八年级数学下册 两个一次函数的综合应用学案
八年级数学下册 课后补习班辅导 函数及一次函数有关内容讲学案 苏科版(2021学年)
![八年级数学下册 课后补习班辅导 函数及一次函数有关内容讲学案 苏科版(2021学年)](https://img.taocdn.com/s3/m/8b4500e0bb68a98270fefaa1.png)
八年级数学下册课后补习班辅导函数及一次函数有关内容讲学案苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册课后补习班辅导函数及一次函数有关内容讲学案苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册课后补习班辅导函数及一次函数有关内容讲学案苏科版的全部内容。
函数及一次函数有关内容【本讲教育信息】一.教学内容:函数及一次函数有关内容学习目标:1. 理解常量、变量以及函数的概念,知道函数的三种表示方法;2. 掌握一次函数y=kx+b和正比例函数y=kx的概念、它们之间的关系以及会用待定系数法求这两个函数的关系式;3。
能通过图形、表格等搜集信息并处理信息,学会表达思想.二。
重点、难点:1。
函数、一次函数、正比例函数的概念,函数的三种表示方法、待定系数法、识图等能力是重点;2. 函数概念的理解是难点.三.知识要点:1. 函数:一般地,如果在一个变化的过程中有两个变量x和y,并且对于变量x的每一个值,变量y 都有惟一的值与它对应,那么我们称y是x的函数.其中,x是自变量,y是因变量.2。
函数的三种表示方法:表格法,图像法,关系式法3. 一次函数与正比例函数:(1)一次函数:一般地,如果两个变量x与y之间的函数关系可以写成y=kx+b(k,b为常数,且k ≠0)的形式,那么称y是x 的一次函数.需要注意的是:k ≠0;(2)正比例函数:若一次函数y =kx +b中的b =0,则一次函数变为:y =kx,这时我们称y 是x 的正比例函数。
正比例函数是一次函数的特例. 4。
待定系数法:【典型例题】例1. 下列问题中的两个变量是否是函数关系?(1)一个正方形的边长是3cm ,它的边长减少x c m后,得到的新正方形的周长是y cm ,y可以看成是x的函数吗?(2)y 是x的倒数,y 是x 的函数吗? (3)某人的身高是他本人年龄的函数吗?(4)如图,分别给出了变量y 与x之间的对应关系,y 不是x 的函数的是oAy xyyyxxxBCD分析:这几道题目有的可以根据题意写出关系式,如(1),(2);有的则不能,如(3),(4)但是都要根据函数的定义来判定.解:(1)由题意,得y =4(3-x ),即y =12-4x,其中0〈x〈3.符合函数的定义.所以y 是x 的函数.(2)当x为0时,y没有唯一的值与x 对应,所以y 不是x 的函数. (3)符合函数的定义,所以某人的身高是他本人年龄的函数.(4)B 不符合函数的定义,因为当x 取一个负数时,有两个函数值y 与其对应.例2. 观察下图和表中所给数据后回答问题:该图形的周长能够为2006吗?1122221111111探究过程:梯形的个数为1时,周长为5;梯形的个数为2时,周长为8=5+3;梯形的个数为3时,周长为5+3×2;…当梯形的个数为n时,周长为5+3×(n-1).假设周长为2006时,则5+3×(n-1)=2006,解方程得32004n 不是整数,而n 必须是正整数,故图形的周长不能为2006.探究评析:解决此类题目,先从分析简单情形入手,从特殊到一般,从中寻找规律,进而求出两个变量之间的函数关系式,继而由自变量求函数值,或由函数值求自变量的值.本题就是求自变量的值.例3。
八年级数学下册《一次函数与二元一次方程组》教案、教学设计
![八年级数学下册《一次函数与二元一次方程组》教案、教学设计](https://img.taocdn.com/s3/m/7e6e299c6037ee06eff9aef8941ea76e58fa4aea.png)
4.关注学生的个体差异,针对不同学生提供有针对性的作业指导。
2.培养学生的自信心,使学生相信自己能够通过努力掌握数学知识,解决实际问题。
3.培养学生严谨、细致的学习态度,让学生明白细节决定成败,严谨是成功的关键。
4.培养学生的团队合作意识,使学生认识到团队协作的重要性,学会与人沟通交流。
5.引导学生认识到数学知识在现实生活中的重要作用,培养学生的数学素养,为学生的全面发展奠定基础。
三、教学重难点和教学设想
(一)教学重难点
1.一次函数与二元一次方程组的联系与区别,特别是在实际问题中的应用。
2.掌握代入法、消元法等解二元一次方程组的方法,并能够灵活运用。
3.培养学生将实际问题抽象为数学模型的能力,以及运用数学知识解决问题的能力。
(二)教学设想
1.教学方法:
-采用启发式教学,引导学生通过观察、思考、讨论等方式,自主发现一次函数与二元一次方程组之间的关系。
1.分组:将学生分成若干小组,每组4-6人,确保每个小组都有不同水平的学生。
2.讨论主题:一次函数与二元一次方程组在实际问题中的应用。
3.讨论要求:每个小组需要针对给定的实际问题,讨论如何将其抽象为一次函数和二元一次方程组模型,并给出解决方案。
4.汇报展示:每个小组派一名代表汇报讨论成果,其他成员进行补充。
(五)总结归纳
在课堂的最后阶段,我将引导学生进行总结归纳,梳理一次函数与二元一次方程组的知识点。
1.归纳一次函数的定义、图像与性质,以及在实际问题中的应用。
2.归纳二元一次方程组的解法,包括代入法、消元法等,以及在实际问题中的应用。
3.强调一次函数与二元一次方程组之间的联系与区别。
八年级数学下册 课后补习班辅导 一次函数的图像、性质和应用、二元一次方程组讲学案 苏科版(2021
