口系(或开系)--与外界之间有物质交换,把研究对象规划在一定的空间范围内,称控制容积(c.v.)。

按热力系与外界进行能量交换的情况将热力系分为:简单热力系--与外界只交换热量及一种形式的准静功;绝热系--与外界无热交换;孤立系--与外界既无能量交换又无物质交换。

按热力系内部状况将热力系分为:单元系--只包含一种化学成分的物质;多元系--包含两种以上化学成分的物质;均匀系--热力系各部分具有相同的性质;均匀系--热力系各部分具有不同的性质。

工程热力学中讨论的热力系:简单可压缩系--热力系与外界只有准静功的交换,且由压缩流体构成。

第二节热力系的描述热力系的状态、平衡状态及状态参数*热力系的状态:热力系在某一瞬间所呈现的宏观物理状况。

在热力学中我们一般取设备中的流体工质作为研究对象,这时热力系的状态即是指气体所呈现的物理状况。

*平衡状态:在没有外界影响的条件下系统的各部分在长时间内不发生任何变化的状态。

处于平衡状态的热力系各处的温度、压力等参数是均匀一致的。

而温差是驱动热流的不平衡势,温差的消失是系统建立平衡的必要条件。

对于一个状态可以自由变化的热力系而言,如果系统内或系统与外界之间的一切不平衡势都不存在,则热力系的一切可见宏观变化均将停止,此时热力系所处的状态即是平衡状态。

各种不平衡势的消失是系统建立起平衡状态的必要条件。

*状态参数:用来描述热力系平衡态的物理量。

处于平衡态的热力系其状态参数具有确定的值,而非平衡热力系的状态参数是不确定的。

状态参数的特性描述热力系状态的物理量可分为两类:强度量和尺度量(1)强度量与系统中所含物质无关,在热力系中任一点具有确定的数值的物理量。

热力学统计物理简明教程

热力学统计物理简明教程

热力学统计物理简明教程第一章:热力学基本概念1.1 热力学系统:定义热力学系统为与外界相互作用的物质集合,可以是一个孤立系统、封闭系统或开放系统。

1.2 热平衡:当一个系统与外界无能量交换时,系统达到热平衡。

系统内各部分的温度、压力等宏观性质保持恒定。

1.3 状态函数:热力学基本量,与系统的当前状态有关而与历史路径无关,如内能、熵、压力、温度等。

第二章:热力学定律2.1 第一定律:能量守恒原理,能量既不能被创造也不能被毁灭,只能转化形式或在系统间传递。

2.2 第二定律:熵的增加原理,自然界中熵总是趋向增加的方向进行变化,热量只能自高温物体流向低温物体。

2.3 第三定律:绝对零度不可达到,任何物体都无法降至绝对零度(零开尔文)。

3.1 宏观态与微观态:一个宏观系统对应于多个微观系统可能的状态,微观态是描述微观粒子的位置和动量等的状态。

3.2 统计平均:宏观量可以通过对大量微观状态进行统计平均来获得。

3.3 热力学极限:当系统粒子数足够大时,微观态的统计平均值可以近似为宏观量。

第四章:分布函数与统计热力学4.1 统计系综:包括正则系综、巨正则系综和平均系综等,用于描述与热平衡态相关的情况。

4.2 分布函数:用于描述系统处于不同状态的概率分布,如能级分布函数、玻尔兹曼分布等。

4.3 统计热力学量:基于分布函数和统计平均,可以推导出各种统计热力学量的表达式,如配分函数、自由能、熵等。

第五章:应用与实例5.1 理想气体模型:通过应用统计物理理论,可以推导出理想气体的各种性质,如压力、内能和熵等。

5.2 凝聚态物质:应用统计物理理论可以解释凝聚态物质的相变,如固体到液体的熔化和液体到气体的汽化等。

5.3 热力学函数的应用:通过计算热力学函数,可以推导出一些与实际系统相关的性质,如化学反应平衡条件和热电材料的热电效应等。

以上是热力学统计物理简明教程的大致内容,希望能够帮助你对热力学统计物理有初步的了解。

普通化学 第一章 化学热力学基础

普通化学 第一章  化学热力学基础

1 1 (91.8kJ mol-1 ) 30.6 kJ mol-1 Δr H Δ H m,2 3 r m 3
(3)
NH3 ( g )
Δr H m,3
3 1 H2 ( g) N2 ( g ) 2 2 1 1 (91.8 kJ mol-1 ) 45.9 kJ mol-1 Δ r H m 2 2
体系由始态到终态,状态发生了变化,则称体系经历 了一个热力学过程,简称过程。 在状态发生了变化过程中,若体系的始态和终态温度
相等并且等于恒定的环境温度,称为“恒温过程”;同
样,若体系的始态和终态压力相等并且等于恒定的环境 压力,称为“恒压过程”;若体系的体积保持不变称为 “恒容过程”。若体系变化时和环境之间无热量交换, 则称之为“绝热过程”。
“生成”之意。例如:
1 H 2 ( g ) O 2 ( g ) H 2 O(l ) 2
1 Δr H ( 298 .15 K) 285.8 kJ mol m
普通化学
1.3.2 化学反应的标准摩尔焓变的计算
对任一个化学反应来说 dD eE gG hH 其反应物和生 成物的原子种类和个数是相同的,因此我们可以用同样 的单质来生成反应物和生成物,如图1.5所示。
与Q之和。
U Q W
(1.2)
式(1.2)为封闭体系中热力学第一定律的数学表达式。
普通化学
1.2.1 热力学第一定律
例1.1 设能量状态为U1的体系,体系输出200 J的热量,
Q 200 J
环境对体系做了350 J的功,求体系能量变化和终态能量U2。 解: 由题意
W 350 J
普通化学
普通化学
目 录

热力学基本原理(一)讲解

热力学基本原理(一)讲解

δ W pex dV;
① 向真空膨胀(自由膨胀)
p ex = 0, W=0 ② 等容过程 dV=0,W=0 ③ 恒外压膨胀 pex= 常量, W= – pex (V2 -V1)
④ 恒温可逆过程
W nRT ln V2 nRT ln p2
V1
p1
2019/6/10
1-3 体积功的计算、可逆过程
数值可连续变化,数学上有全微分
p f (T ,V )
dp p dT p dV T V V T
2019/6/10
1-1 热力学基本概念
三、过程和途径
过程:系统由一个始态到一个终态的状态变化。 途径:实现过程的具体步骤。
几种重要过程:
(1)等温过程:系统的始终态温度相等,且等于恒定的环境温度。 (2)等压过程:系统的始终态压力相等,且等于恒定的环境压力。 (3)等容过程:在整个过程中,系统的体积保持不变。 (4)绝热过程:在整个过程中,系统与环境之间无热量的交换。 (5)循环过程:系统经历一个过程后,又回到原来的状态。
ΔU = U2 - U1= Q + W
例1-1:某封闭系统中充有气体,吸收了45 kJ的热,又对环境做 了29 kJ的功,计算系统的热力学能的变化。
解:吸热 Q = 45kJ 失功 W= - 29kJ △U= Q + W = 45 + (-29) = 16 kJ 该系统的热力学能增加了16kJ。
2019/6/10
第 1 章 热力学基本原理(一)
1.1 热力学基本概念 1.2 热力学第一定律 1.3 体积功的计算、可逆过程 1.4 焓与热容 1.5 热力学第一定律在单纯物理变化过程中的应用 1.6 热力学第一定律对化学反应的应用——热化学

