高考文科数学公式汇总(精简版)
(完整版)高中文科数学公式及知识点总结大全(精华版),推荐文档.doc
高中理科数学公式及知识点速记一、函数、导数1、函数的单调性 (1) 设x 1、 x 2 [ a,b], x 1 x 2 那么 f ( x 1 ) f (x 2 ) 0 f ( x)在[a,b] 上是增函数;f ( x 1 )f (x 2 ) 0 f ( x)在[a, b] 上是减函数 .(2) 设函数 y f ( x) 在某个区间内可导,若 f ( x) 0 ,则 f ( x) 为增函数;若 f ( x) 0 ,则 f ( x) 为减函数 .2、函数的奇偶性x ,都有 f (x)f (x) ,则 f (x) 是偶函数; 对于定义域内任意的对于定义域内任意的 x ,都有 f ( x)f ( x) ,则 f (x) 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数 y f ( x) 在点 x 0 处的导数的几何意义函数 yf ( x) 在点 x 0 处的导数是曲线 yf (x) 在 P(x 0 , f (x 0 )) 处的切线的斜率 f ( x 0 ) ,相应的切线方程是 y y 0 f ( x 0 )( x x 0 ) .* 二次函数: (1)顶点坐标为 (b , 4ac b 2 ) ;( 2)焦点的坐标为 ( b , 4ac b 2 1)4、几种常见函数的导数2a 4a2a 4a① C '0 ;② ( x n ) ' nx n 1 ;③ (sin x)'cos x ;④ (cos x) 'sin x ;⑤ ( a x ) ' a x ln a ;⑥ (e x ) 'e x ;⑦ (log a x) '1 ;⑧ (ln x)' 15、导数的运算法则xln ax( 1) (u v)'u'v '( 2) (uv) 'u 'v 'u ) ' u 'v uv '0) ..uv .(3) (v 2(v6、会用导数求单调区间、极值、最值v7、求函数 yf x 的极值的方法是:解方程f x 0 .当 f x 0 0 时:(1) 如果在 x 0 附近的左侧 f x 0 ,右侧 f x 0 ,那么 f x 0 是极大值;(2) 如果在 x 0 附近的左侧 f x0 ,右侧 f x 0 ,那么 f x 0 是极小值.指数函数、对数函数 分数指数幂mna m ( a (1) an0, m,nN ,且 n 1 ) .m1 1(2)an( a0, m, n N ,且 n 1 ) .ma nna m根式的性质( 1)当 n 为奇数时, na n a ;当 n 为偶数时, n a na,a 0 . | a | a, a有理指数幂的运算性质(1)a r a s a r s ( a0, r , s Q ) .(2) ( a r )sa rs (a 0, r , s Q ) .(3) (ab ) r a r b r (a 0, b 0, r Q ) .注: 若 a > 0,p 是一个无理数,则 a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用 .. 指数式与对数式的互化式: log a Nba bN (a0, a 1,N 0) .. 对数的换底公式 : log a N log m N0 , 且 a1, m 0 , 且 m 1, N 0 ).( alog m a对数恒等式: a log a N N ( a 0 , 且 a 1 , N0). 推论 log a m bnnlog a b ( a 0 , 且 a 1 , N0 ).m常见的函数图象yyyyyy=log a xk<0k>0a<02 1y=ax0<a<1y=x+oxoxx0<a<1 a>1-1 o 1xo x1a>0-21 y=kx+ba>1y=ax 2+bx+cox二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式sin2cos21 , tan =sin.cos9、正弦、余弦的诱导公式(奇变偶不变,符号看象限)kk2的正弦、余弦,等于 的同名函数,前面加上把看成锐角时该函数的符号;的正弦、余弦,等于的余名函数,前面加上把看成锐角时该函数的符号。
高中文科数学公式总结大全
高中文科数学公式总结大全1500字数学是一门基础性学科,它的理论体系和方法论在科学研究和生产实践中扮演着重要角色。
在高中阶段,学习数学有助于培养学生的逻辑思维、分析问题和解决问题的能力。
而数学公式则是数学知识的核心,它们能够帮助我们快速理解和解决问题。
以下是高中文科数学公式的总结大全:1. 代数- 求根公式:二次方程:$x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$三次方程:$x=\\sqrt[3]{-d+\\sqrt{d^2-4e^3}}+\\sqrt[3]{-d-\\sqrt{d^2-4e^3}}$四次方程:$x=\\pm\\frac{1}{2a}(b\\pm\\sqrt{b^2-4ac}+2\\sqrt{\\frac{2b^2-4ac}{b\\pm\\sqrt{b^2-4ac}}})$- 平方差公式:$(a-b)^2=a^2-2ab+b^2$$(a+b)^2=a^2+2ab+b^2$- 平方和公式:$a^2+b^2=(a+b)^2-2ab$$a^2-b^2=(a+b)(a-b)$- 二次函数顶点坐标:对于二次函数$y=ax^2+bx+c$,其顶点坐标为$(-\\frac{b}{2a}, -\\frac{D}{4a})$ 其中,$D=b^2-4ac$2. 