整理如法考试_《运筹学》试题样题
运筹学期末试题
《运筹学》试题样卷(一)一、判断题(共计10分,每小题1分,对的打√,错的打X )1. 无孤立点的图一定是连通图。
2。
对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。
3. 如果一个线性规划问题有可行解,那么它必有最优解。
4.对偶问题的对偶问题一定是原问题。
5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。
6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解.7. 度为0的点称为悬挂点。
8。
表上作业法实质上就是求解运输问题的单纯形法。
9。
一个图G 是树的充分必要条件是边数最少的无孤立点的图。
二、建立下面问题的线性规划模型(8分)某农场有100公顷土地及15000元资金可用于发展生产。
农场劳动力情况为秋冬季3500人日;春夏季4000人日。
如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。
该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。
种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元.养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。
养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。
农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。
三种作物每年需要的人工及收入情况如下表所示:试决定该农场的经营方案,使年净收入为最大。
三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分)(3)直接由上表写出对偶问题的最优解。
(1分) 四、用单纯形法解下列线性规划问题(16分)3212max x x x Z +-=s 。
运筹学试卷及答案完整版
《运筹学》模拟试题及参考答案一、判断题(在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“√”,错误者写“×”。
)1. 图解法提供了求解线性规划问题的通用方法。
( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j ≥0,则问题达到最优。
( )3. 在单纯形表中,基变量对应的系数矩阵往往为单位矩阵。
( )4. 满足线性规划问题所有约束条件的解称为基本可行解。
( )5. 在线性规划问题的求解过程中,基变量和非基变量的个数是固定的。
( )6. 对偶问题的目标函数总是与原问题目标函数相等。
( )7. 原问题与对偶问题是一一对应的。
( )8. 运输问题的可行解中基变量的个数一定遵循m+n-1的规则。
( )9. 指派问题的解中基变量的个数为m+n。
( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。
( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。
( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往不相等。
( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
( )14. 单目标决策时,用不同方法确定的最佳方案往往是一致的。
( )15. 动态规划中运用图解法的顺推方法和网络最短路径的标号法上是一致的。
( )三、填空题1. 图的组成要素;。
2. 求最小树的方法有、。
3. 线性规划解的情形有、、、。
4. 求解指派问题的方法是。
5. 按决策环境分类,将决策问题分为、、。
6. 树连通,但不存在。
四、下列表是线性规划单纯形表(求Z max ),请根据单纯形法原理和算法。
1. 计算该规划的检验数2. 计算对偶问题的目标函数值3. 确定上表中输入,输出变量五、已知一个线性规划原问题如下,请写出对应的对偶模型21max 6x x S +=⎪⎩⎪⎨⎧≥≥+≤+0,16327212121x x x x x x六、下图为动态规划的一个图示模型,边上的数字为两点间的距离,请用逆推法求出S 至F 点的最短路径及最短路长。
(整理)《运筹学》期末考试试题及参考答案
《运筹学》试题参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为 可行解 。
2、在线性规划问题中,图解法适合用于处理 变量 为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点,化为供求平衡的标准形式 。
4、在图论中,称 无圈的 连通图为树。
5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题: 1)max z = 6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。