工程热力学知识点笔记总结

工程热力学知识点笔记总结

工程热力学知识点笔记总结第一章热力学基本概念1.1 热力学的基本概念热力学是研究能量与物质的转化关系的科学,它关注热与功的转化、能量的传递和系统的状态变化。

热力学中最基本的概念包括系统、热力学量、状态量、过程、功和热等。

1.2 热力学量热力学量是描述系统的性质和状态的物理量,包括内能、焓、熵、自由能等。

内能是系统的总能量,焓是系统在恒压条件下的能量,熵是系统的无序程度,自由能是系统进行非体积恒定的过程中能够做功的能量。

1.3 热力学第一定律热力学第一定律是能量守恒的表达形式,在闭合定容系统中,系统的内能变化等于系统所接受的热量减去系统所做的功。

1.4 热力学第二定律热力学第二定律是描述系统不可逆性的定律,它包括开尔文表述和克劳修斯表述。

开尔文表述指出不可能将热量完全转化为功而不引起其他变化,克劳修斯表述指出热量自然只能从高温物体传递到低温物体。

根据第二定律,引入了熵增大原理和卡诺循环。

1.5 热力学第三定律热力学第三定律是指当温度趋于绝对零度时,系统的熵趋于零。

这一定律揭示了绝对零度对热力学过程的重要意义。

第二章热力学系统2.1 定态与非定态定态系统是指系统的性质在长时间内不发生变化,非定态系统是指系统的性质在长时间内发生变化。

2.2 开放系统与闭合系统开放系统是指与外界交换物质和能量的系统,闭合系统是指与外界不交换物质但可以交换能量的系统。

2.3 热力学平衡热力学平衡是指系统内各部分之间的温度、压力、化学势等性质达到一致的状态。

系统处于热力学平衡时,不会产生宏观的变化。

第三章热力学过程3.1 等温过程在等温过程中,系统的温度保持不变,内能的变化全部转化为热量输给外界。

3.2 绝热过程在绝热过程中,系统不与外界交换热量,内能的变化全部转化为对外界所做的功。

3.3 等容过程在等容过程中,系统的体积保持不变,内能的变化全部转化为热量。

3.4 等压过程在等压过程中,系统的压强保持不变,内能的变化转化为对外界所做的功和系统所吸收的热量。

物理化学 热力学第一定律

物理化学 热力学第一定律
• 二 第一定律的文字表述
能量有各种不同的形式,可以由一种形式转变为另一种形 式,从一个物体传递给另一个物体,而在转化和传递的过 程中能量的总和保持不变。热力学第一定律的本质是能量 守恒原理
热力学第一定律的其它说法: 不消耗能量而能不断对外作功的机器——第一类永动机是 不可能的。
• 第一定律的数学表达式
功 电功
非体积功 表面功等
1.4 功的计算、可逆过程和最大功
• 二、体积功的计算
设有一个带理想(既无重量也无摩擦力)活塞的圆筒,截面 积为A,筒内装有一定量的气体,圆筒活塞上环境压力为 pex。分别讨论气体压缩和膨胀的情况。
体积功的定义式*: δW def -pexdV
具体过程的体积功:
1、恒(外)压过程 恒外压过程:W=-pex (V2-V1) 恒压过程(pex=p):W=-p(V2-V1) 2、自由膨胀过程∵pex=0 ∴W=0 3、恒容过程 dV=0;W=0
• 不同途径膨胀的功和热
1molH2 273K 1×105Pa
22.7dm3
途径1:真空膨胀
途径2:等外压膨胀 pex=0.5×105Pa
1molH2 273K 0.5×105Pa
45.4dm3
途径1: pex= 0,W1=0 途径2: pex=0.5×105Pa, W=-pex (V2-V1)
=0.5×105Pa ×(45.4dm3-22.7dm3) = 1.135kJ 实验测得: 途径1:Q=0 途径2 : Q=1 kJ
解:此过程是等压过程 所以△H=Qp= 4.06×104J.mol-1
H U pV
例1‐3 将 H U pV 应用于(1)理想气体的温度变
化;(2)等温,等压下液体或固体气化;(3)等温、等 压下有气体参加的反应。(气体均为理想气体)

