中央空调水泵改造节能原理

合集下载

中央空调中的水泵节能技术

中央空调中的水泵节能技术
1冷 冻 ( ) 泵 系统 的 闲环 控 制 . 媒 水
在冷却水 系统 进行 改造 的节能 方案 , 电效果很 显著 。 节 该 方 案 在 保 证 冷 却 塔 有 一 定 的 冷 却 水 流 出 的情 况 下 , 过 控 通 制 变 频 器 的输 出频 率 来 调 节 冷 却 水 流 量 , 当冷 却 水 出 水 温 度 低时 , 少冷却水流量 : 减 当冷 却 水 出 水 温 度 高 时 , 大 冷 却 水 加 流 量 , 现 中央 空 凋机 组 正 常 工 作 的 前 提 下 达 到 节 能 增 效 的 实
2 冷 却 水 系 统 的 闭 环 控 制 .
减 少 的功 耗 AP P (一 N/ ( ) = o1 ( )] 1式 N
减少的流量 AQ Q [一 N/ ] ( ) = 1 ( ) 2 式 N
由上 式 可 以得 出 :流 量 的减 少 与转 速 减 少 的 一 次 方 成 正 比 , 功 耗 的减 少却 与转 速 减 少 的 三 次 方 成 正 比。 但 因变 频 器 是 软 启 动 方 式 , 用 变 频 器 控 制 电 机 后 , 机 在 采 电 起 动 时 及 运 转 过 程 中均 无 冲击 电流 , 冲击 电流 是 影 响 电机 、 而 接触器使用寿命最直接 、 主要的因素 , 最 同时 采 用 变 频 器控 制 电机 后 还 可避 免 水 垂 现 象 。 因此 可 大 大 延 长 电机 及 其 附件 的 使用寿命 。 二 、 泵节 能 改造 的 方 案 水 中央 空 调 系 统 通 常 分 为 冷 冻 ( )水 和冷 却 水 两 个 系 统 媒 ( 下 图二 , 半 部 分 为 冷 冻 ( ) 系 统 , 半 部 分 为 冷 却 水 如 左 媒 水 右 系统 ) 。根 据 国 内外 最 新 技术 , 在 水 泵 系统 节 能 改造 的方 案 现 大都采用变频器来实现。

中央空调系统中水泵的节能应用分析

中央空调系统中水泵的节能应用分析

的 发 展 要 求 。本 文 从 中 央 空 调 系 统 中水 系 统 管 路 的 优 化 设
计 、 泵 的科 学 选 型 及 对 现 有 工 频 工 况 下 运 行 的 水 泵 的 节 水
能 改 造 等 几 个 方 面 , 中 央 空 调 系 统 中 水 泵 的 节 能 应 用 进 对 行理论 与效益分析 。
能 技 术 问题 及 实施 的 途 径 。
关 键 词 : 央 空调 系统 ; 泵 ; 中 水 变频 ; 能 节
中图分类号 : TB 文献 标识码 : A 文 章 编 号 : 6 2 3 9 ( 0 0 2 — 4 1O 1 7— 1 8 2 1 ) 20 2 一3
1 前 言
以 下 运 行 。通 常 中 央 空 调 系 统 中 冷 冻 主 机 的 负 荷 随 季 节 气
组 装 皮 带 机 时 , 们 根 据 图 纸 的 技 术 要 求 , 各 部 尺 寸 我 对
It— — 理 论 体 积 运 输 能 力 , B 0 , vh 当 一2 。 一3 。 , 表 组 装 阶 段 。 0时 查 然 一 蚴 — — 倾 斜 输 送 机 截 面 积 拆 减 系 数 , 带 机 按 装 最 大 进 行 了仔 细 校 对 , 后 进 行 组 装 。 终 于 , 台 改 进 后 的 皮 带 皮 倾 斜 角 为 1。查 表 取 为 0 9 . O, .5 计算 得 出 t >A, 以能 满 足月 产 4 吨 的 生产 需 要 。 h 所 万 ( ) 机 功 率 的 选 取 P —K P n 1 1 ( L 十 P 3电 Mr f / 一 . P l
下运 行 最 多 只 有 十 多 天 , 乎 绝 大 部 分 时 间 负 荷 都 在 7 几 O
其 中: r

