人工神经网络建模 ppt课件
合集下载
BP神经网络模型PPT课件
![BP神经网络模型PPT课件](https://img.taocdn.com/s3/m/4745abb084868762caaed570.png)
学习规则: 权值调整规则,即在学习过程中网络中各神经 元的连接权变化所依据的一定的调整规则。
BP网络的标准学习算法-算法思想
学习的类型:有导师学习 核心思想:
将输出误差以某种形式通过隐层向输入层逐层反传
将误差分摊给各层的所有 单元---各层单元的误 差信号
学习的过程: 信号的正向传播
(
yio (k) who
h
whohoh (k) bo )
who
hoh (k)
e
yio
(1 2
q
(do(k)
o1
yio
yoo (k)))2
(do (k )
yoo (k)) yoo
(k)
(do(k) yoo (k))f ( yio(k)) o(k)
小于零时,权值调整量
为正,实际输出少于期
望输出,权值向增大方向
调整,使得实际输出与期
望输出的差减少。
who
e who
<0,
此时Δwho>0
BP神经网络学习算法的MATLAB实现
MATLAB中BP神经网络的重要函数和基本 功能
函数名
功能
newff()
生成一个前馈BP网络
tansig()
双曲正切S型(Tan-Sigmoid)传输函数
神经元网络工作的全部秘密就在于它的权重值,
神经网络概述
选择不同的权重值,神经元网络就会有不同的 输入-输出关系。 神经元网络的具体工作原理:我们将样本数据 的输入值输进神经元网络,就得到一组输出值。 这组输出值当然不是我们的理想输出值。于是, 我们就根据实际输出与理想输出的差来修正权 值,以缩小这种差别。这样反复训练多次,最 后,使实际输出与理想输出趋于一致。这样, 神经元网络就可以用来代替我们所需要的模型 了。
BP网络的标准学习算法-算法思想
学习的类型:有导师学习 核心思想:
将输出误差以某种形式通过隐层向输入层逐层反传
将误差分摊给各层的所有 单元---各层单元的误 差信号
学习的过程: 信号的正向传播
(
yio (k) who
h
whohoh (k) bo )
who
hoh (k)
e
yio
(1 2
q
(do(k)
o1
yio
yoo (k)))2
(do (k )
yoo (k)) yoo
(k)
(do(k) yoo (k))f ( yio(k)) o(k)
小于零时,权值调整量
为正,实际输出少于期
望输出,权值向增大方向
调整,使得实际输出与期
望输出的差减少。
who
e who
<0,
此时Δwho>0
BP神经网络学习算法的MATLAB实现
MATLAB中BP神经网络的重要函数和基本 功能
函数名
功能
newff()
生成一个前馈BP网络
tansig()
双曲正切S型(Tan-Sigmoid)传输函数
神经元网络工作的全部秘密就在于它的权重值,
神经网络概述
选择不同的权重值,神经元网络就会有不同的 输入-输出关系。 神经元网络的具体工作原理:我们将样本数据 的输入值输进神经元网络,就得到一组输出值。 这组输出值当然不是我们的理想输出值。于是, 我们就根据实际输出与理想输出的差来修正权 值,以缩小这种差别。这样反复训练多次,最 后,使实际输出与理想输出趋于一致。这样, 神经元网络就可以用来代替我们所需要的模型 了。
《人工神经网络》课件
![《人工神经网络》课件](https://img.taocdn.com/s3/m/0326e3cf690203d8ce2f0066f5335a8103d26656.png)
添加项标题
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成
第一篇人工神经网络81页PPT
![第一篇人工神经网络81页PPT](https://img.taocdn.com/s3/m/9ea06d0baef8941ea66e059d.png)
N
M
Ii 0 且 Ej 0 时
i1
j1
N
M
Ii 0 且 Ej 0 时
i1
j1
79
输出 Y1 Y0 Y0 Y0
12
§2.2.2 线性加权模型
兴奋性 I1
……
输入
{0,1} IN
抑制性 E1
输入
{0,1} EM
图2.3 线性加权模型
Y {0,1}
