上海教材高中数学知识点总结(最全)

合集下载

(完整版)上海教材高中数学知识点总结(最全),推荐文档

(完整版)上海教材高中数学知识点总结(最全),推荐文档

目录一、集合与常用逻辑 二、不等式 三、函数概念与性质 四、基本初等函数 五、函数图像与方程 六、三角函数 七、数 列 八、平面向量九、复数与推理证明 十、直线与圆 十一、曲线方程十二、矩阵、行列式、算法初步 十三、立体几何 十四、计数原理 十五、概率与统计一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且I 并集:}{B x A x x B A ∈∈=⋃或补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=Y I注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βαY注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2) 或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增”③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T)4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+kf(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a nnaa 1=- m nmn a a = 2.对数式 b N a =log N a b=⇔(a>0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =n a a b b n log log =ab log 1=注:性质01log =a 1log =a a N aNa =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数)4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:α>101<<αα<0五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分, 并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断)注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 6.特殊角的三角函数值α6π 4π 3π 2π π23π sin α 0 21 22 231 0 1-cos α 1 23 2221 01-tg α33 13/ 0 / 7.基本公式同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos μ=± ()βαβαβαtan tan 1tan tan tan μ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质 单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增注:Z k ∈y=sinxy=cosxy=tanx图象sinx cosx tanx 值域 [-1,1] [-1,1] 无 奇偶 奇函数 偶函数 奇函数 周期 2π2ππ对称轴 2/ππ+=k xπk x =无中心()0,πk()0,2/ππk + ()0,2/πk9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sinCB A =+ 正弦定理:A a sin =B b sin =CcsinA R a sin 2= CB A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边) cos A =bcac b 2222-+(求角)面积公式:S △=21ab sin C注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则qp n m a a a a +=+2、等比数列 定义:)0(1≠=+q q a a nn通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 ⋅=θcos ⋅⋅=2121y y x x +注:①b a ,夹角:00≤θ≤1800②b a ,同向:=⋅3.基本定理 2211e e a ρρρλλ+=(21,e e ρρ不共线--基底) 平行:⇔//b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥02121=+⇔y y x x 模:a ρ=22y x +Λ=+=+2)(夹角:=θcos ||||b a ba 注:①0ρ∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -=模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=? 除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=n i rr k i i=+4 3.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论 分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+bya x一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+- 点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭半径2r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外7、直线截圆所得弦长AB =十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0) 顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a,-b ≤y ≤b双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +) 2a 、2b :椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn 抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴) 开口(向右) 范围x ≥0 离心率e=1焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量 2输出语句:PRINT “提示内容”;表达式 3赋值语句:变量=表达式 4条件语句“IF —THEN —ELSE ”语句 “IF —THEN ”语句IF 条件 THEN IF 条件 THEN 语句1 语句 ELSE END IF 语句2 END IF 5循环语句当型循环语句 直到型循环语句 WHILE 条件 DO 循环体 循环体 WEND LOOP UNTIL 条件 当型“先判断后循环” 直到型“先循环后判断”三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0 更相减损术:到达减数和差相等2、多项式f(x)= a n x n +a n-1x n-1+….+a 1x+a 0的求值秦九韶算法: v 1=a n x+a n -1 v 2=v 1x+a n -2v 3=v 2x+a n -3 v n =v n -1x+a 0注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n)求f(x)值,乘法、加法均最多n 次 3、进位制间的转换k 进制数转换为十进制数:111011.........)(.....a k a ka k a k a a a a n n nn n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法”例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=2 48=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件:①不共线的三点 ②一条直线和这直线外一点③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

上海教材高中数学知识点总结(最全)

上海教材高中数学知识点总结(最全)

an

1 an
n
am m an
2.对数式 loga N b ab N (a>0,a≠1)
loga MN loga M loga N
log a
M N
loga
M
loga
N
loga M n n loga M
loga b

logm logm
b a

lg b lg a
log a
6.特殊角的三角函数值


0

6
432
sin 0 1 2
23
1
22
cos 1
3
21
0
2
22
tg 0
3
1
3
3/
7.基本公式
同角 sin 2 cos2 1
sin cos

tan
和差 sin sin cos cos sin
cos cos cos msin sin
3.周期性
T 是 f (x) 周期 f (x T) f (x) 恒成立(常数 T 0 )
4.二次函数 解析式: f(x)=ax2+bx+c,f(x)=a(x-h)2+k f(x)=a(x-x1)(x-x2)
对称轴: x b
顶点: (
b
4ac b 2
,
)
2a
2a 4a
单调性:a>0, (, b ] 递减, [ b ,) 递增
注:数形结合---文氏图、数轴
4.四种命题 原命题:若 p 则 q
否命题:若 p 则 q
逆命题:若 q 则 p

上海教材高中数学知识点总结(最全)

上海教材高中数学知识点总结(最全)

目录一、集合与常用逻辑 二、不等式 三、函数概念与性质 四、基本初等函数 五、函数图像与方程 六、三角函数 七、数 列 八、平面向量九、复数与推理证明 十、直线与圆 十一、曲线方程十二、矩阵、行列式、算法初步 十三、立体几何 十四、计数原理 十五、概率与统计一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2) 或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T)4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a bac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0 闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a n na a 1=- m nm na a =2.对数式 b N a =log N a b=⇔(a>0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =na ab b n log log =ab log 1=注:性质01log =a 1log =a a N aNa =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数)4.幂函数 12132,,,-====x y x y x y x yx y =在第一象限图象如下:α>101<<αα<0五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分,并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断)注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+6.特殊角的三角函数值α6π 4π 3π 2π π23π sin α 0 21 22 231 0 1-cos α 1 23 2221 01-tg α33 13/ 0 / 7.基本公式同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =± ()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增y=sinxy=cosxy=tanx图象sinx cosx tanx 值域 [-1,1] [-1,1] 无 奇偶 奇函数偶函数 奇函数 周期 2π2ππ对称轴 2/ππ+=k xπk x =无中心()0,πk()0,2/ππk + ()0,2/πk注:Z k ∈9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sinCB A =+ 正弦定理:A a sin =B b sin =Ccsin A R a sin 2= C B A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边) cos A =bcac b 2222-+(求角)面积公式:S △=21ab sin C注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+=求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则q p n m a a a a +=+2、等比数列定义:)0(1≠=+q q a a nn通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 ⋅θcos ⋅=2121y y x x +注:①,夹角:00≤θ≤1800②,同向:b a =⋅3.基本定理 2211e e a λλ+=(21,e e不共线--基底) 平行:⇔//λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥02121=+⇔y y x x模:a =22y x +=+=+2)(夹角:=θcos ||||b a ba 注:①0∥a ②()()⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -= 模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=? 除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=n i rr k i i=+4 3.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论 分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+bya x一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+- 点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭半径2r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外7、直线截圆所得弦长AB =十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0) 顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a,-b ≤y ≤b双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +) 2a 、2b :椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴) 开口(向右) 范围x ≥0 离心率e=1 焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量2输出语句:PRINT“提示内容”;表达式3赋值语句:变量=表达式4条件语句“IF—THEN—ELSE”语句“IF—THEN”语句IF 条件 THEN IF 条件 THEN 语句1 语句ELSE END IF语句2END IF5循环语句当型循环语句直到型循环语句WHILE 条件 DO循环体循环体WEND LOOP UNTIL 条件当型“先判断后循环”直到型“先循环后判断”三.算法案例1、求两个数的最大公约数辗转相除法:到达余数为0更相减损术:到达减数和差相等2、多项式f(x)= a n x n+a n-1x n-1+….+a1x+a0的求值秦九韶算法:v1=a n x+a n-1v2=v1x+a n-2v3=v2x+a n-3v n=v n-1x+a0注:递推公式v0=a n v k=v k-1X+a n-k(k=1,2,…n)求f(x)值,乘法、加法均最多n次3、进位制间的转换k进制数转换为十进制数:11111.........)(.....akakakakaaaa nnnnnn+⨯++⨯+⨯=---十进制数转换成k进制数:“除k取余法”例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x5-5x4-4x3+3x2-6x+7,秦九韶算法求f(5) 123=2×48+27 v0=248=1×27+21 v1=2×5-5=527=1×21+6 v2=5×5-4=2121=3×6+3 v3=21×5+3=1086=2×3+0 v4=108×5-6=534v5=534×5+7=2677十三、立体几何1.三视图正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY∠=450平行X轴的线段,保平行和长度平行Y轴的线段,保平行,长度变原来一半3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件: ①不共线的三点 ②一条直线和这直线外一点 ③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

上海教材高中数学知识点总结(最全)

上海教材高中数学知识点总结(最全)

