ENVI高光谱分析1共46页文档

合集下载

ENVI高光谱分析

ENVI高光谱分析
• 多光谱与高光谱的模型基础一样:MODTRAN 4+。这个 模块通过高光谱像素光谱上的特征来估计大气的属性,可 以有效地去除水蒸气, 气溶胶散射,漫反射的邻域效应。 采用向导式操作流程,还包括快速大气校正功能。
使用ENVI大气校正模块——输入文件准备
• 数据是经过定标后的辐射亮度(辐射率)数据 • 数据带有中心波长(wavelenth)值,如果是高光谱还必
HYMAP
• Spectral coverage: • VIS:400-800nm,15nm bands; • NIR:881-1335nm, 14nm bands; • SWIR1:1400-1813nm, 12nm bands; • SWIR2:1950-2543nm, 16nm bands; • Spectral bands: 126 • FOV: 60° • IFOV: 2.5 mrad(along_track) • 2.0 mrad(across_track) • Pixels per line: 512
为什么做大气纠正?
• 太阳辐射通过大气以某种方式入射到物体表面然后再反射 回传感器
• 原始影像包含物体表面,大气,以及太阳的信息 • 如果我们想要了解某一物体表面的光谱属性,我们必须将
它的反射信息从大气和太阳的信息中分离出来。
大气散射
邻接反射
LOWTRAN模型 – MORTRAN模型 – ATCOR模型 – 6S模型
• ENVI提供针对特定传感器的定标,包括ASTER、 AVHRR、MODIS、MSS、TM、IKONOS、QuickBird、 WorldView等;通用方法,包括:平场域定标、对数残差、 内部平均反射率法和经验线性;针对热红外数据,还提供 大气校正工具、相对通道发射率、归一化发射率、Α残差 等定标工具。

高光谱ENVI使用方法简介

高光谱ENVI使用方法简介

高光谱制图—FLAASH大气校正
FLAASH是目前精度最高的大气辐射校正模型, 使用了 MODTRAN 4+ 辐射传输模型的代码,基 于像素级的校正 FLAASH可对Landsat, SPOT, AVHRR, ASTER, MODIS, MERIS, AATSR, IRS等多光谱、高光谱 数据、航空影像及自定义格式的高光谱影像进行 快速大气校正分析。能有效消除大气和光照等因 素对地物反射的影响,获得地物较为准确的反射 率和辐射率、地表温度等真实物理模型参数
高光谱制图—FLAASH大气校正(5)
如果要自动保存前面所输入的FLAASH参 数 如果需要生成相关诊断文件(如通道定义 文件等)
高光谱影像地理坐标定位
空间遥感平台在传感器采集数据的同时也精确地 记录了自身的几何信息,使用这些几何信息如星 历、姿态数据以及传感器探元与成像数据上像元 间的几何关系等,可以计算出影像上每一个像元 所对应的经纬度,其结果将作为影像数据的辅助 地理信息一并打包发布给用户。利用这些详细的 输入几何信息(Input Geometry)使得影像不需 要选择大量地面控制点就可以进行几何精纠正, 即ENVI所谓的地理坐标定位Georeference)。
比较N维散点图和二维散点图 利用N维散点图进行端元选取,理解使用菜 单Class Controls的使用 N维可视化仪同光谱剖面的链接,使用鼠 标中键来进行光谱曲线的绘制 光谱分析与N维可视化仪连接起来
高光谱影像分析-光谱切面
光谱切面包括水平切面、垂直切面和任意 方向切面。 切面是一幅ENVI影像,沿水平方向的切面, 样本数等于光谱波段数,行数等于采样数; 沿垂直方向的切面,样本数等于行数;对 于任意方向的切面,样本数等于沿ROI折 线的像元总数

ENVI高光谱数据分析操作手册

ENVI高光谱数据分析操作手册

感兴趣区和掩膜的选择和使用可具体情况具体分析,运行一项或两项均可。
北京卓立汉光仪器有限公司
4. 滤波
打开图像,FilterConvolutions and Morphology。在Convolutions and Morphology Tools 中,选择 Convolutions滤波类型(高通滤波 器、低通滤波 器、拉普拉斯算子、方向滤波器、高斯高通滤波器、高斯低通滤波器、中值滤波 器、Sobel、Roberts、自定义卷积核)。
2.3.2.3. 保存波谱库
北京卓立汉光仪器有限公司 在Spectral Libraries Resampling Parameters对话框中,为Resample Wavelength To选择匹配源,一般选择图像文件为参考。 输出重采样波谱库.sli
北京卓立汉光仪器有限公司
3. 感兴趣区和掩膜
3.1. 感兴趣区(ROI)
Display 窗 口 中 , Overlay → Region of Interest , 在 ROI 对 话 框 中 , 单 击 ROI_Type→Polygon. 绘制窗口中,选择Image,绘制一个多边形,右键结束,可根据需要多绘制 几个。