输出
79
13
输入条件
N
M
Ii Ej 0
i1
j1
N
M
Ii Ej 0
即当输入N1(N2)个脉冲后,计数器产生一个脉冲 输出,同时回零重新计数。 ❖Z1…Z5都是基于线性加权模型的神经元,它们的阈 值和联接方式都已在图中注明。 ❖如果X1和X2同时输入N<N1次,相当于巴甫洛夫试验 中建立条件反射的训练过程。
79
22
❖一旦当N=N1,则模计数器N1产生输出脉冲,条件 反射建立起来。
79
3
§2.1 生 物 神 经 元
§2.1.1 神经元的结构 §2.1.2 膜电位与神经元的兴奋
79
4
§2.1.1 神经元的结构
❖ 本体:细胞体(细胞膜、质、核),对输入信号 进行处理,相当于CPU。
❖ 树突:本体向外伸出的分支,多根,长1mm左右, 本体的输入端。
❖ 轴突:本体向外伸出的最长的分支,即神经纤维, 一根,长1cm—1m左右,通过轴突上的神经末梢将 信号传给其它神经元,相当于本体的输出端。
79
7
❖ 抑制状态:当外部输入信号使膜电位下降低于阈 值电位时,神经元处于抑制状态,无脉冲输出。
“兴奋─抑制”状态满足“0─1”律
人工神经网络讲PPT课件
![人工神经网络讲PPT课件](https://img.taocdn.com/s3/m/e0534744caaedd3383c4d3f9.png)
图2-1 神经元的解剖
2、生物神经元
突触,是一个神经元与另一 个神经元之间相联系并进行 信息传送的结构。 突触的存在说明:两个神经 元的细胞质并不直接连通, 两者彼此联系是通过突触这 种结构接口的。有时.也把 突触看作是神经元之间的连 接。
图2-2 突触结构
2生物神经元
目前,根据神经生理学的研究,已经发现神经元及其间的 突触有4种不同的行为。神经元的4种生物行为有:
ykj ——模式k第j个输出单元的期望值; 式中:
y j k ——模式k第j个输出单元的实际值;
M——样本模式对个数;
Q——输出单元个数。
第二种:误差平方和
E
k 2 ( y y ) j kj k 1 j 1
M
Q
MQ
式中:M——样本模式对个数;
Q——输出单元个数。
1 Q Ek ( y j k ykj ) 2 2 j 1 E Ek
r r (Wi , X , di )
权矢量的变化是由学习步骤按时间t,t+1,…,一步一步进行计算的。在 时刻t连接权的变化量为:
Wi (t ) cr[Wi (t ), X i (t ), di (t )] X (t )
其中c是一个正数,称为学习常数,决定学习的速率。
神经元网络的学习规则
——这一能力可以算作是智能的高级形式 ——是人类对世界进行适当改造、推动社会不断发展的能力
4
联想、推理、判断、决策语言的能力
——这是智能高级形式的又一方面 ——主动与被动之分。联想、推理、判断、决策的能力是主动的基础。
1、引言
5 6 7 8
通过学习取得经验与积累知识的能力 发现、发明、创造、创新的能力 实时、迅速、合理地应付复杂环境的能力 预测,洞察事物发展、变化的能力
人工神经网络ppt课件
![人工神经网络ppt课件](https://img.taocdn.com/s3/m/156d6c88561252d381eb6e62.png)
LOGO
人工神经网络ppt课件
感知器
• 一种类型的ANN系统是以感知器为基础
• 感知器以一个实数值向量作为输入,计 算这些输入的线性组合,如果结果大于 某个阈值,就输出1,否则输出-1
o(x1,..xn .), 11w 0w 1o x1 t.h..ew nrxnw 0ise
其 值 率中,。每用特个来别w决地i是定 ,一输-w个入0是实xi阈对数值感常。知量器,输或出叫的做贡权献
• 算法的一种常用改进方法是随着梯度下降步数 的增加逐渐减小学习速率
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
26
梯度下降的随机近似
• 梯度下降是一种重要的通用学习范型,它是搜 索庞大假设空间或无限假设空间一种策略
• 梯度下降应用于满足以下条件的任何情况
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
33
可微阈值单元
• 使用什么类型的单元来构建多层网络?