目录一、集合与常用逻辑 二、不等式 三、函数概念与性质 四、基本初等函数 五、函数图像与方程 六、三角函数 七、数 列 八、平面向量九、复数与推理证明 十、直线与圆 十一、曲线方程十二、矩阵、行列式、算法初步 十三、立体几何 十四、计数原理 十五、概率与统计一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且I 并集:}{B x A x x B A ∈∈=⋃或补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=Y I注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若则p ⌝原命题逆否命题 否命题逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:pq 6.复合命题的真值①q 真(假)“q ⌝”假(真) ②p 、q 同真“p ∧q ”真 ③p 、q 都假“p ∨q ”假 7.全称命题、存在性命题的否定M, p(x )否定为: M, )(X p ⌝ M, p(x )否定为: M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βαY注:若0<a ,转化为情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=f(x)图象关于y 轴对称 f(x)奇函数()()f x f x -=-f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义f(0)=0③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2f(x 1)<f(x 2)或x 1>x 2f(x 1) >f(x 2) 或0)()(2121>--x x x f x ff(x)减函数:注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增”③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期()()f x T f x +=恒成立(常数0≠T)4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数b=0 闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数b=0四、基本初等函数1.指数式 )0(10≠=a a nnaa 1=- m nmn a a = 2.对数式 b N a =log N a b=⇔(a>0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =n a a b b n log log =ab log 1=注:性质01log =a 1log =a a N aNa =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x 与y=log a x定义域、值域、过定点、单调性注:y=a x 与y=log a x 图象关于y=x 对称(互为反函数)4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:α>101<<αα<0五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分, 并将右边部分沿轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断)注:①)(x f 零点:0)(=x f 的实根②在上连续的单调函数,0)()(<b f a f 则在),(b a 上有且仅有一个零点③二分法判断函数零点---0)()(<b f a f六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 6.特殊角的三角函数值α6π 4π 3π 2π π23πsin α21 22 231 0 1-cos 123 2221 01-tg33 13/ 0 /7.基本公式同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos μ=± ()βαβαβαtan tan 1tan tan tan μ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质 单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增注:Z k ∈y=sinxy=cosxy=tanx图象sinx cosx tanx 值域 [-1,1] [-1,1] 无 奇偶 奇函数 偶函数 奇函数 周期 2π2ππ对称轴 2/ππ+=k xπk x =无中心()0,πk()0,2/ππk + ()0,2/πk9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sinCB A =+ 正弦定理:A a sin =B b sin =Ccsin A R a sin 2= C B A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边) cos A =bcac b 2222-+(求角)面积公式:S △=21ab sin C 注:ABC ∆中,A+B+C= B A B A sin sin <⇔<a 2>b 2+c 2 ∠A >七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+=求和:2)(1n n a a n S += d n n na )1(211-+=中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则q p n m a a a a +=+2、等比数列定义:)0(1≠=+q q a a nn通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=CB 共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 ⋅=θcos ⋅⋅=2121y y x x +注:①,夹角:00≤θ≤1800②b a ,同向:=⋅3.基本定理 2211e e a ρρρλλ+=(21,e e ρρ不共线--基底) 平行:⇔//b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥02121=+⇔y y x x 模:a ρ=22y x +Λ=+=+2)(夹角:=θcos ||||b a ba 注:①0ρ∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -=模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)= 乘法:(a+bi )(c+di )= 除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=n i rr k i i=+4 3.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论 分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……,这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(kN* ,k1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+bya x一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+- 点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是)圆心,22D E ⎛⎫-- ⎪⎝⎭半径2r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外7、直线截圆所得弦长AB =十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴 焦点F 1(c,0)、F 2(-c,0) 顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-axa,-byb双曲线|x| a ,yR 焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +) 2a 、2b :椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn 抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴) 开口(向右) 范围x0 离心率e=1焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量 2输出语句:PRINT “提示内容”;表达式 3赋值语句:变量=表达式 4条件语句“IF —THEN —ELSE ”语句 “IF —THEN ”语句IF 条件 THEN IF 条件 THEN 语句1 语句 ELSE END IF 语句2 END IF 5循环语句当型循环语句 直到型循环语句 WHILE 条件 DO 循环体 循环体 WEND LOOP UNTIL 条件 当型“先判断后循环” 直到型“先循环后判断”三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0 更相减损术:到达减数和差相等2、多项式f(x)= a n x n +a n-1x n-1+….+a 1x+a 0的求值秦九韶算法: v 1=a n x+a n -1 v 2=v 1x+a n -2v 3=v 2x+a n -3 v n =v n -1x+a 0 注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n)求f(x)值,乘法、加法均最多n 次3、进位制间的转换k 进制数转换为十进制数:111011.........)(.....a k a k a k a k a a a a n n nn n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法”例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=248=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3 S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π4.公理与推论 确定一个平面的条件:①不共线的三点 ②一条直线和这直线外一点③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

上海教材高中数学知识点总结(最全)

上海教材高中数学知识点总结(最全)

目录一、集合与常用逻辑 二、不等式 三、函数概念与性质 四、基本初等函数 五、函数图像与方程 六、三角函数 七、数 列 八、平面向量九、复数与推理证明 十、直线与圆 十一、曲线方程十二、矩阵、行列式、算法初步 十三、立体几何 十四、计数原理 十五、概率与统计一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2) 或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增”③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T)4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+kf(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a nnaa 1=- m nmn a a = 2.对数式 b N a =log N a b=⇔(a>0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =n a a b b n log log =ab log 1=注:性质01log =a 1log =a a N aNa =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数)4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:α>101<<αα<0五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分, 并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断)注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 6.特殊角的三角函数值α6π 4π 3π 2π π23π sin α 0 21 22 231 0 1-cos α 1 23 2221 01-tg α33 13/ 0 / 7.基本公式同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =± ()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质 单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增注:Z k ∈y=sinxy=cosxy=tanx图象sinx cosx tanx 值域 [-1,1] [-1,1] 无 奇偶 奇函数 偶函数 奇函数 周期 2π2ππ对称轴 2/ππ+=k xπk x =无中心()0,πk()0,2/ππk + ()0,2/πk9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sinCB A =+ 正弦定理:A a sin =B b sin =CcsinA R a sin 2= CB A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边) cos A =bcac b 2222-+(求角)面积公式:S △=21ab sin C注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则qp n m a a a a +=+2、等比数列 定义:)0(1≠=+q q a a nn通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=CB 共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 b a ⋅=θcos ⋅⋅=2121y y x x +注:①b a ,夹角:00≤θ≤1800②b a ,同向:b a =⋅3.基本定理 2211e e a λλ+=(21,e e不共线--基底) 平行:⇔b a //b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥b a b a 02121=+⇔y y x x 模:a=22y x +=+=+2)(b a夹角:=θcos ||||b a ba 注:①0∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -=模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=? 除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=n i rr k i i=+4 3.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论 分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+bya x一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+- 点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭半径2r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外7、直线截圆所得弦长AB =十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0) 顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a,-b ≤y ≤b双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +) 2a 、2b :椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn 抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴) 开口(向右) 范围x ≥0 离心率e=1焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量 2输出语句:PRINT “提示内容”;表达式 3赋值语句:变量=表达式 4条件语句“IF —THEN —ELSE ”语句 “IF —THEN ”语句IF 条件 THEN IF 条件 THEN 语句1 语句 ELSE END IF 语句2 END IF 5循环语句当型循环语句 直到型循环语句 WHILE 条件 DO 循环体 循环体 WEND LOOP UNTIL 条件 当型“先判断后循环” 直到型“先循环后判断”三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0 更相减损术:到达减数和差相等2、多项式f(x)= a n x n +a n-1x n-1+….+a 1x+a 0的求值秦九韶算法: v 1=a n x+a n -1 v 2=v 1x+a n -2v 3=v 2x+a n -3 v n =v n -1x+a 0注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n)求f(x)值,乘法、加法均最多n 次 3、进位制间的转换k 进制数转换为十进制数:111011.........)(.....a k a ka k a k a a a a n n nn n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法”例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=2 48=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件:①不共线的三点 ②一条直线和这直线外一点③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

上海教材高中数学知识点总结(最全)

上海教材高中数学知识点总结(最全)