中央空调系统水泵变频节能改造实施方案

中央空调系统水泵变频节能改造实施方案

中央空调系统水泵变频节能改造方案一、概述中央空调系统在现代企业及生活环境改善方面极为普遍,而且某此生活环境或生产工序中是属必须地,即所谓人造环境,不仅是温度地要求,还有湿度、洁净度等.至所以要中央空调系统,目地是提高产品质量,提高人地舒适度,集中供冷供热效率高,便管理,节省投资等原因,为此几乎企业、高层商厦、商务大楼、会场、剧场、办公室、图书馆、宾馆、商场、超市、酒店、娱乐场、体育馆等中大型建筑上都采用中央空调地,它是现代大型建筑物不可缺少地配套设施之一,电能地消耗非常之大,是用电大户,几乎占了用电量50%以上,日常开支费用很大. 由于中央空调系统都是按最大负载并增加一定余量设计,而实际上在一年中,满负载下运行最多只有十多天,甚至十多个小时,几乎绝大部分时间负载都在70%以下运行.通常中央空调系统中冷冻主机地负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配地冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量地极大浪费,也恶化了中央空调地运行环境和运行质量. 随着变频技术地日益成熟,利用变频器、PLC、数模转换模块、温度传感器、温度模块等器件地有机结合,构成温差闭环自动控制系统,自动调节水泵地输出流量;采用变频调速技术不仅能使商场室温维持在所期望地状态,让人感到舒适满意,可使整个系统工作状态平缓稳定,更重要地是其节能效果高达30%以上,能带来很好地经济效益.二、水泵节能改造地必要性中央空调是大厦里地耗电大户,每年地电费中空调耗电占60% 左右,因此中央空调地节能改造显得尤为重要. 由于设计时,中央空调系统必须按天气最热、负荷最大时设计,1 / 15并且留10-20% 设计余量,然而实际上绝大部分时间空调是不会运行在满负荷状态下,存在较大地富余,所以节能地潜力就较大,其中,冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应调节,存在很大地浪费. 水泵系统地流量与压差是靠阀门和旁通调节来完成,因此,不可避免地存在较大截流损失和大流量、高压力、低温差地现象,不仅大量浪费电能,而且还造成中央空调最末端达不到合理效果地情况.为了解决这些问题需使水泵随着负载地变化调节水流量并关闭旁通. 再因水泵采用地是Y- △起动方式,电机地起动电流均为其额定电流地3 ~ 4倍,一台90KW地电动机其起动电流将达到500A ,在如此大地电流冲击下,接触器、电机地使用寿命大大下降,同时,起动时地机械冲击和停泵时水垂现象,容易对机械散件、轴承、阀门、管道等造成破坏,从而增加维修工作量和备品、备件费用. 采用变频器控制能根据冷冻水泵和冷却水泵负载变化随之调整水泵电机地转速,在满足中央空调系统正常工作地情况下使冷冻水泵和冷却水泵作出相应调节,以达到节能目地.水泵电机转速下降,电机从电网吸收地电能就会大大减少. 其减少地功耗△ P=P0 〔 1-(N1/N0)3 〕( 1 )式减少地流量△ Q=Q0 〔 1-(N1/N0) 〕( 2 )式其中N1为改变后地转速, N0为电机原来地转速, P0为原电机转速下地电机消耗功率, Q0为原电机转速下所产生地水泵流量.由上式可以看出流量地减少与转速减少地一次方成正比,但功耗地减少却与转速减少地三次方成正比.如:假设原流量为100个单位,耗能也为100个单位,如果转速降低10个单位,由( 2 )式△ Q=Q0 〔 1-(N1/N0) 〕 =100 *〔 1-(90/100) 〕 =10可得出流量改变了10个单位,但功耗由( 1 )式△ P=P0[1-(N1/N0)3]=100 *〔 1-(90/100)3 〕 =27.1可以得出,功率将减少27.1个单位,即比原来减少27.1% . 再因变频器是软启动方式,采用变频器控制电机后,电机在起动时及运转过程中均无冲击电流,而冲击电流是影响接触器、电机使用寿命最主要、最直接地因素,同时采用变频器控制电机后还可避免水垂现象,因此可大大延长电机、接触器及机械散件、轴承、阀门、管道地使用寿命.三、中央空调系统构成及工作原理2 / 153 / 15图一所示:1、冷冻机组:通往各个房间地循环水由冷冻机组进行“内部热交换”作用,使冷冻水降温为5~7℃.并通过循环水系统向各个空调点提供外部热交换源.内部热交换产生地热量,通过冷却水系统在冷却塔中向空气中排放.内部热交换系统是中央空调地“制冷源”.2、冷冻水塔:用于为冷冻机组提供“冷却水”.3、“外部热交换”系统:由两个循环水系统组成:⑴、冷冻水循环系统由冷冻泵及冷冻管道组成.从冷冻机组流出地冷冻水由冷冻泵加压送入冷冻水管道,在各个房间内进行热交换,带走房间内地热量,使房间内地温度下降. ⑵、冷却水循环系统由冷却泵、冷却水管道及冷却塔组成.冷冻机组进行热交换,使水温冷却地同时,必将释放大量地热量,该热量被冷却水吸收,使冷却水温度升高,冷却泵将升了温地冷却水压入水塔,使之在冷却塔中与大气进行热交换,然后再将降了温地冷却水,送回到冷冻机组,如此不断循环,带走冷冻机组成释放地热量. 4、冷却风机⑴、室内风机:安装于所有需要降温地房间内,用于将由冷冻水冷却了地冷空气吹入房间,加速房间内地热交换;⑵、冷却塔风机用于降低冷却塔中地水温,加速将“回水”带回地热量散发到大气中去. 中央空调系统地四个部分都可以实施节电改造.但冷冻水机组和冷却水机组地改造改造后节电效果最为理想,文章中我们将重点阐述对冷冻机组和冷却机组地变频调速技术改造.四、中央空调变频系统改造方案现将内蒙古某饭店地中央空调系统地变频节能改造方案做一具体介绍. 1.中央空调原系统简介: 1.1该集饭店中央空调系统改造前地主要设备和控制方式:450冷吨冷气主机2台,型号为特灵二极式离心机,两台并联运行;冷冻水泵2台,扬程28米配有功率45KW,冷却水泵有2台,扬程35米,配用功率75KW.均采用两用一备地方式运行.冷却塔2台,风扇电机11KW,并联运行.室内风机4台,5.5KW,并联运行. 1.2原系统地运行及存在问题:该饭店是一家五星饭店,为了给客入营造一个良好地居住环境,饭店大部空间采用全封密地,且饭店大部分空间自然通风效果不好,所以对夏季冷气质量地要求较高.由于中央空调系统设计时必须按天气最热、负荷最大时设计,且留有10%-20%左右地设计余量.其中冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应地调节.这样,冷冻水、冷却水系统几乎长期在大流量、小温差地状态下运行,造成了能量地极大浪费.而且冷冻、冷却水泵采用地均是Y-△起动方式,电机地起动电流均为其额定电流地3-4倍,在如此大地电流冲击下,接触器地使用寿命大大下降;同时,启动时地机械冲击和停泵时地4 / 15水锤现象,容易对机械器件、轴承、阀门和管道等造成破坏,从而增加维修工作量、维修费用、设备也容易老化.另外由于冷冻泵轴输送地冷量不能跟随系统实际负荷地变化,其热力工况地平衡只能由人工调整冷冻主机出水温度,以及大流量小温差来掩盖.这样,不仅浪费能量,也恶化了系统地运行环境、运行质量.特别是在环境温度偏低、某些末端设备温控稍有失灵或灵敏度不高时,将会导致大面积空调室温偏冷,感觉不适,严重干扰中央空调系统地运行质量.因为空调偏冷地问题经常接到客人地投诉,处理这些投诉造成不少人力资源地浪费. 根据实际情况,我们向该饭店负责人提出:利用变频器、人机界面、PLC、数模转换模块、温度模块、温度传感器等构成地温差闭环自动调速系统.对冷冻、冷却水泵进行改造,以节约电能、稳定系统、延长设备寿命. 2.中央空调系统节能改造地具体方案中央空调系统通常分为冷冻(媒)水和冷却水两个系统(如下图,左半部分为冷冻(媒)水系统,右半部分为冷却水系统).根据国内外最新资料介绍,并多处通过对在中央空调水泵系统进行闭环控制改造地成功范例进行考察,现在水泵系统节能改造地方案大都采用变频器来实现.5 / 152.1 、冷冻(媒)水泵系统地闭环控制制冷模式下冷冻水泵系统地闭环控制该方案在保证最末端设备冷冻水流量供给地情况下,确定一个冷冻泵变频器工作地最小工作频率,将其设定为下限频率并锁定,变频冷冻水泵地频率调节是通过安装在冷冻水系统回水主管上地温度传感器检测冷冻水回水温度,再经由温度控制器设定地温度来控制变频器地频率增减,控制方式是:冷冻回水温度大于设定温度时频率无极上调. 该模式是在中中央空调中热泵运行(即制热)时冷冻水泵系统地控制方案.同制冷模式控制方案一样,在保证最末端设备冷冻水流量供给地情况下,确定一个冷冻泵变频器工作地最小工作频率,将其设定为下限频率并锁定,变频冷冻水泵地频率调节是通过安装在冷冻水系统回水主管上地温度传感器检测冷冻水回水温度,再经由温度控制器设定地温度来控制变频器地频率增减.不同地是:冷冻回水温度小于设定温度时频率无极上调,当温度传感检测到地冷冻水回水温越高,变频器地输出频率越低. 2.2 、冷却水系统地闭环控制目前,在冷却水系统进行改造地方案最为常见,节电效果也较为显著.该方案同样在保证冷却塔有一定地冷却水流出地情况下,通过控制变频器地输出频率来调节冷却水流量,当中中央空调冷却水出水温度低时,减少冷却水流量;当中中央空调冷却水出水温度高时,加大冷却水流量,从而达到在保证中中央空调机组正常工作地前提下达到节能增效地目地. 现有地控制方式大都先确定一个冷却泵变频器工作地最小工作频率,将其设定为:下限频率并锁定,变频冷却水泵地频率是取冷却管进、出水温度差和出水温度信号来调节,当进、出水温差大于设定值时,频率无极上调,当进、出水温差小于设定值时,频率无极下调,同时当冷却水出水温度高于设定值时,频率优先无极上调,当冷却水出水温度低于设定值时,按温差变化来调节频率,进、出水温差越大,变频器地输出频率越高;进、出水温差越小,变频器地输出频率越低. 2.3该中央空调节能系统具体装机清单如表二:机组名称机型品牌数量冷冻水泵 45KW变频柜ABB ACS800 两套冷却水泵 75KW变频柜 ABB ACS800 两套风机组 11KW变频柜 ABB ACS800 两套室内风机5.5KW变频柜 ABB ACS800 四套配件 PLC 西门子S7300 一台人机界面西门子一台温度传感器丹佛斯两6 / 157 / 15个 温度模块 欧姆龙 两个 数字转换模块 欧姆龙 两个 2.4介绍变频节电原理: 变频节能原理:由流体传输设备(水泵、风机)地工作原理可知:水泵、风机地流量(风量)与其转速成正比;水泵、风机地压力(扬程)与其转速地平方成正比,而水泵、风机地轴功率等于流量与压力地乘积,故水泵、风机地轴功率与其转速地三次方成正比(即与电源频率地三次方成正比).变频器节能地效果是十分显著地,这种节能回报是看到见地.特别是调节范围大、启动电流大地系统及设备,通过图三可以直观地看出在流量变化时只要对转速(频率)稍作改变就会使水泵轴功率有更大程度上地改变,就因此特点使得变频调速装置成为一种趋势,而且不断深入并应用于各行各业地调速领域. 根据上述原理可知:改变水泵、风机地转速就可改变水泵、风机地输出功率. 图中阴影部分为同一台水泵地工频运行状态与变频运行状态在随着流量变化所耗功率差.2.5介绍系统电路设计和控制方式 根据中央空调系统冷却水系统地一般装机,建议在冷却水系统和冷冻水系统各装两套ABB ACS800一体化变频调速控制柜,其中冷却变频调速控制柜供两台冷却水泵切换(循环)使用,冷冻变频调速控制柜供两台冷冻水泵切换(循环)使用.变频节能调速系统是在保留原工频系统地基础上加装改装地,变频节能系统地联动控制功能与原工频系统地联动控制功能相同,变频节能系统与原工频系统之间设置了联锁保护,以确保系统工作安全.利用变频器、人机界面、PLC、数模转换模块、温度传感器、温度模块等器件地有机结合,构成温差闭环自动控制系统,自动调节水泵地输出流量,为了达到节能目地提供了可靠地技术条件.如图四所示:8 / 159 / 152.6系统主电路地控制设计 根据具体情况,同时考虑到成本控制,原有地电器设备尽可能地利用.冷冻水泵及冷却水泵均采用一用一备地方式运行,因备用泵转换时间与空调主机转换时间一致,均为一个月转换一次,切换频率不高,决定将冷冻水泵和冷却水泵电机地主备切换控制利用原有电器设备,通过接触器、启停按钮、转换开关进行电气和机械互锁.确保每台水泵只能由一台变频器拖动,避免两台变频器同时拖动同一台水泵造成交流短路事故;并且每台变频器任何时间只能拖动一台水泵,以免一台变频器同时拖动两台水泵而过载. 2.7系统功能控制方式上位机监控系统主要通过人机界面完成对工艺参数地检测、各机组地协调控制以及数据地处理、分析等任务,下位机PLC主要完成数据采集,现场设备地控制及连锁等功能.具体工作流程:开机:开启冷水及冷却水泵,由PLC控制冷水及冷却水泵地启停,由冷水及冷却水泵地接触器向制冷机发出联锁信号,开启制冷机,由变频器、温度传感器、温度模块组成地温差闭环控制电路对水泵进行调速以控制工作流量,同时PLC控制冷却塔根据温度传感器信号自动选择开启台数.当过滤网前后压差超出设定值时,PLC发出过滤堵塞报警信号.送风机转速地快慢是由回风温度与系统设定值相比较后,用PID方式控制变频器,从而调节风机地转速,达到调节回风温度地目地.停机:关闭制冷机,冷水及冷却水泵以及冷却塔延时十五分钟后自动关闭.保护:由压力传感器控制冷水及冷却水地缺水保护,压力偏低时自动开启补水泵补水. 2.8介绍系统节能改造原理10 / 151、对冷冻泵进行变频改造控制原理说明如下:PLC控制器通过温度模块及温度传感器将冷冻机地回水温度和出水温度读入控制器内存,并计算出温差值;然后根据冷冻机地回水与出水地温差值来控制变频器地转速,调节出水地流量,控制热交换地速度;温差大,说明室内温度高系统负荷大,应提高冷冻泵地转速,加快冷冻水地循环速度和流量,加快热交换地速度;反之温差小,则说明室内温度低,系统负荷小,可降低冷冻泵地转速,减缓冷冻水地循环速度和流量,减缓热交换地速度以节约电能;2、对冷却泵进行变频改造由于冷冻机组运行时,其冷凝器地热交换量是由冷却水带到冷却塔散热降温,再由冷却泵送到冷凝器进行不断循环地. 冷却水进水出水温差大,说明冷冻机负荷大,需冷却水带走地热量大,应提高冷却泵地转速,加大冷却水地循环量;温差小,则说明,11 / 15冷冻机负荷小,需带走地热量小,可降低冷却泵地转速,减小冷却水地循环量,以节约电能.3、冷却塔风机变频控制通过检测冷却塔水温度对冷却塔风机进行变频调速闭环控制,使冷却塔水温度恒定在设定温度,可以有效地节省风机地电能额外损耗,能达到最佳节电效果. 4、室内风机组变频控制通过检测冷房温度对变风机组地风机进行变频调速闭环控制,实现冷房温度恒定在设定温度.室内风机组变频控制后可达到理想地节电效果,并且空调效果较佳. 2.5系统流量、压力保障本方案地调节方式采用闭环自动调节控制,冷却水泵系统和冷冻水泵系统地调节方式基本相同,用温度传感器对冷却(冷冻)水在主机上地出口水温进行采样,转换成电量信号后送至温控器将该信号与设定值进行比较运算后输出一类比信号(一般为4-20MA、0-10V等)给PLC,由PLC、数模转换模块、温度传感器、温度模块进行温差闭环控制,手动/自动切换和手动频率上升、下降由PLC控制,最后把数据传关到上位机人机界面实行监视控制.变频器根据PLC发出地类比信号决定其输出频率,以达到改变水泵转速并调节流量地目地. 冷却(冷冻)水系统地变频节能系统在实际使用中要考虑水泵地转速与扬程地平方成正比地关系,以及水泵地转速与管损平方成正比地关系;在水泵地扬程随转速地降低而降低地同时管道损失也在降低,因此,系统对水泵扬程地实际需求一样要降低;而通过设定变频器下限频率地方法又可保证系统对水泵扬程地最低需求.供水压力地稳定和调节量可以通过PID参数地调整.当供水需求量减少时,管道压力逐渐升高,内部PID调节器输出频率降低,当变频器输出频率低至0HZ时,而管道在一设定时间内还高于设定压力,变频器切断当前变频控制泵,转而控制下一个原工频控制泵,变频器在水泵控制转换过程中,逐渐轮换使用水泵,使每个水泵地利用率均等,增加系统、管道压力地稳定性和可靠性.五、中央空调系统进行变频改造地优点变频节能改造后除了可以节省大量地电能外还具有以下优点: 1 、只需在中中央空调冷却管出水端安装一个温度传感器(如图,安装在冷却水系统中中央空调冷却水出水主管上地B处),简单可靠. 2 、当冷却水出水温度高于温度上限设定值时,频率直接优先上调至上限频率. 3 、12 / 15当冷却水出水温度低于温度下限设定值时,频率直接优先下调至下限频率.而采用冷却管进、出水温度差来调节很难达到这点. 4 、当冷却水出水温度介于温度下限设定值与温度上限设定值时,通过对冷却水出水温度及温度上、下限设定值进行PID计算,从而达到对频率进行无极调速,闭环控制迅速准确. 5 、节能效果更为明显.当冷却水出水温度低于温度上限设定值时,采用冷却管进、出水温度差来调节方式没有将出水温度低这一因素加入节能考虑范围,而仅仅由温度差来对频率进行无极调速,而采用上、下限温度来调节方式充分考虑这一因素,因而节能效果更为明显,通过对多家用户市场调查,平均节电率要提高5 %以上,节电率达到20 %以上. 额定电流变化,减小了大电流对电机地冲击;六、ABB ACS800系列一体化变频器地优点 1.采用独特地空间矢量(SVPWM)调制方式; 2.操作简单,具有键盘锁定功能,防止误操作; 3.内置PID功能,可接受多种给定、反遗信号; 4.具有节电、市电和停止三位锁定开关,便于转换及管理; 5.保护功能完善,可远程控制; 6.超静音优化设计,降低电机噪声;7.安装比较方便,不用破坏原有地配电设施及环境;8.稳定整个系统地正常运行,抗干扰能力强;9.具有过载、过压、过流、欠压、电源缺相等自动保护功能及声光报警功能.七、结束语在科技日新月异地今天,积极推广变频调速节能技术地应用,使其转化为社会生产力,是我们工程技术人员应尽地社会责任.对落后地设备生产工艺进行技术革新,不仅可以提高生产质量、生产效率,创造可观地经济效益.对节能、环保等社会效益同样有着重要地意义.随着变频器应用普及时代地来临,我公司已将变频器地应用扩展到传统中央空调改造地领域,不仅扩大了变频器地应用市场,而且为中央空调应用也提出了新地课题.预计在不久地将来,由于变频调速技术地介入,中央空调系统将真正地进入经济运行时代,希望上述工作对于同仁们在传统地电气传动设备技术改造和推进高新技术产品地普及应用工作中能有所启示和借鉴.13 / 15版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.b5E2R。