主菜单→Basic Tools→Subset Data via ROIs,选择裁剪图像。 在Saptial Subset via ROIs Parameters中,设置参数。 Select Input ROIs,选择绘制的ROI。 Mask Pixel Outside of ROIs选择yes。
4.1. 设置参数
Kernel Size(卷积核大小):奇数。 Image Add Back(加回值):将原始图像中的部分加回到卷积滤波结果图像中, Editable Kernel(卷积核中各项的值)。

ENVI的高光谱处理

ENVI的高光谱处理

专题二十四 使用ENVI的高光谱工具处理多光谱数据(节选)1.1.专题概述本专题的目的是向用户展示如何使用ENVI先进的高光谱工具对多光谱数据进行分析。

要更好地理解高光谱处理的概念及其工具,请参见ENVI高光谱辅导指南。

要获取额外的详细信息,请参见《ENVI遥感影像处理实用手册》(ENVI User’s Guide)或者ENVI的在线帮助。

♦本专题中使用的文件光盘:《ENVI遥感影像处理专题与实践》附带光盘 #1♦背景知识ENVI并非仅设计成高光谱影像处理系统。

在1992年,ENVI的开发者就决定开发出一个通用的影像处理软件,它包含一整套的基本处理工具,弥补了商业软件缺乏强大灵活处理功能的不足,使得它能够处理各种科学格式的影像数据。

它对全色、多光谱、高光谱以及基本和改进雷达影像数据都提供了支持。

当前,ENVI包含了与其它主要影像处理系统(例如:ERDAS,ERMapper和PCI)相同的基本处理功能。

其中,ENVI在前沿遥感研究中采用了许多不同的先进算法。

虽然这些算法都是在处理成像光谱仪数据或者多达上百个波谱波段的高光谱数据基础之上发展而来,但是它们也可以应用到多光谱数据和其它标准数据类型的处理上。

本专题将对某些分析Landsat Thematic Mapper(TM)数据的方法进行介绍。

本专题分为两个独立的部分:1)使用标准或者经典多光谱分析技术,对TM影像数据进行典型的多光谱分析,2)使用ENVI高光谱工具对相同的数据集进行分析。

1.2.使用ENVI的高光谱工具分析多光谱数据♦读取TM影像数据z要从磁带中读取数据,可以在ENVI主菜单中选择File → Tape Utilities → Read Known Tape Formats → Landsat TM(或者对于新的EDC-格式的磁带选择NLAPS)。

z要从光盘中读取数据,可以选择File →Open External File → Landsat → Fast,或者选择File → Open External File → Landsat → NLAPS(对于NLAPS数据)。

遥感上机高光谱数据分析实验

遥感上机高光谱数据分析实验

实验一高光谱数据分析一、实验目的理解波谱库的概念,掌握波谱库操作、浏览和提取影像反射率,学会从感兴趣区中提取波谱信息,并进行彩色合成。

实验过程:打开cup95_at.int,在可用波段列表对话框中,选择Band 193(2.2008um)点击Gray Scale 单选按钮,然后点击Load Band。

将灰度影像加载到显示窗口中。

从主影像窗口菜单中选择Tools →Profiles →Z Profile (Spectrum),提取表观反射率波谱曲线浏览影像波谱并同波谱库进行比较在主影像窗口中,使用鼠标左键点击并拖动缩放指示矩形框或者直接点击鼠标左键,将缩放指示矩形框移动到以所选像素点为中心的区域中,右图曲线发生变化。

打开ENVI给定的波谱库,本次实验使用JPL和USGS波谱库,步骤如下:从ENVI 主菜单中选择Spectral →Spectral Libraries →Spectral Library Viewer。

在Spectral Library Input File 对话框中,点击Open File 按钮,从spec_lib/jpl_lib 子目录中,选择jpl1.sli 波谱库文件,点击OK。

选择Select Input File 区域中的jpl1.sli,点击OK。

在Spectral Library Viewer 对话框中,选择Options →Edit (x, y) Scale Factors,并在Y Data Multiplier 文本框中,输入值1.000,以匹配影像表观反射率范围(1-1000),点击OK。

在Spectral Library Viewer 对话框中,选择下列波谱名称,绘制它们的波谱曲线:ALUNITE SO-4ABUDDINGTONITE FELDS TS-11ACALCITE C-3DKAOLINITE WELL ORDERED PS-1A得到如下的波谱图像:波谱库的波谱曲线从绘制(plot)窗口菜单中,选择Edit →Plot Parameters,自定义波谱曲线的绘制图。