• 多个线性单元的连接仍产生线性函数,而我们 希望构建表征非线性函数的网络
Байду номын сангаас
• 感知器单元可以构建非线性函数,但它的不连 续阈值使它不可微,不适合梯度下降算法
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
25
梯度下降法则的推导(4)
• 梯度下降算法如下
– 选取一个初始的随机权向量 – 应用线性单元到所有的训练样例,根据公式4.7计算
每个权值的w 更新权值
• 因为误差曲面仅包含一个全局的最小值,所以 无论训练样例是否线性可分,算法都会收敛到 具有最小误差的权向量,条件是使用足够小的 学习速率
人工神经网络ppt课件
感知器
• 一种类型的ANN系统是以感知器为基础
• 感知器以一个实数值向量作为输入,计 算这些输入的线性组合,如果结果大于 某个阈值,就输出1,否则输出-1
o(x1,..xn .), 11w 0w 1o x1 t.h..ew nrxnw 0ise
其 值 率中,。每用特个来别w决地i是定 ,一输-w个入0是实xi阈对数值感常。知量器,输或出叫的做贡权献
• 算法的一种常用改进方法是随着梯度下降步数 的增加逐渐减小学习速率
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
26
梯度下降的随机近似
• 梯度下降是一种重要的通用学习范型,它是搜 索庞大假设空间或无限假设空间一种策略
• 梯度下降应用于满足以下条件的任何情况
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
33
可微阈值单元
• 使用什么类型的单元来构建多层网络?
• 多个线性单元的连接仍产生线性函数,而我们 希望构建表征非线性函数的网络
Байду номын сангаас
• 感知器单元可以构建非线性函数,但它的不连 续阈值使它不可微,不适合梯度下降算法
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
25
梯度下降法则的推导(4)
• 梯度下降算法如下
– 选取一个初始的随机权向量 – 应用线性单元到所有的训练样例,根据公式4.7计算
每个权值的w 更新权值
• 因为误差曲面仅包含一个全局的最小值,所以 无论训练样例是否线性可分,算法都会收敛到 具有最小误差的权向量,条件是使用足够小的 学习速率
人工神经网络-PPT课件
![人工神经网络-PPT课件](https://img.taocdn.com/s3/m/de985743a45177232f60a2db.png)
*
《医学信息分析与决策》课程组
7
一、神经网络简介
神经网络的基本特征
结构特征: 并行式处理 分布式存储 容错性
能力特征: 自学习 自组织 自适应性
*
《医学信息分析与决策》课程组
8
一、神经网络简介
神经网络的基本功能
联 想 记 忆 功 能
*
《医学信息分析与决策》课程组
9
一、神经网络简介
神经网络的基本功能
人脑与计算机信息处理机制的比较 系统结构 信号形式 信息存储 信息处理机制
*
《医学信息分析与决策》课程组
5
一、神经网络简介
生物神经网络 人类的大脑大约有1.41011个神经细胞,亦称 为神经元。每个神经元有数以千计的通道同其 它神经元广泛相互连接,形成复杂的生物神经 网络。 人工神经网络 以数学和物理方法以及信息处理的角度对人脑 神经网络进行抽象,并建立某种简化模型,就 称为人工神经网络(Artificial Neural Network,缩写 ANN)。
*
《医学信息分析与决策》课程组
19
一、神经网络简介
神经网络的软硬件实现
MATLAB以商品形式出现后,仅短短几年,就以 其良好的开放性和运行的可靠性,使原先控制 领域里的封闭式软件包(如英国的UMIST,瑞 典的LUND和SIMNON,德国的KEDDC)纷纷淘汰, 而改以MATLAB为平台加以重建。在时间进入20 世纪九十年代的时候,MATLAB已经成为国际控 制界公认的标准计算软件。
*
《医学信息分析与决策》课程组
21
一、神经网络简介
神经网络的软硬件实现
MATLAB的推出得到了各个领域的专家学者的广 泛关注,在此基础上,专家们相继推出了 MATLAB工具箱,主要包括信号处理、控制系统、 神经网络、图像处理、鲁棒控制、非线性系统 控制设计、系统辨识、最优化、模糊逻辑、小 波等工具箱,这些工具箱给各个领域的研究和 工程应用提供了有力的工具。
第一章 人工神经网络概述_PPT幻灯片
![第一章 人工神经网络概述_PPT幻灯片](https://img.taocdn.com/s3/m/11cc16bda98271fe900ef999.png)