热力学基本概念汇总

热力学基本概念汇总
27
(5)等温过程T1=T2=Tex,Tex=const.
1mol理想气体,在273K,P1=4Pθ,V1=5.6dm3 ,分 三个不同的途径等温膨胀到P2=Pθ,V2=22.4dm3,比较 它们所做的功。假设气缸上放置的是既没有摩擦又无 重量的的活塞。 Ⅰ:反抗恒外压,Pex= Pθ一次膨胀到终态
第一章 热力学第一定律
§1.1 §1.2 §1.3 §1.4 §1.5 §1.6 §1.7 §1.8 §1.9
热力学基本概念 热和功 热力学第一定律 功的计算、可逆过程 等容热、等压热和焓 热容及热的计算 热力学第一定律的应用Ⅰ——简单参量变化 热力学第一定律的应用Ⅱ——相变化 热力学第一定律的应用Ⅲ——热化学
19
含义:
体系内质点间的势能:吸引能,排斥能 体系分子间的动能: 平动能,转动能,振动能 体系内质点的运动能:核能 电子运动能
20
特点:
(1)热力学能的绝对值无法确定
(2)热力学能是状态函数
(3)热力学能是容量性质
其微小变量可表示为某几个自变量的全微分形式。对 纯物质单相封闭系可有:
U f (T ,V );
18
2.能量转化与守恒定律
到1850年,科学界公认能量守恒定律是自然界 的普遍规律之一。能量守恒与转化定律可表述为:

自然界的一切物质都具有能量,能量有各
种不同形式,能够从一种形式转化为另一种形
式,但在转化过程中,能量的总值不变。
3.热力学能
E= EK + Ep + U
动能 势能 热力学能 -系统内部 能量的总和。
系统(包括孤立系统)的形式。叙述为: ➢ 封闭系统中的热力学能不会自行产生或消灭,只 能以不同的形式等量地相互转化。 ➢ 第一类永动机(无需环境供给能量而能连续对环境 做功的机器)不能制造。