ENVI高光谱分析技术

ENVI高光谱分析技术

Water Vapor (std atm-cm)
518 1Байду номын сангаас60
1762 2589 3636
5119
Water Vapor (g/cm2) 0.42 0.85
HYDICEAISA、DAIS、CASI、HYMAP
AVIRIS
• Spectral coverage: • VIS to NIR (400-2500nm) • Spectral bands: 224 • Spectral resolution: <10nm • FOV: 30° • IFOV: 1.0 mrad • Digitization:12 bits
• 基于统计学模型
– 平场域定标 – 对数残差 – 内部平均反射率法 – 经验线性
• 基于简化辐射传输模型的黑暗像元法 • 基于统计的不变目标法 • 基于植被指数的大气阻抗植被指数法 • ……
ENVI大气校正模块
• ENVI的大气校正模块的模型为MODTRAN 4+模型,它是 由Spectral Sciences, Inc. (SSI)和Air Force Research Labs (AFRL)合作开发,ITT VIS进行整合和图形化。
使用ENVI大气校正模块——基本参数设置
• 传感器基本信息设置
使用ENVI大气校正模块——大气模型
Model Atmosphere
Sub-Arctic Winter (SAW) Mid-Latitude Winter (MLW) U.S. Standard (US) Sub-Arctic Summer (SAS) Mid-Latitude Summer (MLS) Tropical (T)
• 多光谱与高光谱的模型基础一样:MODTRAN 4+。这个 模块通过高光谱像素光谱上的特征来估计大气的属性,可 以有效地去除水蒸气, 气溶胶散射,漫反射的邻域效应。 采用向导式操作流程,还包括快速大气校正功能。

