人工神经网络简介 ppt课件
合集下载
《人工神经网络》课件
添加项标题
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成
《人工神经网络》课件
拟牛顿法
改进牛顿法的不足,使用正定矩阵近 似Hessian矩阵,提高优化效率。
共轭梯度法
结合梯度下降法和共轭方向的思想, 在每一步迭代中选择合适的共轭方向 进行搜索。
遗传算法
模拟生物进化过程的优化算法,通过 选择、交叉、变异等操作寻找最优解 。
正则化技术
L1正则化
对权重参数的绝对值进行惩罚总结词
自然语言处理是利用人工神经网络对自然语言文本进行分析和处理的技术。
详细描述
自然语言处理是实现人机文本交互的关键技术之一,通过训练神经网络对大量文本数据进 行学习,可以实现对文本的自动分类、情感分析、机器翻译等功能。
具体应用
在社交媒体领域,自然语言处理技术可以用于情感分析和舆情监控;在新闻媒体领域,可 以用于新闻分类和摘要生成;在机器翻译领域,可以用于实现多语言之间的自动翻译。
06
人工神经网络的未 来展望
新型神经网络模型的研究
持续探索新型神经网络模型
随着技术的不断发展,新型神经网络模型的研究将不断涌现,以解决传统模型无法处理 的复杂问题。这些新型模型可能包括更复杂的拓扑结构、更高效的参数优化方法等。
结合领域知识进行模型设计
未来的神经网络模型将更加注重与领域知识的结合,以提高模型的针对性和实用性。例 如,在医疗领域,结合医学影像和病理学知识的神经网络模型能够更准确地辅助医生进
THANKS
感谢您的观看
文字、人脸等目标的技术。
02 03
详细描述
图像识别是人工神经网络应用的重要领域之一,通过训练神经网络对大 量图像数据进行学习,可以实现对图像的自动分类、目标检测、人脸识 别等功能。
具体应用
在安防领域,图像识别技术可以用于人脸识别和视频监控;在医疗领域 ,可以用于医学影像分析;在电商领域,可以用于商品图片的自动分类 和检索。
神经网络控制基础人工神经网络课件ppt课件
其他工业领域应用案例
电力系统
神经网络控制可以应用于电力系统的负荷预测、故障诊断和稳定性 分析等方面,提高电力系统的运行效率和安全性。
化工过程控制
神经网络控制可以对化工过程中的各种参数进行实时监测和调整, 确保生产过程的稳定性和产品质量。
航空航天
神经网络控制在航空航天领域的应用包括飞行器的姿态控制、导航控 制和故障诊断等,提高飞行器的安全性和性能。
05 神经网络控制性能评估与优化
性能评估指标及方法
均方误差(MSE)
衡量神经网络输出与真实值之间的误差,值越小表示性能越好。
准确率(Accuracy)
分类问题中正确分类的样本占总样本的比例,值越高表示性能越好。
交叉验证(Cross-Validation)
将数据集分成多份,轮流作为测试集和训练集来评估模型性能。
强化学习在神经网络控制中应用
强化学习原理
通过与环境进行交互并根据反馈信号进行学习的方法,使神经网络能够自主学习 到最优控制策略。
强化学习算法
包括Q-learning、策略梯度等算法,用于求解神经网络控制中的优化问题,实现 自适应控制。
04 神经网络控制系统设计与实现
系统需求分析
功能性需求
明确系统需要实现的功能,如 数据输入、处理、输出等。
非监督学习
无需已知输出数据,通过挖掘输入数 据中的内在结构和特征进行学习,常 用于聚类、降维等任务。
深度学习在神经网络控制中应用
深度学习模型
通过构建深层神经网络模型,实现对复杂非线性系统的建模与控制,提高控制 精度和性能。
深度学习优化算法
采用梯度下降等优化算法对深度学习模型进行训练,提高训练效率和模型泛化 能力。
神经网络ppt课件
神经元层次模型 组合式模型 网络层次模型 神经系统层次模型 智能型模型
通常,人们较多地考虑神经网络的互连结构。本 节将按照神经网络连接模式,对神经网络的几种 典型结构分别进行介绍
12
2.2.1 单层感知器网络
单层感知器是最早使用的,也是最简单的神经 网络结构,由一个或多个线性阈值单元组成