热力学中的基本概念及应用

热力学中的基本概念及应用

热力学中的基本概念及应用热力学是一门物理学科,研究的是热量和功的传递关系,以及微观粒子对宏观物质性质和状态的影响。

在热力学当中,有一些基本概念和定理,这些概念和定理非常重要,是我们理解和应用热力学知识的基础。

一、热力学基本概念1. 系统系统是指我们研究的物体或物质,它可以是一个独立的物体,也可以是多个物体共同组成的系统。

在研究热力学问题的时候,我们需要把系统和外界分开考虑,从而确定系统的性质和状态。

2. 热量热量是指物体内部的热运动的能量,通常用Q表示。

当两个物体的温度不同的时候,它们之间会发生热传递,也就是热流动,这时就会有热量在两个物体之间转移。

3. 温度温度是衡量物体热度高低的物理量,通常用T表示。

温度越高,物体的分子运动越剧烈,能量就越大。

温度的单位是“开尔文(K)”,也可以用摄氏度(℃)表示。

4. 压力压力是指单位面积下物体所受的压力,通常用p表示。

压力越大,物体就越容易被压缩。

5. 热力学定律热力学中有三个基本定律,它们分别是:热力学第一定律、热力学第二定律和热力学第三定律。

这些定律是热力学的基本法则,它们被广泛应用于各种领域。

二、热力学应用热力学不仅是一门理论学科,还应用于很多实际问题当中。

下面我们来看看一些热力学应用的例子。

1. 冷却器冷却器是一种将热量转移出去的设备,它通常用于发动机、电子设备等地方。

在冷却器中,通过流过散热片的冷却液,将发动机产生的热量转移到空气中,从而保持发动机的工作温度。

2. 发电厂发电厂是一种将热能转化为电能的设备。

在发电厂中,首先需要产生热量,这个热量可以来自于燃烧煤、燃气或核聚变反应。

然后,这个热量会使得水变成蒸汽,推动涡轮旋转,最终产生电能。

3. 空调空调是一种将室内热量转移到外界的设备,通过空调可以使得室内温度保持在舒适的范围内。

在空调中,通过制冷剂的循环来吸收室内的热量,然后将这个热量传递到室外,从而达到降温的目的。

总结热力学是一门非常重要的物理学科,它帮助我们理解了物体的热运动和温度变化,也启示我们将热能转化为其他形式的能量。

第一章 热力学基础

第一章 热力学基础

W pV
W=0
1.1.5 能量守恒定律——热力学第一定律 热功当量 1 cal = 4.1840 J 焦耳自1840年起, 历经20多年,用 各种实验求证热和功的转换关系,得到的
结果是一致的。
在任何变化过程中,能量不会自生自灭, 只能从一种形式转化为另一种形式,能量 总值不变。
封闭系统:始态(1) → 终态(2) 热力学第一定律数学表达式:
n=1 mol T=300 K
途径2) 反抗100 kPa
n=1 mol
T=300 K p2=100 kPa
p1=1000 kPa
途径3)a 反抗 500 kPa
n=1 mol
T=300 K
途径 3)b
p3=500 kPa
反抗 100 kPa
体积功及其计算
几种不同过程功的计算:
气体向真空膨胀(气体自由膨胀): ∵ p环 = 0 恒压过程: 恒容过程 ∴W = 0

非体积功: 除体积功外的功,如电功, 表面功等。
气体受热,体积膨胀dV , 活塞移动dl,反抗环境压 力p环而作微功:
微功 = 力×位移 = p 环· s · A dl
δW p 环dV = p环· dV
W p环 V
注 1. 加“-”号是因为气体膨胀(dV > 0)而系 意 统输出功(W<0) 。气体压缩过程同样适用。 : 2. 计算功时用的是环境的压力p环。
·
a
Z b2
1
·b A
V
1.1.3 系统的状态函数及其性质
通常用系统的宏观可测性质如体积、压力、 温度、粘度、表面张力等来描述系统的热力 学状态。这些性质也称为热力学变量。 可分为两类:容量性质和强度性质。