目录一、集合与常用逻辑二、不等式三、函数概念与性质四、基本初等函数五、函数图像与方程六、三角函数七、数列八、平面向量九、复数与推理证明十、直线与圆十一、曲线方程十二、矩阵、行列式、算法初步十三、立体几何十四、计数原理十五、概率与统计一、集合与常用逻辑1.集合概念元素:互异性、无序性2.集合运算全集 U:如 U=R交集: A B { x x A且 x B}并集: A B { x x A或x B}补集: C U A { x x U且x A}3.集合关系空集 A子集 A B : 任意 x A x BA B A A B A B B A B注:数形结合 --- 文氏图、数轴4.四种命题原命题:若 p 则 q 逆命题:若 q 则 p否命题:若p 则q 逆否命题:若q 则p 原命题逆否命题否命题逆命题5.充分必要条件p 是 q 的充分条件:P qp 是 q 的必要条件:P qp 是 q 的充要条件:p? q6.复合命题的真值①q真(假) ? “ q ”假(真)②p、 q 同真 ? “ p∧ q”真③p、 q 都假 ? “ p∨ q”假7.全称命题、存在性命题的否定M, p(x )否定为 : M, p( X )M, p(x )否定为 : M, p( X )二、不等式1.一元二次不等式解法若 a 0 , ax2bx c 0 有两实根, ( ) ,则ax2bx c 0解集( , )ax2bx c 0 解集 ( , ) ( , )注:若 a 0,转化为 a0 情况2.其它不等式解法—转化x a a x a x2a2x a x a 或 x a x2a2三、函数概念与性质1.奇偶性f(x) 偶函数 f ( x) f (x) f(x) 图象关于 y 轴对称f(x) 奇函数 f ( x) f ( x) f(x) 图象关于原点对称注:① f(x) 有奇偶性定义域关于原点对称②f(x) 奇函数 , 在 x=0 有定义 f(0)=0③“奇 +奇=奇”(公共定义域内)2.单调性f(x) 增函数: x< x2f(x) <f(x2)1 1或 x >x2f(x )>f(x )1 1 2f (x) g( x) 0 f ( x)g ( x) 0或f ( x1 ) f (x2 ) 0x1x2a f( x )a g ( x )f( x)g (x)( a 1)log a f( x)log a g( x)f ( x) 00 a()f ( x) g( x)13.基本不等式① a 2 b 22ab②若 a,ba babR ,则22 ab 、 ab ( a b ) 2注:用均值不等式 a b2求最值条件是“一正二定三相等”f(x) 减函数:?注:①判断单调性必须考虑定义域② f(x) 单调性判断定义法、图象法、性质法“增+增 =增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反3.周期性T 是 f (x)周期 f (x T) f (x) 恒成立(常数 T 0 ) 4.二次函数解析式: f(x)=ax 2+bx+c , f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x2)b( b4 acb 2 l o g a b l o gn b n1对称轴: x 顶点: 2 a ,) a l o g a2a 4 ab单调性: a>0,( , b ] 递减, [b , ) 递增注:性质 log a10 log a a 1 a loga N N 常用对数lgN log 10 N , lg 2 lg 5 1 2 a 2 a自然对数 ln N log e N , ln e 1b 4 ac 2当 x b 3.指数与对数函数y=a x与 y=log ax, f(x)min4 a2a奇偶性:f(x)=ax 2+bx+c 是偶函数 b=0 闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数 f(x)=ax+b 奇函数b=0定义域、值域、过定点、单调性?x a图象关于 y=x 对称(互为反函数)注: y=a 与 y=log x1四、基本初等函数4.幂函数y x 2,y x 3, y x 2 , y x 11 ny x 在第一象限图象如下:1.指数式 a 0 1 (a 0) a n a m m a n a n2.对数式log a N b a b N ( a>0,a ≠1) 1 0 1 0log a MN log a M log a N log a M loga M log a NNlog a M n nlog a Mlog m b lg blog a blg alog m ayy五、函数图像与方程y=f(x) y=f(|x|)1.描点法函数化简→定义域→讨论性质(奇偶、单调)取特殊点如零点、最值点等2.图象变换平移:“左加右减,上正下负”y f ( x) y f ( x h)伸缩: y f ( x) 每一点的横坐标变为原来的倍y f ( 1x)对称:“对称谁,谁不变,对称原点都要变”y f (x) x轴y f ( x)y f (x) y轴y f ( x)y f (x) 原点y f ( x) 直线x a注: y f (x) y f (2a x)翻折: yf( x) y | f (x) |保留 x 轴上方部分,并将下方部分沿x 轴翻折到上方yy=f(x)yy=|f(x)|aob cxa o bc x3.零点定理若 f ( a) f(b)0 ,则y f ( x) 在 ( a, b) 内有零点(条件: f ( x) 在 [ a,b] 上图象连续不间断)注:① f ( x)零点: f ( x)0 的实根②在 [ a, b] 上连续的单调函数f (x) , f (a) f(b) 0则 f ( x) 在 ( a,b) 上有且仅有一个零点③二分法判断函数零点---f ( a) f (b)0 ?六、三角函数1.概念第二象限角 (2k ,2k ) ( kZ)22.弧长l r扇形面积 S1 lr23.定义siny xtanycosr xr其中 P( x, y)是终边上一点, PO r4.符号“一正全、二正弦、三正切、四余弦”5.诱导公式:“奇变偶不变,符号看象限”a obc x a o b c x y f (x) y f (| x |) 保留 y 轴右边部分,并将右边部分沿y 轴翻折到左边如 Sin(2 ) sin , cos( / 2) sin 6.特殊角的三角函数值4 36sin1 2 3 02 2 2cos 13 2 12 2 2tg 031 3 37.基本公式同角 sin 2cos2 1 sin tancos和差 sin sin cos cos sin cos cos cos sin sintantan tan1 tan tan倍角 sin 2 2sin cos32 21 0 110 0/0 /a sinb cos a2b2 sin( ) (tan a )b8.三角函数的图象性质y=sinx y=cosx y=tanx图象单调性:( ,)增(0, )减( ,)增2 2 2 2sinx cosx tanx值域[-1 , 1] [-1 , 1] 无cos22 2 2 2 cos sin 2cos 1 1 2sin2 tantan 21 tan2降幂 cos 2α= 1 cos 2 sin 2α =1 cos 22 2叠加 sin cos 2 sin()43 sin cos 2 sin()奇偶奇函数偶函数奇函数注: k Z 周期2π2ππ对称轴xk / 2 x k 无中心k ,0 / 2 k ,0 k / 2,069.解三角形基本关系 :sin(A+B)=sinCcos(A+B)=-cosC tan(A+B)=-tanC sin A B cos C2 2正弦定理 : a = b c =sin C sin A sin Ba 2R sin A a :b :c s i nA : s i nB : si nC余弦定理 : a 2 =b 2+c 2-2bccosA (求边)cosA= b 2c 2 a 2(求角)2bc面积公式 :S △= 1absinC2注: ABC 中, A+B+C=? A B sin A sin Ba 2>b 2+c 2? ∠A >2七、数列2、等比数列an1q( q 0)定义 :a n通项 :a na 1q n 1na 1(q 1)求和 : S na 1 (1 q n)1)1 (qq中项 : b 2ac ( a, b, c 成等比)性质 :若 m n p q则 a m a n a pa q 3、数列通项与前 n 项和的关系s 1 a 1 (n 1)an2)s n s n 1 (n4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1、等差数列定义 : a n 1 通项 : a n求和 : S na n da 1 (n 1)dn(a 1 a n ) 1na 1 n( n 1)d2 21.向量 加减 三角形法则,平行四边形法则ABBCAC 首尾相接, OBOC = CB 共始点中点公式: AB AC 2 AD D 是BC 中点 2. 向量 数量积 aa bcosy 1 y 2b ==x1 x2a c中项: b ( a, b, c 成等差)2性质:若 m n p q ,则 a m a n a pa q注:① a , b 夹角:00≤ θ ≤1800② a, b 同向: a b a b3.基本定理 a 1e1 2e2( e1 ,e2不共线 -- 基底)平行: a // b a b x1 y2x2 y1( b 0 )垂直: a b a b 0 x1 x2y1 y2 0模: a = x2y22 ( ab ) 2 a ba b夹角: cos| a ||b |注:① 0 ∥a ② abc a b c (结合律)不成立③ a b a c b c (消去律)不成立九、复数与推理证明1.复数概念复数: z a bi (a,bR),实部a b、虚部分类:实数( b 0 ),虚数( b 0),复数集 C注: z 是纯虚数a 0 , b 0相等:实、虚部分别相等共轭: z a bi模: z a 2b2z z z 2复平面:复数 z 对应的点 (a, b) 2.复数运算加减:( a+bi )±(c+di)= ?乘法:( a+bi )( c+di ) =?除法:a bi= (a bi )(c di ) ==,c di (c di )( c di )乘方:i21 , ini 4 kr i r3.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论)4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论反证法:反设—推理—矛盾—结论分析法:执果索因分析法书写格式:要证 A 为真,只要证B 为真,即证 ,, ,这只要证 C 为真,而已知 C 为真,故A 必为真注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当 n=1 时命题成立 ,(2) 假设当 n=k(k N* , k 1) 时命题成立,证明当 n=k+1 时命题也成立由(1)(2) 知这命题对所有正整数 n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角范围 0,斜率y2y1 k tanx1x2注:直线向上方向与 x 轴正方向所成的最小正角倾斜角为 90 时,斜率不存在2、直线方程点斜式 y y0k( x x0 ) ,斜截式 ykx b两点式y y1x x1,截距式x y 1y2y1x2x1 a b 一般式 Ax By C0注意适用范围:①不含直线 x x0②不含垂直 x 轴的直线③不含垂直坐标轴和过原点的直线3、位置关系(注意条件)平行k1k2且 b1b2垂直k1k2 1 垂直A1 A2 B1B2 04、距离公式两点间距离: |AB|= ( x1x2 ) 2 ( y1y2 ) 2圆一般方程:x2y 2Dx Ey F0(条件是?)圆心 D , E 半径 r D 2 E 24F2 2 26、直线与圆位置关系位置关系相切相交相离几何特征 d rr d rd代数特征△ 0 △ 0 △ 0 注:点与圆位置关系(x0a)2( y0b)2r 2点 P x0 , y0在圆外7、直线截圆所得弦长AB 2 r 2 d 2十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F2|)点到直线距离:d Ax0By0 CA2B2双曲线: |PF 1|-|PF 2|= ± 2a(0<2a<|F 1F2|)抛物线:与定点和定直线距离相等的点轨迹5、圆标准方程: ( x a)2( y b)2r 2圆心 ( a , b ) ,半径 r二、标准方程与几何性质(如焦点在 x 轴)椭圆 x2y21( a>b>0)a2 b 2双曲线 x2y 21(a>0,b>0)a 2b2中心原点对称轴?焦点F1(c,0)、 F2(-c,0)顶点 : 椭圆 ( ±a,0),(0,± b) ,双曲线 ( ±a,0)范围 : 椭圆 -a x a,-b y b双曲线|x| a ,y R焦距:椭圆 2c (c= a2 b 2)双曲线 2c( c= a2b2)2a、 2b: 椭圆长轴、短轴长,双曲线实轴、虚轴长离心率: e=c/a 椭圆 0<e<1, 双曲线 e>1注:双曲线x2y21渐近线 y bxa2 b 2 a方程 mx2ny21表示椭圆m 0,n 0.m n方程 mx2ny21表示双曲线mn 0抛物线 y2=2px(p>0)顶点(原点)对称轴( x 轴)开口(向右)范围 x 0 离心率 e=1焦点 F ( p ,0) 准线 x p2 2十二、矩阵、行列式、算法初步十、算法初步一.程序框图程序框名称功能起止框起始和结束输入和输出的信息输入、输出框赋值、计算处理框判断某一条件是否成立判断框循环框重复操作以及运算二.基本算法语句及格式1 输入语句: INPUT “提示内容”;变量2 输出语句: PRINT“提示内容”;表达式3 赋值语句:变量 =表达式4条件语句“ IF —THEN— ELSE”语句“ IF — THEN”语句IF 条件 THEN IF 条件 THEN语句1 语句ELSE END IF语句 2END IF5 循环语句当型循环语句直到型循环语句WHILE 条件DO循环体循环体WEND LOOP UNTIL 条件当型“先判断后循环”直到型“先循环后判断”三.算法案例1、求两个数的最大公约数辗转相除法:到达余数为0更相减损术:到达减数和差相等2、多项式f(x)= a n x n+a n-1x n-1+⋯ .+a1x+a0的求值秦九韶算法: v1 =anx+an-1 v2 =v 1x+an- 2v3=v 2x+an- 3 vn=vn- 1x+a0注:递推公式 v0=an vk=v k-1X +an- k(k=1,2,⋯n)求 f(x) 值,乘法、加法均最多n 次3、进位制间的转换k 进制数转换为十进制数:a n a n 1 .....a1 a0 (k ) a n a n 1 k n a1 kk n1 ......... a0十进制数转换成k 进制数:“ 除 k 取余法”例 1 辗转相除法求得 123 和 48 最大公约数为 3例 2 已知 f(x)=2x 5- 5x 4- 4x 3+3x 2- 6x+7,秦九韶算法求 f(5) 123=2×48+ 27 v 0=248=1×27+ 21v1=2× 5-5=5 27 =1×21+ 6 v2=5× 5- 4=21 21=3× 6+3v =21× 5+3=108 36=2×3+0 v 4=108× 5- 6=534v5=534× 5+7=2677十三、立体几何1. 三视图 正视图、侧视图、俯视图 ' ' ' =450 2. 直观图 :斜二测 画法 XOY平行 X 轴的线段,保平行和长度平行 Y 轴的线段,保平行, 长度变原来一半 3. 体积与侧面积V 柱 =S 底 h V 锥 =1S 底 h V 球 = 4πR 33 3S 圆锥侧 =rl S 圆台侧 = (Rr )l S 球表 =4 R 2 4. 公理与推论确定一个平面的条件 : ①不共线的三点②一条直线和这直线外一点③两相交直线④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