几何- 勾股定理:$c^2=a^2+b^2$- 正弦定理:$\\frac{a}{\\sin A}=\\frac{b}{\\sin B}=\\frac{c}{\\sin C}$- 余弦定理:$a^2=b^2+c^2-2bc\\cos A$$b^2=a^2+c^2-2ac\\cos B$$c^2=a^2+b^2-2ab\\cos C$- 面积公式:三角形面积:$S=\\frac{1}{2}ab\\sin C$四边形面积:$S=\\frac{1}{2}d_1d_2\\sin\\theta$圆的面积:$S=\\pi r^2$3. 概率与统计- 排列组合:排列:$A_n^m=\\frac{n!}{(n-m)!}$组合:$C_n^m=\\frac{A_n^m}{m!}=\\frac{n!}{m!(n-m)!}$ - 排列公式:重复排列:$P_n=n^n$不重复排列:$P_n^n=n!$- 组合公式:重复组合:$C_{n+m-1}^{m}=\\frac{(n+m-1)!}{m!(n-1)!}$ 不重复组合:$C_n^m=\\frac{n!}{m!(n-m)!}$- 概率公式:概率:$P(A)=\\frac{N(A)}{N(S)}$加法原则:$P(A\\cup B)=P(A)+P(B)-P(A\\cap B)$乘法原则:$P(A\\cap B)=P(A)P(B|A)$4. 三角函数- 弧度与角度的转换:弧度制:$\\theta=\\frac{\\pi}{180}\\times\\text{角度}$角度制:$\\text{角度}=\\frac{180}{\\pi}\\times\\theta$- 三角函数的定义:正弦函数:$\\sin\\theta=\\frac{y}{\\text{半径}}$余弦函数:$\\cos\\theta=\\frac{x}{\\text{半径}}$正切函数:$\\tan\\theta=\\frac{y}{x}$反正弦函数:$\\sin^{-1}(\\frac{y}{\\text{半径}})=\\theta$ 反余弦函数:$\\cos^{-1}(\\frac{x}{\\text{半径}})=\\theta$反正切函数:$\\tan^{-1}(\\frac{y}{x})=\\theta$- 三角函数的平方和与差:$\\sin^2\\theta+\\cos^2\\theta=1$$\\sin(\\theta\\pm\\phi)=\\sin\\theta\\cos\\phi\\pm\\cos\\theta\\sin\\phi$$\\cos(\\theta\\pm\\phi)=\\cos\\theta\\cos\\phi\\mp\\sin\\theta\\sin\\phi$5. 矩阵与行列式- 二阶矩阵的行列式:$\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}=ad-bc$- 二元一次方程组的解:设$\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}\eq0$,则方程组的解为$x=\\frac{\\begin{vmatrix} e & b \\\\ f & d\\end{vmatrix}}{\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}}$,$y=\\frac{\\begin{vmatrix} a & e \\\\ c & f \\end{vmatrix}}{\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}}$- 行列式的性质:交换行列式的两行(列):行列式的值不变某行(列)全部乘以常数k:行列式的值乘以k某行(列)的倍加到另一行(列)上去:行列式的值不变以上只是文科数学常见的一些公式总结,各个学校或老师的教学内容可能会有所不同。
高中文科数学公式大全(精华版)
高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。
2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。
若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v-=. 6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)mna =.(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。
高中文科数学公式大全(精华版)
高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。
2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。
若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v-=. 6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)mna =.(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。
高中数学公式及知识点总结大全(精华版)