2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺⑴⑵ ⑶ ⑷ ⑸、⑹可行解域为abcda ,最优解为b 点。
由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫ ⎝⎛21x x =(11,0)T ∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:A B C 甲 9 4 3 70 乙 4 6 10 1203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。
(10分) 解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x , 2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0 x 3+0 x 4+0 x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:∴X *=(11,11,11,0,0)T∴max z =70×11100+120×11300=1143000四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x解:用大M 法,先化为等效的标准模型:max z / =-5x 1-2x 2-4x 3 s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z / =-5x 1-2x 2-4x 3-M x 6-M x 7 s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:∴x *=(32,2,0,0,0)T最优目标函数值min z =-max z / =-(-322)=322五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)1)用最小费用法求初始运输方案,并写出相应的总运费;(5分) 2)用1)得到的基本可行解,继续迭代求该问题的最优解。
运筹学试题及答案
运筹学试题及答案一、线性规划试题一某工厂生产A、B两种产品,A产品每件利润为20元,B 产品每件利润为30元。
已知生产一个A产品需10小时,生产一个B产品需15小时。
某次生产过程中,工厂共有50个小时可用于生产,且设定A产品的最少需求量为20件,B产品的最少需求量为15件。
问应该生产多少件A产品和多少件B产品,才能使得工厂的利润最大化?答案一为了使工厂的利润最大化,我们需要建立一个数学模型来描述这个问题。
设工厂生产的A产品数量为x,B产品数量为x。
根据题目中的要求,可得以下条件:1.$10x+15y\\leq50$ (生产时间的限制)2.$x\\geq20$ (A产品的最少需求量)3.$y\\geq15$ (B产品的最少需求量)另外,我们还需要定义目标函数,即使工厂利润最大化:$max\\ Z = 20x+30y$根据以上条件和目标函数,可以得到如下线性规划模型:$max\\ Z = 20x+30y$$\\begin{cases} 10x+15y\\leq50\\\\ x\\geq20\\\\y\\geq15\\\\ x,y\\geq0 \\end{cases}$以上模型可以通过线性规划求解软件进行求解,得到最优解。
试题二某公司有甲、乙、丙三个工厂,每个工厂都可以制造产品A和产品B。
甲工厂每天制造产品A的数量最多为80件,产品B的数量最多为100件;乙工厂每天制造产品A的数量最多为60件,产品B的数量最多为40件;丙工厂每天制造产品A的数量最多为50件,产品B的数量最多为70件。
公司有订单,要求每天至少制造产品A的30件,产品B的50件。
甲工厂生产产品A的成本为5元,产品B的成本为4元;乙工厂生产产品A的成本为4元,产品B的成本为3元;丙工厂生产产品A的成本为3元,产品B的成本为2元。
问如何安排存货以使公司在利润最大化的前提下能够满足订单需求?答案二为了使公司在利润最大化的前提下满足订单需求,我们需要建立一个数学模型来描述这个问题。
运筹学考试练习题精选全文完整版
可编辑修改精选全文完整版运筹学自测题第一套题一、判断题(T-正确,F-错误)1.图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。
2.若线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点。
3.一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。
4.线性规划问题的可行解如为最优解,则该可行解一定是基可行解。
5.任何线性规划问题存在并具有唯一的对偶问题。
6.运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有唯一最优解,有无穷多最优解,无界解,无可行解。
7.整数规划的目标函数值一般优于其相应的线性规划问题的解的目标函数值。
8.分枝定界法在需要分枝时必须满足:分枝后的各子问题必须容易求解;各子问题解的集合必须包含原问题的解。
9.整数割平面法每次只割去问题的部分非整数解。
10.线性规划问题是目标规划问题的一种特殊形式。
11.目标规划模型中,应同时包含系统约束(绝对约束)与目标约束。