![八年级数学下册 课后补习班辅导 一次函数的图像、性质和应用、二元一次方程组讲学案 苏科版(2021](https://img.taocdn.com/s3/m/f286a3b0b84ae45c3a358c75.png)
八年级数学下册课后补习班辅导一次函数的图像、性质和应用、二元一次方程组讲学案苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册课后补习班辅导一次函数的图像、性质和应用、二元一次方程组讲学案苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册课后补习班辅导一次函数的图像、性质和应用、二元一次方程组讲学案苏科版的全部内容。
一次函数的图像、性质和应用;二元一次方程组【本讲教育信息】 一. 教学内容:一次函数的图像、性质和应用;二元一次方程组的图像解法[学习目标]1。
理解一次函数的图像是一条直线以及它的性质,会画一次函数的图像。
2。
会应用一次函数的性质解决实际问题,能够用图像法解二元一次方程组. 3。
通过学习,进一步体会“数形结合”的数学思想方法以及数学建模的思想.二. 重点、难点:能够熟练地用描点法、两点法画出一次函数的图像,用图像法解二元一次方程组,理解一次函数性质并会应用一次函数解决问题是重点;难点是对一次函数性质的理解以及应用一次函数解决问题.三. 知识要点:1。
一次函数与正比例函数的图像一般地,一次函数)0(≠+=k b kx y 的图像是过(0,k b-),(0,b)的一条直线;特殊的,正比例函数)0(≠=k kx y 的图像是过(0,0),(1,k )的一条直线。
直线)0(≠+=k b kx y 是由直线)0(≠=k kx y 向上()0>b 或向下()0<b 平移b 单位得到的。
或者说直线)0(≠+=k b kx y 是由直线)0(≠=k kx y 向右⎪⎭⎫ ⎝⎛>-0kb或向左⎪⎭⎫ ⎝⎛<-0kb 平移kb -单位得到的.2。
《一次函数的综合应用》教学设计
![《一次函数的综合应用》教学设计](https://img.taocdn.com/s3/m/8b0b567c964bcf84b9d57bae.png)
课题第19章一次函数教材的地位(三备情况)函数是数学的重要内容之一,初中函数是对初中数学知识的概括和总结,也是进一步学习高中知识的基础,它是联系初、高中数学知识的纽带,是变量数学在初中数学的渗透。
函数的基础知识在数学及相近学科中也有广泛的应用,函数可以使学生认识到知识形成的过程,为学生提供一个发挥、探索和创造的空间背景,从此函数将把学生带到一个宏伟、壮观的数学空间。
教学目标1.初步理解一次函数及其图象的性质;初步体会方程与函数的关系.2.能根据信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题.3.经历函数、一次函数等概念的抽象概括过程,体会函数的模型思想,发展抽象思维能力.4.经历一次函数图象及其性质的探索和应用,发展合作意识、应用能力.重点难点及突破教学重点:理解和掌握基本的数学知识、技能、数学思想方法,会用一元一次方程解决实际问题。
教学难点:将实际总是转化为数学问题教学方法观察、操作、交流、归纳等探索活动教学流程一、知识回顾,构建知识体系设计意图:梳理知识形成知识网络二、基础练习,夯实双基能力。
1、下图中的曲线不表示y是x的函数的是()2、下图中描述了一辆汽车在甲乙两地之间的行驶过程中汽车离乙地的距离S(千米)与时间t(小时)之间的函数关系。
根据图中提出供的信息,下列说法正确的是()①、汽车是从甲地出发,到达乙地,然后返回甲地。
②、汽车中途休息了2小时。
③、汽车共行驶了120千米,共用了6小时。
④、汽车返回时的速度是80千米/时。
⑤、请同学们们相互提出新的问题并讨论。
现实生活中两变建立数学函数定图娈量:x和y点的坐标链接一元一次方一元一次不二元一次方特例一次函数y=kx+b(k正比例函数定义:图象:直线性质:应A B C D E Ft12s (千1 2 3 43、已知函数y = — 12x +2.① 画出此函数图象;② 求出函数图象与x 轴、y 轴的交点坐标;S △ABO =③ 当x =4时,y= ;当x>4时,y ;当x<4时,y④ 当y=2时,x= ;当y>2时,x ;当y<2时,x ⑤ y 随x 的增大而⑥ 将此图象向下平移3个单位,则得解析式为 三、 综合应用 一次函数的综合应用例1、某饮料厂开发了A 、B 两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A 、B 两种饮料共100瓶.设生产A 种饮料x 瓶,解答下列问题:(1)有几种符合题意的生产方案?写出解答过程; (2)如果A 种饮料每瓶的成本为2.60元,B 种饮料每瓶的成本为2.80元,这两种饮料成本总额为y 元,请写出y 与x 之间的关系式,并说明x 取何值会使成本总额最低?用函数的观点看方程(组)与不等式例2、直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( )A .1x >-;B .1x <-;C .2x <-;D .无法确定 原料名称 饮料名称 甲 乙 A20克40克B 30克20克本题是利用不等式组的知识,得到几种生产方案的设计,再利用一次函数性质得出最佳设计方案问题、一次函数是最基本的函数,它不仅与一次方程(组)、一次不等式(组)有密切联系,而且在实际生活中有更广泛的应用.分析:本题就是利用一次函数的图象来看方程(组)与不等式的典型问题课堂练习及检测1、 下列函数中,是一次函数的有_____________,是正比例函数的有() (1)x y8-=(2)xy 8-= (3)652+=x y (4)15.0--=x y (5)xy = (6))3(2+=x y (7)x y 34-=2、若函数9)3(2-+-=b x b y 是正比例函数,则b = _________3、在一次函数53--=x y 中,k =_______,b =________4、下列说法正确的是( )A 、b kx y +=是一次函数B 、一次函数是正比例函数C 、正比例函数是一次函数D 、不是正比例5、仓库内原有粉笔400盒,如果每个星期领出36盒,则仓库内余下的粉笔盒数Q 与星期数t 之间的函数关系式是________________,它是__________函数。