上海教材高中数学知识点总结(最全)

上海教材高中数学知识点总结(最全)
tanx 无
奇函数 π 无
k / 2,0
9.解三角形
基本关系:sin(A+B)=sinC cos(A+B)=-cosC
tan(A+B)=-tanC sin A B cos C
2
2
正弦定理: a = b = c sin A sin B sin C
a 2Rsin A a : b : c sin A: sin B : sinC
2
31
22
cos 1
3
21 0
2
22
tg 0
7.基本公式
31 3
3/
同角 sin 2 cos2 1
sin tan cos
和差 sin sin cos cos sin
cos cos cos sin sin
tan
tan tan 1 tan tan
倍角 sin 2 2sin cos cos2 cos2 sin2 2cos2 11 2sin2
②p、q 同真⇔“p∧q”真
③p、q 都假⇔“p∨q”假 7.全称命题、存在性命题的否定
M, p(x)否定为: M, p( X ) M, p(x)否定为: M, p( X )
二、不等式
1.一元二次不等式解法
若 a 0 , ax2 bx c 0 有两实根, ( ) ,则 ax2 bx c 0 解集 (, ) ax2 bx c 0 解集 (,) (,)
y f (x) x轴 y f (x) y f (x) y轴 y f (x) y f (x) 原点 y f (x)
直线x a
注: y f (x) y f (2a x)
翻折: y f (x) y | f (x) |保留 x 轴上方部分,

上海教材高中数学知识点总结(最全)

上海教材高中数学知识点总结(最全)