这种神经网络的输入层不仅 接受外界的输入信号,同时 接受网络自身的输出信号。 输出反馈信号可以是原始输 出信号,也可以是经过转化 的输出信号;可以是本时刻 的输出信号,也可以是经过 一定延迟的输出信号
此种网络经常用于系统控制、 实时信号处理等需要根据系 统当前状态进行调节的场合
x1
…… …… ……
…… yi …… …… …… …… xi
再励学习
再励学习是介于上述两者之间的一种学习方法
19
2.3.2 学习规则
Hebb学习规则
这个规则是由Donald Hebb在1949年提出的 他的基本规则可以简单归纳为:如果处理单元从另一个处
理单元接受到一个输入,并且如果两个单元都处于高度活 动状态,这时两单元间的连接权重就要被加强 Hebb学习规则是一种没有指导的学习方法,它只根据神经 元连接间的激活水平改变权重,因此这种方法又称为相关 学习或并联学习
9
2.1.2 研究进展
重要学术会议
International Joint Conference on Neural Networks
IEEE International Conference on Systems, Man, and Cybernetics
World Congress on Computational Intelligence
复兴发展时期 1980s至1990s
通常,人们较多地考虑神经网络的互连结构。本 节将按照神经网络连接模式,对神经网络的几种 典型结构分别进行介绍
12
2.2.1 单层感知器网络
单层感知器是最早使用的,也是最简单的神经 网络结构,由一个或多个线性阈值单元组成
这种神经网络的输入层不仅 接受外界的输入信号,同时 接受网络自身的输出信号。 输出反馈信号可以是原始输 出信号,也可以是经过转化 的输出信号;可以是本时刻 的输出信号,也可以是经过 一定延迟的输出信号
此种网络经常用于系统控制、 实时信号处理等需要根据系 统当前状态进行调节的场合
x1
…… …… ……
…… yi …… …… …… …… xi
再励学习
再励学习是介于上述两者之间的一种学习方法
19
2.3.2 学习规则
Hebb学习规则
这个规则是由Donald Hebb在1949年提出的 他的基本规则可以简单归纳为:如果处理单元从另一个处
理单元接受到一个输入,并且如果两个单元都处于高度活 动状态,这时两单元间的连接权重就要被加强 Hebb学习规则是一种没有指导的学习方法,它只根据神经 元连接间的激活水平改变权重,因此这种方法又称为相关 学习或并联学习
9
2.1.2 研究进展
重要学术会议
International Joint Conference on Neural Networks
IEEE International Conference on Systems, Man, and Cybernetics
World Congress on Computational Intelligence
复兴发展时期 1980s至1990s
第一讲神经网络基本原理ppt课件
人工神经网络基本要素
人工神经网络(简称神经网络)是由人工神经元(简称神经元)互 连组成的网络,它是从微观结构和功能上对人脑的抽象、简化,是模 拟人类智能的一条重要途径,反映了人脑功能的若干基本特征,如并 行信息处理、学习、联想、模式分类、记忆等。
人工神经网络(ANN)可看成是以人工神经元为节点,用有向加权 弧连接起来的有向图。
20 世 纪 80 年 代 以 来 , 人 工 神 经 网 络 ( ANN , Artificial Neural Network)研究取得了突破性进展。神经网络控制是将神经网络与控制 理论相结合而发展起来的智能控制方法。它已成为智能控制的一个新的 分支,为解决复杂的非线性、不确定、未知系统的控制问题开辟了新途 径。
y 是神经元的输出。
神经元的输出 y=f(w*u+θ )
人工神经网络基本要素 —神经元