12.图论中的图不仅反映了研究对象之间的关系,而且是真实图形的写照,因而对图中点与点的相对位置、点与点连线的长短曲直等都要严格注意。
13.网络图中代表两点之间的距离长短的数字,其含义也可以是时间或费用。
14.在制定网络计划时,将一个任务分解成若干个独立的工作单元,称为任务的分解。
二、选择题1.线性规划数学模型的特征是:________都是线性的。
A. 目标函数和决策变量B. 决策变量和约束条件C. 目标函数和约束条件D. 目标函数、约束条件及决策变量2.关于剩余变量,下列说法错误的是:A. 为将某个大于等于约束化为等式约束,在该约束中减去一个剩余变量B. 剩余变量在实际问题中表示超过收益的部分C. 剩余变量在目标函数中的系数为零D. 在用单纯形法求解线性规划问题时,剩余变量一般作为初始基变量。
A. 任意m 个列向量组成的矩阵B. 任意m 阶子矩阵C. 前m 个列向量组成的矩阵D. 任意m 个线性无关的列向量组成的矩阵A. mB. n-mC. 至少mD. 至少n-m5.如果是求极大值的线性规划问题,单纯形法的每次迭代意味着其目标函数值将( A)必然增加;(B)必然减少;(C)可能增加;(D)可能减少6.单纯形法求解线性规划问题时,如何判断问题存在无界解?(A)全部变量的检验数非负;(B)某个检验数为正的非基变量,其系数列向量不存在正分量;(C)最终的单纯形表中含有人工变量,且其取值不为零;(D)非基变量全部非正,且某个非基变量的检验数为零。
运筹学试卷及参考答案
运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。
答案:运筹学在现实生活中的应用非常广泛。
例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。
此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。
总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。
2、请简述单纯形法求解线性规划的过程。
答案:单纯形法是一种求解线性规划问题的常用方法。
它通过不断迭代和修改可行解,最终找到最优解。
具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。
《运筹学》期末考试试题及参考答案
《运筹学》试题参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为 可行解 。
2、在线性规划问题中,图解法适合用于处理 变量 为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点,化为供求平衡的标准形式 。
4、在图论中,称 无圈的 连通图为树。
5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题: 1)max z = 6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。
2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺⑴⑵ ⑶ ⑷ ⑸、⑹可行解域为abcda ,最优解为b 点。
由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫ ⎝⎛21x x =(11,0)T ∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:A B C 甲 9 4 3 70 乙 4 6 10 1203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。
(10分) 解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x , 2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0 x 3+0 x 4+0 x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:∴X *=(11,11,11,0,0)T∴max z =70×11100+120×11300=1143000四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x解:用大M 法,先化为等效的标准模型:max z / =-5x 1-2x 2-4x 3 s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z / =-5x 1-2x 2-4x 3-M x 6-M x 7 s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:∴x *=(32,2,0,0,0)T最优目标函数值min z =-max z / =-(-322)=322五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)1)用最小费用法求初始运输方案,并写出相应的总运费;(5分) 2)用1)得到的基本可行解,继续迭代求该问题的最优解。
《运筹学》课程考试试卷及答案
《运筹学》课程考试试卷一、填空题(共10分,每空1分)1、线性规划问题的3个要素是: 、 和 。