2. 希望在理论上寻找新的突破,建立新的专 用/通用模型和算法。
3. 进一步对生物神经系统进行研究,不断地 丰富对人脑的认识。
人工神经网络
人工神经网络的特点:
(1)高度的并行性 (2)高度的非线性全局作用 (3)良好的容错性与联想记忆功能 (4)强大的自适应、自学习功能
第二节 人工神经网络的基本结构与模型
人工神经网络
第一节 人工神经网络的概念与发展
T.Kohonen的定义:“人工神经网络是由 具有适应性的简单单元组成的广泛并行互 连的网络,它的组织能够模拟生物神经系 统对真实世界物体所作出的交互反应。”
人工神经网络
历史回顾
➢萌芽期(20世纪40年代) ➢第一高潮期(1950~1968) ➢反思期(1969~1982) ➢第二高潮期(1983~1990) ➢再认识与应用研究期(1991~)
科学发展大趋势
New Society New Education
New Sciences
Info
Bio
Enhancing
Human
Performance
Nano
Cogno
New Industries
New Applications
New Humanbeing
技术创新浪潮的经济长波规律
水力 纺织 铁
人工神经网络
简单神经元网络及其简化结构图
(1)细胞体 (2)树突 (3)轴突(4)突触
人工神经网络
人工神经元模型
输入分量pj(j=1,2,…,r) 权值分量wj(j=1,2,…,r)
激活函数 f(·) 偏差(bias) b
人工神经网络
权值和输入的矩阵形式可以由W的行矢量和 P的列矢量表示:
3. 进一步对生物神经系统进行研究,不断地 丰富对人脑的认识。
人工神经网络
人工神经网络的特点:
(1)高度的并行性 (2)高度的非线性全局作用 (3)良好的容错性与联想记忆功能 (4)强大的自适应、自学习功能
第二节 人工神经网络的基本结构与模型
人工神经网络
第一节 人工神经网络的概念与发展
T.Kohonen的定义:“人工神经网络是由 具有适应性的简单单元组成的广泛并行互 连的网络,它的组织能够模拟生物神经系 统对真实世界物体所作出的交互反应。”
人工神经网络
历史回顾
➢萌芽期(20世纪40年代) ➢第一高潮期(1950~1968) ➢反思期(1969~1982) ➢第二高潮期(1983~1990) ➢再认识与应用研究期(1991~)
科学发展大趋势
New Society New Education
New Sciences
Info
Bio
Enhancing
Human
Performance
Nano
Cogno
New Industries
New Applications
New Humanbeing
技术创新浪潮的经济长波规律
水力 纺织 铁
人工神经网络
简单神经元网络及其简化结构图
(1)细胞体 (2)树突 (3)轴突(4)突触
人工神经网络
人工神经元模型
输入分量pj(j=1,2,…,r) 权值分量wj(j=1,2,…,r)
激活函数 f(·) 偏差(bias) b
人工神经网络
权值和输入的矩阵形式可以由W的行矢量和 P的列矢量表示:
人工神经网络理论及应用.ppt课件
![人工神经网络理论及应用.ppt课件](https://img.taocdn.com/s3/m/1e2b188481eb6294dd88d0d233d4b14e85243ec1.png)
ww1ij (k )
m
yi1
j1
1 yi1
w2ji e j
yi1 (1
yi1 )
uj
对比Hebb规则: 各项
如遇到隐含层多于1层,可依次类推
yi (1 yi ) y1jei
yi1(1
yi1) u j
m
yi1
1 yi1
w2jie
j
j1
演示
BP算法演示
BP学习算法评述
优点
代入上式,有 因此
ym yi1
ym (1
ym )wmi
J
T
e
e yi1
m j 1
y j (1
y j ) w2jiej
即误差进行反向传输
BP学习步骤:误差反传(隐含层)
w1
w2
u1
e1
yi1 wi1j
yi1(1 yi1)u j
un
… …
…
em
综合上述结果
y1
Δwi1j
k
dJ dwi1j
主要内容
神经元数学模型 感知器 多层前馈网络与BP算法※ BP算法评述
神经元数学模型
n
y f wjxj
j1
n
设 p wj x j 则 yi f ( pi ) j 1
作用 函数
f
(
x)
1, 0,
x0 x0
i
f (xi )
(a)
f (x)
1
0 x
(b) 作用函数
MP神经元模型
感知器(感知机)
包含感知层,连接层和反应层。
感知层:接受二值输入; 连接层:根据学习规则不断调整权值 输出层:取为对称型阶跃函数