八年级数学下册 25.5一次函数的应用教案 冀教版
![八年级数学下册 25.5一次函数的应用教案 冀教版](https://img.taocdn.com/s3/m/0de9285dc5da50e2534d7f07.png)
25.5 一次函数的应用[教学目标]1.能根据实际问题中变量之间的关系,确定一次函数关系式.2.能将简单的实际问题转化为数学问题(建立.一次函数),从而解决实际问题.3.在应用—一次函数解决问题的过程中,体会数学的抽象性和应用的广泛性.此外,通过具体问题的分析,进一步感受“数形结合”的思想方法,发展解决问题的能力,增强应用意识和创新意识.[教学过程]1.情境创设汽车在高速公路上匀速行驶,此前它已在普通公路上行驶了一段路程,由于路面复杂,行驶速度多变,所以我们在研究汽车的行程与速度、时间的关系时,不考虑这段行程与行驶时间的关系,而是将这段距离看作一个常数,把问题简化为,汽车在高速公路上行驶的时间越长,车内里程表上记录的里程数就越大,由此产生问题:你能根据车上里程表上的读数,算出汽车在高速公路上行驶的时间吗?也可以设计为汽车在弯道上行驶了一段路程后,进入直道匀速行驶的问题.本课时编写的例题、习题,一般都设计为不含“函数”字样的实际问题,让学生在分析和解决问题的过程中,自主判断和选择教学方法和手段,例如函数的方法、方程的方法等.解决本章情境中提出的问题,需要先写出函数关系式,然后再解决具体问题.这类问题通常设计为:已知自变量的值,求相应的函数值;或根据函数值,求出与之对应的自变量的值. 2.探索活动探索活动一通过以下问题,探索并解决情境中所提出的问题,例如:(1)汽车在高速公路上行驶的路程与哪些量有关?(2)车内里程表上记录的数据是汽车行驶在那一段公路上的路程?(3)如果车内里程表上显示已行驶了175km,你能算出汽车在高速公路上行驶了多少时间吗?通过探索活动,让学生在进一步明确“路程、时间、速度”关系的基础上,分析所面临的具体问题,寻求解决问题的思路与方法,体验在处理一个本源性实际问题面前,数学所具有价值和魅力,培养学生的应用意识和能力.探索活动二加印照片是学生所熟悉的问题,费用多少显然与加印照片的张数有关系,是正比例关系还是一次函数关系?写出函数关系式后,便不难算出用结余的费用最多可以加印几张照片.这也是根据函数值,求与之对应的自变量的值的应用问题.可以在此基础上,让学生根据此背景,再创设一些问题,例如大批加印的优惠问题,两家冲印店的选择问题等,培养学生的创新意识。
八年级数学下册《利用一次函数解决实际问题》教案、教学设计
![八年级数学下册《利用一次函数解决实际问题》教案、教学设计](https://img.taocdn.com/s3/m/79256e3adcccda38376baf1ffc4ffe473368fd31.png)
(3)采用启发式教学法,引导学生通过观察、分析、归纳,发现一次函数的性质;
(4)组织小组合作学习,培养学生的团队协作能力和沟通能力。
2.教学过程:
(1)导入:以生活中的一次函数实例引入新课,让学生感受到数学与生活的紧密联系;
(2)探究:引导学生通过小组讨论、自主探究,从实际问题中抽象出一次函数关系;
3.探究性作业:鼓励学生自主探究一次函数的性质,发现规律,提高学生的探究能力和创新意识。
例题:研究一次函数y=kx+b(k、b为常数,且k≠0)的图像,探讨k、b的取值对图像的影响。
4.小组合作作业:安排一些需要团队合作完成的作业,培养学生的团队协作能力和沟通能力。
例题:小组合作设计一个一次函数应用实例,并撰写解题报告,分析解题过程。
3.一次函数在实际问题中的求解方法。
总之,在本节课的教学过程中,我将注重启发式教学、分层教学和师生互动,努力提高学生的学习兴趣和积极性,确保教学目标的实现。
五、作业布置
为了巩固本章节所学知识,检验学生对一次函数的理解和应用能力,我设计了以下几类作业:
1.基础知识巩固题:包括一次函数的定义、性质、图像等方面的练习,旨在帮助学生巩固一次函数的基本概念。
例题:已知一次函数y=2x+3,求该函数的斜率和截距。
2.实际问题应用题:设计一些与生活息息相关的问题,让学生运用一次函数知识解决,提高学生解决实际问题的能力。
例题:某商店进行打折促销活动,原价为100元的商品,每增加1元,折扣力度增加0.01。请列出商品价格与折扣力度之间的关系,并计算在哪个价格区间购买最划算。
(三)情感态度与价值观
1.增强数学在实际生活中的应用意识,认识到数学知识在解决实际问题中的重要性;
北师大版八年级下册数学《2.5 第2课时 一元一次不等式与一次函数的综合应用》说课稿
![北师大版八年级下册数学《2.5 第2课时 一元一次不等式与一次函数的综合应用》说课稿](https://img.taocdn.com/s3/m/1d6ed356b42acfc789eb172ded630b1c58ee9b51.png)
北师大版八年级下册数学《2.5 第2课时一元一次不等式与一次函数的综合应用》说课稿一. 教材分析北师大版八年级下册数学《2.5 第2课时一元一次不等式与一次函数的综合应用》这一节,是在学生已经掌握了一次函数和一元一次不等式的知识基础上进行教学的。
本节课的主要内容是让学生掌握一元一次不等式与一次函数的综合应用,通过解决实际问题,让学生学会如何将数学知识运用到生活中。