2、单纯形法最优性检验和解的判别,当 现有顶点对应的基可行解是最优解,当 线性规划问题有无穷多最优解,当 线性规划问题存在无界解。
4、连通图的是指: 。
5、树图指 ,最小树是 。
6、在产销平衡运输问题中,设产地为m 个,销地为n 个,运输问题的解中的基变量数为 。
二、简答题 简算题(共20分) 1、已知线性规划问题,如下: max Z=71x -22x +53x⎪⎩⎪⎨⎧=≥≤+≤+-3,2,1,084632..31321i x x x x x x t s i请写出其对偶问题。
(10分)2、已知整数规划问题:1212121212max105349..528,0,,z x x x x s t x x x x x x =++≤⎧⎪+≤⎨⎪≥⎩且为整数在解除整数约束后的非整数最优解为(x1, x2)=(1, 1.5),根据分支定界法,请选择一个变量进行分支并写出对应的2个子问题(不需求解)。
(10分)三、计算题(共70分)1、某厂用A1,A2两种原料生产B1,B2,B3三种产品,工厂现有原料,每吨所需原料数量以及每吨产品可得利润如下表。
在现有原料的条件下,应如何组织生产才能使该厂获利最大?(共20分) (1) 写出该线性规划问题的数学模型(4分)(2)将上面的数学模型化为标准形式(2分)(3)利用单纯形法求解上述问题(14分,单纯形表格已给出, 如若不够, 可自行添加)(3)利用单纯形法求解上述问题(14分,单纯形表格已给出, 如若不够, 可自行添加)2、考虑下列运输问题:请用表上作业法求解此问题,要求:使用V ogel法求初始解。
若表格不够可自行添加(15分)3、有4台机器都可以做A、B、C、D四种工作,都所需费用不同,其费用如下表所示。
请用匈牙利法求总费用最小的分配方案。
(10分)4、某工厂内联结6个车间的道路如下图所示,已知每条道路的的距离,求沿部分道路架设6个车间的电话网,使电话线总距离最短。
《运筹学》课程考试试卷试题(含答案)
《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。
A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。
答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。
答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。
答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。
答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。
答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。
()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。
()答案:错误3. 目标规划中的偏差变量可以是负数。
()答案:正确4. 在动态规划中,最优策略具有最优子结构。
()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。
运筹学考试试卷及答案
运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。
答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。
运筹学试题及答案
运筹学试题及答案运筹学试题及答案一、选择题1. 运筹学是一门综合应用学科,它的研究对象是哪些问题?A. 经济决策问题B. 工程管理问题C. 交通运输问题D. 能源问题E. 以上都是答案:E. 以上都是2. 下列哪项不是运筹学的研究方法?A. 数学规划B. 数据分析C. 模拟仿真D. 统计推断答案:D. 统计推断3. 运筹学中的线性规划是一种用于解决什么类型的问题?A. 最小化问题B. 最大化问题C. 平衡问题D. 优化问题答案:D. 优化问题4. 运筹学中使用的线性规划求解算法有哪些?A. 单纯形法B. 整数规划法C. 动态规划法D. 匈牙利算法答案:A. 单纯形法5. 运筹学中的最优化问题可以分为哪两类?A. 离散最优化和连续最优化B. 线性最优化和非线性最优化C. 线性最优化和整数最优化D. 线性最优化和动态最优化答案:B. 线性最优化和非线性最优化二、判断题1. 运筹学只研究最优化问题,不研究约束条件。
答案:错误2. 运筹学只能用于解决企业管理问题,不适用于其他领域。
答案:错误3. 数学规划是运筹学的重要方法之一,但并不是唯一的方法。
答案:正确4. 运筹学的研究对象只包括一些实际运作困难的问题。
答案:错误5. 线性规划只适用于线性关系,不能处理非线性关系。
答案:正确三、简答题1. 什么是运筹学?答:运筹学是一门综合应用学科,通过数学建模和优化方法来解决经济、工程、管理、交通运输等领域中的优化问题。
它体现了一种科学的决策方法和管理思维,可以帮助人们做出最优决策。
2. 运筹学的主要研究方法有哪些?答:运筹学的主要研究方法包括数学规划、数据分析、模拟仿真和统计推断。
其中,数学规划是运筹学中最重要的方法之一,包括线性规划、整数规划、动态规划等。
数据分析通过对大量数据的统计和分析来揭示内在的规律,模拟仿真通过模拟现实场景进行实验和推演来验证决策方案的可行性,统计推断通过对样本数据进行概率分析和推断来进行决策。