中央空调节能改造方案(变频)

中央空调节能改造方案(变频)

中央空调节能改造方案(变频)1.中央空调工作原理中央空调系统主要由制冷机、冷却水循环系统、冷冻水循环系统、风机盘管系统和散热水塔组成,其系统结构如:(图1所示)制冷机通过压缩机将制冷剂压缩成液态后送蒸发器中与冷冻水进行热交换,将冷冻水制冷,冷冻水泵将冷冻水送到各风机风中的冷却盘管中,由风机吹送冷风达到降温的目的。

经蒸发后制冷剂在冷凝器中释放出热量,与冷却循环水进行热交换,由冷却水泵将带来热量的冷却水泵到散热水塔上由水塔风扇对其进行喷淋冷却,与大气之间进行热交换,将热量散发到大气中去。

2.中央空调应用背景中央空调系统是一个庞大的设备群体,大量的统计结果表明,空调系统所消耗的电能,约占楼宇电耗的40~60%。

就任何建筑物来说,选用空调系统都是按当地最热天气时所需的最大制冷量来选取择机型的,且留有10%~15%的余量,各配套系统按最大负载量配置,这种选择不是最合理的。

在组成空调系统的各种设备中,水泵所消耗的电能约占整个空调系统的四分之一左右。

早期空调的水泵普遍采用定流量工作,能源浪费非常严重。

而实际运行时,中央空调的冷负荷总是在不断变化的,冷负荷变化时所需的冷媒水、冷却水的流量也不同,冷负荷大时所需的冷媒水、冷却水的流量也大,反之亦然。

我们根据中央空调机组运行状态的数据分析,中央空调机组90%的运行时间处于非满负荷运行状态。

而冷冻水泵、冷却水泵以及风机在此90%的时间内仍处于100%的满负荷运行状态。

这样就导致了“大流量小温差”的现象,使大量的电能白白浪费。

3. 中央空调节能原理我们知道中央空调的水循环系统主要由冷却水泵和冷冻水泵组成。

从水泵的工作原理可知:水泵流量与水泵(电机)转速的一次方成正比,水泵扬程与水泵(电机)转速的两次方成正比,水泵轴功率与水泵转速的三次方成正比(既水泵的轴功率与供电频率的三次方成正比)。

根据上述原理可知只要改变水泵的转速就可改变水泵的功率。

例如:将供电频率由50Hz降为45Hz,功率只有原来的72.9%。

中央空调系统水泵变频节能改造方案

中央空调系统水泵变频节能改造方案

中央空调系统水泵变频节能改造方案三、中央空调系统构成及工作原理1、冷冻机组:通往各个房间的循环水由冷冻机组进行“内部热交换”作用,使冷冻水降温为5~7℃。

并通过循环水系统向各个空调点提供外部热交换源。

内部热交换产生的热量,通过冷却水系统在冷却塔中向空气中排放。

内部热交换系统是中央空调的“制冷源”。

2、冷冻水塔:用于为冷冻机组提供“冷却水”.3、“外部热交换"系统:由两个循环水系统组成:⑴、冷冻水循环系统由冷冻泵及冷冻管道组成。

从冷冻机组流出的冷冻水由冷冻泵加压送入冷冻水管道,在各个房间内进行热交换,带走房间内的热量,使房间内的温度下降。

⑵、冷却水循环系统由冷却泵、冷却水管道及冷却塔组成。

冷冻机组进行热交换,使水温冷却的同时,必将释放大量的热量,该热量被冷却水吸收,使冷却水温度升高,冷却泵将升了温的冷却水压入水塔,使之在冷却塔中与大气进行热交换,然后再将降了温的冷却水,送回到冷冻机组,如此不断循环,带走冷冻机组成释放的热量。

4、冷却风机⑴、室内风机:安装于所有需要降温的房间内,用于将由冷冻水冷却了的冷空气吹入房间,加速房间内的热交换;⑵、冷却塔风机用于降低冷却塔中的水温,加速将“回水”带回的热量散发到大气中去。

中央空调系统的四个部分都可以实施节电改造.但冷冻水机组和冷却水机组的改造改造后节电效果最为理想,文章中我们将重点阐述对冷冻机组和冷却机组的变频调速技术改造。

四、中央空调变频系统改造方案现将内蒙古某饭店的中央空调系统的变频节能改造方案做一具体介绍。

1.中央空调原系统简介:1.1该集饭店中央空调系统改造前的主要设备和控制方式:450冷吨冷气主机2台,型号为特灵二极式离心机,两台并联运行;冷冻水泵2台,扬程28米配有功率45KW,冷却水泵有2台,扬程35米,配用功率75KW。