热力学基础知识

热力学基础知识

热力学基础知识热力学是物理学的一个分支,研究热现象和热能转化的规律。

在我们生活中,也可以看到许多与热力学有关的现象,比如汽车引擎的工作、空调的制冷、发热体的加热等等。

在接下来的文章中,我们将深入了解一些热力学的基本概念和原理。

一、热力学的基本概念1. 温度和热量温度是描述物体热度的物理量,单位是摄氏度(℃)、开尔文(K)、华氏度(℉)等。

热量是指热能的转移量,单位是焦耳(J)、卡路里(cal)等。

两者的联系可以用下面的公式表示:Q=m×c×ΔT其中,Q表示热量,m表示物体质量,c表示物体的热容量,ΔT表示物体温度变化量。

此外,还有一个重要的物理量叫做热力学摩尔容量,指的是单位量物质在温度变化1K时所吸收的热量,单位是焦/摩尔-开尔文(J/mol-K)。

2. 热力学第一定律热力学第一定律也叫做能量守恒定律,指的是能量不能被创造或毁灭,只能从一种形式转化为另一种形式,并且总能量守恒。

从热观点来看,热量也是一种能量,因此热能也具有守恒性质。

3. 热力学第二定律热力学第二定律是一个非常重要的定律,它规定了热能转化的方向性,即热量只能从高温物体流向低温物体,不可能反向。

这个定律也成为热力学的增熵定律,指的是一个孤立系统的熵(混乱度)只可能增加,而不可能减小。

二、热力学的应用1. 热力学循环热力学循环是指通过对气体或液体的加热或冷却来产生机械功或者热量,再将剩余的热量排放到外界,从而实现能量转化的过程。

熟悉汽车工作原理的人应该都知道,汽车引擎就是一种热力学循环系统,通过燃烧汽油来加热气体,从而产生机械功驱动车轮,同时排放废气。

2. 热力学平衡当物体的温度相同时,此时物体达到了热力学平衡,它们之间的热量不再交换。

但是,这并不意味着温度相同的两个物体一定热力学平衡。

比如,在室内放着一瓶冰水和一只热汤的碗,虽然它们的温度都是20℃,但是它们内部的热量分布不同,因此不能说它们处于热力学平衡状态。

1.1 化学热力学的基本概念

1.1 化学热力学的基本概念
3mol 6mol 3mol 1 2
3mol 6mol 6mol 1/ 2 1
同一化学反应,化学方程式的写法不同, 在同一时刻反应进度的数值不同。
①N2O4(g) = 2NO2(g) ξ Δn 1mol 2mol 1mol ②1/2N2O4(g)= NO2(g) Δn 1/2mol 1mol 1mol 反应①指1molN2O4(g)完全分解生成2mol NO2(g)时的反应进度; 反应②指0.5molN2O4(g)完全分解生成1mol NO2(g)时的反应进度。 例如 当反应方程式的写法不同时,ξ=1mol 代表的意义不同。
途径:
体系完成某一状态变化所经历的具体步骤。
等温过程 始态
273.15K 200kPa
等压过程 终态
273.15K 100kPa
等压过程
373.15K 200kPa
373.15K 100kPa
等温过程
三、热和功
热:用 Q 表示。 功:用 W 表示。
热和功的单位:焦(J)或千焦(kJ)
规定:体系从环境吸热,Q>0 体系向环境放热,Q<0 规定:体系对环境作功,W<0 环境对体系作功,W>0 热和功都不是状态函数
1.敞开体系:体系和环境之间既有物质交 换,又有能量交换。 2.封闭体系:体系和环境之间没有物质交 换,只有能量交换。 3.孤立体系:体系和环境之间既没有物质 交换,也没有能量交换
注意:绝对的孤立体系是不存在的,其 概念只能在有限的时间和空间中 近似的使用。
二、状态和状态函数
体系的状态:是指体系所处的状况。 即体系各种性质(物理性质和化学性 质)的综合表现。 这些性质都是宏观物理量。
200mL
0.1 mol·L-1葡萄糖溶液