可见,神经元的实际输出还取决于所选择的作用函数f(x)。神经元的阈值 可以看作为一个输入值是常数1对应的连接权值。根据实际情况,也可以 在神经元模型中忽略它。关于作用函数的选择将在后面详细讨论。在上述 模型中,w和θ是神经元可调节的标量参数。设计者可以依据一定的学习规 则来调整它。
每个神经元的突触数目有所不同,而且各神经元之间的连接强度 和极性有所不同,并且都可调整,基于这一特性,人脑具有存储信息的 功能。图1.1 生物神经元的结构
人工神经网络基本要素 —神经元
神经生理学和神经解剖学的研究 结果表明,神经元是脑组织的基 本单元,是神经系统结构与功能 的单位。
• 大脑
Brain
在此有向图中,人工神经元就是对生物神经元的模拟,而有向弧则 是轴突—突触—树突对的模拟。有向弧的权值表示相互连接的两个人 工神经元间相互作用的强弱。
神经网络基本介绍PPT课件
神经系统的基本构造是神经元(神经细胞 ),它是处理人体内各部分之间相互信息传 递的基本单元。
每个神经元都由一个细胞体,一个连接 其他神经元的轴突和一些向外伸出的其它 较短分支—树突组成。
轴突功能是将本神经元的输出信号(兴奋 )传递给别的神经元,其末端的许多神经末 梢使得兴奋可以同时传送给多个神经元。
将神经网络与专家系统、模糊逻辑、遗传算法 等相结合,可设计新型智能控制系统。
(4) 优化计算 在常规的控制系统中,常遇到求解约束
优化问题,神经网络为这类问题的解决提供 了有效的途径。
常规模型结构的情况下,估计模型的参数。 ② 利用神经网络的线性、非线性特性,可建立线
性、非线性系统的静态、动态、逆动态及预测 模型,实现非线性系统的建模。
(2) 神经网络控制器 神经网络作为实时控制系统的控制器,对不
确定、不确知系统及扰动进行有效的控制,使控 制系统达到所要求的动态、静态特性。 (3) 神经网络与其他算法相结合
4 新连接机制时期(1986-现在) 神经网络从理论走向应用领域,出现
了神经网络芯片和神经计算机。 神经网络主要应用领域有:模式识别
与图象处理(语音、指纹、故障检测和 图象压缩等)、控制与优化、系统辨识 、预测与管理(市场预测、风险分析) 、通信等。
神经网络原理 神经生理学和神经解剖学的研究表 明,人脑极其复杂,由一千多亿个神经 元交织在一起的网状结构构成,其中大 脑 皮 层 约 140 亿 个 神 经 元 , 小 脑 皮 层 约 1000亿个神经元。 人脑能完成智能、思维等高级活动 ,为了能利用数学模型来模拟人脑的活 动,导致了神经网络的研究。
(2) 学习与遗忘:由于神经元结构的可塑 性,突触的传递作用可增强和减弱,因 此神经元具有学习与遗忘的功能。 决定神经网络模型性能三大要素为:
人工神经网络92页PPT
思考:该神经元模型与生物神经元有何对应关系
传输函数
硬极限传输函数
传输函数
线性传输函数
传输函数
对数-S形传输函数
传输函数
传输函数
多输入神经元
多输入神经元
权值矩阵,偏置(偏移量),净输入,传输函数(激活函数)
单层神经元
多层神经元
人工神经网络的训练
人工神经网络最具有吸引力的特点是它的 学习能力。
制造系统监控中的人工智能概述
智能监控检测诊断技术
专家系统 模糊理论 人工神经网络 支持向量机 实例推理、数据挖掘
人工智能的广泛应用
1 难题求解 2 自动规划、调度与配置 3 机器定理证明 4 自动程序设计 5 机器翻译 6 智能控制 7 智能管理 8 智能决策 9 智能通信 10 智能仿真
1962年,Rosenblatt给出了人工神经网络著 名的学习定理:人工神经网络可以学会它 可以表达的任何东西。
人工神经网络的表达能力大大地限制了它 的学习能力。
人工神经网络的学习过程就是对它的训练 过程
无导师学习
无导师学习(Unsupervised Learning)与无导 师训练(Unsupervised Training)相对应
人工智能的非正式定义 -- 研究如何用计 算机来表示和 执行人类的智能活动,以模 拟人脑所从事的推理、学 习、思考、规划 等思维活动,并解决需要人类的智力 才能 处理的复杂问题,如医疗诊断、管理决策、 下棋、 自然语言理解等。