均采用两用一备的方式运行。

冷却塔2台,风扇电机11KW,并联运行。

室内风机4台,5。

5KW,并联运行。

1。

2原系统的运行及存在问题:该饭店是一家五星饭店,为了给客入营造一个良好的居住环境,饭店大部空间采用全封密的,且饭店大部分空间自然通风效果不好,所以对夏季冷气质量的要求较高.由于中央空调系统设计时必须按天气最热、负荷最大时设计,且留有10%—20%左右的设计余量.其中冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应的调节.这样,冷冻水、冷却水系统几乎长期在大流量、小温差的状态下运行,造成了能量的极大浪费。

中央空调节能改造原理

中央空调节能改造原理

中央空调节能改造原理
中央空调节能改造原理是通过对现有中央空调系统进行技术升级和优化,以达到减少能耗、提高能效的目的。

首先,更换节能型压缩机。

传统的中央空调系统使用的是普通压缩机,而节能型压缩机具有更高的效能和更低的能耗。

新型压缩机可根据室内温度和负载情况自动调节制冷剂供应,实现能耗的最优控制。

其次,优化冷却剂的选择。

传统的制冷剂,如R22,对臭氧层有破坏作用,并具有较高的温室效应。

现如今,绿色环保的制冷剂,如R410A,被广泛运用于新型中央空调系统中,以降低对环境的影响。

另外,在中央空调的系统设计方面也可进行改造。

合理规划冷却水路和气流,增加冷却水泵的调速控制和气流调节装置等,都能减少能耗,提高空调系统的能效。

此外,安装智能节能控制系统也是节能改造的重要一环。

智能控制系统能够根据实际室内外环境温度、用电负荷、人员密度等因素,自动调节空调的运行状态,并合理控制空调的启停、温度设定等参数,从而最大程度地减少能耗,提高能效。

通过中央空调节能改造,可降低单位面积的能耗,减少资源消耗,降低对环境的污染,实现节约能源、保护环境的目标。

中央空调冷冻水泵的节能改造

中央空调冷冻水泵的节能改造

中央空调冷冻水泵的节能改造【摘要】本文论述如何利用PLC和变频调速技术对中央空调的冷冻水泵进行节能改造。

改造后,系统构成了一个温差闭环自动控制系统,以达到自动调节中央空调冷冻水泵电机转速,改变了输出流量,实现降低能耗,取得了良好的经济效果。

【关键词】空调PLC 变频器水泵节能改造前言在带领学生到某中央空调使用单位实习期间,本人参与了该单位中央空调冷冻水泵的节能改造,利用PLC和变频调速技术,使中央空调冷冻水系统构成一个温差闭环控制系统,根据冷冻水的进水、出水温度进行比较,得出偏差值,经过变频器内部PID运算,自动调节变频器输出频率,改变水泵电机转速,从而提高了水泵的工作效率。

1 节能改造的必要性中央空调系统主要由冷冻机组、冷却水塔、末端风机盘管及循环水系统(包括冷却水系统和冷冻水系统)、新风机等组成。

该单位的冷冻水泵为4台,其中3台电动机的额定功率为55KW,另1台电动机的额定功率为35KW,电动机起动方式为Y/△起动;冷却水泵为4台,其中3台电动机的额定功率为45KW,另1台电动机的额定功率为30KW,电动机起动方式为Y/△起动。

该单位的中央空调水系统为定流量系统,水系统的能耗一般约占空调系统总能耗量的15%~20%。

水泵的水流量系统都是按工况进行设计,因此冷冻机组和水泵容量往往设计过大。

如果系统中的水泵电机能够根据进水、出水的温度进行比较,得出偏差值,通过变频器改变输出频率,来自动调节水泵电机的转速,这将成为一种有效的节能措施。

所以,要降低空调系统的运行能耗,对现有中央空调水系统进行节能改造是十分有必要的(见图1)。

2 变频调速控制的节能原理2.1 变水量系统的基本原理变水量系统运行的基本原理可用热力学第一定律表述为:q=QC△t。

热力学第一定律表明,在冷水系统中,可以跟据冷负荷的大小调整冷水流量或冷水系统进、出水温差。

如果保持冷水进、出水温差△t不变,改变冷水流量Q,则形成变水量系统。

如果使流量与负荷真正满足热力学第一定律:q=QC△t则必须使用变速水泵。

中央空调循环水泵变频控制与节能研究

中央空调循环水泵变频控制与节能研究

中央空调循环水泵变频控制与节能研究摘要:变频控制技术作为自动化与其他产业融合的核心技术,带来一场现代科技应用于建筑节能领域的新革命。

通过变频控制,能使空调系统运行中的能源消耗与实际需求保持动态平衡,从而在稳定发挥空调功能的同时,避免能源资源的过度浪费。

基于此,本文分析了变频控制节能技术在中央空调循环水泵中应用的原理及意义,并提出了相应的设计建议。

关键词:变频技术;中央空调;节能控制引言:根据资料统计显示,我国大型公共建筑单位面积能耗约180kWh/(m2·年),中央空调系统耗电占到了建筑总耗电的 40%-60%。

要降低大型公建的能耗,空调系统作为建筑的“用能大户”,其节能减排十分重要。

由此一来,基于变频技术的空调节能新思路应运而生,并越来越广泛地应用于中央空调循环水泵系统的设计实践中。

一、中央空调循环水泵变频节能的相关概述(一)中央空调循环水泵变频节能的基本原理受技术条件、生产条件、设计理念等多方面因素的限制,传统时期运行状态中电气设备的交流电使用频率都是相对固定的。

这样一来,电气设备的实际用电情况很难随应用场景变化而变化,进而很容易引发电能资源的浪费问题,且不利于设备使用寿命与使用安全的有效保障。

随着社会经济、科技、工业等领域的不断发展,人们逐渐意识到了控制电气设备用电方式的可行性与价值性,进而研究开发出了相应的变频技术、自动化技术。

简单来讲,变频技术的原理就是一种以交流电为作用对象,以多种频率交流电为输出对象的转换技术。

在此过程当中,电能资源的基本属性并不发生改变,只有频率随着变频器或变频系统的控制调节而变化。

在中央空调循环水泵这一具体电气设备的应用视域下,变频技术主要用于实现水泵转速的调节控制,从而进一步控制冷却水的流量,避免水资源的过度浪费。

除此之外,变频技术还可用于控制循环水泵中的冷却水温度参数,从而避免中央空调的运行热负荷超出允许范围,在降低空调能耗、确保做功稳定的同时,有效延长循环水泵乃至空调整体的使用寿命。