高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<−上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>−上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =−,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f −=−,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y −'=−.*二次函数: (1)顶点坐标为24(,)24b ac b a a −−;(2)焦点的坐标为241(,)24b ac b a a−+− 4、几种常见函数的导数 ①'C 0=;②1')(−=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '−=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v −=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa−==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨−<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论logmnab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。
高中人教版数学公式大全,文科
高中人教版数学公式大全,文科一、几何公式:1、直角三角形的面积:S=1/2ab;2、球的表面积和体积:S=4πr2;V=4/3πr3;3、圆的周长和面积:C=2πr;S=πr2;4、正n边形顶点角:A=360/n;5、正n边形内角总和:A =(n-2)*180°;6、三棱锥体、四棱锥体的表面积和体积:S=a2+πah;V=1/3ah2;7、四面体、六面体的表面积和体积:S=a2√3;V=a3/6√2。
二、勾股定理:1、勾股定理:a2+b2=c2。
2、数学归纳法:利用原理归纳出许多命题,保证在一般情况下同样成立。
三、系数法:1、第一型:ax+by=c;2、第二型:ax2+bx+c=0;3、第三型:ax3+bx2+cx+d=0。
四、分式:1、分式加减法:分子分母分别相加、减。
2、分式乘法:分子分母各自乘以另一分式的分子分母,最后约分即可。
3、分式除法:分子乘以另一分式的分母,分母乘以另一分式的分子,最后约分即可。
五、二次函数:1、一元二次函数的基本性质:y = ax2+bx+c ;2、最高点位置:x=-b/2a;3、函数图像的性质:a>0,函数图像沿y轴双单减;a<0,函数图像沿y轴双单增;4、“乘根”公式:y=(√ax2+bx+c)/2+d;5、方程组:x+y=a,x2+xy+y2=b。
六、三角函数:1、正弦定理:a:b:c=sinA:sinB:sinC;2、余弦定理:a2=b2+c2-2bc cos A。
3、正弦函数y=A sin(ωt+φ) ;4、余弦函数:y=A cos(ωt+φ)。
七、矩形体:1、矩形面积:S=ab;2、棱形面积:S=边长×其高;3、梯形面积:S=1/2(a+b)h;4、矩形、梯形体积:V=abh;5、棱形体积:V=边长×其面积。
高考数学所有公式大全
高考数学所有公式大全一、集合。
1. 集合的基本运算。
- 交集:A∩ B = {xx∈ A且x∈ B}- 并集:A∪ B={xx∈ A或x∈ B}- 补集:∁_U A={xx∈ U且x∉ A}(U为全集)2. 集合间的关系。
- 若A⊆ B,则A中的元素都在B中,n(A)≤ n(B)(n(A)表示集合A的元素个数)- 若A = B,则A⊆ B且B⊆ A二、函数。
1. 函数的定义域。
- 分式函数y = (f(x))/(g(x)),其定义域为g(x)≠0的x的取值范围。
- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),其定义域为f(x)≥0的x的取值范围。
2. 函数的单调性。
- 设x_1,x_2∈[a,b]且x_1 < x_2- 增函数:f(x_1),则y = f(x)在[a,b]上是增函数,其导数f^′(x)≥0(x∈(a,b))。
- 减函数:f(x_1)>f(x_2),则y = f(x)在[a,b]上是减函数,其导数f^′(x)≤0(x∈(a,b))。
3. 函数的奇偶性。
- 奇函数:f(-x)= - f(x),图象关于原点对称。
- 偶函数:f(-x)=f(x),图象关于y轴对称。
4. 一次函数y = kx + b(k≠0)- 斜率k=(y_2 - y_1)/(x_2 - x_1)5. 二次函数y=ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})- 当a>0时,函数图象开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a < 0时,函数图象开口向下,在x=-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。
6. 指数函数y = a^x(a>0,a≠1)- 指数运算法则:a^m× a^n=a^m + n,frac{a^m}{a^n}=a^m - n,(a^m)^n=a^mn,(ab)^n=a^nb^n,((a)/(b))^n=frac{a^n}{b^n}- 当a > 1时,函数在R上单调递增;当0 < a<1时,函数在R上单调递减。
(完整版)高考文科数学公式汇总(精简版)
高中数学公式汇总(文科)一、复数1、复数的除法运算22)()())(())((d c iad bc bd ac di c di c di c bi a di c bi a +-++=-+-+=++. 2、复数z a bi =+的模||z =||a bi +二、三角函数、三角变换、解三角形、平面向量3、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin . 4、正弦、余弦的诱导公式απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。