制造系统监控中的人工智能概述
研究人工智能的目的
基本目标:Make machines smarter; 崇高目标:Understand what intelligence is; 商业目标:Make machines useful。
传输函数
硬极限传输函数
传输函数
线性传输函数
传输函数
对数-S形传输函数
传输函数
传输函数
多输入神经元
多输入神经元
权值矩阵,偏置(偏移量),净输入,传输函数(激活函数)
单层神经元
多层神经元
人工神经网络的训练
人工神经网络最具有吸引力的特点是它的 学习能力。
制造系统监控中的人工智能概述
智能监控检测诊断技术
专家系统 模糊理论 人工神经网络 支持向量机 实例推理、数据挖掘
人工智能的广泛应用
1 难题求解 2 自动规划、调度与配置 3 机器定理证明 4 自动程序设计 5 机器翻译 6 智能控制 7 智能管理 8 智能决策 9 智能通信 10 智能仿真
1962年,Rosenblatt给出了人工神经网络著 名的学习定理:人工神经网络可以学会它 可以表达的任何东西。
人工神经网络的表达能力大大地限制了它 的学习能力。
人工神经网络的学习过程就是对它的训练 过程
无导师学习
无导师学习(Unsupervised Learning)与无导 师训练(Unsupervised Training)相对应
人工智能的非正式定义 -- 研究如何用计 算机来表示和 执行人类的智能活动,以模 拟人脑所从事的推理、学 习、思考、规划 等思维活动,并解决需要人类的智力 才能 处理的复杂问题,如医疗诊断、管理决策、 下棋、 自然语言理解等。
制造系统监控中的人工智能概述
研究人工智能的目的
基本目标:Make machines smarter; 崇高目标:Understand what intelligence is; 商业目标:Make machines useful。
人工神经网络PPT演示课件
感知器的学习算法
采用感知器学习规则进行训练。训练步骤为:
① 对各初始权值w0j(0),w1j(0),w2j(0),…,wnj(0),j=1,2,…,m(m为计算层的节点数) 赋予较小的非零随机数;
② 输入样本对{Xp,dp},其中Xp=(-1, x1p , x2p ,…, xnp ),dp为期望的输出向量(教师信 号),上标p代表样本对的模式序号,设样本集中的样本总数为P,则p=1,2,…,P;
③
计算各节点的实际输出
o
p j
(t
)
sgn[X
T j
(t)
X
],
j 1,2,, m
;
④
调整各节点对应的权值,Wj
(t
1)
Wj
(t)
[dLeabharlann p jop j
]X
p
,
j 1,2,, m
,其中η
为学习率,用于控制调整速度,太大会影响训练的稳定性,太小则使训练的收敛
速度变慢,一般取0<η ≤1;
x1
oj Wj
x2 ······ xi ······xn
由方程 w1 j x1 w2 j x2 Tj 0 确定的直线成为二维输入样本空间上的一条分界线。
② 设输入向量X=(x1,x2,x3)T,则三个输入分量在几何上构成一个三维空间。节点j的
输出为
1, o j 1,
w1 j x1 w2 j x2 w3 j x3 Tj 0 w1 j x1 w2 j x2 w3 j x3 Tj 0
智能信息处理技术
华北电力大学
1
第5章 人工神经网络
1 人工神经网络基础知识 2 前馈神经网络 3 自组织神经网络 4 反馈神经网络
第一章 人工神经网络概述_PPT幻灯片
2. 希望在理论上寻找新的突破,建立新的专 用/通用模型和算法。
3. 进一步对生物神经系统进行研究,不断地 丰富对人脑的认识。
人工神经网络
人工神经网络的特点:
(1)高度的并行性 (2)高度的非线性全局作用 (3)良好的容错性与联想记忆功能 (4)强大的自适应、自学习功能
第二节 人工神经网络的基本结构与模型
人工神经网络
第一节 人工神经网络的概念与发展