目录一、集合与常用逻辑二、不等式三、函数概念与性质四、基本初等函数五、函数图像与方程六、三角函数七、数列八、平面向量九、复数与推理证明十、直线与圆十一、曲线方程十二、矩阵、行列式、算法初步十三、立体几何十四、计数原理十五、概率与统计一、集合与常用逻辑1.集合概念元素:互异性、无序性2.集合运算全集 U:如 U=R交集: A B { x x A 且 x B}补集: C U A { x x U 且 x A}3.集合关系空集 A子集 A B : 任意 x A x BA B A A B A B B A B注:数形结合 --- 文氏图、数轴4.四种命题原命题:若 p 则 q 逆命题:若 q 则 p否命题:若p 则q 逆否命题:若q 则p 原命题逆否命题否命题逆命题5.充分必要条件p 是 q 的充分条件:P qp 是 q 的必要条件:P qp 是 q 的充要条件: p? q6.复合命题的真值①q真(假) ? “ q ”假(真)②p、 q 同真 ? “p∧ q”真③p、 q 都假 ? “p∨ q”假7.全称命题、存在性命题的否定M, p(x )否定为 : M,p( X )M, p(x )否定为 : M,p( X )并集: A B { x x A 或 x B}二、不等式1.一元二次不等式解法若 a 0 ,ax20 有两实根, () ,则bx c2bx c 0解集( , ) ax2bx c 0 解集 ( , )( , )ax注:若 a 0 ,转化为a 0 情况2.其它不等式解法—转化x a a x a2 2 x ax a x a 或x a x 2 a 2f( x )0f ( x ) g( x)0g( x)f( x) g ( x ) g ( x )( a 1 )a a f ( x)f( x ) 0log a f( x)log a g( x ) ( 0a1 )f( x ) g ( x )3.基本不等式① a2 b 2 2 ab ②若 a ,ba babR ,则2注:用均值不等式 a b 2ab 、 ab( a b ) 22求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x) 偶函数 f ( x) f ( x ) f(x) 图象关于 y 轴对称f(x) 奇函数 f ( x ) f ( x ) f(x) 图象关于原点对称注:① f(x) 有奇偶性定义域关于原点对称② f(x) 奇函数 , 在 x=0 有定义f(0)=0③“奇+奇=奇”(公共定义域内)2.单调性f(x ) 增函数: x1 <x2f(x1) <f(x 2 ) 或 x1 >x2 f(x1)>f(x2) 或f ( x1 )f ( x2 )0x1x2f(x) 减函数:?注:①判断单调性必须考虑定义域②f(x) 单调性判断定义法、图象法、性质法“增 +增 =增”③奇函数在对称区间上单调性相同偶函数在对称区间上单调性相反3.周期性T 是 f ( x) 周期f (xT )f (x) 恒成立(常数T)4.二次函数解析式: f(x)=ax2+bx+c ,f(x)=a(x-h)2 +kf(x)=a(x-x1 )(x-x2)b b 4 ac b 2n 1l o g a b l o g n b顶点: ( )l o g a 对称轴: x 2 a ,a 2 a 4 abb注:性质 log a 1 0 log aa 1 a lo g a N N单调性: a>0, ( b] 递减, [ ) 递增,, 常用对数 lg Nlo g N , lg2 lg 5 12 a2 a 10 b4 ac2自然对数 ln Nlog e N , ln e 1 b当 x , f(x) min3.指数与对数函数 x 与 y=log a x2a 4 ay=a奇偶性: f(x)=ax 2+bx+c 是偶函数b=0 闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数 f(x)=ax+b 奇函数b=0定义域、值域、过定点、单调性?x 与 y=log x 图象关于 y=x 对称(互为反函数) 注: y=a a1四、基本初等函数4.幂函数y x2, yx 3 , y x 2,y x 11ny x 在第一象限图象如下:1.指数式0 1 ( a 0) n a mm na a a na2.对数式 log a N b a b ( a>0,a ≠ 1)1 01 0 N log a MNlog a M log a Nlo g M log a M log a Na NlogaM nn log a M log a b log m b lg b log m a lg ayy五、函数图像与方程y=f(x) y=f(|x|)1.描点法函数化简→定义域→讨论性质(奇偶、单调)取特殊点如零点、最值点等2.图象变换平移:“左加右减,上正下负”y f ( x )yf( x h )伸缩: y每一点的横坐标变为原来的倍1f ( x ) yf( x)对称:“对称谁,谁不变,对称原点都要变”yx轴yf(x) f ( x)yy轴y f ( x) f ( x)y原点y f ( x) f ( x)直线xa注: y f ( x) yf( 2a x )翻折: y f ( x)y | f ( x) | 保留 x 轴上方部分,并将下方部分沿x 轴翻折到上方y yy=f( x)y=|f(x)|a o bc xa obc x3.零点定理若 f ( a )f (b ) 0 ,则 y f ( x) 在 ( a, b ) 内有零点(条件: f ( x) 在 [ a, b ] 上图象连续不间断)注:① f ( x ) 零点: f ( x) 0 的实根②在 [ a, b ] 上连续的单调函数 f ( x ) , f (a ) f( b )则 f ( x ) 在 ( a , b ) 上有且仅有一个零点③二分法判断函数零点 --- f ( a) f (b ) 0 ?六、三角函数1. 概念 第二象限角 (2k ,2 k ) ( k Z) 22. 弧长 l r 扇形面积S1 lr23. 定义 sin yxtanycos xr r其中 P ( x,y ) 是 终边上一点, PO ra ob c xa o bc xy f ( x) yf (| x |) 保留 y 轴右边部分,并将右边部分沿 y 轴翻折到左边4. 符号 “一正全、二正弦、三正切、四余弦”5. 诱导公式 :“奇变偶不变,符号看象限”如 Sin (2 ) sin , cos( / 2 ) sin 6. 特殊角的三角函数值34 3 2 26sin1 2 31 0 1 02 2 2cos 13 2 1120 2 2tg 031 3 / 0 / 37.基本公式同角 sin 2cos 2 1 sin tancos和差 sin sin cos cos sincos cos cos sin sintan tantan1 tan tan倍角sin 2 2 sin coscos22 2 21 12 cos sin 2cos2sin2tantan 2tan 21降幂 cos 2α= 1 cos 2 sin 2α =1 cos 22 2 叠加sin cos 2 sin( )43 sin cos 2 sin( )a sinb cos2 2(tanaa b sin() )b8.三角函数的图象性质y=sinx y=cosx y=tan x图象单调性:( , ) 增(0, )减( , ) 增2 2 2 2sinx cosx tanx值域[-1 , 1] [-1 , 1] 无奇偶奇函数偶函数奇函数周期2π2ππ对称轴x k/ 2 xk 无中心k ,0 / 2 k ,0 k / 2,0 注: k Z69.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosCtan(A+B)=-tanCA B C sin2cos2正弦定理:a=b=csinA sinB sin Ca2 R sinAa :b :cs i n A : s i nB : s i nC2、等比数列定义:a n1q ( q 0 )an通项: ana1 qn 1na 1( q 1)求和: Sna1(1 q n )1)1(qq余弦定理:a2 =b2+c2- 2bccos A(求边)2 2 2cosA= b c a (求角)2bc 中项: b 2ac (性质:若m n3、数列通项与前a , b, c 成等比)p q 则 a m a n a p a qn项和的关系1面积公式: S△= absinC2注:ABC 中, A+B+C=?A B sin A sinB2 2 2? ∠A>a >b +c2七、数列1、等差数列定义: a n 1an d通项: a n a1(n1)d求和: S nn( a1an) 12na 1n( n 1) d2中项: ba c2( a , b, c 成等差)性质:若 mnp q ,则 ama n a pa qa n s1a 1(n 1) s ns n 1( n 2 )4、数列求和常用方法公式法、裂项法、错位相减法、倒序相加法八、平面向量1.向量加减三角形法则,平行四边形法则AB BC AC 首尾相接, OB OC = CB 共始点中点公式: AB AC 2 AD D 是BC 中点2.向量数量积 aa b cosy 1 y 2 b ==x1 x2注:① a ,b 夹角:00≤ θ≤ 1800② a, b 同向: a b a b3.基本定理 a 1e12e2( e1 ,e 2不共线 -- 基底)平行: a// b a b x1 y 2x2 y1( b 0 )垂直: ab a b 0 x1 x2y1 y202 2 22模: a = a b ( a b )x y夹角: cosa b | a || b |注:① 0 ∥ a ②a b c a b c (结合律)不成立③ ab ac b c (消去律)不成立九、复数与推理证明1.复数概念复数: z a bi (a,b R) ,实部 a、虚部 b分类:实数( b 0 ),虚数( b 0 ),复数集 C 注: z 是纯虚数 a 0 , b 0相等:实、虚部分别相等共轭: z a bi2 2 2模: za b z zz复平面:复数 z 对应的点 ( a, b)2.复数运算加减:( a+bi )± (c+di)= ?乘法:( a+bi )( c+di )=?除法:abi = ( abi )(c di ) ==,cdi (cdi )(c di )乘方: i21 ,i n i4 kr i r3.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论)4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论反证法:反设—推理—矛盾—结论分析法:执果索因分析法书写格式:要证 A 为真,只要证B 为真,即证 ,, ,这只要证 C 为真,而已知C 为真,故 A 必为真注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当 n=1 时命题成立 ,(2) 假设当 n=k(k N* , k 1) 时命题成立 ,证明当 n=k+1 时命题也成立由(1)(2) 知这命题对所有正整数 n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角范围0,斜率k tany2y1x2x1注:直线向上方向与 x 轴正方向所成的最小正角倾斜角为90 时,斜率不存在2、直线方程点斜式 y y 0k( xx 0 ) ,斜截式 ykx b两点式y y1x x1 ,截距式x y 1 y2y1x2x1 a b 一般式Ax By C0注意适用范围:①不含直线x x 0②不含垂直 x 轴的直线③不含垂直坐标轴和过原点的直线3、位置关系(注意条件)平行k1k 2且 b1b2垂直k1 k 2 1 垂直A1 A2B1B2 04、距离公式两点间距离:|AB|= (x1x2 )2( y1y 2 )2点到直线距离: dAx0B y0CA 2B 25、圆标准方程:( x a ) 2( yb )2r 2圆心 ( a , b ) ,半径 r圆一般方程 : x 2y 2DxEy F 0 (条件是?) 2 2圆心 D ,E 半径 r D E4F 2 2 26、直线与圆 位置关系位置关系 相切 相交相离几何特征d rr drd代数特征△ 0△ 0 △注:点与圆位置关系 ( x 0 a )2 ( y 0 b) 2 r 2点 P x 0 , y 0 在圆外7、直线截圆所得 弦长AB 2 r 2 d 2十一、圆锥曲线一、定义椭圆 : |PF 1 |+|P F 2 |=2a(2a>|F 1 F |)2双曲线 : |PF|-|PF 2 |= ±2a(0<2a<|F1 F |)12抛物线 :与定点和定直线距离相等的点轨迹二、标准方程与几何性质 (如焦点在 x 轴)椭圆x 2y 21 ( a>b>0)2 2 a b 2 2双曲线 xy 1 (a>0,b>0)a 2b 2中心 原点对称轴 ? 焦点 F (c,0) 、 F (-c,0) 1 2 顶点 : 椭圆 ( ±a,0),(0, ± b) ,双曲线 ( ± a,0) 范围 : 椭圆 -a x a,-by b双曲线|x| a , y R焦距 :椭圆 2c ( c= a2 b2 )双曲线 2c ( c= a 2b 2)2a 、 2b: 椭圆长轴、短轴长,双曲线实轴、虚轴长离心率 : e=c/a 椭圆 0<e<1, 双曲线 e>122 b 注:双曲线 xy 1 渐近线 yx 22 aab方程 mx 2ny 21 表示椭圆 m 0, n 0 .m n方程 mx 2ny 2 1 表示双曲线mn 0 抛物线 y 2=2px(p>0)顶点(原点)对称轴( x 轴) 开口(向右) 范围 x 0 离心率 e=1 p ,0) 准线 xp焦点 F( 22十二、矩阵、行列式、算法初步十、算法初步一.程序框图程序框名称功能起止框起始和结束输入和输出的信息输入、输出框赋值、计算处理框判断某一条件是否成立判断框循环框重复操作以及运算二.基本算法语句及格式1 输入语句: INPUT “提示内容”;变量2 输出语句: PRINT“提示内容”;表达式3 赋值语句:变量 =表达式4条件语句“ IF — THEN— ELSE”语句“ IF — THEN”语句IF 条件 THEN IF 条件 THEN 语句1 语句ELSE END IF语句 2END IF5 循环语句当型循环语句直到型循环语句WHILE 条件DO循环体循环体WEND LOOP UNTIL 条件当型“先判断后循环”直到型“先循环后判断”三.算法案例1、求两个数的最大公约数辗转相除法:到达余数为0更相减损术:到达减数和差相等2、多项式f(x)= a nx n+an-1x n-1+⋯ .+ a1 x+a0 的求值秦九韶算法:v1 nn- 1 2 1n- 2=a x+a v =v x+av3=v 2x+an- 3vn=vn - 1 x+a0注:递推公式 v0 =an v k=v k-1X+a n-k(k=1,2, ⋯n)求 f(x) 值,乘法、加法均最多n 次3、进位制间的转换k进制数转换为十进制数:例1 辗转相除法求得123 和 48 最大公约数为 3例2已知 f(x)=2x 5- 5x4- 4x3+3x2- 6x+7 ,秦九韶算法求 f(5)123=2×48+ 27 v 0 =248=1×27+ 21 v 1 =2× 5- 5=527 =1×21+ 6 v 2=5× 5- 4=2121=3× 6+3 v 3 =21× 5+3=1086=2×3+0 v 4 =108× 5-6=534v5=534×5+7=2677十三、立体几何1.三视图正视图、侧视图、俯视图2.直观图:斜二测画法X 'O'Y' =45平行 X 轴的线段,保平行和长度平行 Y 轴的线段,保平行,长度变原来一半3.体积与侧面积V 柱 =S 底 hV1S 底 h V4 3锥 = 球 =πR3 3S圆锥侧=rlS圆台侧=( Rr ) lS球表=4 R 24.公理与推论确定一个平面的条件:a n a n 1 ..... a 1 a 0 ( k ) a n k n a n 1 kn 1.........a 1 k a 0 ①不共线的三点 ②一条直线和这直线外一点十进制数转换成 k 进制数:“ 除 k 取余法 ”③两相交直线④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