本节课的教学内容主要包括两个方面:一是理解一元一次不等式与一次函数的关系;二是学会如何运用一元一次不等式和一次函数解决实际问题。
在教材的处理上,我将以学生已有的知识为基础,通过引导学生的思考,让学生自主探究,从而达到对知识的理解和应用。
二. 学情分析在进入八年级下册的学习之前,学生已经学习了一次函数和一元一次不等式的相关知识,对于如何解一元一次不等式,以及如何绘制一次函数的图像,学生都已经有了初步的了解。
然而,对于如何将这两个知识点结合起来,解决实际问题,学生可能还比较陌生。
因此,在教学过程中,我将以学生的实际需求为导向,引导学生进行探究和学习。
三. 说教学目标本节课的教学目标主要有以下几点:1.让学生理解一元一次不等式与一次函数之间的关系,掌握如何将一元一次不等式和一次函数结合起来解决实际问题。
2.提高学生的数学思维能力,培养学生的解决问题的能力。
3.通过解决实际问题,让学生感受到数学的价值,提高学生学习数学的兴趣。
四. 说教学重难点本节课的教学重难点主要是让学生理解一元一次不等式与一次函数之间的关系,以及如何运用这两个知识点解决实际问题。
其中,如何将一元一次不等式和一次函数结合起来,解决实际问题,是本节课的教学难点。
五. 说教学方法与手段在教学过程中,我将采用引导探究法、案例教学法和小组合作法等教学方法,以学生已有的知识为基础,通过设置问题和案例,引导学生进行自主探究和学习。
同时,我还将运用多媒体教学手段,以直观的图像和动画,帮助学生更好地理解和掌握知识。
初二数学教案《一次函数》(优秀10篇)
![初二数学教案《一次函数》(优秀10篇)](https://img.taocdn.com/s3/m/fbc6b136bfd5b9f3f90f76c66137ee06eef94e43.png)
初二数学教案《一次函数》(优秀10篇)一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
为您带来了10篇《初二数学教案《一次函数》》,如果能帮助到亲,我们的一切努力都是值得的。
一次函数篇一教学目标:1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
教学重点:对于与正比例函数概念的理解。
教学难点:根据具体条件求与正比例函数的解析式。
教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容) 2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。
教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。
)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。
一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。
特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)(1)列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;(2)多长时间以后,小丸子的银行存款才能买随身听?分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱解:(1)(2)1680=500+90x解得x=13.…所以还需要14个月,小丸子才能买随身听例3、已知函数是正比例函数,求的值分析:本题考察的是正比例函数的概念解:说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上4、小结由学生对本节课知识进行总结,教师板书即可。
八年级数学下册《一次函数》教案、教学设计
![八年级数学下册《一次函数》教案、教学设计](https://img.taocdn.com/s3/m/0f1b64a5f605cc1755270722192e453611665b75.png)
(二)过程与方法
在本章节的学习过程中,教师将引导学生:
1.通过实际问题的引入,激发学生的学习兴趣,培养学生运用数学知识解决实际问题的能力。
2.利用数形结合的方法,引导学生观察、分析一次函数图像的特征,培养学生的观察能力和逻辑思维能力。
八年级数学下册《一次函数》教案、教学设计
一、教学目标
(一)知识与技能
1.理解一次函数的定义,掌握一次函数的一般形式y=kx+b,其中k、b为常数,且k≠0。
2.学会通过给定条件求解一次函数的解析式,并能根据解析式作出函数图像。
3.掌握一次函数图像的几何特征,如斜率k的正负、图像的截距b等,了解一次函数图像与系数之间的关系。
1.基础巩固题:
-根据一次函数的定义,求解以下方程组,并分析其图像特征:y = 2x + 3,y = -1/2x - 4。
-分别求出直线y = 3x + 2与x轴、y轴的交点坐标,并说明其斜率和截距。
2.提高应用题:
-某商店举行促销活动,购买数量x(件)与折扣y(折)之间的关系为y = 0.8 - 0.1x(0 ≤ x ≤ 10)。请根据函数关系,设计购买方案,使得顾客购买商品时获得最大优惠。
4.数学日记:
-请学生撰写一篇关于一次函数学习心得的数学日记,内容可以包括:学习过程中的困惑、解决方法、对一次函数的理解等。
作业要求:
1.学生需独立完成作业,保持解答过程的整洁、规范。
2.家长协助监督,确保学生按时完成作业,养成良好的学习习惯。
3.教师将根据作业完成情况,进行针对性的辅导和评价,以提高学生的学习效果。
4.课堂管理与评价:
有关八年级数学一次函数的应用教案4篇