运筹学试题及答案
运筹学试题及答案一、单项选择题(每题2分,共20分)1. 线性规划问题的标准形式中,目标函数的系数是:A. 非负B. 非正C. 任意实数D. 非零答案:A2. 整数规划问题与线性规划问题的主要区别在于:A. 目标函数B. 约束条件C. 变量D. 解的类型答案:C3. 以下哪个不是网络流问题的组成部分?A. 节点B. 边C. 权重D. 目标函数答案:D4. 动态规划的基本原理是:A. 贪心算法B. 分治法C. 迭代法D. 穷举法答案:B5. 以下哪个算法不是用于求解旅行商问题(TSP)?A. 分支定界法B. 动态规划C. 遗传算法D. 线性规划答案:D6. 以下哪个不是图论中的基本概念?A. 节点B. 边C. 权重D. 目标函数答案:D7. 以下哪个是最短路径问题的特例?A. 最小生成树B. 最大流C. 旅行商问题D. 网络流问题答案:A8. 在运输问题中,目标函数通常是:A. 最小化成本B. 最大化利润C. 最小化时间D. 最大化距离答案:A9. 以下哪个是排队论中的基本概念?A. 节点B. 边C. 服务台D. 权重答案:C10. 以下哪个是库存管理中的基本概念?A. 节点B. 边C. 订货点D. 权重答案:C二、多项选择题(每题3分,共15分)1. 以下哪些是线性规划问题的特点?A. 线性目标函数B. 线性约束条件C. 非线性目标函数D. 非线性约束条件答案:A, B2. 以下哪些是动态规划算法的步骤?A. 确定状态B. 确定决策C. 确定状态转移方程D. 确定目标函数答案:A, B, C3. 以下哪些是整数规划问题的求解方法?A. 线性规划B. 分支定界法C. 贪心算法D. 动态规划答案:B, D4. 以下哪些是网络流问题的类型?A. 最大流B. 最小生成树C. 旅行商问题D. 最短路径答案:A, D5. 以下哪些是排队论中的基本概念?A. 到达率B. 服务率C. 服务台数量D. 权重答案:A, B, C三、判断题(每题1分,共10分)1. 线性规划问题的目标函数一定是最大化。
(完整)运筹学试题及答案解析,推荐文档
运筹学试题及答案一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、 无界解 和无可行解四种。
2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明 如果在该空格中增加一个运量运费将增加4 。
3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错4、如果某一整数规划:MaxZ=X 1+X 2X 1+9/14X 2≤51/14-2X 1+X 2≤1/3X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 X1≤1 和 X1≥2 。
5、在用逆向解法求动态规划时,f k (s k )的含义是: 从第k 个阶段到第n 个阶段的最优解 。
6. 假设某线性规划的可行解的集合为D ,而其所对应的整数规划的可行解集合为B ,那么D 和B 的关系为 D 包含 B7. 已知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条件均为“≤”型不等式)其中X3,X4,X5为松驰变量。
X B b X 1X 2X 3X 4X 5X 4300-213X 14/310-1/302/3X 210100-1C j -Z j 00-50-23问:(1)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛---1003/20.3/1312(2)对偶问题的最优解: Y =(5,0,23,0,0)T8. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_ 无解_____;10. 若整数规划的松驰问题的最优解不符合整数要求,假设X i =b i 不符合整数要求,INT (b i )是不超过b i 的最大整数,则构造两个约束条件:Xi≥INT (b i )+1 和 Xi≤INT (b i ) ,分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。
运筹学试题及答案4套汇总
《运筹学》试卷一一、(15分)用图解法求解下列线性规划问题二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表,、为松弛变量,试求表中到的值及各变量下标到的值。
-1311611 -2 002 -111/21/214 07三、(15分)用图解法求解矩阵对策,其中四、(20分)(1)某项工程由8个工序组成,各工序之间的关系为工序 a b c d e f g h —— a a b,c b,c,d b,c,d e 紧前工序试画出该工程的网络图。
(2)试计算下面工程网络图中各事项发生的最早、最迟时间及关键线路(箭线下的数字是完成该工序的所需时间,单位:天)五、(15分)已知线性规划问题其对偶问题最优解为,试根据对偶理论求原问题的最优解。
六、(15分)用动态规划法求解下面问题:七、(30分)已知线性规划问题用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。