5、和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=m ;tan tan tan()1tan tan αβαβαβ±±=m .6、二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 公式变形: ;22cos 1sin ,2cos 1sin 2;22cos 1cos ,2cos 1cos 22222αααααααα-=-=+=+=7、三角函数的周期函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 8、 函数sin()y x ωϕ=+的周期、最值、单调区间、图象变换9、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y 其中ab =ϕtan 10、正弦定理2sin sin sin a b cR A B C===. 11、余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.12、三角形面积公式111sin sin sin 222S ab C bc A ca B ===. 13、三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+ 14、与的数量积(或内积)θcos ||||b a b a ⋅=⋅15、平面向量的坐标运算(1)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--u u u r u u u r u u u r.(2)设=11(,)x y ,=22(,)x y ,则⋅=2121y y x x +. (3)设=),(y x ,则22y x a +=16、两向量的夹角公式设a =11(,)x y ,b =22(,)x y ,且0≠b ,则222221212121cos y x y x y y x x ba b a +⋅++=⋅=θ17、向量的平行与垂直//⇔λ= 12210x y x y ⇔-=.)(≠⊥ ⇔0=⋅b a 12120x x y y ⇔+=.三、函数、导数18、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.19、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
高中文科数学公式大全(精华版)
高中数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+-4、几种常见函数的导数①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm na a-==0,,a m n N *>∈,且1n >)..根式的性质(1)n a=(2)当n当n(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论log m nab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。
高中必备数学公式大全文科
高中数学公式大全高考文科必背数学公式整理乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h高中文科数学必背公式总结公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)公式七:两角和差公式两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)公式八:二倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式) sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan2α=2tanα/[1-tan^2(α)]公式九:半角公式半角的正弦、余弦和正切公式(降幂扩角公式) sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)公式十:万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]公式十一:三倍角公式三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))提高高中数学成绩的方法有哪些1.主动预习预习是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。
高考文科数学公式汇总(精简版)
高考文科数学公式汇总(精简版)高考文科数学公式汇总(精简版)高考数学是文科生必考的一门科目,其数学公式的掌握对于高考成绩的决定性作用。
以下是高考文科数学公式的精简版汇总。
一、代数公式:1. 幂函数公式:1) $(a^m)^n=a^{mn}$2) $a^m\cdot a^n=a^{m+n}$3) $\frac{a^m}{a^n}=a^{m-n}$2. 对数函数公式:1) $a^{\log_a{x}}=x$2) $\log_a{(xy)}=\log_a{x}+\log_a{y}$3) $\log_a{(\frac{x}{y})}=\log_a{x}-\log_a{y}$4) $\log_a{x^n}=n\log_a{x}$3. 三角函数公式:1) $\sin^2{x}+\cos^2{x}=1$2) $\sin{2x}=2\sin{x}\cdot \cos{x}$3) $\cos{2x}=\cos^2{x}-\sin^2{x}$4) $\tan{x}=\frac{\sin{x}}{\cos{x}}$5) $\sin{(a\pm b)}=\sin{a}\cdot \cos{b}\pm \sin{b}\cdot\cos{a}$6) $\cos{(a\pm b)}=\cos{a}\cdot \cos{b}\mp \sin{a}\cdot\sin{b}$4. 二次函数公式:1) $f(x)=ax^2+bx+c$ 的顶点坐标为 $(\frac{-b}{2a},\frac{-\Delta}{4a})$ ,其中 $\Delta=b^2-4ac$ 为判别式。