![有关八年级数学一次函数的应用教案4篇](https://img.taocdn.com/s3/m/1c3d412458eef8c75fbfc77da26925c52cc591c6.png)
有关八年级数学一次函数的应用教案4篇【学情分析】本节课主要是复习巩固一次函数的图象与性质,是在学完一次函数之后,并初步了解了如何研究一个具体函数的图象与性质的基础上进行的。
原有知识与经验对本节课的学习有着积极的促进作用,在复习巩固的过程中,学生进一步理解知识,促进认知结构的完善,进一步体验研究函数的基本思路,而这些目标的达成要求教学必须发挥学生的主体作用,给予学生足够的活动、探究、交流、反思的时间与空间,不以老师的讲演代替学生的探索。
【教学目标】知识技能:1、进一步理解一次函数和正比例函数的意义;2、会画一次函数的图象,并能结合图象进一步研究相关的性质;3、巩固一次函数的性质,并会应用。
过程与方法:1、通过先基础在提升的过程,使学生巩固一次函数图象和性质,并能进一步提升自己应用的能力;2、通过习题,使学生进一步体会“数形结合”、“方城思想”、“分类思想”以及“待定系数法”。
情感态度:1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
教学重点难点教学重点:复习巩固一次函数的图象和性质,并能简单应用。
教学难点:在理解的基础上结合数学思想分析、解决问题。
【教法学法】1、教学方法依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。
因此我选用了以下教学方法:1、自学体验法——让学生通过作图经历体验并发现问题,分析问题,进一步解决问题。
目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。
2、直观教学法——利用多媒体现代教学手段。
目的:通过几何画板动画演示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。
2、学法指导做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。
反比例函数与一次函数综合应用教案
![反比例函数与一次函数综合应用教案](https://img.taocdn.com/s3/m/f74208768f9951e79b89680203d8ce2f00666560.png)
反比例函数与一次函数的综合应用一、学情分析1. 学生:学生已经学过了反比例函数和一次函数,有了一定的了解,但是综合性有待提高;2. 教材:这是初三复习内容;3. 课程:本课程针对中考反比例函数与一次函数结合的题目进行复习练习。
二、教学目标:1、知识目标:(1)一次函数、正比例函数、反比例函数的概念。
(2)一次函数、正比例函数、反比例函数的图象及性质。
2、能力目标:(1)用待定系数法求一次函数、正比例函数、反比例函数的解析式。
(2)会用作出一次函数、正比例函数、反比例函数的图象。
(3)能够应用一次函数与反比例函数的图象与性质分析解决一次函数与反比例函数的综合题。
3、情感态度与价值观:通过解题进一步理解数形结合的数学思想在函数中的应用。
三、教学重点:1.一次函数、正比例函数、反比例函数的图象及性质。
2.用待定系数法求一次函数、正比例函数、反比例函数的解析式。
3.熟练应用一次函数与反比例函数的图象与性质进行解题。
四、教学难点:1.灵活运用一次函数、正比例函数、反比例函数的有关知识解综合题。
2.进一步利用数形结合的思想方法进行解题。
五、教学方法:讲练结合六、学情分析:学生已经基本掌握反比例函数和一次函数的概念、图象和性质,但我校学生计算能力、试图能力和分析能力都有待提高,因此我选择了稍微简单的综合题,意在让学生提高能力的同时增强学习数学的自信心。
七、教学过程(一)源于中考,以点展面(导入)一个函数具有下列性质:①它的图象经过(-1,4);②在每个象限内,函数y 的值随自变量x 的值增大而增大;请你写出一个符合上述条件的函数关系式: .【设计意图:本题属于开放性试题,答案可以是反比例函数(一般学生)也可以是一次函数(好学生),由此引出本节课的内容,反比例函数与一次函数综合应用】(二)综合应用,提升能力(新授课)1.例题分析若xy 4-=的图象与正比例函数y =kx (k ≠0)的图象在第二象限的交点为A (-1,n ),如图.(1)求正比例函数的解析式;(中等学生回答)(2)确定该函数的图象与正比例函数y =kx 的图象另一个交点B 的坐标;(全体学生回答)(3)过点A 、B 向x 轴作垂线,垂足为M 、N ,求S △AOM 、S △BON . (全体学生回答)(4)①若C (2,m ) 为该正比例函数图象上一点,比较m 与n 的大小;(中等学生回答)②若E (-2,m ) 为该正比例函数图象上一点,比较m 与n 的大小;(全体学生回答) ③若反比例函数值大于正比例函数值,确定 x 的取值范围. (中等学生回答)【说明:本题是由4道学生熟悉的小题综合在一起的,难度不大,让学生体验一部分综合题就是由几个有关联的小题放在一起,消除学生抵触心理,为后面难点打基础】2. 方法总结解决函数问题方法总结:(师生共同总结,学生在学案中填写)解决问题 求函数解析式 确定交点坐标 求几何图形面积 比较函数值大小 3. 针对练习:回归中考,能力检测4(学生独立完成,大屏幕展示学生解题过程)(三)变式延伸,拓展思维:1. 例题分析若直线()041>+=k kx y 与反比例函数()02≠=m m xm y 为常数,的图象一个交点为A (-3,1),如图.(1)=1y ;=2y (全体学生)(2)直接写出两函数的另一个交点坐标;(全体学生)(3)当x 取何值时,21y y >;(中等学生)(4)求△OAB 的面积; (较好学生)(5)过点A 作x 轴的垂线,过点B 作y 轴的垂线,两线交于点C .