2-11 02311311111610-3-1-2(1)目标函数变为;(2)约束条件右端项由变为;(3)增加一个新的约束:八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案销地甲乙丙丁产量产地A 4 12 4 11 16B 2 10 3 9 10C 8 5 11 6 22 需求量8 14 12 14 48《运筹学》试卷二一、(20分)已知线性规划问题:(a)写出其对偶问题;(b)用图解法求对偶问题的解;(c)利用(b)的结果及对偶性质求原问题的解。
二、(20分)已知运输表如下:销地B1B2B3B4供应量产地A1 3 2 7 6 50A2 7 5 2 3 60A3 2 5 4 5 25需求量60 40 20 15(1)用最小元素法确定初始调运方案;(2)确定最优运输方案及最低运费。
(整理)《运筹学》期末考试试题及参考答案
-------------《运筹学》试题参考答案一、填空题(每空 2 分,共 10 分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。
2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。
4、在图论中,称无圈的连通图为树。
5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。
二、(每小题 5 分,共 10 分)用图解法求解下列线性规划问题:1)max z = 6x1+4x2⑴2x1x2 10 ⑵x1x28 ⑶x27 ⑷x1,x20 ⑸、⑹《运筹学》复习参考资料解:此题在“.doc”中已有,不再重复。
2)min z =-3x1+2x2⑴2x14x222 ⑵x14x210 ⑶2x1x27 ⑷x1 3x2 1 ⑸x1 , x20 ⑹、⑺解:--------------------------可行解域为 abcda,最优解为 b 点。
2 x1 4x222由方程组解出 x1=11,x2=0x20∴X* = x1 =(11,0)T x2∴min z =-3×11+2×0=-33三、(15 分)某厂生产甲、乙两种产品,这两种产品均需要 A 、B、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:A B C甲94370乙4610 1203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5 分)--------------------------2)用单纯形法求该问题的最优解。
(10 分)解: 1)建立线性规划数学模型:设甲、乙产品的生产数量应为x1、x2,则 x1、x2≥0,设 z 是产品售后的总利润,则max z =70x1+120x2s.t.9 x1 4 x23604 x1 6 x22003 x110 x2300x1, x202)用单纯形法求最优解:加入松弛变量 x3,x4,x5,得到等效的标准模型:max z =70x1+120x2+0 x3+0 x4+0 x5s.t.9 x14x2x33604 x16x2x42003 x110x2x5300x j0, j1,2,...,5列表计算如下:--------------------------70120000θ LC B X B bx 1x2x3x4x5 0x3 3609410090 0x420046010100/3 0x5 3003(10)001300000070120↑000 0x3 24039/5 010- 2/5 400/13 0x4 20(11/5 )001- 3/5 100/11 120x2303/10 1 001/1010036120001234↑000-12 0x3 1860/11001-39/11 19/1170 x1100/111005/11- 3/11120x2300/11010- 3/22 2/1143000701200170/11 30/1111000-170/11 -30/11∴X*=( 100 , 300 , 1860,0,0)T11 11 11∴max z =70×100 +120×300 = 4300011 11 11四、(10 分)用大M法或对偶单纯形法求解如下线性规划模型:min z =5x1+2x2+4x33x1x22x3 46x13x25x310x1 , x2 , x30--------------------------解:用大 M 法,先化为等效的标准模型:max z/ =-5x1-2x2-4x3s.t.3x1x22x3 x4 46x13x25x3x5 10y j0, j 1,2,...,5增加人工变量 x6、x7,得到:max z/ =-5x1-2x2-4x3-M x6-M x7 s.t3x1x22x3 x4x6 46x13x25x3x5x7 10x j0, j 1,2,...,7大 M 法单纯形表求解过程如下:--------------------------C B X B -M x6 -M x7-5 x1-M x7-5 x10x4-5 x1-2 x2b- 5-2 - 400-M-Mx1x2x3x4x5x6x7θ L 4(3)12-1 010 4/3106350- 1 0 15/3 -9M- 4M-7MM M-M-M↑4M-2 7M-4-M -M 00 9M-54/311/3 2/3- 1/301/30 ——2011(2)-1 - 2 1 1- 5-M-5/3 -M-10/3 -2 M +5/3M 2M - 5/3- M0M-1/3 M-2/3 2M -5/3 ↑-M - 3M +5/30 5/311/2 5/60-1/6 01/610/3 10(1/2 )1/21-1/2 - 11/22- 5- 5/2 - 25/605/6 0-5/601/2 ↑1/60-5/6 - M-M +5/6 2/3101/3-1 1/3 1-1/320112- 1 - 2 1- 22- 5-2 - 11/311/3 - 1-1/3300-1/3 -1 -1/3 -M +1- M +1/3 2∴x* =(3,2,0,0,0)T最优目标函数值min z =-max z/ =-(-22)= 223 3--------------------------五、(15 分)给定下列运输问题:(表中数据为产地 A i 到销地 Bj 的单位运费)B1 B2 B3 B4 siA 1 1 2 3 4 10A 2 8 7 6 5 80A 3 9 10 11 9 15d j8 22 12 181)用最小费用法求初始运输方案,并写出相应的总运费;(5 分)2)用 1)得到的基本可行解,继续迭代求该问题的最优解。
整理如法考试_《运筹学》试题样题
整理人 尼克如法考试《运筹学》试题样题第1题(10分)判断下列说法是否正确, 在括号内写明对错。
1.增加约束条件时, 线性规划模型的可行域不扩大。
( )2.线性规划问题的对偶问题的对偶问题是原问题。
( )3.动态规划的逆推与顺推解法得到相同的最优解。
( )4.若某种资源的影子价格等于,在其他条件不变的情况下,当该种资源增加5时,相应的目标函数值将增大5。
( )5.加非负权无向连通图中任两点间必存在最短路径。
( )第2题(10分)填空1.若原问题为无界解,则对偶问题的解是。
2.任何图中, 奇次顶点的个数为。
3.无向连通多重图G有欧拉通路的充分必要条件为。
4.在一个网络中,可行流是最大流,当且仅当。
5.对于多阶段决策问题来说,状态不仅要描述过程的具体特征,而且一个根本的要求是必须满足。
第3题(20分)下表1是某求极大化线性规划问题计算得到的单纯形表。
表中无人工变量,为待定常数,。
试说明这些常数分别取何值时,以下结论成立。
(1)表中解为惟一最优解;(2)表中解为最优解,但存在无穷多最优解;(3)该线性规划问题具有无界解;(4)表中解非最优,为对解改进,换入变量为,换出变量为表1基第4题(10分)用破圈法或避圈法求下图1的最小生成树,并指出其权重和。
第5题(15分)求下图2的网络最大流和最小截集,弧旁数字为容量。
第6题(20分)某项目的相关资料见下表2。
表 2图1(1)绘制双代号网络图。
(2)用图上计算法计算时间参数。
(3)用双线标明关键线路,并注明总工期。
第7题(15分)某企业要投产一种新产品,投资方案有三个:S1,S2,S3,不同经济形势下的利润如表3所示。
请分别用Maxmin决策准则、Maxmax决策准则、Laplace 决策准则、最小机会损失准则、折衷主义准则进行决策,其中乐观系数。
表3整理丨尼克本文档信息来自于网络,如您发现内容不准确或不完善,欢迎您联系我修正;如您发现内容涉嫌侵权,请与我们联系,我们将按照相关法律规定及时处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整理人 尼克
如法考试
《运筹学》试题样题
第1题(10分)判断下列说法是否正确, 在括号内写明对错。
1.增加约束条件时, 线性规划模型的可行域不扩大。
( )
2.线性规划问题的对偶问题的对偶问题是原问题。
( )
3.动态规划的逆推与顺推解法得到相同的最优解。
( )
4.若某种资源的影子价格等于,在其他条件不变的情况下,当该种资源增加5时,相应的目标函数值将增大5。
( )
5.加非负权无向连通图中任两点间必存在最短路径。
( )
第2题(10分)填空
1.若原问题为无界解,则对偶问题的解是。
2.任何图中, 奇次顶点的个数为。
3.无向连通多重图G有欧拉通路的充分必要条件为。
4.在一个网络中,可行流是最大流,当且仅当。
5.对于多阶段决策问题来说,状态不仅要描述过程的具体特征,而且一个根本的要求是必须满足。
第3题(20分)下表1是某求极大化线性规划问题计算得到的单纯形表。
表中无人工变量,为待定常数,。
试说明这些常数分别取何值时,以下结论成立。
(1)表中解为惟一最优解;
(2)表中解为最优解,但存在无穷多最优解;
(3)该线性规划问题具有无界解;
(4)表中解非最优,为对解改进,换入变量为,换出变量为
表1
基
第4题(10分)用破圈法或避圈法求下图1
的最小生成树,并指出其权重和。
第5题(15分)求下图2的网络最大流和最小截集,弧旁数字为容量。
第6题(20分)某项目的相关资料见下表2。
表 2
图1
(1)绘制双代号网络图。
(2)用图上计算法计算时间参数。
(3)用双线标明关键线路,并注明总工期。
第7题(15分)某企业要投产一种新产品,投资方案有三个:S1,S2,S3,不同经济形势下的利润如表3所示。
请分别用Maxmin决策准则、Maxmax决策准则、Laplace 决策准则、最小机会损失准则、折衷主义准则进行决策,其中乐观系数。
表3
整理丨尼克
本文档信息来自于网络,如您发现内容不准确或不完善,欢迎您联系我修正;如您发现内容涉嫌侵权,请与我们联系,我们将按照相关法律规定及时处理。