2) $y=a(x-h)^2+k$ 是以点 $(h,k)$ 为顶点的二次函数。
二、几何公式:1. 勾股定理:直角三角形的斜边的平方等于两腰的平方和。
$c^2=a^2+b^2$2. 正弦定理:在任意三角形中,边的比与其对应角的正弦值成正比。
$\frac{a}{\sin{A}}=\frac{b}{\sin{B}}=\frac{c}{\sin{C}}$3. 余弦定理:在任意三角形中,边的平方与其它两边的平方之和的2倍之差与其对应角的余弦成正比。
高考文科数学公式大全_3
一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin .10、和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβαβαβ±±=.11、二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-. 22tan tan 21tan ααα=-. 公式变形: ;22cos 1sin ,2cos 1sin 2;22cos 1cos ,2cos 1cos 22222αααααααα-=-=+=+= 12、三角函数的周期函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 13、 函数sin()y x ωϕ=+的周期、最值、单调区间、图象变换14、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y 其中ab =ϕtan 15、正弦定理2sin sin sin a b c R A B C===. 16、余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.17、三角形面积公式111sin sin sin 222S ab C bc A ca B ===. 19、a 与b 的数量积(或内积)θcos ||||b a b a ⋅=⋅20、平面向量的坐标运算(1)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(2)设a =11(,)x y ,b =22(,)x y ,则b a ⋅=2121y y x x +.(3)设a =),(y x ,则22y x a +=21、两向量的夹角公式 设a =11(,)x y ,b =22(,)x y ,且0≠b ,则 222221212121cos y x y x y y x x b a ba +⋅++=⋅=θ22、向量的平行与垂直b a //⇔a b λ= 12210x y x y ⇔-=.)0(≠⊥a b a ⇔0=⋅b a 12120x x y y ⇔+=.三、数列23、数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).24、等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;25、等差数列其前n 项和公式为 1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 26、等比数列的通项公式 1*11()n n n a a a q q n N q -==⋅∈; 27、等比数列前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或 11,11,1n n a a q q q s na q -⎧≠⎪-=⎨⎪=⎩. 五、解析几何28、直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式 1x y a b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 29、两条直线的平行和垂直 若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.30、平面两点间的距离公式,A Bd =A 11(,)x y ,B 22(,)x y ).31、点到直线的距离d = (点00(,)P x y ,直线l :0Ax By C ++=).32、直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 弦长=222d r - 其中22B A CBb Aa d +++=.43、平均数、方差、标准差的计算平均数:n x x x x n ++=21 方差:])()()[(1222212x x x x x x ns n -+-+-= 标准差:])()()[(122221x x x x x x n s n -+-+-=八、复数44、复数的除法运算22)()())(())((d c i ad bc bd ac di c di c di c bi a di c bi a +-++=-+-+=++.45、复数z a bi =+的模||z =||a bi +.。
高三文科数学公式大全
高三文科数学公式大全数学公式是人类长期生产劳动的经验总结,包含着历代数学家辛勤汗水和智慧,它揭示了数学知识的基本规律,是学生数学认知发展的重要载体。
学习数学,前提就是对公式和定理有着正确透彻的理解。