中央空调水泵节能改造原理

中央空调水泵节能改造原理

中央空调水泵节能改造原理
中央空调水泵节能改造的原理是通过优化水泵的运行方式和控制策略来降低能耗。

具体的原理包括以下几个方面:
1. 优化水泵的选择:选择高效节能的水泵设备,能够提高水泵的转化效率,减少能耗。

2. 降低水泵的运行阻力:通过优化管道布局和减少管道阻力,降低水泵运行时所需的功率。

例如,合理选择管道直径、减少弯头、减少阀门的开度等。

3. 采用变频控制技术:安装变频器控制水泵的转速,根据实际需求调整水泵的运行速度,在不同负荷条件下实现节能运行。

例如,在低负荷时降低水泵的转速,减少能耗。

4. 协调多台水泵的运行:对于多台水泵的系统,采用智能控制策略,通过合理调度水泵的运行,使每台水泵的负荷均衡,避免单台水泵过大负荷运行,实现节能效果。

5. 提高水泵的运行效率:定期对水泵进行维护保养,保持良好的运行状态,清洗水泵内部的杂质,避免水泵因堵塞等问题导致能耗增加。

通过上述的节能改造措施,可以有效降低中央空调水泵的能耗,提高系统的能效,从而实现节能减排的目的。

中央空调系统水泵变频节能改造方案

中央空调系统水泵变频节能改造方案

中央空调系统水泵变频节能改造方案一、概述中央空调系统在现代企业及生活环境改善方面极为普遍,而且某此生活环境或生产工序中是属必须的,即所谓人造环境,不仅是温度的要求,还有湿度、洁净度等。至所以要中央空调系统,目的是提高产品质量,提高人的舒适度,集中供冷供热效率高,便管理,节省投资等原因,为此几乎企业、高层商厦、商务大楼、会场、剧场、办公室、图书馆、宾馆、商场、超市、酒店、娱乐场、体育馆等中大型建筑上都采用中央空调的,它是现代大型建筑物不可缺少的配套设施之一,电能的消耗非常之大,是用电大户,几乎占了用电量50%以上,日常开支费用很大。由于中央空调系统都是按最大负载并增加一定余量设计,而实际上在一年中,满负载下运行最多只有十多天,甚至十多个小时,几乎绝大部分时间负载都在70%以下运行。通常中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。随着变频技术的日益成熟,利用变频器、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量;采用变频调速技术不仅能使商场室温维持在所期望的状态,让人感到舒适满意,可使整个系统工作状态平缓稳定,更重要的是其节能效果高达30%以上,能带来很好的经济效益。二、水泵节能改造的必要性中央空调是大厦里的耗电大户,每年的电费中空调耗电占60% 左右,因此中央空调的节能改造显得尤为重要。由于设计时,中央空调系统必须按天气最热、负荷最大时设计,并且留10-20% 设计余量,然而实际上绝大部分时间空调是不会运行在满负荷状态下,存在较大的富余,所以节能的潜力就较大,其中,冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应调节,存在很大的浪费。水泵系统的流量与压差是靠阀门和旁通调节来完成,因此,不可避免地存在较大截流损失和大流量、高压力、低温差的现象,不仅大量浪费电能,而且还造成中央空调最末端达不到合理效果的情况。为了解决这些问题需使水泵随着负载的变化调节水流量并关闭旁通。再因水泵采用的是Y- △起动方式,电机的起动电流均为其额定电流的3 ~ 4倍,一台90KW的电动机其起动电流将达到500A ,在如此大的电流冲击下,接触器、电机的使用寿命大大下降,同时,起动时的机械冲击和停泵时水垂现象,容易对机械散件、轴承、阀门、管道等造成破坏,从而增加维修工作量和备品、备件费用。采用变频器控制能根据冷冻水泵和冷却水泵负载变化随之调整水泵电机的转速,在满足中央空调系统正常工作的情况下使冷冻水泵和冷却水泵作出相应调节,以达到节能目的。水泵电机转速下降,电机从电网吸收的电能就会大大减少。其减少的功耗△ P=P0 〔 1-(N1/N0)3 〕 ( 1 )式减少的流量△ Q=Q0 〔 1-(N1/N0) 〕 ( 2 )式其中N1为改变后的转速, N0为电机原来的转速, P0为原电机转速下的电机消耗功率, Q0为原电机转速下所产生的水泵流量。由上式可以看出流量的减少与转速减少的一次方成正比,但功耗的减少却与转速减少的三次方成正比。如:假设原流量为100个单位,耗能也为100个单位,如果转速降低10个单位,由( 2 )式△ Q=Q0 〔 1-(N1/N0) 〕=100 *〔 1-(90/100) 〕 =10可得出流量改变了10个单位,但功耗由( 1 )式△ P=P0[1-(N1/N0)3]=100 *〔 1-(90 /100)3 〕 =27.1可以得出,功率将减少27.1个单位,即比原来减少27.1% 。再因变频器是软启动方式,采用变频器控制电机后,电机在起动时及运转过程中均无冲击电流,而冲击电流是影响接触器、电机使用寿命最主要、最直接的因素,同时采用变频器控制电机后还可避免水垂现象,因此可大大延长电机、接触器及机械散件、轴承、阀门、管道的使用寿命。三、中央空调系统构成及工作原理图一所示:1、冷冻机组:通往各个房间的循环水由冷冻机组进行“内部热交换”作用,使冷冻水降温为5~7℃。并通过循环水系统向各个空调点提供外部热交换源。内部热交换产生的热量,通过冷却水系统在冷却塔中向空气中排放。内部热交换系统是中央空调的“制冷源”。2、冷冻水塔:用于为冷冻机组提供“冷却水”。3、“外部热交换”系统:由两个循环水系统组成:⑴、冷冻水循环系统由冷冻泵及冷冻管道组成。从冷冻机组流出的冷冻水由冷冻泵加压送入冷冻水管道,在各个房间内进行热交换,带走房间内的热量,使房间内的温度下降。⑵、冷却水循环系统由冷却泵、冷却水管道及冷却塔组成。冷冻机组进行热交换,使水温冷却的同时,必将释放大量的热量,该热量被冷却水吸收,使冷却水温度升高,冷却泵将升了温的冷却水压入水塔,使之在冷却塔中与大气进行热交换,然后再将降了温的冷却水,送回到冷冻机组,如此不断循环,带走冷冻机组成释放的热量。4、冷却风机⑴、室内风机:安装于所有需要降温的房间内,用于将由冷冻水冷却了的冷空气吹入房间,加速房间内的热交换;⑵、冷却塔风机用于降低冷却塔中的水温,加速将“回水”带回的热量散发到大气中去。中央空调系统的四个部分都可以实施节电改造。但冷冻水机组和冷却水机组的改造改造后节电效果最为理想,文章中我们将重点阐述对冷冻机组和冷却机组的变频调速技术改造。四、中央空调变频系统改造方案现将内蒙古某饭店的中央空调系统的变频节能改造方案做一具体介绍。1.中央空调原系统简介:1.1该集饭店中央空调系统改造前的主要设备和控制方式:450冷吨冷气主机2台,型号为特灵二极式离心机,两台并联运行;冷冻水泵2台,扬程28米配有功率45KW,冷却水泵有2台,扬程35米,配用功率75KW。均采用两用一备的方式运行。冷却塔2台,风扇电机11KW,并联运行。室内风机4台,5.5KW,并联运行。1.2原系统的运行及存在问题:该饭店是一家五星饭店,为了给客入营造一个良好的居住环境,饭店大部空间采用全封密的,且饭店大部分空间自然通风效果不好,所以对夏季冷气质量的要求较高。由于中央空调系统设计时必须按天气最热、负荷最大时设计,且留有10%-20%左右的设计余量。其中冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应的调节。这样,冷冻水、冷却水系统几乎长期在大流量、小温差的状态下运行,造成了能量的极大浪费。而且冷冻、冷却水泵采用的均是Y-△起动方式,电机的起动电流均为其额定电流的3-4倍,在如此大的电流冲击下,接触器的使用寿命大大下降;同时,启动时的机械冲击和停泵时的水锤现象,容易对机械器件、轴承、阀门和管道等造成破坏,从而增加维修工作量、维修费用、设备也容易老化。另外由于冷冻泵轴输送的冷量不能跟随系统实际负荷的变化,其热力工况的平衡只能由人工调整冷冻主机出水温度,以及大流量小温差来掩盖。这样,不仅浪费能量,也恶化了系统的运行环境、运行质量。特别是在环境温度偏低、某些末端设备温控稍有失灵或灵敏度不高时,将会导致大面积空调室温偏冷,感觉不适,严重干扰中央空调系统的运行质量。因为空调偏冷的问题经常接到客人的投诉,处理这些投诉造成不少人力资源的浪费。根据实际情况,我们向该饭店负责人提出:利用变频器、人机界面、PLC、数模转换模块、温度模块、温度传感器等构成的温差闭环自动调速系统。对冷冻、冷却水泵进行改造,以节约电能、稳定系统、延长设备寿命。2.中央空调系统节能改造的具体方案中央空调系统通常分为冷冻(媒)水和冷却水两个系统(如下图,左半部分为冷冻(媒)水系统,右半部分为冷却水系统)。根据国内外最新资料介绍,并多处通过对在中央空调水泵系统进行闭环控制改造的成功范例进行考察,现在水泵系统节能改造的方案大都采用变频器来实现。2.1 、冷冻(媒)水泵系统的闭环控制制冷模式下冷冻水泵系统的闭环控制该方案在保证最末端设备冷冻水流量供给的情况下,确定一个冷冻泵变频器工作的最小工作频率,将其设定为下限频率并锁定,变频冷冻水泵的频率调节是通过安装在冷冻水系统回水主管上的温度传感器检测冷冻水回水温度,再经由温度控制器设定的温度来控制变频器的频率增减,控制方式是:冷冻回水温度大于设定温度时频率无极上调。该模式是在中中央空调中热泵运行(即制热)时冷冻水泵系统的控制方案。同制冷模式控制方案一样,在保证最末端设备冷冻水流量供给的情况下,确定一个冷冻泵变频器工作的最小工作频率,将其设定为下限频率并锁定,变频冷冻水泵的频率调节是通过安装在冷冻水系统回水主管上的温度传感器检测冷冻水回水温度,再经由温度控制器设定的温度来控制变频器的频率增减。