(课外延伸)①若反比例函数()02≠=m m xm y 为常数,的图象与△ABC 有公共点,请直接写出m 的取值范围;②若一次函数y =ax +b 的图象平行于直线 AB ,若直线y =ax +b 与△ABC 有公共点,求b 的取值范围;【说明:本题是本节课的难点,一次函数与反比例函数的结合,以及割补法求面积,利用多媒体教学的优势,用动画展示割补的过程,从而突破难点】2. 方法总结一次函数与反比例函数综合应用方法总结:(师生共同总结,学生在学案中填写)3. 针对练习:回归中考,能力检测5(学生独立完成,大屏幕展示学生解题过程)(四)课堂小结:本节课讲的解决函数问题以及函数综合题的方法,强调交点的重要性.(五)课堂反馈:回归中考,能力检测6八、板书设计策 略 方 法八、教学反思本节课学生基本掌握反比例函数和一次函数的概念、图象和性质以及掌握利用这些知识解较简单的综合题的方法,但是对于数形结合的思想运用、与几何知识的结合、坐标与线段的转化还不是很熟练,需要进一步练习提高。
北师大版数学八年级下册2.5《一元一次不等式与一次函数的综合应用》(第2课时)教学设计
![北师大版数学八年级下册2.5《一元一次不等式与一次函数的综合应用》(第2课时)教学设计](https://img.taocdn.com/s3/m/5a297b594b7302768e9951e79b89680202d86b63.png)
北师大版数学八年级下册2.5《一元一次不等式与一次函数的综合应用》(第2课时)教学设计一. 教材分析《一元一次不等式与一次函数的综合应用》是北师大版数学八年级下册第2.5节的内容。
本节课主要通过实际问题引出一元一次不等式与一次函数的综合应用,让学生掌握如何将实际问题转化为数学模型,并运用一元一次不等式和一次函数解决问题。
教材中包含了丰富的例题和练习题,有助于学生巩固所学知识。
二. 学情分析学生在八年级上册已经学习了一元一次不等式和一次函数的基础知识,对这两个概念有一定的了解。
但如何将实际问题转化为数学模型,并运用一元一次不等式和一次函数解决问题,对学生来说还具有一定的挑战性。
因此,在教学过程中,教师需要引导学生将实际问题与数学知识相结合,提高学生解决问题的能力。
三. 教学目标1.理解一元一次不等式与一次函数之间的关系,掌握如何将实际问题转化为数学模型。
2.能够运用一元一次不等式和一次函数解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.教学重点:如何将实际问题转化为数学模型,并运用一元一次不等式和一次函数解决问题。
2.教学难点:实际问题与数学知识之间的联系,如何运用一元一次不等式和一次函数解决实际问题。
五. 教学方法1.情境教学法:通过实际问题引出本节课的内容,让学生在解决问题的过程中掌握一元一次不等式与一次函数的综合应用。
2.案例分析法:分析教材中的例题,让学生了解如何将实际问题转化为数学模型。
3.小组讨论法:让学生在小组内共同探讨问题,培养学生的团队协作能力。
4.引导发现法:教师引导学生发现实际问题与数学知识之间的联系,培养学生的问题解决能力。
六. 教学准备1.教材:北师大版数学八年级下册。
2.课件:教师根据教材内容制作课件,包含例题、练习题等。
3.的黑板和粉笔:用于板书教学重点和难点。
4.练习题:为学生提供巩固知识的练习题。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的内容,让学生思考如何将实际问题转化为数学模型。
八年级数学下册《一次函数的应用》教案、教学设计
![八年级数学下册《一次函数的应用》教案、教学设计](https://img.taocdn.com/s3/m/5902062726284b73f242336c1eb91a37f11132d4.png)
“如果大家对一次函数的性质和应用有任何疑问,请大胆提出来。我们可以一起讨论,共同解决问题。”
3.总结反馈:在小组讨论的基础上,总结一次函数的性质和应用,加深学生的理解。
(四)课堂练习
1.设计习题:根据一次函数的知识点,设计不同类型的习题,让学生进行课堂练习。
1.思维能力:学生具备一定的逻辑思维能力,能够理解抽象的数学概念,但部分学生对函数概念的理解尚显不足,需要进一步引导和巩固;
2.学习兴趣:学生对数学学科的兴趣有所差异,部分学生对函数学习充满热情,另一部分学生可能对函数概念感到困惑,需要激发兴趣;
3.学习方法:学生在学习过程中,对探究、合作等学习方法有所了解,但实际操作中仍需教师引导,提高学习效率;
1.重点:一次函数的定义、性质、图像及其在实际问题中的应用。
2.难点:
(1)理解一次函数图像的斜率与截距的几何意义;
(2)建立一次函数模型解决实际问题,尤其是涉及两个变量之间的线性关系问题;
(3)对一次函数图像的绘制和解读,以及从图像中分析一次函数的性质。
(二)教学设想
1.教学方法:
(1)采用情境教学法,通过实际问题引入一次函数的概念,让学生在具体情境中感知数学知识;
"请同学们认真完成课本上的练习题,特别是涉及到一次函数图像绘制和性质分析的问题,这些题目将帮助你们巩固基础知识。"
2.实践应用题:结合生活实际,设计一个一次函数模型解决实际问题,并撰写解题报告。
"选择一个你们生活中的问题,比如计算商品的打折价格、分析速度和时间的关系等,运用一次函数的知识建立模型,并详细记录解题过程,形成解题报告。"
“数学知识来源于生活,我们要学会用数学的眼光看待生活中的问题。一次函数作为解决实际问题的有力工具,希望同学们能够掌握好。”
【教案】用一次函数模型解实际综合应用
![【教案】用一次函数模型解实际综合应用](https://img.taocdn.com/s3/m/5059e0fdf71fb7360b4c2e3f5727a5e9856a27f6.png)