牢固掌握并灵活运用公式定理是提高数学能力的关键。
以下是店铺为大家精心准备的:高三文科数学公式大全。
欢迎参考阅读!高三文科数学公式大全如下:一、对数函数log.a(MN)=logaM+logNloga(M/N)=logaM-logaNlogaM^n=nlogaM(n=R)logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)二、简单几何体的面积与体积S直棱柱侧=c*h(底面周长乘以高)S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半)设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*hS圆柱侧=c*lS圆台侧=1/2*(c+c′)*l=兀*(r+r′)*lS圆锥侧=1/2*c*l=兀*r*lS球=4*兀*R^3V柱体=S*hV锥体=(1/3)*S*hV球=(4/3)*兀*R^3三、两直线的位置关系及距离公式(1)数轴上两点间的距离公式|AB|=|x2-x1|(2) 平面上两点A(x1,y1),(x2,y2)间的距离公式|AB|=sqr[(x2-x1)^2+(y2-y1)^2](3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式d=|Ax0+By0+C|/sqr(A^2+B^2)(4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-C2|/sqr(A^2+B^2)同角三角函数的基本关系及诱导公式sin(2*k*兀+a)=sin(a)cos(2*k*兀+a)=cosatan(2*兀+a)=tanasin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tanasin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tanasin(兀+a)=-sinasin(兀-a)=sinacos(兀+a)=-cosacos(兀-a)=-cosatan(兀+a)=tana四、二倍角公式及其变形使用1、二倍角公式sin2a=2*sina*cosacos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2tan2a=(2*tana)/[1-(tana)^2]2、二倍角公式的变形(cosa)^2=(1+cos2a)/2(sina)^2=(1-cos2a)/2tan(a/2)=sina/(1+cosa)=(1-cosa)/sina五、正弦定理和余弦定理正弦定理:a/sinA=b/sinB=c/sinC余弦定理:a^2=b^2+c^2-2bccosAb^2=a^2+c^2-2accosBc^2=a^2+b^2-2abcosCcosA=(b^2+c^2-a^2)/2bccosB=(a^2+c^2-b^2)/2accosC=(a^2+b^2-c^2)/2abtan(兀-a)=-tanasin(兀/2+a)=cosasin(兀/2-a)=cosacos(兀/2+a)=-sinacos(兀/2-a)=sinatan(兀/2+a)=-cotatan(兀/2-a)=cota(sina)^2+(cosa)^2=1sina/cosa=tana两角和与差的余弦公式cos(a-b)=cosa*cosb+sina*sinbcos(a-b)=cosa*cosb-sina*sinb两角和与差的正弦公式sin(a+b)=sina*cosb+cosa*sinbsin(a-b)=sina*cosb-cosa*sinb两角和与差的正切公式tan(a+b)=(tana+tanb)/(1-tana*tanb) tan(a-b)=(tana-tanb)/(1+tana*tanb)。
高中文科数学公式大全精品
高中文科数学公式大全精品
一、几何公式
1、三角形的面积公式:
S=1/2ab sinC,其中a、b分别为三角形的两条边,C为其夹角。
2、海伦公式:
S=√p(p-a)(p-b)(p-c),其中a、b、c分别为三角形的三个边长,p=1/2(a+b+c)。
3、四边形面积公式:
S=a×b,其中a、b分别为四边形的两条对边。
4、圆的面积公式:
S=πr²,其中r为圆的半径。
5、球体的表面积公式:
S=4πr²,其中r为球体的半径。
6、球体的体积公式:
V=4/3πr³,其中r为球体的半径。
二、代数公式
1、二次根式公式:
x1、x2=(-b±√b²-4ac)/2a,其中a、b、c分别为二次多项式ax²+bx+c的系数。
2、求和公式:
Sn=a1+a2+…+an,其中a1、a2、…、an分别为相加数,n为相加个数。
3、等比数列求和公式:
Sn=a1(1-qⁿ)/(1-q),其中a1为等比数列的首项,q为公比,n为项数。
4、等差数列求和公式:
Sn=n/2(a1+an),其中a1为等差数列的首项,an为末项,n为项数。
5、分式的乘积公式:
(a/b)(c/d)=ac/bd,其中a、b、c、d分别为分式的分母和分子。
三、数列公式
1、等比数列通项公式:
an=a1qⁿ-1,其中a1为等比数列的首项,q为公比,n为项数。
2、等差数列通项公式:
an=a1+(n-1)d,其中a1为等差数列的首项,d为公差,n为项数。
3、等比数列极限公式:。
高考文科数学公式汇总(精简版)
高考文科(wénkē)数学公式汇总(精简版)高考文科(wénkē)数学公式汇总(精简版)高中(gāozhōng)数学公式汇总〔文科(wénkē)〕一、复数(fùshù)1、复数的除法运算abicdi(abi)(cdi)(cdi)(cdi)(acbd)(bcad)ic2d2.2、复数zabi的模|z|=|abi|=a2b2.二、三角函数、三角变换、解三角形、平面向量3、同角三角函数的根本关系式sincos1,tan=22sincos.4、正弦、余弦的诱导公式k的正弦、余弦,等于的同名函数,前面加上把看成锐角时该函数的符号;k2的正弦、余弦,等于的余名函数,前面加上把看成锐角时该函数的符号。