ENVI高光谱数据处理流程

ENVI高光谱数据处理流程

ENVI高光谱数据处理流程1.数据预处理数据预处理是高光谱数据处理流程中的第一步,其主要目的是去除数据中的噪声并增加图像质量。

常用的预处理方法包括:大气校正、大气校正之后的辐射校正、大气校正之后的大气校正等。

-大气校正:高光谱数据中的大气散射会引入许多噪声。

大气校正的目的是根据大气散射的物理原理,通过对高光谱数据进行光谱校正和辐射校正,去除大气散射带来的干扰。

-辐射校正:高光谱数据中的辐射能量受到地面温度、雨水和云等因素的影响,导致数据中存在辐射偏差。

辐射校正的目的是根据卫星的辐射源数据和大地辐射能量的关系,对高光谱数据进行校正,消除辐射偏差。

-大气校正之后的大气校正:在进行大气校正之后,仍然可能存在一些小范围的大气散射。

大气校正之后的大气校正的目的是再次进行大气散射校正,进一步提高图像质量。

2.特征提取特征提取是高光谱数据处理流程中的核心步骤,其主要目的是从高光谱数据中提取出对地物分类和解译有用的特征信息。

-光谱特征提取:光谱特征提取是指根据高光谱数据中不同波段的辐射能量变化,提取出反映地物光谱特性的特征参数。

常用的光谱特征包括:光谱曲线的均值、方差、斜率等。

-空间特征提取:空间特征提取是指从高光谱数据的空间分布中提取出反映地物空间特性的特征参数。

常用的空间特征包括:纹理特征、形状特征、边缘特征等。

3.分类与监督解译分类与监督解译是高光谱数据处理流程中的关键步骤,其主要目的是将预处理和特征提取之后得到的数据进行分类和解译。

-监督分类:监督分类是指通过已知的训练样本数据,建立分类模型,并将该模型应用于未知的高光谱数据,将数据分成不同的类别。

常用的监督分类方法有:最大似然分类、支持向量机分类、随机森林分类等。

-非监督分类:非监督分类是指利用高光谱数据本身的统计特性,将数据按照统计特性对其进行分类。

常用的非监督分类方法有:K-均值聚类、多元高斯聚类等。

4.地物解译与验证地物解译与验证是高光谱数据处理流程中的最后一步,其主要目的是对分类结果进行解译和验证,以评估分类的准确性。

envi高光谱数据处理流程

envi高光谱数据处理流程

envi高光谱数据处理流程
envi高光谱数据处理流程是一种非常常用的数据处理方法,主要应用于高光谱遥感数据处理。

其主要流程包括:数据预处理、光谱反射率计算、特征提取与分类等几个步骤。

1、数据预处理:数据预处理包括数据校正、波长校准及大气校正等过程。

其中,数据校正主要是将数据进行去背景、去噪、去影响等处理。

波长校准是将采集到的数据进行波长校准,保证数据的准确性。

大气校正是将采集的数据进行大气校正,降低大气对数据的影响。

2、光谱反射率计算:光谱反射率计算是将采集到的数据进行转换,得到地表反射率信息。

这个过程主要通过将采集到的数据进行比对处理,计算出地表反射率。

3、特征提取:特征提取是将采集到的数据进行特征分析,得到地物分类信息。

这个过程主要通过对采集到的数据进行分析,计算出每个波段的特征,然后根据这些特征进行分类。

4、分类:分类是将采集到的数据进行分类,识别出地表不同的类别。

这个过程主要通过将采集到的数据进行分析,然后根据不同的特征进行分类,最终得到地表不同的类别。

总之,envi高光谱数据处理流程是一个比较全面、细致的数据处理方法,可以有效地对高光谱遥感数据进行处理,得到准确的地表信息。

- 1 -。

高光谱数据分析ENVI操作手册

高光谱数据分析ENVI操作手册

高光谱数据分析ENVI操作手册1.常见参数选择主菜单→File→Preferences●用户自定义文件(User Defined Files)图形颜色文件,颜色表文件,ENVI的菜单文件,地图投影文件等。

需重启ENVI ●默认文件目录(Default Directories)默认数据目录,临时文件目录,默认输出文件目录,ENVI补丁文件、光谱库文件、备用头文件目录等,需重启ENVI。

●显示设置(Display Default)可以设置三窗口中各个分窗口的显示大小,窗口显示式样等。

其中可以设置数据显示拉伸方式(Display Default Stretch),默认为2%线性拉伸。

●其他设置(Miscollaneous)制图单位(Page Unit),默认为英寸(Inches),可设置为厘米(Centimeters)还有缓冲大小(cache size),可以设置为物理内存的50-75%左右。

Image Tile Size不能超过4M。

2.显示图像及其波谱2.1.打开文件●主菜单,Open Image File→文件名.raw。

●或Window→Available Bands List→File →Open Image File→文件名.raw。

2.2.显示图像●显示单波段灰度级图像:Gray color,选择的波段一般是图像显示最清晰的波段。

●显示伪彩色图像:RGB color,选择具有明显吸收谷、强烈反射作用和所含信息量较大的波段作为彩色合成RGB波段。

●显示真彩色图像:波段列表(Available Bands List)中,右键→Load TrueColor 。

●图像保存:Display窗口,File→Save Image As→Image File,选择输出格式、路径和名称,OK。

●动画显示:Display窗口,Tools→Animation,动态显示各波段图像,能很快的分辨出包含信息量较多的波段。

ENVI高光谱数据处理流程

ENVI高光谱数据处理流程

ENVI高光谱数据处理流程一、显示图像波谱1.打开文件:主菜单中,File→Open Image File→文件名.raw或者Window→Available Bands List→File →Open Image File→文件。

2.显示真彩色图像:波段列表(Available Bands Lis)中,右键→Load TrueColor。

3.*设置像素大小:主窗口(Display)中,右键→Pixel Locator。

4.绘制波谱:主窗口中,右键→Z Profile(Spectrum)。

5.收集任意点波谱:Spectral Profile中,Options→Collect Spectra,点击图像任6.光谱平滑:Spectral Profile中,Options→Set Z Profile Avg Window,将window7.部分光谱:主菜单→Basic Tools→Resize Data(Spatial/Spectral)→Spectral Subset,选择需要的光谱波段。

生成新的文件,右键→Load True Color to<new>。

显示新图像。

8.关闭所有文件:File→Close All Files。

二、标准波谱库主菜单→Spectral→Spectral Libraries→Spectral Library Viewer→安装文件夹下,ITT\IDL\IDL80\products\envi48\spec_lib。

共有usgs_min、veg _lib、jpl_lib、jhu_lib四个标准波谱库。

在Spectral Library Viewer中,单击波谱名称,自动显示波谱。

三、自定义波谱库1.输入波长范围:在菜单中,Spectral Spectral Library→Spectral Library Builder2.波谱收集:以从影像数据中收集波谱为例:a)打开高光谱图像,收集任意点波谱。

环境遥感科学中的高光谱数据处理与分析

环境遥感科学中的高光谱数据处理与分析

环境遥感科学中的高光谱数据处理与分析高光谱数据是环境遥感科学中一种重要的数据源,具有丰富的光谱信息,可以提供大量的物质特征和光谱反射率数据。

高光谱数据处理与分析是环境遥感科学中的一个关键步骤,它可以帮助我们深入理解地球表面的环境状况,监测环境变化,并提供支持环境保护、资源管理和气候变化研究的科学依据。