第2课时用一次函数模型解实际综合应用教学目标【知识与技能】熟练运用一次函数知识建立实际问题的数学模型,提高解决实际问题的能力.【过程与方法】经历活动过程,让学生认识数学在现实生活中的用途,发展学生运用数学知识解决实际问题的能力.【情感、态度与价值观】1.体会数学与生活的联系,了解数学的价值,加深对数学的理解和认识.2.认识到数学是解决实际问题的重要工具,了解数与形的联系以及事物之间的关联.重点难点【重点】根据题意写出函数关系式,建立实际问题的数学模型.【难点】运用一次函数解决实际问题.教学过程一、创设情境,导入新知师:这一章我们在前面都学习了哪些内容?生:在前面我们学习了一次函数的形式和画法,也学习了一次函数与二元一次方程的联系,学习了用一次函数的图象解二元一次方程组.师:很好!这节课我们用这些知识来解决实际问题,学以致用.二、共同探究,获取新知【例】奥运会每4年举办一次.奥运会的游泳成绩在不断地被刷新,如男子400m自由泳项目,1996年奥运冠军的成绩比1960年的提高了约30s.下面是该项目冠军的一些数据:冠军成绩/s231.31231.23226.95225.00227.97220.59223.10221.86根据上面的资料,能否预测2012年奥运会时该项目的冠军成绩?如何解决这个问题?分析:题中给出的数据是每4年一次奥运会上男子400m自由泳的冠军成绩.如果设x表示1980年起举办奥运会的年份,y表示相应年份奥运会上男子400m自由泳的冠军成绩,那么,对于每个x、y有唯一确定值与之对应.这样,要估算2012年这项运动的冠军成绩,设法求出变量y与x的关系式是关键.解:1.以1980年为零点,举办奥运会的年份的x值为横坐标、相应的y值为纵坐标,在坐标系中描出这些数据的点,如图:2.观察图中描写的点的整体分布,它们基本上在一条直线附近波动.因此,y与x之间的关系可以近似地以一次函数去模拟,即设y=kx+b.这里,我们选择点(0,231.31)及点(6,223.10)的坐标代入y=kx+b中得解方程组,得k=-1.37,b=231.31.所以一次函数的解析式为y=-1.37x+231.31.3.x=8代入上式,得y=-10.96+231.31=220.35(s).所以估计2012年奥运会男子400m自由泳冠军成绩约是220.35s.师:通过上面的学习,我们可以知道建立两个变量之间的函数模型的具体步骤如下:(1)将实验得到的数据在直角坐标系中描出;(2)观察这些点的特征,确定选用的函数形式,并根据已知数据求出具体的函数表达式;(3)进行检验;(4)应用这个函数模型解决问题.三、练习新知教师多媒体出示:某单位有职工几十人,想在节假日期间组织到外地H处旅游.当地有甲、乙两家旅行社,它们服务质量基本相同,到H地旅游的价格都是每人100元.经联系协商,甲旅行社表示可给予每位游客八折优惠;乙旅行社表示单位先交1000元后,给予每位游客六折优惠.问该单位选择哪个旅行社,使其支付的旅游总费用较少?学生小组讨论.师:假设该单位参加旅游的人数为x,按甲旅行社的优惠条件,应付费用多少元?生:80x元.师:按乙旅行社的优惠条件,应付费用多少元?生:(60x+1000)元.师:那么“选择哪个旅行社,使其支付的旅游总费用较少”的问题就转化成了什么问题?生:转化成了“80x和60x+1000哪个式子的值小”的问题.师:很好!那我们怎么比较它们的大小呢?生:记y1=80x,y2=60x+1000,在同一直角坐标系内作出两个函数的图象,x的值相同时,y的值小的那部分的费用就低.师:现在请大家在方格纸上建立坐标系,画出两个函数的图象并观察图象,看能得到什么结论.学生作图,教师巡视指导,最后得到:学生观察图象后作答:当人数为50时,选择甲或乙旅行社费用都一样;当人数小于50时,选择甲旅行社费用较少;当人数大于50时,选择乙旅行社费用较少.师:同学们回答得很好.还有没有其他的方法呢?生:还可以这样做.设选择甲、乙旅行社所需费用之差为y,则y=y1-y2=80x-(60x+1000)=20x-1000,画一次函数y=20x-1000的图象,由y的正负来判断y1与y2的大小.师:现在请同学们画出这个图象,然后观察图象作答. 学生作图,得到:学生观察图象后回答:当x=50时,y=0,即y1=y2;当x>50时,y>0,即y1>y2;当x<50时,y<0,即y1<y2.师:很好.四、课堂小结师:你今天学习了什么内容?学生回答,教师补充完善.教学反思本节课我给出了一个生活中的例子,让学生来解决.学生各自发挥自己的能力,用自己的办法来解决问题,锻炼学生的主动性和积极性.我鼓励他们说出自己的意见,锻炼他们的语言表达能力.在大家的讨论中,加深学生对一次函数和一次函数的意义的理解.这节课涉及了用解析式表达函数之间的关系和由函数图象比较两个函数值的大小等知识,这是对学生函数应用能力和观察能力的考察和锻炼.小升初专项卷2.图形与几何一、认真审题,填一填。
冀教版2019-2020年八年级数学下册学案:21.4 第2课时 两个一次函数的综合应用
![冀教版2019-2020年八年级数学下册学案:21.4 第2课时 两个一次函数的综合应用](https://img.taocdn.com/s3/m/ce391f7bde80d4d8d15a4fe7.png)
第2课时两个一次函数的综合应用学习目标1.掌握两个一次函数图像的应用;(重点)2.能利用函数图象解决实际问题。
(难点)教学过程一、情景导入在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示.请你根据图象所提供的信息回答下列问题:甲、乙两根蜡烛燃烧前的高度分别是厘米、厘米,从点燃到燃尽所用的时间分别是小时、小时.你会解答上面的问题吗?学完本解知识,相信你能很快得出答案。