5、和角与差角公式sin()sincoscossin;cos()coscossinsin;tan()tantan1tantan.6、二倍角公式sin2sincos.cos2cossin2cos112sin.2222tan22tan1tan2cos22.1cos2,cos1cos2,sin221cos221cos22;;公式变形:2sin27、三角函数的周期函数ysin(某),某∈R及函数ycos(某),某∈R(A,ω,为常数,且A≠0,ω>0)的周期T2;函数ytan(某),某k2,kZ(A,ω,为常数,且A≠0,ω>0)的周期T.8、函数ysin(某)的周期、最值、单调区间、图象变换9、辅助角公式yasin某bcos某a2b2sin(某)其中tanba10、正弦定理asinAbsinBcsinC2R.11、余弦定理第1页〔共6页〕abc222bc2bccosA;ca2cacosB;ab2abcosC.、三角形面积公式S12absinC12bcsinA12casinB.13、三角形内角和定理在△ABC中,有ABCC(AB)14、a与b的数量积(或内积)ab|a||b|cos15、平面向量的坐标运算(1)设A(某1,y1),B(某2,y2),那么ABOBOA(某2某1,y2y1).(2)设a=(某1,y1),b=(某2,y2),那么ab=某1某2y1y2.(3)设a=(某,y),那么a16、两向量的夹角公式设a=(某1,y1),b=(某2,y2),且b0,那么cosabab2某2y2某1某2y1y2某1y12某22y2217、向量的平行与垂直a//bba某1y2某2y10.ab(a0)ab0某1某2y1y20.三、函数、导数18、函数的单调性(1)设某1、某2[a,b],某1某2那么f(某1)f(某2)0f(某)在[a,b]上是增函数;f(某1)f(某2)0f(某)在[a,b]上是减函数.(2)设函数yf(某)在某个区间内可导,假设f(某)0,那么f(某)为增函数;假设f(某)0,那么f(某)为减函数.19、函数的奇偶性对于定义域内任意的某,都有f(某)f(某),那么f(某)是偶函数;对于定义域内任意的某,都有f(某)f(某),那么f(某)是奇函数。
高考文科数学公式大全
一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数;对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥x x e e =')(; ⑦ax x a ln 1)(log '=;⑧x x 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值;(2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin .29、正弦、余弦的诱导公式απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学公式汇总(文科)一、复数1、复数的除法运算22)()())(())((dc iad bc bd ac di c di c di c bi a di c bi a +-++=-+-+=++. 2、复数z a bi =+的模||z =||a bi +二、三角函数、三角变换、解三角形、平面向量3、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin . 4、正弦、余弦的诱导公式απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。
5、和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.6、二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 公式变形: ;22cos 1sin ,2cos 1sin 2;22cos 1cos ,2cos 1cos 22222αααααααα-=-=+=+=7、三角函数的周期函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 8、 函数sin()y x ωϕ=+的周期、最值、单调区间、图象变换9、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y 其中ab =ϕtan 10、正弦定理2sin sin sin a b cR A B C===. 11、余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-;2222cos c a b ab C =+-.12、三角形面积公式111sin sin sin 222S ab C bc A ca B ===. 13、三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+ 14、a 与b 的数量积(或内积)θcos ||||⋅=⋅15、平面向量的坐标运算(1)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (2)设=11(,)x y ,=22(,)x y ,则⋅=2121y y x x +. (3)设=),(y x ,则22y x a +=16、两向量的夹角公式设=11(,)x y ,=22(,)x y ,且≠,则222221212121cos y x y x y y x x ba b a +⋅++=⋅=θ17、向量的平行与垂直//⇔λ= 12210x y x y ⇔-=.)(≠⊥ ⇔0=⋅12120x x y y ⇔+=.三、函数、导数18、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.19、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