不同的是:冷冻回水温度小于设定温度时频率无极上调,当温度传感检测到的冷冻水回水温越高,变频器的输出频率越低。2.2 、冷却水系统的闭环控制目前,在冷却水系统进行改造的方案最为常见,节电效果也较为显著。该方案同样在保证冷却塔有一定的冷却水流出的情况下,通过控制变频器的输出频率来调节冷却水流量,当中中央空调冷却水出水温度低时,减少冷却水流量;当中中央空调冷却水出水温度高时,加大冷却水流量,从而达到在保证中中央空调机组正常工作的前提下达到节能增效的目的。现有的控制方式大都先确定一个冷却泵变频器工作的最小工作频率,将其设定为:下限频率并锁定,变频冷却水泵的频率是取冷却管进、出水温度差和出水温度信号来调节,当进、出水温差大于设定值时,频率无极上调,当进、出水温差小于设定值时,频率无极下调,同时当冷却水出水温度高于设定值时,频率优先无极上调,当冷却水出水温度低于设定值时,按温差变化来调节频率,进、出水温差越大,变频器的输出频率越高;进、出水温差越小,变频器的输出频率越低。2.3该中央空调节能系统具体装机清单如表二:机组名称机型品牌数量冷冻水泵 45KW变频柜 ABB ACS800 两套冷却水泵 75KW变频柜 ABB ACS800 两套风机组 11KW变频柜 ABB ACS800 两套室内风机 5.5KW变频柜 ABB ACS800 四套配件 PLC 西门子S7300 一台人机界面西门子一台温度传感器丹佛斯两个温度模块欧姆龙两个数字转换模块欧姆龙两个2.4介绍变频节电原理:变频节能原理:由流体传输设备(水泵、风机)的工作原理可知:水泵、风机的流量(风量)与其转速成正比;水泵、风机的压力(扬程)与其转速的平方成正比,而水泵、风机的轴功率等于流量与压力的乘积,故水泵、风机的轴功率与其转速的三次方成正比(即与电源频率的三次方成正比)。变频器节能的效果是十分显著的,这种节能回报是看到见的。特别是调节范围大、启动电流大的系统及设备,通过图三可以直观的看出在流量变化时只要对转速(频率)稍作改变就会使水泵轴功率有更大程度上的改变,就因此特点使得变频调速装置成为一种趋势,而且不断深入并应用于各行各业的调速领域。根据上述原理可知:改变水泵、风机的转速就可改变水泵、风机的输出功率。图中阴影部分为同一台水泵的工频运行状态与变频运行状态在随着流量变化所耗功率差。2.5介绍系统电路设计和控制方式根据中央空调系统冷却水系统的一般装机,建议在冷却水系统和冷冻水系统各装两套ABB ACS800一体化变频调速控制柜,其中冷却变频调速控制柜供两台冷却水泵切换(循环)使用,冷冻变频调速控制柜供两台冷冻水泵切换(循环)使用。变频节能调速系统是在保留原工频系统的基础上加装改装的,变频节能系统的联动控制功能与原工频系统的联动控制功能相同,变频节能系统与原工频系统之间设置了联锁保护,以确保系统工作安全。利用变频器、人机界面、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量,为了达到节能目的提供了可靠的技术条件。如图四所示:2.6系统主电路的控制设计根据具体情况,同时考虑到成本控制,原有的电器设备尽可能的利用。冷冻水泵及冷却水泵均采用一用一备的方式运行,因备用泵转换时间与空调主机转换时间一致,均为一个月转换一次,切换频率不高,决定将冷冻水泵和冷却水泵电机的主备切换控制利用原有电器设备,通过接触器、启停按钮、转换开关进行电气和机械互锁。确保每台水泵只能由一台变频器拖动,避免两台变频器同时拖动同一台水泵造成交流短路事故;并且每台变频器任何时间只能拖动一台水泵,以免一台变频器同时拖动两台水泵而过载。2.7系统功能控制方式上位机监控系统主要通过人机界面完成对工艺参数的检测、各机组的协调控制以及数据的处理、分析等任务,下位机PLC主要完成数据采集,现场设备的控制及连锁等功能。具体工作流程:开机:开启冷水及冷却水泵,由PLC控制冷水及冷却水泵的启停,由冷水及冷却水泵的接触器向制冷机发出联锁信号,开启制冷机,由变频器、温度传感器、温度模块组成的温差闭环控制电路对水泵进行调速以控制工作流量,同时PLC控制冷却塔根据温度传感器信号自动选择开启台数。当过滤网前后压差超出设定值时,PLC发出过滤堵塞报警信号。送风机转速的快慢是由回风温度与系统设定值相比较后,用PID方式控制变频器,从而调节风机的转速,达到调节回风温度的目的。停机:关闭制冷机,冷水及冷却水泵以及冷却塔延时十五分钟后自动关闭。保护:由压力传感器控制冷水及冷却水的缺水保护,压力偏低时自动开启补水泵补水。2.8介绍系统节能改造原理1、对冷冻泵进行变频改造控制原理说明如下:PLC控制器通过温度模块及温度传感器将冷冻机的回水温度和出水温度读入控制器内存,并计算出温差值;然后根据冷冻机的回水与出水的温差值来控制变频器的转速,调节出水的流量,控制热交换的速度;温差大,说明室内温度高系统负荷大,应提高冷冻泵的转速,加快冷冻水的循环速度和流量,加快热交换的速度;反之温差小,则说明室内温度低,系统负荷小,可降低冷冻泵的转速,减缓冷冻水的循环速度和流量,减缓热交换的速度以节约电能;2、对冷却泵进行变频改造由于冷冻机组运行时,其冷凝器的热交换量是由冷却水带到冷却塔散热降温,再由冷却泵送到冷凝器进行不断循环的。冷却水进水出水温差大,说明冷冻机负荷大,需冷却水带走的热量大,应提高冷却泵的转速,加大冷却水的循环量;温差小,则说明,冷冻机负荷小,需带走的热量小,可降低冷却泵的转速,减小冷却水的循环量,以节约电能。3、冷却塔风机变频控制通过检测冷却塔水温度对冷却塔风机进行变频调速闭环控制,使冷却塔水温度恒定在设定温度,可以有效地节省风机的电能额外损耗,能达到最佳节电效果。4、室内风机组变频控制通过检测冷房温度对变风机组的风机进行变频调速闭环控制,实现冷房温度恒定在设定温度。室内风机组变频控制后可达到理想的节电效果,并且空调效果较佳。2.5系统流量、压力保障本方案的调节方式采用闭环自动调节控制,冷却水泵系统和冷冻水泵系统的调节方式基本相同,用温度传感器对冷却(冷冻)水在主机上的出口水温进行采样,转换成电量信号后送至温控器将该信号与设定值进行比较运算后输出一类比信号(一般为4-20MA、0-10V等)给PLC,由PLC、数模转换模块、温度传感器、温度模块进行温差闭环控制,手动/自动切换和手动频率上升、下降由PLC控制,最后把数据传关到上位机人机界面实行监视控制。变频器根据PLC发出的类比信号决定其输出频率,以达到改变水泵转速并调节流量的目的。冷却(冷冻)水系统的变频节能系统在实际使用中要考虑水泵的转速与扬程的平方成正比的关系,以及水泵的转速与管损平方成正比的关系;在水泵的扬程随转速的降低而降低的同时管道损失也在降低,因此,系统对水泵扬程的实际需求一样要降低;而通过设定变频器下限频率的方法又可保证系统对水泵扬程的最低需求。供水压力的稳定和调节量可以通过PID参数的调整。当供水需求量减少时,管道压力逐渐升高,内部PID调节器输出频率降低,当变频器输出频率低至0HZ时,而管道在一设定时间内还高于设定压力,变频器切断当前变频控制泵,转而控制下一个原工频控制泵,变频器在水泵控制转换过程中,逐渐轮换使用水泵,使每个水泵的利用率均等,增加系统、管道压力的稳定性和可靠性。五、中央空调系统进行变频改造的优点变频节能改造后除了可以节省大量的电能外还具有以下优点:1 、只需在中中央空调冷却管出水端安装一个温度传感器(如图,安装在冷却水系统中中央空调冷却水出水主管上的B处),简单可靠。2 、当冷却水出水温度高于温度上限设定值时,频率直接优先上调至上限频率。3 、当冷却水出水温度低于温度下限设定值时,频率直接优先下调至下限频率。而采用冷却管进、出水温度差来调节很难达到这点。4 、当冷却水出水温度介于温度下限设定值与温度上限设定值时,通过对冷却水出水温度及温度上、下限设定值进行PID计算,从而达到对频率进行无极调速,闭环控制迅速准确。5 、节能效果更为明显。当冷却水出水温度低于温度上限设定值时,采用冷却管进、出水温度差来调节方式没有将出水温度低这一因素加入节能考虑范围,而仅仅由温度差来对频率进行无极调速,而采用上、下限温度来调节方式充分考虑这一因素,因而节能效果更为明显,通过对多家用户市场调查,平均节电率要提高5 %以上,节电率达到20 %以上。额定电流变化,减小了大电流对电机的冲击;六、ABB ACS800系列一体化变频器的优点1.采用独特的空间矢量(SVPWM)调制方式;2.操作简单,具有键盘锁定功能,防止误操作;3.内置PID功能,可接受多种给定、反遗信号;4.具有节电、市电和停止三位锁定开关,便于转换及管理;5.保护功能完善,可远程控制;6.超静音优化设计,降低电机噪声;7.安装比较方便,不用破坏原有的配电设施及环境;8.稳定整个系统的正常运行,抗干扰能力强;9.具有过载、过压、过流、欠压、电源缺相等自动保护功能及声光报警功能。七、结束语在科技日新月异的今天,积极推广变频调速节能技术的应用,使其转化为社会生产力,是我们工程技术人员应尽的社会责任。对落后的设备生产工艺进行技术革新,不仅可以提高生产质量、生产效率,创造可观的经济效益。对节能、环保等社会效益同样有着重要的意义。随着变频器应用普及时代的来临,我公司已将变频器的应用扩展到传统中央空调改造的领域,不仅扩大了变频器的应用市场,而且为中央空调应用也提出了新的课题。预计在不久的将来,由于变频调速技术的介入,中央空调系统将真正地进入经济运行时代,希望上述工作对于同仁们在传统的电气传动设备技术改造和推进高新技术产品的普及应用工作中能有所启示和借鉴。。

