椭圆封头展开面积计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
窗体顶端
椭圆封头几何形状讨论及展开面积计算
符号说明a,am——椭圆的长半轴,mmb,bm——椭圆的短半轴,mmDi,Do——椭圆封头的内外径,mmDm——封头的中径,mmh——封头的直边高度,mmhi——椭圆封头的曲面深度,mmho——椭圆封头的曲面高度,mmm——椭圆的长短轴之比,m=a/bα——封头的厚径比,α=δ/Diδ——封头的厚度,mm
椭圆封头由于受力较好,加工较易,因此被广泛应用于化工、轻工、石油及制药等行业的中低压容器。人们通常认为椭圆封头是由半个椭圆壳和一段直边圆筒组成的,椭圆封头制造时封头展开面积就是根据这一假设推导计算的,然而构成椭圆封头的那半个椭圆壳是不是真正的椭圆壳呢?如果不是,又当如何计算椭圆封头的展开面积呢?笔者根据回转壳体的基本概念详细分析椭圆封头的几何形状,并根据椭圆封头真正的几何形状推导其展开面积,为制造提供准确的下料尺寸。
1 椭圆封头几何形状1.1 回转壳体基本概念壳体是被两个曲面所限定的物体,等分壳体各点厚度的曲面称为壳体的中面,中面是回转曲面的壳体称为回转壳体,而回转曲面则是一条平面曲线绕同平面的一根轴旋转而成的曲面,并称这条平面曲线为该回转曲面的母线。回转壳体尤其是回转薄壳的几何形状通常根据中面母线来描述。1.
2 中面母线方程等厚度的椭圆封头无疑也是一个回转壳体,但无论是冲压还是旋压成型的椭圆封头只能保证其椭圆壳部分的内表面(或外表面)为椭球面,中面及外表面(或内表面)并非椭球面,即其内表面(或外表面)母线是椭圆,而中面及外表面(或内表面)母线并非椭圆。中面及外表面(或内表面)母线方程可以根据内表面(或外表面)母线椭圆按如下方法推出。假定椭圆封头椭圆壳部分的内表面母线是椭圆,见图1。已知内表面母线上一点A1(x1,y1),其坐标应满足椭圆方程:
(1)
式中,a=Di/2, b=hi。
图1 椭圆封头所谓椭圆壳部分几何形状
过A1点做内表面母线椭圆的法线n-n,该法线与y轴的夹角为φ,分别交中面及外表面的母线于A(x,y)、A2(x2,y2),则
。那么A点的坐标可写为:
x=x1+(δ/2)sin φ(2)
y=y1+(δ/2)cos φ(3)
由数学知识可知:
故
(4)
(5)
若内表面母线椭圆方程写作参数方程的形式:
x1=acosθ(6)
y1=bsin θ(7)
式(4)~(5)可改写成:
(8)
(9)
式(8)~(9)即为椭圆封头所谓椭圆壳部分的中面母线参数方程,同理可写出其外表面母线的参数方程,在此不再赘述。根据回转壳体的基本概念,真正的椭圆壳是中面母线为椭圆的回转壳体,由于椭圆封头所谓椭圆壳部分的中面母线并非椭圆,因此只能称之为近似椭圆壳。
2 椭圆封头展开面积椭圆封头的表面是曲线曲面,属于不可展曲面。其近似展开方法有两种,即等面积法和等弧长法。所谓等面积法是假设零件中性层曲面的面积与零件的展开面积相等,所谓等弧长法是假设零件主断面上的中性层弧长在成型前后相等。其中以等面积法较为准确,因为金属在成型前后的体积不变,而厚度变化很小,有变薄的部分也有变厚的部分,可以相互抵消。椭圆封头的展开图为一圆面,设展开面积为A,展开直径为Da。2.1 根据中面母线几何形状推导展开面积近似椭圆壳部分的展开面积A1为:
(10)
其中:
(11)
将式(8)及(11)带入式(10)可推导整理得:
令
对m=2的标准型椭圆封头:
(12)
则
A1=πβα2=(πβ/4)Di2 (13)
封头直边圆筒部分的展开面积为:
A2=πDmh=πDi(1+α)h(14)
故椭圆封头的展开面积为:
A=A1+A2=πβDi2/4+πDi(1+α)h=πDa2/4
封头展开圆的直径Da可写作:
(15)
由于Dα/Di=f(α,h/Di)=f(δ/Di,h/Di),为了便于应用,可将Da/Di绘制成曲线,见图2。只要已知δ/Di、h/Di,就可查得Da/Di,从而计算出Da以供划线。
图2 以内径为公称直径的椭圆封头Da/Di参数图
以外径为公称直径的椭圆封头外表面母线是椭圆,其中面母线的几何形状可用类似方法推出,同理可推得其展开面积及展开圆直径,在此仅给出推导结果。以外径为公称直径的椭圆封头中面母线方程为:
展开圆直径为:
对于m=2的标准形椭圆封头:
图3给出了Da/Do参数图。此外,笔者还用Quick-Basic语言编制了计算程序,
只要输入椭圆封头公称直径类型,再输入δ、Di或Do、h、m,即可输出封头展开圆直径Da,程序框图见图4。
图3 以外径为公称直径的椭圆封头Da/Do参数图
图4 程序框图
2.2 与其它展开方法比较2.2.1 根据椭圆壳推导的椭圆封头展开圆直径以往椭圆封头的理论近似展开面积都是根据同内径、同长短轴之比的椭圆壳推导计算的,即把封头的中面母线看作椭圆,椭圆方程为:
式中,am=Do/2,bm=am/m。所推出的封头展开圆直径为:
(16)
式中,
。当m=2时,则β′=1.38。2.2.2 经验公式令Dm=Di(1+δ/Di)=Di(1+a),则常用的椭圆封头展开圆直径的经验公式为:
Da=1.2Dm+2h=1.2Di(1+a)+2h (17)
2.2.3 几种方法所得展开圆直径比较图5和图6给出了后两种展开方法与笔者展开方法所得以内径为公称直径的椭圆封头展开圆直径的相对误差。由图可见,根据同内径、同长短轴之比的椭圆壳推导的封头展开圆直径稍小,误差随a增大及h/Di 减小而增大,当a=0.04、h/Di=0.04时,误差可达0.8%;按经验公式所得封头展开圆直径较大,误差随a减小及h/Di增大而增大,当a=0.003、h/Di=0.15时,误差可达5.9%。