热力学基本概念和原理

热力学基本概念和原理

热力学基本概念和原理热力学是研究能量转化和能量流动的科学领域。

它关注物质系统的宏观行为,涉及热量、功、温度等因素。

本文将介绍热力学的基本概念和原理,并探讨其在自然界和工程中的应用。

一、热力学的基本概念1. 系统和环境:在热力学中,将所研究的物质部分称为系统,而系统之外的一切称为环境。

系统和环境可以通过能量交换进行相互作用。

2. 平衡态:当系统的所有宏观性质不发生变化或者发生的变化可以忽略不计时,系统处于平衡态。

平衡态可以分为热平衡、力学平衡和相平衡。

3. 定态和循环过程:定态是指系统性质不发生变化,而循环过程则是指系统经历一系列状态变化后回到初始状态。

4. 状态参数:状态参数是用来描述系统状态的物理量,如温度、压力、体积等。

它们与系统在平衡态时的性质有直接的关联。

二、热力学的基本原理1. 热力学第一定律:热力学第一定律,也被称为能量守恒定律,指出能量在系统和环境之间的转化是平衡的。

它表明能量既不能被创造,也不能被消灭,只能从一种形式转化为另一种形式。

数学表达式为:ΔU = Q - W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外界做的功。

根据正负号的不同,可以判断能量的流动方向。

2. 热力学第二定律:热力学第二定律描述了能量转化的方向性。

它规定了自然界中存在一个不可逆的趋势,即热量只能从高温物体传递到低温物体,而不能反过来。

这个趋势被称为热力学箭头。

根据热力学第二定律,可以引出熵的概念。

熵是一个度量系统无序程度的物理量,自然界的熵总是趋向于增加。

3. 热力学第三定律:热力学第三定律指出,在温度绝对零度(0K)时,系统的熵为零。

它为研究低温物理学和凝聚态物理学提供了基础。

热力学第三定律的重要性在于,它确定了熵计算的参考点,并为系统热平衡时的温度提供了一个下限。

三、热力学的应用1. 自然界中的应用:热力学在自然界中的应用非常广泛。

例如,它能解释太阳能如何转化为地球上的生物能,并推导出地球表面的温度分布。

工程热力学知识点总结

工程热力学知识点总结

工程热力学知识点总结1. 热力学基本概念1.1 热力学系统:研究对象,与周围环境有能量和物质交换。

1.2 环境:系统之外的一切,与系统形成对比。

1.3 边界:系统与环境之间的分界线。

1.4 状态:系统在某一时刻宏观性质的集合。

1.5 平衡态:系统状态不随时间变化的状态。

1.6 过程:系统从一个平衡态到另一个平衡态的演变。

2. 热力学第一定律2.1 能量守恒:系统内能量的变化等于热量与功的和。

2.2 内能:系统内部微观粒子动能和势能的总和。

2.3 热量:系统与环境之间由于温度差而交换的能量。

2.4 功:系统对环境或其他系统施加的力与其位移的乘积。

2.5 热力学第一定律公式:ΔU = Q - W。

3. 热力学第二定律3.1 熵:系统无序度的量度,是不可逆过程的度量。

3.2 孤立系统:不与外界交换能量或物质的系统。

3.3 熵增原理:孤立系统熵永不减少。

3.4 卡诺定理:所有热机的最大效率由卡诺循环确定。

4. 热力学性质4.1 温度:系统热动能的度量,是热力学过程的驱动力。

4.2 压力:分子对容器壁单位面积的平均作用力。

4.3 体积:系统占据的空间大小。

4.4 比热容:单位质量的物质温度升高1K所需吸收的热量。

4.5 热容:系统温度升高1K所需吸收的热量。

5. 理想气体行为5.1 理想气体状态方程:PV = nRT。

5.2 摩尔体积:1摩尔理想气体在标准状态下的体积。

5.3 气体常数:理想气体状态方程中的常数R。

5.4 马略特定律:理想气体在恒定温度下,体积与压力成正比。

5.5 波义耳定律:在恒温条件下,理想气体的压强与其体积成反比。

6. 热力学循环6.1 卡诺循环:理想化的热机循环,由四个可逆过程组成。

6.2 奥托循环:内燃机的理想循环,包括等容加热、绝热膨胀、等容放热和绝热压缩。