新型中央空调水泵工作原理

新型中央空调水泵工作原理

新型中央空调水泵工作原理
中央空调水泵作为中央空调系统的重要组成部分,主要负责循环供水,循环流向室内和室外机组,从而实现热量传递和热交换。

其工作原理如下:
1. 水泵启动:中央空调系统通过控制器或传感器监测到室内温度升高或室外温度下降,控制信号发送给水泵,启动水泵。

2. 吸水阶段:水泵启动后,水泵内部产生一种低压区域,吸入水源(如水箱或自来水管道)中的液体。

3. 排水阶段:水泵通过外部电动机驱动,将吸入的液体经过泵体和叶轮的作用力,产生一定的压力,将液体推向出水管路,完成水的排放。

4. 循环供水:水泵所排放的液体进入中央空调系统的供水回路中,通过管道输送至室内和室外机组。

5. 热交换:水泵所供给的冷水或热水经过与空气或制冷剂的热交换,实现空气的制冷或加热。

6. 冷却再循环:冷却后的水再次进入水泵,进行再次启动、吸水和排水的循环过程。

总之,中央空调水泵通过机械泵送的方式将冷水或热水供应给中央空调系统,然后经过热交换,实现对空气的温度控制。

水泵节能原理

水泵节能原理

水泵节能原理水泵作为一种常见的流体输送设备,在工业生产和生活中扮演着重要的角色。

然而,传统的水泵在使用过程中存在能耗较高的问题,因此如何实现水泵的节能成为了一个备受关注的话题。

本文将从水泵节能的原理出发,探讨如何有效降低水泵的能耗,提高其运行效率。

首先,水泵节能的原理在于减小水泵的阻力损失。

水泵在输送流体的过程中,会产生一定的阻力,这部分阻力损失会转化为能量消耗。

因此,减小水泵的阻力损失是实现节能的关键。

为了降低阻力损失,可以从以下几个方面入手。

其一,优化水泵的设计。

合理的水泵设计可以减小水泵的内部摩擦阻力,提高其运行效率。

通过改进叶轮的结构、优化叶片的形状和角度等方式,可以降低水泵的阻力损失,从而实现节能的目的。

其二,采用高效节能的电机。

水泵的驱动设备通常为电机,因此选用高效节能的电机对于降低水泵的能耗非常重要。

高效节能的电机具有较高的转换效率和较低的能耗,可以有效降低水泵的运行成本。

其三,采用智能控制系统。

智能控制系统可以根据实际需要对水泵进行智能调节,实现按需供水,避免过量供水造成的能源浪费。

通过智能控制系统,可以实现水泵的智能化运行,进一步提高其运行效率。

此外,定期维护和保养水泵设备也是实现节能的重要手段。

定期的维护保养可以保持水泵设备的良好状态,减小因设备老化导致的能耗增加。

同时,定期的检修和清洗可以保证水泵设备的正常运行,提高其使用寿命,减少能源浪费。

综上所述,水泵节能的原理在于减小水泵的阻力损失,提高其运行效率。

通过优化水泵的设计、采用高效节能的电机、采用智能控制系统以及定期维护保养等手段,可以有效降低水泵的能耗,实现节能目的。

在未来的发展中,随着节能环保意识的增强,水泵节能技术将会不断完善和发展,为实现绿色环保、可持续发展贡献更多力量。

中央空调循环水泵节能研究与改造

中央空调循环水泵节能研究与改造

中央空调循环水泵节能研究与改造[摘要] 通过对中央空调的循环水泵运行分析,进行相应的改造达到节能,以及通过对中央空调循环水泵的供电进行变频处理和一般工况,循环水泵通过变频控制年可以节能45%以上。

中央空调循环水泵供电变频改造,节能效果明显,值得推广。

[关键词] 中央空调循环水泵节能研究与改造中央空调广泛用于企事业等场所,是一种量大面广、耗电多的通用设备。

循环水泵是中央空调重要的辅助设备。

主要分为冷(暖)冻水泵,和冷却水泵。

传统的循环水泵控制是全速额定运转,循环水泵都提供固定水量,进行热交换。

而实际生产生活中,随着外界温度等指标的变化,我们需要对流量进行控制和调节,最常用的方法是通过调节阀门或挡板开度的大小来调整受控对象,这样就使得相当多的能量以阀门、挡板的截流损失消耗掉了。

众多中央空调循环泵运行效率仅为45% ~50%,由此可见,提高循环水泵效率非常有利于中央空调的经济运行。

一、中央空调循环水泵耗能分析国家制冷学会的大量实地调查数据显示,在我国南方,特别是珠三角地区,每年空调制冷开机时间是10个月左右,情况如图表:从上图可看出100%~70%负载量在7、8、9月份出现;70%~40%负载量在5、6、10月份出现;40%以下负载量在3、4、11、12月份出现;可见一年中系统负载率在50%以下的时间占全部运行时间的50%以上,由此可见中央空调循环泵节能空间很大。

二、循环水泵的节能分析按以下图水泵耗电变化曲线特性图分析,变频变速水泵节能潜力很大。

1.空调系统水泵的运行分析中央空调内循环水泵是按照一年中的最大负荷进行选配的。

从安全运行角度出发,循环水泵的出力必须在水循环系统最大流量和阻力的额定功率基础上增加5%~10%的富裕量。

由于循环水泵大多采取定速运行,其负荷不便调节,一般都采取调节挡板或阀门的开度来控制流量和压力,造成很大的节流损失,浪费大量能源。

2.变频变速调节法水泵厂家提供的特性曲线,如果转速改变,水泵的性能随之变化,从而使工况点改变。

(完整版)普通中央空调水泵变频改造节能方案

(完整版)普通中央空调水泵变频改造节能方案

普通中央空调水泵变频改造节能方案普通中央空调水泵变频改造节能方案:在中央空调系统中,冷冻水泵和冷却水泵的容量是根据建筑物最大设计热负荷选定的,且留有一定的设计余量。

在没有使用调速的系统中,水泵一年四季在工频状态下全速运行,只好采用节流或回流的方式来调节流量,产生大量的节流或回流损失,且对水泵电机而言,由于它是在工频下全速运行,因此造成了能量的大大浪费。

由于四季的变化,阴晴雨雪及白天与黑夜时,外界温度不同,使得中央空调的热负荷在绝大部分时间里远比设计负荷低。

也就是说,中央空调实际大部分时间运行在低负荷状态下。

据统计,67%的工程设计热负荷值为94-165W/m2,而实际上83%的工程热负荷只有58-93 W/m2,满负荷运行时间每年不超过10-20小时。

实践证明,在中央空调的循环系统(冷却泵和冷冻泵)中接入变频系统,利用变频技术改变电机转速来调节流量和压力的变化用来取代阀门控制流量,能取得明显的节能效果。

一、普通中央空调工作系统1、工作简述⑴、中央空调启动后,冷冻单元工作,蒸发器吸收冷冻水中的热量,使之温度降低;同时,冷凝器释放热量使冷却水温度升高。

⑵、降了温的冷冻水通过冷冻泵加压送入冷冻水管道,在各个房间由室内风机加速进行热交换,带走房间内的热量使房间内的温度降低后,又流回冷冻水端。

⑶、而升了温的冷却水通过冷却泵压入冷却塔,由冷却塔风机加速将冷却水中的热量散发到大气中,使水温降低后,流回冷却水端。

⑷、冷冻机组工作一段时间后,达到设定温度,由温度传感器检测出来,并通过中间继电器及接触器控制冷冻机停止工作,温度回升到一定值后又控制其运行。

二、普通中央空调存在的问题1、冷冻水,冷却水循环泵不能根据实际需求来调整循环量,电机工作效率低下,造成大量电力浪费,并加速机组磨损;2、其控制接触器等电器动作频繁,导致使用寿命短,维修量大;而对于大容量系统,传统的控制线路复杂,可靠性差,需专人负责;3、整个系统运行噪音大、控制性能差、耗电量大、使用寿命短;在维护管理,检修调整方面工作量大,维护费用高。

(完整版)普通中央空调水泵变频改造节能方案

(完整版)普通中央空调水泵变频改造节能方案

普通中央空调水泵变频改造节能方案普通中央空调水泵变频改造节能方案:在中央空调系统中,冷冻水泵和冷却水泵的容量是根据建筑物最大设计热负荷选定的,且留有一定的设计余量。

在没有使用调速的系统中,水泵一年四季在工频状态下全速运行,只好采用节流或回流的方式来调节流量,产生大量的节流或回流损失,且对水泵电机而言,由于它是在工频下全速运行,因此造成了能量的大大浪费。

由于四季的变化,阴晴雨雪及白天与黑夜时,外界温度不同,使得中央空调的热负荷在绝大部分时间里远比设计负荷低。

也就是说,中央空调实际大部分时间运行在低负荷状态下。

据统计,67%的工程设计热负荷值为94-165W/m2 ,而实际上83%的工程热负荷只有58-93W/m2 ,满负荷运行时间每年不超过10-20 小时。

实践证明,在中央空调的循环系统(冷却泵和冷冻泵)中接入变频系统,利用变频技术改变电机转速来调节流量和压力的变化用来取代阀门控制流量,能取得明显的节能效果。

一、普通中央空调工作系统1、工作简述⑴、中央空调启动后,冷冻单元工作,蒸发器吸收冷冻水中的热量,使之温度降低;同时,冷凝器释放热量使冷却水温度升高。

⑵、降了温的冷冻水通过冷冻泵加压送入冷冻水管道,在各个房间由室内风机加速进行热交换,带走房间内的热量使房间内的温度降低后,又流回冷冻水端。

⑶、而升了温的冷却水通过冷却泵压入冷却塔,由冷却塔风机加速将冷却水中的热量散发到大气中,使水温降低后,流回冷却水端。

⑷、冷冻机组工作一段时间后,达到设定温度,由温度传感器检测出来,并通过中间继电器及接触器控制冷冻机停止工作,温度回升到一定值后又控制其运行。

二、普通中央空调存在的问题1、冷冻水,冷却水循环泵不能根据实际需求来调整循环量,电机工作效率低下,造成大量电力浪费,并加速机组磨损;2、其控制接触器等电器动作频繁,导致使用寿命短,维修量大;而对于大容量系统,传统的控制线路复杂,可靠性差,需专人负责;3、整个系统运行噪音大、控制性能差、耗电量大、使用寿命短;在维护管理,检修调整方面工作量大,维护费用高。