20、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.21、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 22、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v-=≠. 23、会用导数求单调区间、极值、最值24、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.四、不等式25、已知y x ,都是正数,则有xy yx ≥+2,当y x =时等号成立。
(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;(2)若和y x +是定值s ,则当y x =时积xy 有最大值241s .五、数列26、数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).27、等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;28、等差数列其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 29、等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 30、等比数列前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或 11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.六、解析几何31、直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).32、两条直线的平行和垂直若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-. 33、平面两点间的距离公式,A Bd =A 11(,)x y ,B 22(,)x y ).34、点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).35、 圆的三种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.36、直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 弦长=222d r -其中22BA CBb Aa d +++=.37、椭圆、双曲线、抛物线的图形、定义、标准方程、几何性质椭圆:22221(0)x y a b a b +=>>,222b c a =-,离心率1<=a c e ,参数方程是cos sin x a y b θθ=⎧⎨=⎩.双曲线:12222=-b y a x (a>0,b>0),222b a c =-,离心率1>=a c e ,渐近线方程是x ab y ±=.抛物线:px y 22=,焦点)0,2(p ,准线2p x -=。
抛物线上的点到焦点距离等于它到准线的距离.38、双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).39、抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径2||0px PF +=.(抛物线上的点到焦点距离等于它到准线的距离。
) 40、过抛物线焦点的弦长p x x px p x AB ++=+++=212122.七、参数方程、极坐标化成直角坐标41、⎩⎨⎧==y x θρθρsin cos ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x yy x θρ八、立体几何42、证明直线与直线平行的方法(1)三角形中位线 (2)平行四边形(一组对边平行且相等) 43、证明直线与平面平行的方法(1)直线与平面平行的判定定理(证平面外一条直线与平面内的一条直线平行) (2)先证面面平行44、证明平面与平面平行的方法平面与平面平行的判定定理(一个平面内的两条相交....直线分别与另一平面平行) 45、证明直线与直线垂直的方法 转化为证明直线与平面垂直 46、证明直线与平面垂直的方法(1)直线与平面垂直的判定定理(直线与平面内两条相交....直线垂直) (2)平面与平面垂直的性质定理(两个平面垂直,一个平面内垂直交线的直线垂直另一个平面) 47、证明平面与平面垂直的方法平面与平面垂直的判定定理(一个平面内有一条直线与另一个平面垂直) 48、柱体、椎体、球体的侧面积、表面积、体积计算公式圆柱侧面积=rl π2,表面积=222r rl ππ+ 圆椎侧面积=rl π,表面积=2r rl ππ+13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).球的半径是R ,则其体积343V R π=,其表面积24S R π=.49、异面直线所成角、直线与平面所成角、二面角的平面角的定义及计算 50、点到平面距离的计算(定义法、等体积法)51、直棱柱、正棱柱、长方体、正方体的性质:侧棱平行且相等,与底面垂直。