本文将介绍高光谱数据处理与分析的基本方法和技术,并探讨其在环境遥感科学中的应用。

高光谱数据处理的主要目标是从原始数据中提取有用的信息。

在高光谱数据处理过程中,我们需要进行数据预处理、特征提取和分类等步骤。

首先,数据预处理是高光谱数据处理的第一步,它的主要目的是消除数据中的噪声和杂散信息,提高数据质量。

数据预处理包括大气校正、辐射校正和几何校正等。

大气校正能够消除大气传输的影响,使得地表反射率数据更加准确。

辐射校正可以消除太阳辐射的影响,得到物体的真实辐射率数据。

几何校正则用于减少图像变形和畸变,使图像和数据能够准确地对应。

特征提取是高光谱数据处理的关键步骤之一,它可以从高光谱数据中提取出地物的光谱、空间和时间特征。

特征提取是确定地物种类和状态的重要手段,对于环境遥感科学的研究具有重要意义。

常用的特征提取方法包括主成分分析(PCA)、线性判别分析(LDA)和光谱指数等。

主成分分析是一种常见的无监督特征提取方法,能够通过线性变换将高维的高光谱数据转化为低维的主成分影像,保留了原始数据中的主要信息。

线性判别分析则是一种有监督的特征提取方法,它通过寻找线性变换,使得不同类别的地物样本在新的特征空间中更加分散,提高了分类的准确性。

分类是高光谱数据处理的最终目标,它利用提取的特征将地物进行分类,帮助我们了解地表环境的类型和分布。

分类方法可以分为监督分类和非监督分类。

监督分类需要事先准备好地物样本,通过训练分类器来实现对新数据的分类。

常用的监督分类方法有最大似然分类、支持向量机(SVM)和随机森林等。

非监督分类则是在没有事先准备地物样本的情况下,将像素按相似度进行聚类,常用的非监督分类方法有K-means聚类算法和自组织映射等。

ENVI遥感图像处理-高光谱数据的处理与分析

ENVI遥感图像处理-高光谱数据的处理与分析

1.1 ENVI Classic标准波谱库
保留原来的5种标准波谱库,存放在 …\Harris\ENVI54\classic\spec_lib,分别在5个文件夹 中,储存为ENVI波谱库格式
✓ USGS矿物波谱 ✓ 植被波谱 ✓ JPL波谱库 ✓ IGCP264波谱库 ✓ JHU波谱库
1.2 波谱库创建
元波谱收集 • 基于连续最大角凸锥(Sequential Maximum Angle Convex Cone——简
称SMACC)的端元自动提取。
4、高光谱图像物质识别
4 物质识别
ENVI提供许多波谱分析方法,包括:二进制编码、波谱 角分类、线性波段预测(LS-Fit)、线性波谱分离、光谱 信息散度、匹配滤波、混合调谐匹配滤波(MTMF)、 包络线去除、光谱特征拟合、多范围光谱特征拟合等
5.2 波谱识别
波谱角分类 /Classification/Supervised Classification/Spectral
Angle Mapper Classification
5.3 分类结果浏览及后处理
得到的结果就是ENVI的分类文件的格式,自动加载显示 在图中。
分类后处理
5.4 向导式目标识别——沙漏分析工具
4 物质识别
专题内容:
✓ 用波谱角分析方法从高光谱图像中识别物质
数据
✓ “301-技术专题:高光谱数据处理与分析\2-物质识别”
端元波谱收集
物质识别
5、高光谱图像分类
5 高光谱图像分类流程
影像文件
最小噪声分离 MNF
数据维数判断
是否从图像获得端

元波谱
计算纯净像元指数
N维可视化和端元选择

(完整word版)envi主成分分析文档

(完整word版)envi主成分分析文档

ENVI主成分分析(PCA)是通过使用Principal Components选项生成互不相关的输出波段,达到隔离噪声和减少数据集的维数的方法。

由于多波段数据经常是高度相关的,主成分变换寻找一个原点在数据均值的新的坐标系统,通过坐标轴的旋转来使数据的方差达到最大,从而生成互不相关的输出波段。

主成分(PC)波段是原始波谱波段的线性合成,它们之间是互不相关的。

可以计算输出主成分波段(与输入的波谱波段数相同)。

第一主成分包含最大的数据方差百分比,第二主成分包含第二大的方差,以此类推,最后的主成分波段由于包含很小的方差(大多数由原始波谱的噪声引起),因此显示为噪声。

由于数据的不相关,主成分波段可以生成更多种颜色的彩色合成图像。

ENVI 能完成正向和逆向的主成分(PC)旋转。

1.正向主成分(PC)旋转正向PC旋转用一个线性变换使数据方差达到最大。

当使用正向PC旋转时,ENVI 允许计算新的统计值,或根据已经存在的统计值进行旋转。

输出值可以存为字节型、浮点型、整型、长整型或双精度型。

也可以基于特征值来提取PC旋转的输出内容,生成只包含所需的PC波段的输出。

计算新的统计值和旋转使用Compute New Statistics and Rotate选项可以计算数据特征值、协方差或相关系数矩阵以及PC正向旋转。

选择Transforms > Principal Components > Forward PC Rotation > Compute New Statistics and Rotate。