二、合作探究探究点一:两个一次函数的应用(2015•日照模拟)自来水公司有甲、乙两个蓄水池,现将甲池的中水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如下所示,结合图象回答下列问题.(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数表达式;(2)求注入多长时间甲、乙两个蓄水池水的深度相同;(3)求注入多长时间甲、乙两个蓄水的池蓄水量相同;(4)3小时后,若将乙蓄水池中的水按原速全部注入甲蓄水池,又需多长时间?分析:解答:探究点二利用两个一次函数解决方案问题(2015•江西模拟)某文具店为了了解2015年3月份计算器的销售情况,对该月各种型号计算器的情况进行了统计,并将统计的结果绘制成如下两幅不完整的统计图.(1)请根据图中提供的信息,将条形图补充完整.(2)该店4月份只购进了A,B,C三种型号的计算器,其数量和与3份计算器销量的总数量相同,结果恰好用完进化款共8200元,设购进A型计算器x只,B型计算器y只,三种计算器的进价和售价如下表:∙∙求出y与x之间的函数关系式.(3)在(2)中的条件下,根据实际情况,预计B型计算器销售超过40只后,这种型号的计算器就会产生滞销.①假设所购进的A,B,C三种型号计算器能全部售出,求出预估利润P(元)与x(只)的函数关系式;②求出预估利润的最大值.分析:解答:。
八年级数学下册第二十一章一次函数21.4一次函数的应用教案冀教版(2021年整理)
![八年级数学下册第二十一章一次函数21.4一次函数的应用教案冀教版(2021年整理)](https://img.taocdn.com/s3/m/fd993fc159eef8c75ebfb3d2.png)
河北省秦皇岛市青龙满族自治县八年级数学下册第二十一章一次函数21.4 一次函数的应用教案(新版)冀教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省秦皇岛市青龙满族自治县八年级数学下册第二十一章一次函数 21.4 一次函数的应用教案(新版)冀教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省秦皇岛市青龙满族自治县八年级数学下册第二十一章一次函数 21.4 一次函数的应用教案(新版)冀教版的全部内容。
21。
4一次函数的应用教学设计思想在掌握了一次函数的图像、性质等知识后,这节课我们将学习一次函数的应用,通过两个课时对一次函数的应用进行简单概括、归纳,这一节是本章的重点与归宿。
教学过程中鼓励解法和表述的多样化,充分加强图象识别与应用能力的培养,避免习惯的“代数化”倾向。
突出通过函数获取信息,发展形象思维;突出一次函数的简单应用;突出函数与方程、不等式的关系。
根据不同学生的基础,有针对性地增强问题的探索性与开放性,使不同层次学生的思维能力均得到充分的发展,调动学生自主学习与合作交流的积极性.教学目标知识与技能经历应用一次函数解决实际问题的过程,熟悉一次函数在生活中的应用。
通过解决实际问题领悟函数与方程、不等式的关系及应用价值。
提高通过文字、表格、图像获取信息的能力。
在解决问题的过程中,提高综合思维的能力。
过程与方法经历探求直线解析式的过程,体验数学学习探究的方法。
情感态度价值观初步学会利用函数性质进行判断及决策的方法,增进应用函数思想的意识。
体验数学学习活动充满着探索,并在探索中感受成功,建立自信;体验数学来源于生活并应用于生活。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时两个一次函数的综合应用
学习目标
1.掌握两个一次函数图像的应用;(重点)
2.能利用函数图象解决实际问题。
(难点)
教学过程
一、情景导入
在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示.请你根据图象所提供的信息回答下列问题:
甲、乙两根蜡烛燃烧前的高度分别是厘米、厘米,从点燃到燃尽所用的时间分别是小时、小时.
你会解答上面的问题吗?学完本解知识,相信你能很快得出答案。
二、合作探究
探究点一:两个一次函数的应用
(2015•日照模拟)自来水公司有甲、乙两个蓄水池,现将甲池的中水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如下所示,结合图象回答下列问题.
(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数表达式;
(2)求注入多长时间甲、乙两个蓄水池水的深度相同;
(3)求注入多长时间甲、乙两个蓄水的池蓄水量相同;
(4)3小时后,若将乙蓄水池中的水按原速全部注入甲蓄水池,又需多长时间?
分析:
解答:
探究点二利用两个一次函数解决方案问题
(2015•江西模拟)某文具店为了了解2015年3月份计算器的销售情况,对该月各种型号计算器的情况进行了统计,并将统计的结果绘制成如下两幅不完整的统计图.
(1)请根据图中提供的信息,将条形图补充完整.
(2)该店4月份只购进了A,B,C三种型号的计算器,其数量和与3份计算器销量的总数量相同,结果恰好用完进化款共8200元,设购进A型计算器x只,B型计算器y只,三种计算器的进价和售价如下表:
•
A型B型C型
进价(元/只)50 30 20
售价(元/只)70 45 25
•
求出y与x之间的函数关系式.
(3)在(2)中的条件下,根据实际情况,预计B型计算器销售超过40只后,这种型号的计算器就会产生滞销.
①假设所购进的A,B,C三种型号计算器能全部售出,求出预估利润P(元)与x(只)
的函数关系式;
②求出预估利润的最大值.分析:
解答:。