T.Kohonen的定义:“人工神经网络是由 具有适应性的简单单元组成的广泛并行互 连的网络,它的组织能够模拟生物神经系 统对真实世界物体所作出的交互反应。”
人工神经网络
历史回顾
➢萌芽期(20世纪40年代) ➢第一高潮期(1950~1968) ➢反思期(1969~1982) ➢第二高潮期(1983~1990) ➢再认识与应用研究期(1991~)
科学发展大趋势
New Society New Education
New Sciences
Info
Bio
Enhancing
Human
Performance
Nano
Cogno
New Industries
New Applications
New Humanbeing
技术创新浪潮的经济长波规律
水力 纺织 铁
人工神经网络
简单神经元网络及其简化结构图
(1)细胞体 (2)树突 (3)轴突(4)突触
人工神经网络
人工神经元模型
输入分量pj(j=1,2,…,r) 权值分量wj(j=1,2,…,r)
激活函数 f(·) 偏差(bias) b
人工神经网络
权值和输入的矩阵形式可以由W的行矢量和 P的列矢量表示:
3. 进一步对生物神经系统进行研究,不断地 丰富对人脑的认识。
人工神经网络
人工神经网络的特点:
(1)高度的并行性 (2)高度的非线性全局作用 (3)良好的容错性与联想记忆功能 (4)强大的自适应、自学习功能
第二节 人工神经网络的基本结构与模型
人工神经网络
第一节 人工神经网络的概念与发展
T.Kohonen的定义:“人工神经网络是由 具有适应性的简单单元组成的广泛并行互 连的网络,它的组织能够模拟生物神经系 统对真实世界物体所作出的交互反应。”
人工神经网络
历史回顾
➢萌芽期(20世纪40年代) ➢第一高潮期(1950~1968) ➢反思期(1969~1982) ➢第二高潮期(1983~1990) ➢再认识与应用研究期(1991~)
科学发展大趋势
New Society New Education
New Sciences
Info
Bio
Enhancing
Human
Performance
Nano
Cogno
New Industries
New Applications
New Humanbeing
技术创新浪潮的经济长波规律
水力 纺织 铁
人工神经网络
简单神经元网络及其简化结构图
(1)细胞体 (2)树突 (3)轴突(4)突触
人工神经网络
人工神经元模型
输入分量pj(j=1,2,…,r) 权值分量wj(j=1,2,…,r)
激活函数 f(·) 偏差(bias) b
人工神经网络
权值和输入的矩阵形式可以由W的行矢量和 P的列矢量表示:
人工神经网络8ART神经网络ppt课件
络 运
G1=1。G1为1时允许输入模式直接从C层输出,并向前传至R 层,与
行 原
R 层节点对应的所有内星向量Bj 进行匹配计算:
理
n
net j
B
T j
X
bij xi
j=1,2,…,m
选择具有最大匹配度(即具有最i大1 点积)的竞争获胜节点:
net j*
max j
{net
j
}
使获胜节点输出
r j
*
=1,其它节点输出为0。
要点简介
1. 研究背景
2. 学习规则 3. ART神经网络结构 4. ART神经网络学习规则
1
研究背景
▪ 1969年,美国学者格诺斯博格(Grossberg)和卡普特
尔(Carperter)提出了自适应共振理论(ART)模型。
研究背景
▪ ART是一种自组织神经网络结构,是无教师的学
习网络。当在神经网络和环境有交互作用时,对 环境信息的编码会自发地在神经网中产生,则认 为神经网络在进行自组织活动。ART就是这样一 种能自组织地产生对环境认识编码的神经网络理 论模型。
▪ ART1用于处理二进制输入的信息; ▪ ART2用于处理二进制和模拟信息这两种输人; ▪ ART3用于进行分级搜索。 ▪ ART理论可以用于语音、视觉、嗅觉和字符识别
等领域。
ART模型的结构