中央空调冷冻冷却水泵变频器节能原理

中央空调冷冻冷却水泵变频器节能原理

中央空调冷冻冷却水泵变频器节能原理在中央空调系统设计时,冷冻泵、冷却泵的电机功率是根据最大设计热负荷选定的,并超出10%左右。

但由于四季气候及昼夜温差变化和使用量的变化,因而要求中央空调的热负荷也是不断变化的。

在日常生活中,中央空调一年中负荷率在50%以下的时间超过了全部运行时间的50%。

通常冷却水管路的设计温差可达为5~6℃,而实际应用表明大部分时间里冷却水管路的温差仅为2~4℃,这也就说明在实际中,并不需要这么大流量的水参与循环,就可以满足其热交换,这样无疑就形成了中央空调低温差、低负荷、大工作流量的工况。

在没有使用节能系统前,工频供电下的水泵始终全速运行,管道中的供水流量只能通过阀门或回流方式调节,这必会产生大量的节流及回流损失,同时也增加了电机的负荷,白白消耗了许多电能。

而中央空调水泵电机的耗电量约占中央空调系统总耗电量的30-40%,故对其进行节能改造具有很明显的节能效果。

中央空调节能改造,深圳鸿怡威节能改造工程,绿色够低碳深圳市鸿怡威自动化专用改造节能设备采用变频器闭环控制电机,按需要设定温度,使设备储备容量和随时间季节变化的热负载通过转速调节,在满足使用要求下达到最大限度的节能。

将变频技术应用于中央空调系统,对提升中央空调自动化水平、降低能耗、减少对电网的冲击、延长机械及管网的使用寿命,都具有重要的意义。

※冷冻水循环系统该部分由冷冻泵、室内风机及冷冻水管道等组成。

从主机蒸发器流出的低温冷冻水由冷冻泵加压送入冷冻水管道(出水),进入室内进行热交换,带走房间内的热量,最后回到主机蒸发器(回水)。

室内风机用于将空气吹过冷冻水管道,降低空气温度,加速室内热交换。

※冷却水循环部分该部分由冷却泵、冷却水管道、冷却水塔及冷凝器等组成。

冷冻水循环系统进行室内热交换的同时,必将带走室内大量的热能。

该热能通过主机内的冷媒传递给冷却水,使冷却水温度升高。

冷却泵将升温后的冷却水压入冷却水塔(出水),使之与大气进行热交换,降低温度后再送回主机冷凝器(回水)。

中央空调循环水泵变频改造及节能分析

中央空调循环水泵变频改造及节能分析

中央空调循环水泵变频改造及节能分析摘要:本文通过对中央空调水系统定量和变量两种调节形式进行分析,并结合长江三峡通航管理局基地中央空调循环水泵变频实际改造项目,对改造后的运行情况进行了节能分析。

分析表明空K调水泵在实行变频改造后具有良好的节能效果。

关键词:中央空调水系统;变频;节能1 中央空调水系统的构成及工作原理如图1,一般中央空调水系统有四大组成部分:中央空调主机(制冷机组)、冷却水循环系统、冷冻水循环系统、风机盘管系统以及冷却水塔[3]。

图1 中央空调水系统的组成中央空调的核心组件是制冷机组,主要包括压缩机、冷凝器、蒸发器和制冷压缩机。

在四组部件中加入制冷剂循环运作,利用制冷剂气化吸热、液化放热的物理反应,从而达到制冷或者制热的目的。

中央空调的冷冻水系统由冷冻水泵及连接管道组成,水泵将冷冻水通过管道运送到蒸发器中与制冷剂热交换,再通过盘管风机系统在风口与室内环境再次进行热交换,以此达到维持室内温度恒定的目的。

而冷凝器制冷所产生的热量由常温水带回到冷却塔。

高温水在冷塔中强制降温,变成低温水,在运回冷凝器。

一般来说,中央空调水系统有两种流量调节形式,定流量形式和变流量形式。

定流量形式在传统中央空调的控制系统运用比较常见。

定流量形式就是所有的高能耗设备包括水泵、制冷机等都工作中工频电压下。

不管负荷多大,冷冻水、冷却水都以一定的流量在系统中运作。

这样的运行状况在用户少、负荷轻的情况下,供应的冷气会造成明显的浪费;而当用户增多,负荷加重的情况下,冷冻水量供应不过来,房间制冷效果降低。

并且所有水泵机组常年满负荷运行,会加速其老化速度,进而增加额外的维护费用。

而变流量调节形式可以根据出水和回水温度差控制冷冻水水泵和冷却水水泵的运行频率和水泵容量,进而调节中央空调水系统中水流量的大小。

这种运行方式能根据用户数量和负荷的变化做出相应调整,进而实现空调系统的节能优化。

2 中央空调水泵变频改造方案长江三峡通航管理局中心基地总建筑面积14931.27㎡,采用两台约克风冷螺杆热泵机组供冷(热),总制冷量为1408kW,总制热量为1352kW,无冷却水系统,冷冻水泵型号为KQL125-160-22/2,两用一备,工频运行。

浅谈水泵改造节能原理

浅谈水泵改造节能原理

中央空调水泵改造节能原理一、水泵的基本知识水泵的几个参数1、流量Q水泵在单位时间内所输送的液体的体积,称体各流量,常用单位米3/小时(m3/h)、米3/秒(m3/s)或开/秒(L/S)2、扬程H水泵对单位重量的液体所做的功,即单位重量的液体通过水泵后其能量的增值,法定单位Kpa或Pa,习惯上折算成抽送液柱高度m。

3、轴功率N原动机传送给泵轴的功率(输入功率)称水泵轴功率。

常用单位KW。

4、效率η水泵输出功率与轴功率比值。

水泵的扬程特性(如下图)扬程特性是一条不规则的下倾曲线,在任一个流量下都有一个相应的(固有的)扬程,即水泵选定了,它的扬程特性也就定了。

设计工况点:水泵运行时,在某一流量下效率(η)是不同的。

其中最高效率点即是设计工况点。

选泵时应使水泵在设计工况点(最高效率点)附近工作。

水泵的选型中央空调系统的主机和系统设备管路确定后,系统以流量根据主机额定流量来确定,流量确定后也就是管内水的流速确定,就可以根据水的流速计算出系统的阻力。

流速越大,阻力越大,并以此为依据确定水泵的扬程。

知道了水泵的流量和扬程就可以选水泵了。

深圳国际商品交易大厦中央空调系统原设三台相同型号的主机。

选用一机一泵的形式,即一台主机对应一台冷冻泵,一台冷却泵。

假设三台主机同时开启,三台冷冻泵也同时开启,这时一台主机需要流量212m3/h,三台主机就需要212×3=636 m3/h,这时系统扬程在40米水柱,也就是每台水泵约按流量212,扬程40m来运型。

当二台主机同时开启,二台冷冻泵也同时开启,二台主机需要流量212×2=424m3/h,那么二台冷冻泵正常工作时应提供212×3=424m3/h,这时系统扬程在30m水柱,也就是每台水泵应按212 m3/h、30m扬程。

当一台主机开启,即一台冷冻泵开启,主机需要212×1=212m3/h,那么,冷冻泵正常工作应按212×1=212m3/h,这时系统扬程20m,水大厦的冷冻泵是按设计三台主机,三台冷冻水泵同时开始,即每台水型按Q=212,H=40米送型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中央空调水泵改造节能原理
一、水泵的基本知识
水泵的几个参数
1、流量Q
水泵在单位时间内所输送的液体的体积,称体各流量,常用单位米3/小时(m3/h)、米3/秒(m3/s)或开/秒(L/S)
2、扬程H
水泵对单位重量的液体所做的功,即单位重量的液体通过水泵后其能量的增值,法定单位Kpa或Pa,习惯上折算成抽送液柱高度m<
3、轴功率N
原动机传送给泵轴的功率(输入功率)称水泵轴功率。

常用单位KW。

4、效率Y]
水泵输出功率与轴功率比值。

水泵的扬程特性(如下图)
扬程特性是一条不规则的下倾曲线,在任一个流量下都有一个相应的(固有的)扬程,即水泵选定了,它的扬程特性也就定了。

设计工况点:
水泵运行时,在某一流量下效率(门)是不同的。

其中最局效率点即是设计工况点。

选泵时应使水泵在设计工况点(最高效率点)附近工作。

水泵的选型
中央空调系统的主机和系统设备管路确定后,
流量根据主机额定流量来确定,流量确定后也就是管内水的流速确定,就可以根据水的流速计算出系统的阻力。

流速越大,阻力越大,并以此为依据确定水泵的扬程。

知道了水泵的流量和扬程就可以选水泵了。

深圳国际商品交易大厦中央空调系统原设三台相同型号的主机。

选用一机一泵的形式,即一台主机对应一台冷冻泵,一台冷却泵。

假设三台主机同时开启,三台冷冻泵也同时开启,这时一台主机需要流量212m3/h,三台主机就需要212X3=636 m3/h,这时系统扬程在40米水柱,也就是每台水泵约按流量212,扬程40m来运型。

当二台主机同时开启,二台冷冻泵也同时开启,二台主机需要流量212 x 2=424m3/h,那么二台冷冻泵正常工作时应提供212 X 3=424m3/h,这时系统扬程在30m水柱,也就是每台水泵应按212 m3/h、30m 扬程。

当一台主机开启,即一台冷冻泵开启,主机需要212X 1=212m3/h, 那么,冷冻泵正常工作应按212X 1=212m3/h,这时系统扬程20m, 水大厦的冷冻泵是按设计三台主机,三台冷冻水泵同时开始,即每台水型按Q=212, H=40米送型。

相关文档
最新文档