6.3 朗肯循环:蒸汽动力循环,包括泵吸、锅炉加热、涡轮膨胀和冷凝器排热。

7. 相变与潜热7.1 相变:物质从一种相态转变为另一种相态的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
35 5 / 37
思考题
1-1 在一绝热容器中盛有水,其 中浸有电热丝,通电加热。将不 同的对象看作系统,则给出Q和 W(与0比较)。 (1)以电热丝为系统 (2)以水为系统 Q < 0, W > 0 Q > 0, W = 0
(3)以容器内所有物质为系统 Q = 0, W > 0 (4)将容器内所有物质以及电 源和其它一切有影响的物 质看作系统 Q = 0, W= 0
14 / 37
过程。
气体 (T,p) 汽化 液体 液化 凝固 熔化 (T,p)
15 / 37
(T,p) 升华 凝华 固体(α) 晶型转化 (T,p) 固体(β)
饱和蒸气压:
在一定温度下,当液(或固) 体与其蒸汽达成液(或固) 汽两相平衡时,汽相的压力 称为该液(或固)体在该温 度下的饱和蒸气压。
11 / 37
问题:一金属棒分别与两个恒温热源相接触, 经过一定时间后,金属棒上各指定点的温度不 再随时间而变化,此时金属棒是否处于热力学 平衡态?
T2
T1
12 / 37
7. 系统的变化过程:
过程:在一定条件下,系统由始态变化到终 态的经过。 pVT变化过程、相变化过程、化学变化过程 几种主要的p,V,T变化过程 (1) 定温过程:T1 = T2 =Tsu =const. 定温变化:T1 = T2 (2) 定压过程:p1=p2=psu =const. 定压变化:p1 = p2 (3) 定容过程:V =const.
5.均相系统和非均相系统
相:系统中物理性质及化学性质均匀的 部分。 均相系统:系统中只含有一个相; 非均相系统:系统中含有一个以上的相。
非均相系统
均相系统
10 / 37
6.热力学平衡态
定义:系统在一定环境条件下,经足够长的时间, 其各部分可观测到的宏观性质都不随时间而变,此后将 系统隔离,系统的宏观性质仍不改变,此时系统所处的 状态叫热力学平衡态。 必须同时满足: 1) 热平衡:系统各部分T 相等;若不绝热,则T= Tex 2) 力平衡:系统各部分p 相等;边界不相对位移。 3) 相平衡:系统各相长时间共存,组成和数量不随时 间而变。 4) 化学平衡:系统组成不随时间改变。
状态函数的改变量只决定于系统的始态和终态, 而与变化的过程或途径无关。 状态函数的改变量 =系统终态的函数值-系统始态的函数值。 如: ΔT = T2 -T1, ΔV= V2-V1 V = f (p,T )
9 / 37
状态函数在数学上具有全微分的性质。 如,n 一定的封闭体系
∂V dV = ∂p ∂V dp + ∂ T dT p T
第一章 化学热力学基础
I 热力学基本概念、热、功 II 热力学第一定律 III 热力学第二定律 IV 热力学第三定律 V 亥姆霍兹函数与吉布斯函数 VI 热力学函数的基本关系式 VII 多组分系统热力学
1/ 35 1 /37
I
热力学基本概念、热、功
第一节 热力学基本概念 第二节 热、功 第三节 可逆过程、可逆过程的体积功
(1)
(2)
(3)
4 / 37
2.热和功
热由于系统与环境间温度差的存在而引起的 能量传递形式。用符号Q 表示。
Q >0 环境对系统放热(系统从环境接受能量) 功 由于系统与环境间压力差或其它机电“力” 的存在引起的能量传递形式。 用符号W 表示。 W >0 环境对系统作功(系统从环境接受能量) 5/
6/ 35 6 / 37
3.系统的宏观性质
由大量微粒组成的宏观集合体所表现的集体 行为。如 p, V, T, U, H, S, A, G 等叫热力学系统 的宏观性质(热力学性质)。 宏观性质分为两类: 广度性质:与系统中所含物质的量有关, 有加和性 (如 m,n, V 等); 强度性质:与系统中所含物质的量无关, 无加和性 (如 p, T,ρ等)