▪ ART模型来源于Helmboltz无意识推理学说的竞争
学习网络交互模型。这个模型如图所示。 竞争层
输入层
结 构
c1
ci
cn
……
G1
x1
xI
xn
(1)C层结构
该层有n个节点,每个节点接受来自3
BP神经网络PPTppt课件
输 入 至 网 络 , 由 前 向 后 , 逐 层 得 到 各 计 算 单 元 的 实 际 输 出 y:
对 于 当 前 层 l 的 第 j个 计 算 单 元 ,j 1,..., nl
该
单
元
的
净
输
入
实
际
输
出
n l1
n
e
t
l j
Ol l 1 ij i
i 1
O
l j
f
n
e
t
l j
1
=
1+
e
➢ 可见层
输入层 (input layer) 输入节点所在层,无计算能力
输出层 (output layer) 节点为神经元
➢ 隐含层( hidden layer) 中间层,节点为神经元
可编辑课件PPT
20
具有三层计算单 元的前馈神经网络结 构
可编辑课件PPT
21
2. 感知器神经网络(感知器)、感知器神经元
s ig n 型 函 数 , 不 可 微 ; 对 称 硬 极 限 函 数 ;
双
极
函
数
f
net
=
sgn
net
=
1
-
1
net 0 net < 0
m atlab函 数 hardlim s
D .阈 值 函 数
f
net
=
-
net net <
其 中 , , 非 负 实 数
可编辑课件PPT
单层感知器网络
感知器神经元
可编辑课件PPT
22
2. 感知器神经网络、感知器神经元(续)
感知器神经元的传递函数
人工神经网络课件
人工神经网络课件
目录
• 神经网络基本概念 • 前馈神经网络 • 反馈神经网络 • 深度学习基础 • 优化算法与技巧 • 实践应用与案例分析
01 神经网络基本概念
生物神经网络简介
01
02
03
生物神经网络组成
生物神经网络由大量神经 元通过突触连接而成,具 有并行处理、分布式存储 和自学习等特性。
信号传递方式
每次只利用一个样本的梯度信息进行参数更新,计算量小,收敛速度快,但容易受到噪声干扰, 陷入局部最优解。
小批量梯度下降法(Mini-Batch Gradie…
折中方案,每次利用一小批样本的梯度信息进行参数更新,兼具批量梯度下降法和随机梯度下降 法的优点。
正则化方法防止过拟合
L1正则化(Lasso)
01
RNN在自然语言处理领域有广泛应用,如机器翻译、文本生成、情感分析等,同时也可以应用于语音识别 和图像处理等领域。
05 优化算法与技巧
梯度下降法及其改进算法
批量梯度下降法(Batch Gradient Des…
利用整个数据集的梯度信息进行参数更新,计算量大,收敛速度慢,但能找到全局最优解。
随机梯度下降法(Stochastic Gradien…
03 反馈神经网络
反馈神经网络结构
01
02
03
04
神经元之间相互连接,形成反 馈回路。
网络中的每个神经元都接收来 自其他神经元的信号,并产生
输出信号。
输出信号会再次作为输入信号 反馈到网络中,影响其他神经
元的输出。
通过不断调整神经元之间的连 接权重,网络可以学习并适应
不同的输入模式。
Hopfield网络模型与算法
批处理、随机梯度下降等优化策略
目录
• 神经网络基本概念 • 前馈神经网络 • 反馈神经网络 • 深度学习基础 • 优化算法与技巧 • 实践应用与案例分析
01 神经网络基本概念
生物神经网络简介
01
02
03
生物神经网络组成
生物神经网络由大量神经 元通过突触连接而成,具 有并行处理、分布式存储 和自学习等特性。
信号传递方式
每次只利用一个样本的梯度信息进行参数更新,计算量小,收敛速度快,但容易受到噪声干扰, 陷入局部最优解。
小批量梯度下降法(Mini-Batch Gradie…
折中方案,每次利用一小批样本的梯度信息进行参数更新,兼具批量梯度下降法和随机梯度下降 法的优点。
正则化方法防止过拟合
L1正则化(Lasso)
01
RNN在自然语言处理领域有广泛应用,如机器翻译、文本生成、情感分析等,同时也可以应用于语音识别 和图像处理等领域。