上海教材高中数学知识点总结最全

上海教材高中数学知识点总结最全

目录一、集合与常用逻辑 二、不等式 三、函数概念与性质 四、基本初等函数 五、函数图像与方程 六、三角函数 七、数 列 八、平面向量 九、复数与推理证明 十、直线与圆 十一、曲线方程十二、矩阵、行列式、算法初步 十三、立体几何 十四、计数原理 十五、概率与统计一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且I 并集:}{B x A x x B A ∈∈=⋃或 补集:}{A x U x x A C U ∉∈=且3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=Y I注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定M, p(x )否定为: M, )(X p ⌝ M, p(x )否定为: M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βαY注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇”(公共定义域内)2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2) 或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T)4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0 闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a n n a a 1=- m n m na a =2.对数式 b N a =log N a b=⇔(a>0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =na ab b n log log =ab log 1=注:性质01log =a 1log =a a N aNa =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x 与y=log a x定义域、值域、过定点、单调性?注:y=a x 与y=log a x 图象关于y=x 对称(互为反函数) 4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:、函数图像与方程1.描点法α>101<<αα<0函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分, 并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断)注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f则)(x f 在),(b a 上有且仅有一个零点③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 6.特殊角的三角函数值7.基本公式 同角1cos sin22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos μ=± ()βαβαβαtan tan 1tan tan tan μ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增 注:Z k ∈9.解三角形tan(A+B)=-tanC 2cos 2sinCB A =+ 正弦定理:A a sin =B b sin =Ccsin A R a sin 2= C B A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边)cos A =bca cb 2222-+(求角)面积公式:S △=21ab sin C 注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则q p n m a a a a +=+2、等比数列 定义:)0(1≠=+q q a a nn通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=CB 共始点中点公式:⇔=+AD AC AB 2D 是BC 中点2. 向量数量积 ⋅=θcos ⋅⋅=2121y y x x +注:①b a ,夹角:00≤θ≤1800②b a ,同向:b a =⋅ 3.基本定理 2211e e a ρρρλλ+=(21,e e ρρ不共线--基底) 平行:⇔b a //b a λ=⇔1221y x y x =(≠) 垂直:0=⋅⇔⊥b a b a 02121=+⇔y y x x模:a ρ=22y x +Λ=+=+2)(夹角:=θcos ||||b a注:①0ρ∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -= 模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=?除法: di c bi a ++=))(())((di c di c di c bi a -+-+==…乘方:12-=i ,=n i rrk i i=+43.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论 分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……,这只要证C 为真,而已知C 为真,故A 必为真注:常用分析法探索证明途径,综合法写证明过程 5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ÎN* ,k ³1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+bya x一般式0=++C By Ax注意适用范围:①不含直线0x x =②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+- 点到直线距离:0022Ax By Cd A B++=+5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭ 半径2242D E Fr +-=6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外7、直线截圆所得弦长222AB r d =-十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0) 顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a x a,-b y b双曲线|x| a ,y R 焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +) 2a 、2b :椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0方程122=+ny mx 表示双曲线0<⇔mn抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴)开口(向右) 范围x 0 离心率e=1焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步1. 矩阵是记录和管理批量数据的一种方法从具体问题人手,通过构造矩阵,利用矩阵的运算解决问题.由n m ⨯个数排成的m 行n 列的矩形表⎪⎪⎪⎪⎪⎭⎫ ⎝⎛mn m m n n a a a a a a a a a .....................212222111211称为一个m 行n 列的矩阵,简称n m ⨯矩阵,用n m A ⨯表示,简记为n m ij a A ⨯=)(或),...2,1;,...2,1)((n j m i a A ij ===,数ij a 称为矩阵A 的元素。

上海教材高中数学知识点总结(最全)

上海教材高中数学知识点总结(最全)

目录一、集合与常用逻辑补集:CA{x xUxA}U且二、不等式三、函数概念与性质3.集合关系空集A四、基本初等函数子集AB:任意xAxB五、函数图像与方程六、三角函数ABAABABBAB七、数列注:数形结合---文氏图、数轴八、平面向量4.四种命题九、复数与推理证明原命题:若p则q逆命题:若q则p十、直线与圆否命题:若p则q逆否命题:若q则p十一、曲线方程原命题逆否命题否命题逆命题十二、矩阵、行列式、算法初步5.充分必要条件十三、立体几何p是q的充分条件:Pq十四、计数原理p是q的必要条件:Pq十五、概率与统计p是q的充要条件:p?q6.复合命题的真值①q真(假)?“q”假(真)一、集合与常用逻辑②p、q同真?“p∧q”真1.集合概念元素:互异性、无序性③p、q都假?“p∨q”假2.集合运算全集U:如U=R7.全称命题、存在性命题的否定交集:AB{xxA且xB}M,p(x)否定为:M,p(X)M,p(x)否定为:M,p(X)并集:AB{xxA 或xB}二、不等式三、函数概念与性质1.一元二次不等式解法2bxc若a0,ax0有两实根,(),则1.奇偶性2bxcax解集(,)f(x)偶函数f(x)f(x)f(x)图象关于y轴对称2bxcax0解集(,)(,)f(x)奇函数f(x)f(x)f(x)图象关于原点对称注:若a0,转化为a0情况注:①f(x)有奇偶性定义域关于原点对称②f(x)奇函数,在x=0有定义f(0)=02.其它不等式解法—转化xaaxa 2a2x③“奇+奇=奇”(公共定义域内)2.单调性xaxa或xa 2a2x f(x)增函数:x1<x2f(x1)<f(x2)或x1>x2f(x1)>f(x2)f (x) x)g( 0 f(x)g(x)0f(x)f(x)12或0xx12f(x)a gx()af(x)g(x)(a1)f(x)减函数:?log a f(x)log a g(x)f(x)0f(x)g(x) (0a1)注:①判断单调性必须考虑定义域②f(x)单调性判断3.基本不等式定义法、图象法、性质法“增+增=增”①a2b22ab ③奇函数在对称区间上单调性相同ab②若a,bR,则ab2 注:用均值不等式ab2ab、abab()22偶函数在对称区间上单调性相反3.周期性T是f(x)周期f(xT)f(x)恒成立(常数T0)求最值条件是“一正二定三相等”4.二次函数解析式:f(x)=ax 2+bx+c,f(x)=a(x-h)2+kf(x)=a(x-x1)(x-x2)对称轴:xb2a2b4acb顶点:(,)2a4anlog a blogbna1logba b单调性:a>0,](,2ab递减,[,)2a递增logN注:性质log a10log a a1aaN常用对数lgNlog10N,lg2lg51当xb2a,f(x)min4 ac4 ab2自然对数NNlnlog,lne1e3.指数与对数函数y=a x与y=logx与y=loga x奇偶性:f(x)=ax 2+bx+c是偶函数b=0闭区间上最值:配方法、图象法、讨论法---注意对称轴与区间的位置关系注:一次函数f(x)=ax+b奇函数b=0定义域、值域、过定点、单调性?x注:y=a与y=log a x图象关于y=x对称(互为反函数)1四、基本初等函数4.幂函数y x2,yx3,yx,yx2,yx3,yx,yx210a 1.指数式a1(0)ann1mmnaanay x在第一象限图象如下:b2.对数式logNbaNa(a>0,a≠1)1010 log a MNlog a Mlog a Nlog MalogMlogNaa Nn log a Mnlog aMlog mmlogbalogb a l g lg bayy五、函数图像与方程y=f(x)y=f(|x|) 1.描点法函数化简→定义域→讨论性质(奇偶、单调)aobcaoxbc x取特殊点如零点、最值点等3.零点定理若f(a)f(b)0,则yf(x)在(a,b)内有零点2.图象变换平移:“左加右减,上正下负”(条件:f(x)在[a,b]上图象连续不间断)yf(x)yf(xh)注:①f(x)零点:f(x)0的实根1每一点的横坐标变为原来的倍伸缩:)yf(x)yf(x ②在[a,b]上连续的单调函数f(x),f(a)f(b)0 则f(x)在(a,b)上有且仅有一个零点③二分法判断函数零点---f(a)f(b)0?对称:“对称谁,谁不变,对称原点都要变”x轴yf(x)yf(x)六、三角函数y轴yf(x)yf(x)原点yf(x)yf(x) 1.概念第二象限角,2)(2kk(kZ)2注:yf(x) 直线x ayf(2ax)12.弧长lr扇形面积Slr2翻折:yf(x)y|f(x)|保留x轴上方部分,并将下方部分沿x轴翻折到上方3.定义sinyrcosxrtanyx 其中P(x,y)是终边上一点,POryyy=f(x)y=|f(x)|4.符号“一正全、二正弦、三正切、四余弦”5.诱导公式:“奇变偶不变,符号看象限”aocaoxbbcx如Sin(2)sin ,cos(/2)sinyf(x)yf(|x|)保留y 轴右边部分,6.特殊角的三角函数值并将右边部分沿y 轴翻折到左边364322a2b2asinbcosasin()(tan)bsin01222310128.三角函数的图象性质y=sinxy=cosxy=tanxcos13222121tg033 13/0/ 图象7.基本公式sin2tan2同角sincos1cos和差sinsincoscossincoscoscossinsin 单调性:)(,增(0,)减(,)增2222tantan1tant antansinxcosxtanx值域[-1,1][-1,1]无倍角sin22sincoscos2 2sin22cos112sin22cos奇偶奇函数偶函数奇函数tan21 2 tan2tan周期2π2ππ对称轴xk/2xk无降幂cos2α=1 cos22sin21α=cos22中心k,0/2k,0k/2,0叠加)sincos2sin(4注:kZ3sincos2sin() 62、等比数列9.解三角形基本关系:sin(A+B)=sinCcos(A+B)=-cosCa定义:1q(q0)nanABC tan(A+B)=-tanCsincos22absincsin正弦定理:==sinABCa2RsinAa:b:csinA:sin B:s i n C余弦定理:a2=b2+c2-2bccosA(求边)22c2bacosA=(求角)2bcn1通项:aaqn1na(q)1)(q1n求和:Sa(1qqn11)12(a,b,c成等比)中项:bac性质:若mnpq则aaaamnpq 3、数列通项与前n项和的关系面积公式:S△=12absinC a ns1sna(n1sn1(n1)2)注:ABC中,A+B+C=?ABsinAsinB4、数列求和常用方法2>b2+c2?∠A>a 2公式法、裂项法、错位相减法、倒序相加法七、数列八、平面向量1.向量加减三角形法则,平行四边形法则1、等差数列定义:a n1a n d通项:a n a1(n1)d ABAC首尾相接,OBOC=CB共始点BCn(a1a n)1 求和:中项:中点公式:ABAC2ADD是BC中点abcos2.向量数量积ab==x1x2y1y2注:①a,b夹角:00≤θ≤1800≤θ≤1800 Snan(n1)dn122acb(a,b,c成等差)2:若mnpq,则a性质m aaa npq②a,b 同向:abab模: za2b2zzz2 3.基本定理 a 1ee (e 1,e 2不共线--基底)122复平面:复数z 对应的点(a,b) 平行:a//babx 1yxy (b0)2212.复数运算 加减:(a+bi )±(c+di)=?垂直:abab0x 1x 2y 1y 20模:a =22y 2xab(a b )2乘法:(a+bi )(c+di )=? 除法:a cb i di =(a (c b i )(cci)( di di2乘方:1i ,n ii4ki r) )==, r夹角:cosab |a||b |3.合情推理 类比:特殊推出特殊 归纳:特殊推出一般注:①0∥a ②abcabc (结合律)不成立演绎:一般导出特殊(大前题→小前题→结论)4.直接与间接证明综合法:由因导果③abacbc (消去律)不成立比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论 分析法:执果索因九、复数与推理证明分析法书写格式: 要证A 为真,只要证B 为真,即证,,,这只要证C 为真,而已知C 为真,故A 必为真1.复数概念注:常用分析法探索证明途径,综合法写证明过程复数:zabi(a,bR),实部a、虚部b5.数学归纳法:分类:实数(b0),虚数(b0),复数集C(1)验证当n=1时命题成立,注:z是纯虚数a0,b0(2)假设当n=k(kN*,k1)时命题成立,相等:实、虚部分别相等证明当n=k+1时命题也成立共轭:zabi由(1)(2)知这命题对所有正整数n都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用1、倾斜角范围0,十、直线与圆2yDxEyF2圆一般方程:0x (条件是?)DE圆心,22半径 r224 DEF2斜率ktany y 21 xx 216、直线与圆位置关系注:直线向上方向与x 轴正方向所成的最小正角位置关系相切相交相离 倾斜角为90时,斜率不存在 2、直线方程 几何特征drdrdr点斜式yy 0k(xx 0),斜截式ykxb代数特征△0△0△0两点式 AxByC0一般式y y 2 y 1 y 1 x x 2 x 1 x1xy ,截距式1ab注:点与圆位置关系222(xaybr 点 0)()Px 0,y 0在圆外注意适用范围:①不含直线 x x7、直线截圆所得弦长②不含垂直x 轴的直线 ③不含垂直坐标轴和过原点的直线22AB2rd3、位置关系(注意条件)平行 k k 且b 1b 2 12垂直4、距离公式 k 1k 21垂直A 1A 2B 1B 20十一、圆锥曲线两点间距离:|AB|=2(x 1x)(yy)2122一、定义 椭圆:|PF 1|+|PF 2|=2a(2a>|F 1F 2|)点到直线距离: d A xByC0022 AB双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹二、标准方程与几何性质(如焦点在x轴)5、圆标准方程:2()22(x a)ybr圆心(a,b),半径r22xy椭圆1(a>b>0)22ab 十二、矩阵、行列式、算法初步22xy双曲线1(a>0,b>0)22ab十、算法初步中心原点对称轴?焦点F1(c,0)、F2(-c,0)一.程序框图顶点:椭圆(±a,0),(0,±b),双曲线(±a,0)程序框名称功能范围:椭圆-axa,-byb起止框起始和结束双曲线|x|a,yR输入和输出的信息焦距:椭圆2c(c= 2b2a)输入、输出框赋值、计算双曲线2c(c= 2b2a)处理框判断某一条件是否成立2a、2b:椭圆长轴、短轴长,判断框双曲线实轴、虚轴长离心率:e=c/a椭圆0<e<1,双曲线e>1循环框重复操作以及运算22xyb注:双曲线1渐近线xy22aba2ny2方程mx1表示椭圆m0,n0.mn2ny2方程mx1表示双曲线mn0 二.基本算法语句及格式抛物线y2=2px(p>0)2=2px(p>0)1输入语句:INPUT“提示内容”;变量2输出语句:PRINT“提示内容”;表达式顶点(原点)对称轴(x轴)3赋值语句:变量=表达式开口(向右)范围x0离心率e=1p 焦点,0)F(准线2 xp24条件语句“IF—THEN—ELSE”语句“IF—THEN”语句例1辗转相除法求得123和48最大公约数为3 IF 条件THENIF 条件THEN语句1语句例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5) 123=2×48+27v0=2ELSEENDIF48=1×27+21v1=2×5-5=5 语句227=1×21+6v2=5×5-4=21ENDIF21=3×6+3v 3=21×5+3=108 5循环语句6=2×3+0v4=108×5-6=534当型循环语句直到型循环语句 WHILE 条件DO v5=534×5+7=2677 循环体循环体 WENDLOOPUNTIL 条件当型“先判断后循环”直到型“先循环后判断”十三、立体几何三.算法案例1、求两个数的最大公约数 1.三视图正视图、侧视图、俯视图辗转相除法:到达余数为0 2.直观图:斜二测画法'''0 XOY=45更相减损术:到达减数和差相等平行X 轴的线段,保平行和长度 2、多项式f (x)=a nx n+an-1x n-1+⋯.+a1x+a 0的求值n +an-1x n-1+⋯.+a1x+a 0的求值平行Y 轴的线段,保平行,长度变原来一半 秦九韶算法:v 1=a n x+a n -1v 2=v 1x+a n -23.体积与侧面积 v3=v2x+an -3vn=vn -1x+a0 注:递推公式v 0=anv k =v k-1X+a n -k (k=1,2,⋯n)求f(x)n 值,乘法、加法均最多次V 柱=S 底hV锥=1 3S 底hV 球=4 33πR3、进位制间的转换 S 圆锥侧=rlS 圆台侧=(Rr)lS24R球表=k 进制数转换为十进制数: 4.公理与推论确定一个平面的条件:nn1aa 1.....aa(k)akak.........aka nn10nn110①不共线的三点②一条直线和这直线外一点十进制数转换成k 进制数:“除k 取余法”③两相交直线④两平行直线若两个平面垂直,则一个平面内垂直于交公理:平行于同一条直线的两条直线平行P 定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