def
ν dnB
−1 B
Δξ =1mol,叫反应发生了1mol反应进度。
应用反应进度时,必须指明相应的计量方程式。 如:
1 3 N 2 + H 2 = NH 3 2 2
7 / 37
一种广度性质 V m = 强度性质, 如Vm = ,ρ = 等 另一种广度性质 n V
4.系统的状态和状态函数
系统的状态:系统所处的样子。系统的状态 用宏观性质描述。宏观性质也称为系统的 状态函数。 状态函数: p, V, T , U, H, S, A, G
8 / 37
状态函数的特性:
∑ (−ν
R
R
R) = ∑ν P P
P
可简写成 0 = ΣνB B
B的化学计量数 量纲一的量 单位为1
νA=-a, νB=-b, νY= y, νZ= z
17 / 37
反应进度 (ξ):
nB,0 :反应前(ξ =0) B的物质的量 nB : 反应后(ξ = ξ ) B的物质的量
nB-nB,0=νB ξ ∆nB = vB • ∆ ξ d nB = νB • dξ
g l
p*(T )
(相平衡)
沸点: 蒸气压等于外压时的温度
正常沸点: 101.325 kPa下的沸点; 标准沸点: 100 kPa下的沸点 如: 水 正常沸点: 100℃
液体的饱和蒸气压
标准沸点: 99.67℃
16 / 37
16 / 35
化学变化过程与反应进度 化学反应 aA + bB = yY + zZ
13 / 37
(4) 绝热过程:Q = 0 仅可能有功的能量传递形式。 (5) 循环过程:系统经一连串过程又回到始态。 Δp=0,ΔT=0 (6) 对抗恒定外压过程: psu=常数
p1, T1 psu
图1-1气体向真空膨胀 (自由膨胀)
状态2 状态1 循环过程
气体
真空
(7) 自由膨胀过程:(向真空膨胀过程) psu=0
2 /37
第一节 热力学基本概念
1.系统和环境
系统: 热力学研究的对象(微粒组成的宏观集合体)。 环境: 与系统通过物理界面(或假想的界面)相 隔开并与系统密切相关的周围部分。 环境 系统
3 / 37
系统类型 敞开系统 封闭系统 隔离系统
系统与环境之间 物质的质量传递 有 无 无
能量的传递(以 热和功的形式) 有 有 无
相关文档
最新文档