05 优化算法与技巧
梯度下降法及其改进算法
批量梯度下降法(Batch Gradient Des…
利用整个数据集的梯度信息进行参数更新,计算量大,收敛速度慢,但能找到全局最优解。
随机梯度下降法(Stochastic Gradien…
03 反馈神经网络
反馈神经网络结构
01
02
03
04
神经元之间相互连接,形成反 馈回路。
网络中的每个神经元都接收来 自其他神经元的信号,并产生
输出信号。
输出信号会再次作为输入信号 反馈到网络中,影响其他神经
元的输出。
通过不断调整神经元之间的连 接权重,网络可以学习并适应
不同的输入模式。
Hopfield网络模型与算法
批处理、随机梯度下降等优化策略
人工神经网络基础ppt课件
期望输出)。实际输出与期望输出之间存在着误差,用
e(n)表示:
e(n)=d (n)-yi (n)
现在要调整权值,是误差信号e(n)减小到一个范围。 为此,可设定代价函数或性能指数E(n):
43
<二> 神经网络的学习规则
E(n)= 1 e2 (n) 2
反复调整突触权值使代价函数达到最小或者使系统达 到一个稳定状态(及突触权值稳定不变),就完成了该学 习过程。
1—150m/s之间 信息传递时延和不应期,一般为0.3~lms 可塑性,突触传递信息的强度是可变的,即具有学习功能 存在学习、遗忘或疲劳(饱和)效应
对应突触传递作用增强、减弱和饱和
16
三 人工神经网络结构
人工神经网络 人工神经元模型 常见的神经元激发函数 人工神经网络典型结构
17
在互连网络模型中,任意两个神经元之间都可能有相互 连接的关系。其中,有的神经元之间是双向的,有的是单 向的。
Hopfield网络、Boltzman机网络属于这一类。
36
<2> 互联型神经网络
在无反馈的前向网络中,信号一旦通过某个神经元,过 程就结束了。而在互连网络中,信号要在神经元之间反复往 返传递,神经网络处在一种不断改变状态的动态之中。从某 个初始状态开始,经过若干次的变化,才会到达某种平衡状 态,根据神经网络的结构和神经元的特性,还有可能进入周 期振荡或其它如浑沌等平衡状态。
1949年,心理学家Hebb提出神经系统的学习规则, 为神经网络的学习算法奠定了基础。现在,这个规 则被称为Hebb规则,许多人工神经网络的学习还 遵循这一规则。
4
一 人工神经网络发展
1957年,F.Rosenblatt提出“感知器”(Perceptron) 模型, 第一次把神经网络的研究从纯理论的探讨付诸工程实践, 掀起了人工神经网络研究的第一次高潮。
机器学习与应用第02讲人工神经网络ppt课件
1
w(2) 21
y1
w222
y2
w223
y3
w224
y4
b22
神经网络每一层完成的变换
ul Wlxl1 bl
xl f ul
权重矩阵的每一行为本层神经元与上一层所有神经 元的连接权重
激活函数分别作用于每个神经元的输出值,即向量 的每个分量,且使用了相同的函数
内积 加偏置
激活函数
w11l
以下面的3层网络为例:
输入层
隐含层
输出层
激活函数选用sigmoid:
f
x
1
1 exp
x
隐含层完成的变换:
y1 1 exp
1
w(1) 11
x1
w112 x2
w113 x3
b11
1
y2 1 exp
w(1) 21
x1
w212 x2
w213 x3
b21
y3 1 exp
1
w(1) 31
分类问题-手写数字图像识别
28 28
输入层有784个神经元
隐含层的神经元数量根据需要设定
0 1 2 3 4 5 6 7 8 9
输出层有10个神经元
回归问题-预测人脸关键点 神经网络直接为输入图像预测出关键点的坐标(x, y)
反向传播算法简介 解决神经网络参数求导问题 源自微积分中多元函数求导的链式法则 与梯度下降法配合,完成网络的训练
y1
w122
y2
w132
y3
w142
y4
b12
z2 1 exp
1
w(2) 21
y1
w222
y2
w223
y3