当出现Principal Components Input File对话框时,选择输入文件或用标准ENVI选择程序选取子集。

将会出现Forward PC Rotation Parameters对话框。

注意:点击“Stats Subset”按钮可以基于一个空间子集或感兴趣区计算统计信息。

该统计将被应用于整个文件或文件的空间子集。

ENVI高光谱数据处理流程

ENVI高光谱数据处理流程

ENVI高光谱数据处理流程ENVI(Environment for Visualizing Images)是一款功能强大的遥感数据处理软件,用于高光谱数据的处理和分析。

它提供了许多功能模块,可以进行数据导入、预处理、特征提取、分类和可视化等操作。

下面是ENVI高光谱数据处理流程的详细介绍。

1.数据导入首先,我们需要将高光谱数据导入ENVI软件。

ENVI支持导入多种高光谱数据格式,如Hyperion、AVIRIS等。

可以通过ENVI的文件菜单选择导入数据或者使用ENVI API导入数据。

2.数据预处理在数据导入之后,我们需要对高光谱数据进行预处理,以减少噪声和增强图像的质量。

ENVI提供了多种数据预处理方法,包括大气校正、大气校正和去除噪声。

可以根据数据的需求选择适当的预处理方法。

3.特征提取特征提取是高光谱数据分析的关键步骤。

在这一步骤中,我们可以利用ENVI提供的各种特征提取算法来提取数据中的有用信息。

ENVI提供了许多特征提取算法,包括主成分分析(PCA)、线性判别分析(LDA)、最大似然分类(MLC)等。

4.分类分类是高光谱数据处理的一个重要环节。

ENVI提供了多种分类算法,用于将数据分成不同的类别。

可以使用ENVI的分类工具对特征提取后的数据进行分类,根据分类结果进行应用。

5.可视化可视化是高光谱数据处理的最后一步。

ENVI提供了丰富的可视化工具,可以对数据进行可视化和可视化分析。

可以通过ENVI的图像菜单选择适当的可视化工具,并根据需要生成图像。

以上是ENVI高光谱数据处理的基本流程。

当然,根据具体的应用和需求,还可以根据需要选择其他的处理方法和工具。

此外,ENVI还支持自定义算法和脚本编程,以满足更高级的数据处理需求。

总结起来,ENVI高光谱数据处理流程包括数据导入、数据预处理、特征提取、分类和可视化等步骤。

通过这些步骤,我们可以对高光谱数据进行全面的处理和分析,从而获取有用的信息并进行进一步的应用。

ENVI培训第四篇-高光谱专题

ENVI培训第四篇-高光谱专题

波谱分析首先需要打开一个波谱库,然后将未 知波谱与波谱库中的波谱进行匹配处理,该工 具运用波谱角分类,波谱特征拟和二进制编码 技术,对一未知波谱与波谱库中要素的匹配进 行排序,输出一个列表,按照波谱匹配的好坏依 次排列,并纪录一个总体的得分. 匹配时需要设置三种方法所占的权重,权重是 任意的,最后输出一个总体得分,得分越高,表明 匹配效果越好.
MNF变换
主要有两个作用: 分离图像中噪声 图像解相关(散点图, Animation)
计算时需要输入的参数 统计信息的图像范围 shift diff subset 噪声统计文件(可以用到另一副图像上做变换) MNF统计文件(反变换的时候要用) Mnf变换输出波段选择(根据特征值选择输出波段)
微弱信息提取
ENVI RX Anomaly Detection Tool
Spectral/ RX Anomaly Detection
• • • • •
限于多光谱或者高光谱影像 自动检测不同于背景的目标物 提取出来的目标非常小 计算快,操作简单,精度高 Algorithm运算法 RXD standard RXD 运算法
N维可视化器 提取PPI_ROI后打开N维可视化器,选择 MNF变换结果,系统默认导入PPI_ROI PPI_ROI端元提取 波谱曲线对比编辑ROI 生成地物平均波谱 波谱分析,端元识别
分类
波谱角分类SAM
植被指数工具
提供了生物物理学交叉检验(BIOPHYSICAL CROSS CHECK) 通过植被指数计算器统一进行计算 能够根据影像信息自动显示可计算的植被指数 还提供了3种植被指数分析工具可广泛用于精准农业、 林业管理和火点监测的专题分类制图。另外,植被分 析工具箱还包括了植被指数的计算公式和取值范围等 相关知识和编程参考。

envi导出点的光谱数据

envi导出点的光谱数据

envi导出点的光谱数据全文共四篇示例,供读者参考第一篇示例:环境导出点的光谱数据是对特定区域中不同波长的光谱反射数据进行测量和分析,可以帮助我们了解该区域内的植被覆盖状况、土地利用类型、水质状况等环境信息。