(完整版)上海教材高中数学知识点总结(最全),推荐文档

(完整版)上海教材高中数学知识点总结(最全),推荐文档

注:①f(x)有奇偶性 定义域关于原点对称
2.其它不等式解法—转化
②f(x)奇函数,在 x=0 有定义 f(0)=0
x a a x a x2 a2
③“奇+奇=奇”(公共定义域内) 2.单调性
x a x a 或 x a x2 a2
f(x)增函数:x1<x2 f(x1)<f(x2) 或 x1>x2 f(x1) >f(x2)
y
y=f(|x|)
1.描点建法 议收藏下载本文,以便随时学a习o !b c x 函数化简→定义域→讨论性质(奇偶、单调)
ao b cx
取特殊点如零点、最值点等
3.零点定理
2.图象变换
若 f (a) f (b) 0 ,则 y f (x) 在 (a, b) 内有零点
平移:“左加右减,上正下负”
y f (x) y f (x h)
p 是 q 的充要条件:p⇔q
否命题 逆命题
6.复合命题的真值
一、集合与常用逻辑
1.集合概念 2.集合运算
元素:互异性、无序性 全集 U:如 U=R
交集: A B {x x A且x B}
①q 真(假)⇔“ q ”假(真)
②p、q 同真⇔“p∧q”真
③p、q 都假⇔“p∨q”假 7.全称命题、存在性命题的否定
a
建议收藏下载本文,以便随时学习! 单调性:a>0, (, b ] 递减,[ b ,) 递增
2a
2a
注:性质 log a 1 0 log a a 1 a loga N N 常用对数 lg N log10 N , lg 2 lg 5 1
当 x b ,f(x)min 4ac b2
2a
对称:“对称谁,谁不变,对称原点都要变”

上海教材高中数学知识点总结(最全)

上海教材高中数学知识点总结(最全)