这些数据是通过遥感技术获取的,可以帮助科研人员、环境保护部门和政府机构制定有效的环境保护政策和管理措施。

光谱数据可以从不同的途径获取,例如通过卫星遥感、航空遥感或地面测量。

地面测量是比较常见的方法,通过在地面摆放光谱仪器,对周围环境的光谱反射进行分析。

这些数据可以帮助我们了解植被生长的状况,如植被的种类、叶面积指数等,同时也可以帮助我们监测土地利用变化和水体的水质变化。

在环境保护领域,光谱数据的应用十分广泛。

通过对植被的光谱数据进行分析,可以帮助我们监测森林覆盖的状况,及时发现森林火灾、虫害等问题。

通过对水体的光谱数据进行分析,可以帮助我们监测水质,并及时发现水源受污染的情况。

这些数据对于环境监测和保护起到了至关重要的作用。

除了在环境保护领域,光谱数据在农业、地质勘探等领域也有着广泛的应用。

在农业领域,通过对植被的光谱数据进行分析,可以帮助农民监测农作物的生长状况,及时采取相应的措施。

在地质勘探领域,光谱数据可以帮助地质科学家探测地下矿藏的位置和规模,为矿产资源的开发提供重要的信息。

环境导出点的光谱数据在环境保护和资源管理方面有着重要的应用。

科研人员和政府机构可以通过对这些数据的获取和分析,更好地了解和监测自然环境的变化,指导环境保护和资源的合理利用。

希望未来能够有更多的研究和应用,让光谱数据在环境保护和资源管理中发挥更大的作用。

第二篇示例:光谱数据是一种常用的科学研究工具,在环境科学领域尤其重要。

光谱数据可以帮助科研人员分析物质的组成和性质,从而更好地了解环境中的变化和污染情况。

在环境监测中,光谱数据可以帮助我们快速准确地了解环境中各种污染物的分布情况,从而采取有效的治理措施。

光谱数据的采集过程通常包括以下几个步骤:首先是选择适当的光谱仪器和传感器,根据需要选择合适的波长范围和分辨率;然后是在采集光谱数据之前准备好目标样品,并确保环境干净、光照条件良好;接着是通过envi仪器进行光谱数据的采集和处理,最后是对采集到的光谱数据进行分析和解读。

高光谱数据分析ENVI操作手册

高光谱数据分析ENVI操作手册

4.1. 设置参数
Kernel Size(卷积核大小):奇数。 Image Add Back(加回值):将原始图像中的部分加回到卷积滤波结果图像中, Editable Kernel(卷积核中各项的值)。
有助于保持图像的空间连续性。
滤波前
滤波后
北京卓立汉光仪器有限公司
5. 主成分分析列出各波段以及相应的百分比,可自主选择主成分波段。“No”系统会计 算特征值和显示供选择的输出波段。
5.2. 协方差矩阵、特征向量矩阵的统计
主菜单,Basic ToolsStatisticsView Statistics File,打开主成分分析中得到 的统计文件,可以得到各个波段的基本统计值、协方差矩阵、相关系数矩阵和特 征向量矩阵。 当协方差矩阵数据量较大时,不能直接在统计文件中显示,这时可通过输出 ASCII文件并导入到excel中来查看协方差矩阵和特征向量矩阵。 波长、 反射率和协方差矩阵、特征向量矩阵的数据分析可采用其他数值统计 分析软件进行。
2.2. 添加注记


在Spectral Library Plots窗口中,Option→Annotate Plot,手动添加注记,如文 Annotation窗口中,Object选择注记类型后,在Spectral Library Plots窗口中左 在Spectral Library Plots窗口中,右键→Plot Key,添加注记,名称和颜色在

选择Memory或在Enter Output Filename输入文件名生成新的文件。 右键→Load True Color to<new>,显示新图像。
北京卓立汉光仪器有限公司
1.6. 光谱数据输出
光谱曲线窗口中,File→Save Plot As→ASCII,在Output Plots to ASCII File文 件中,Selsct Plot To Output选中需要输出曲线的点,输出路径和名称,OK。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从光谱影像上获得光谱曲线
高光谱图像
空间成像的同时,记录 下成百个连续光谱通道 数据
从每个像元均可提取 一条连续的光谱曲线
对高光谱图像的处理实质是对像元光谱曲线的定量 化处理与分析
高光谱成像技术
• 成像光谱仪:
– 与地面光谱辐射计相比,成 像光谱仪不是在“点”上的 光谱测量,而是在连续空间 上进行光谱测量,因此它是 光谱成像的;
须有波段宽度(FWHM),这两个参数都可以通过编辑头 文件信息输入(Edit Header)。 • 数据类型 • 支持四种数据类型:浮点型(floating)、4-byte signed integers, 2-byte signed integers,以及 2-byte unsigned integers。 • 数据存储类型: ENVI标准栅格格式文件,且是BIP或者 BIL。 • 波谱范围:flaash能够做的数据光谱范围是0.4-2500μm。
• 多光谱与高光谱的模型基础一样:MODTRAN 4+。这个 模块通过高光谱像素光谱上的特征来估计大气的属性,可 以有效地去除水蒸气, 气溶胶散射,漫反射的邻域效应。 采用向导式操作流程,还包括快速大气校正功能。
使用ENVI大气校正模块——输入文件准备
• 数据是经过定标后的辐射亮度(辐射率)数据 • 数据带有中心波长(wavelenth)值,如果是高光谱还必
环境与减灾小卫星星座(HJ-1B)
2、高光谱数据预处理
•传感器定标 •大气校正
传感器定标
• 传感器定标是针对设备本身,建立传感器每个探测元件输 出的数据量化值(DN)与它所对应像元内的实际地物的 辐射亮度之间的定量关系(陈述彭等,2019)。辐射亮 度(辐射率)单位可为:(μW)/(cm2*nm*sr)。
HYDICEAISA、DAIS、CASI、HYMAP
AVIRIS
• Spectral coverage: • VIS to NIR (400-2500nm) • Spectral bands: 224 • Spectral resolution: <10nm • FOV: 30° • IFOV: 1.0 mrad • Digitization:12 bits
HYMAP
• Spectral coverage: • VIS:400-800nm,15nm bands; • NIR:881-1335nm, 14nm bands; • SWIR1:1400-1813nm, 12nm bands; • SWIR2:1950-2543nm, 16nm bands; • Spectral bands: 126 • FOV: 60° • IFOV: 2.5 mrad(along_track) • 2.0 mrad(across_track) • Pixels per line: 512
– 与传统多光谱遥感相比,其 光谱通道不是离散而是连续 的,因此从它的每个像元均 能提取一条平滑而完整的光 谱曲线。
成像光谱仪系统介绍
• 航空成像光谱仪系统 • 国内系统:MAIS、OMIS-1、OMIS-2、PHI、WHI、
LASIS • 国外系统:AIS、AVIRIS、TRWIS、GERIS、
主要内容
• 1、高光谱简介 • 2、高光谱数据预处理 • 3、物质制图与识别、探测 • 4、植被分析
1、高光谱遥感简介
• 光学遥感技术的发展:
– 全色(黑白)--彩色摄影--多光谱扫描成像--高光谱遥感
• 高光谱分辨率遥感(HyperspectralRemote Sensing)
– 用很窄(10-2λ)而连续的光谱通道对地物持续遥感成像的技术。 在可见光到短波红外波段其光谱分辨率高达纳米(nm)数量级,通 常具有波段多的特点,光谱通道数多达数十甚至数百个以上,而 且各光谱通道间往往是连续的,因此高光谱遥感又通常被称为成 像光谱(Imaging Spectrometry)遥感。
为什么做大气纠正?
• 太阳辐射通过大气以某种方式入射到物体表面然后再反射 回传感器
• 原始影像包含物体表面,大气,以及太阳的信息 • 如果我们想要了解某一物体表面的光谱属性,我们必须将
它的反射信息从大气和太阳的信息中分离出来。
大气散射
邻接反射
直接反射
大气校正方法
• 基于辐射传输模型
– LOWTRAN模型 – MORTRAN模型 – ATCOR模型 – 6S模型
• 基于统计学模型
– 平场域定标 – 对数残差 – 内部平均反射率法 – 经验线性
• 基于简化辐射传输模型的黑暗像元法 • 基于统计的不变目标法 • 基于植被指数的大气阻抗植被指数法 • ……
ENVI大气校正模块
• ENVI的大气校正模块的模型为MODTRAN 4+模型,它是 由Spectral Sciences, Inc. (SSI)和Air Force Research Labs (AFRL)合作开发,ITT VIS进行整合和图形化。
• ENVI的大气校正模块能够对高光谱、多光谱影像进行校 正。
– 高光谱包括:HyMAP、 AVIRIS、 HYDICE、HYPERION、 Probe-1, CASI、AISA等;
– 多光谱包括:ASTER、AVHRR、IKONOS、IRS、Landsat、 MODIS、SeaWiFS、SPOT、QuickBird等,以及航空(860nm1135nm)数据。
航天成像光谱仪系统——Hyperion/EO-1
• 国家:美国 • 时间:2000年11月卫星发射成功 • 扫描带宽:7.5km, 空间分辨率:30米, • 在0.4-2.5μm共有220波段: • 可见光-近红外(400-1000nm): 60波段, • 短波红外(900-2500nm): 160波段。
• ENVI提供针对特定传感器的定标,包括ASTER、 AVHRR、MODIS、MSS、TM、IKONOS、QuickBird、 WorldView等;通用方法,包括:平场域定标、对数残差、 内部平均反射率法和经验线性;针对热红外数据,还提供 大气校正工具、相对通道发射率、归一化发射率、Α残差 等定标工具。
相关文档
最新文档