学习资料分享目录一、集合与常用逻辑 二、不等式 三、函数概念与性质 四、基本初等函数 五、函数图像与方程 六、三角函数 七、数 列 八、平面向量九、复数与推理证明 十、直线与圆 十一、曲线方程十二、矩阵、行列式、算法初步 十三、立体几何 十四、计数原理 十五、概率与统计一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝学习资料分享二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2) 或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T)4.二次函数学习资料分享解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a bac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0 闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a n na a 1=- m nm na a =2.对数式 b N a =log N a b=⇔(a>0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =na ab b n log log =ab log 1=注:性质01log =a 1log =a a N aNa =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数)4.幂函数 12132,,,-====x y x y x y x yx y =在第一象限图象如下:α>101<<αα<0学习资料分享五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分,并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断)注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+学习资料分享6.特殊角的三角函数值α6π 4π 3π 2π π23π sin α 0 21 22 231 0 1-cos α 1 23 2221 01-tg α33 13/ 0 / 7.基本公式同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =± ()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增y=sinxy=cosxy=tanx图象sinx cosx tanx 值域 [-1,1] [-1,1] 无 奇偶 奇函数偶函数 奇函数 周期 2π2ππ对称轴 2/ππ+=k xπk x =无中心()0,πk()0,2/ππk + ()0,2/πk学习资料分享注:Z k ∈9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sinCB A =+ 正弦定理:A a sin =B b sin =Ccsin A R a sin 2= C B A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边) cos A =bcac b 2222-+(求角)面积公式:S △=21ab sin C注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+=求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则q p n m a a a a +=+2、等比数列定义:)0(1≠=+q q a a nn通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=CB 共始点学习资料分享中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 b a ⋅θcos ⋅=2121y y x x +注:①b a ,夹角:00≤θ≤1800②b a ,同向:b a =⋅3.基本定理 2211e e a λλ+=(21,e e不共线--基底) 平行:⇔b a //b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥b a b a 02121=+⇔y y x x模:a =22y x +=+=+2)(b a夹角:=θcos ||||b a ba 注:①0∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -= 模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=? 除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=n i rr k i i=+4 3.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论 分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1时命题成立,学习资料分享(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+bya x一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+- 点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭半径2r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外7、直线截圆所得弦长AB =十一、圆锥曲线学习资料分享一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0) 顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a,-b ≤y ≤b双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +) 2a 、2b :椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴) 开口(向右) 范围x ≥0 离心率e=1 焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量2输出语句:PRINT“提示内容”;表达式3赋值语句:变量=表达式4条件语句“IF—THEN—ELSE”语句“IF—THEN”语句IF 条件 THEN IF 条件 THEN 语句1 语句ELSE END IF语句2END IF5循环语句当型循环语句直到型循环语句WHILE 条件 DO循环体循环体WEND LOOP UNTIL 条件当型“先判断后循环”直到型“先循环后判断”三.算法案例1、求两个数的最大公约数辗转相除法:到达余数为0更相减损术:到达减数和差相等2、多项式f(x)= a n x n+a n-1x n-1+….+a1x+a0的求值秦九韶算法:v1=a n x+a n-1v2=v1x+a n-2v3=v2x+a n-3v n=v n-1x+a0注:递推公式v0=a n v k=v k-1X+a n-k(k=1,2,…n)求f(x)值,乘法、加法均最多n次3、进位制间的转换k进制数转换为十进制数:11111.........)(.....akakakakaaaa nnnnnn+⨯++⨯+⨯=---十进制数转换成k进制数:“除k取余法”例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x5-5x4-4x3+3x2-6x+7,秦九韶算法求f(5) 123=2×48+27 v0=248=1×27+21 v1=2×5-5=527=1×21+6 v2=5×5-4=2121=3×6+3 v3=21×5+3=1086=2×3+0 v4=108×5-6=534v5=534×5+7=2677十三、立体几何1.三视图正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY∠=450平行X轴的线段,保平行和长度平行Y轴的线段,保平行,长度变原来一半3.体积与侧面积学习资料分享学习资料分享V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件: ①不共线的三点 ②一条直线和这直线外一点 ③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

上海教材高中数学知识点总结最全

上海教材高中数学知识点总结最全

目录一、集合与常用逻辑 二、不等式 三、函数概念与性质 四、基本初等函数 五、函数图像与方程 六、三角函数 七、数 列 八、平面向量九、复数与推理证明 十、直线与圆 十一、曲线方程十二、矩阵、行列式、算法初步 十三、立体几何 十四、计数原理 十五、概率与统计一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且I 并集:}{B x A x x B A ∈∈=⋃或补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=Y I注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若则p ⌝原命题逆否命题 否命题逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定M, p(x )否定为: M, )(X p ⌝ M, p(x )否定为: M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βαY注:若0<a ,转化为情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=f(x)图象关于y 轴对称 f(x)奇函数()()f x f x -=-f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义f(0)=0③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2f(x 1)<f(x 2)或x 1>x 2f(x 1) >f(x 2) 或0)()(2121>--x x x f x ff(x)减函数:注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增”③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期()()f x T f x +=恒成立(常数0≠T)4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+kf(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当,f(x)min ab ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数b=0 闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数b=0四、基本初等函数1.指数式 )0(10≠=a a nnaa 1=- m nmn a a = 2.对数式 b N a =log N a b=⇔(a>0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =n a a b b n log log =ab log 1=注:性质01log =a 1log =a a N aNa =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性注:y=a x与y=log a x 图象关于y=x 对称(互为反函数) 4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等α>1 01<<αα<02.图象变换平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方(||)y f x =保留y 轴右边部分,并将右边部分沿轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断)注:①)(x f 零点:0)(=x f 的实根②在上连续的单调函数,则在),(b a 上有且仅有一个零点③二分法判断函数零点---六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 6.特殊角的三角函数值7.基本公式 同角1cos sin22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos μ=± ()βαβαβαtan tan 1tan tan tan μ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增 注:9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sinCB A =+ 正弦定理:A a sin =B b sin =Ccsin A R a sin 2= C B A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边)cos A =bca cb 2222-+(求角)y=sinx y=cosx y=tanxsinx cosx tanx 值域 [-1,1] [-1,1] 无 奇偶 奇函数 偶函数 奇函数 周期 2π2ππ对称轴 2/ππ+=k xπk x =无中心 ()0,πk()0,2/ππk + ()0,2/πk面积公式:S △=21ab sin C 注:ABC ∆中,A+B+C= B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >七、数 列1、等差数列 定义: 通项: 求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则2、等比数列 定义:通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前项和的关系4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,-=CB 共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 ⋅=θcos ⋅⋅=2121y y x x +注:①,夹角:00≤θ≤1800②,同向:b a =⋅3.基本定理 2211e e a ρρρλλ+=(21,e e ρρ不共线--基底) 平行:⇔//b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥02121=+⇔y y x x模:a ρ=22y x +Λ=+=+2)(夹角:=θcos ||||b a ba 注:①0ρ∥ ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -= 模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)= 乘法:(a+bi )(c+di )= 除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=n i rr k i i=+4 3.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论反证法:反设—推理—矛盾—结论 分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程 5.数学归纳法:(1)验证当n=1时命题成立, (2)假设当n=k(kN* ,k1)时命题成立,证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程位置关系 相切相交相离几何特征d r =d r <d r >代数特征0=△0>△0<△点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+bya x一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+- 点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是)圆心,22D E ⎛⎫-- ⎪⎝⎭半径2r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外7、直线截圆所得弦长AB =十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆( a>b>0) 双曲线(a>0,b>0)中心原点 对称轴 焦点F 1(c,0)、F 2(-c,0)顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a xa,-b yb双曲线|x| a ,y R 焦距:椭圆2c (c=)双曲线2c (c=) 2a 、2b :椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线渐近线x ab y ±= 方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn 抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴)开口(向右) 范围x 0 离心率e=1 焦点准线十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量 2输出语句:PRINT “提示内容”;表达式 3赋值语句:变量=表达式 4条件语句“IF —THEN —ELSE ”语句 “IF —THEN ”语句 IF 条件 THEN IF 条件 THEN 语句1 语句 ELSE END IF 语句2 END IF 5循环语句当型循环语句 直到型循环语句 WHILE 条件 DO程序框 名称 功能起止框 起始和结束输入、输出框输入和输出的信息处理框赋值、计算判断框判断某一条件是否成立循环框重复操作以及运算循环体 循环体 WEND LOOP UNTIL 条件 当型“先判断后循环” 直到型“先循环后判断”三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0 更相减损术:到达减数和差相等2、多项式f(x)= a n x n+a n-1x n-1+….+a 1x+a 0的求值秦九韶算法: v 1=a n x+a n -1 v 2=v 1x+a n -2v 3=v 2x+a n -3 v n =v n -1x+a 0注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n)求f(x)值,乘法、加法均最多n 次 3、进位制间的转换k 进制数转换为十进制数:111011.........)(.....a k a k a k a k a a a a n n n n n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法” 例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=2 48=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件:①不共线的三点 ②一条直线和这直线外一点 ③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一、集合与常用逻辑二、不等式三、函数概念与性质四、基本初等函数五、函数图像与方程六、三角函数七、数列八、平面向量九、复数与推理证明十、直线与圆十一、曲线方程十二、矩阵、行列式、算法初步十三、立体几何十四、计数原理十五、概率与统计一、集合与常用逻辑1.集合概念元素:互异性、无序性2.集合运算全集U:如U=R 交集:}{BxAxxBA∈∈=且并集:}{BxAxxBA∈∈=⋃或补集:}{AxUxxACU∉∈=且3.集合关系空集A⊆φ子集BA⊆:任意BxAx∈⇒∈BABBABAABA⊆⇔=⊆⇔=注:数形结合---文氏图、数轴4.四种命题原命题:若p则q 逆命题:若q则p否命题:若p⌝则q⌝逆否命题:若q⌝则p⌝原命题⇔逆否命题否命题⇔逆命题5.充分必要条件p是q的充分条件:qP⇒p是q的必要条件:qP⇐p是q的充要条件:p⇔q6.复合命题的真值①q真(假)⇔“q⌝”假(真)②p、q同真⇔“p∧q”真③p、q都假⇔“p∨q”假7.全称命题、存在性命题的否定∀∈M, p(x)否定为: ∃∈M, )(Xp⌝∃∈M, p(x)否定为: ∀∈M, )(Xp⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则 02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα 注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x < ⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab b a ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2)或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T )4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab --∞递减,),2[+∞-a b 递增当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0 闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a n naa 1=- m nmn a a=2.对数式 b N a =log N a b =⇔(a>0,a ≠1)N M MN a a a log log log +=N M NMa a alog log log -= Mn M a n a log log =a b b m m a log log log =ablg lg =n a a b b n log log =ab log 1=注:性质01log =a 1log =a a N a N a=log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e3.指数与对数函数 y=a x与y=log ax定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数)4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分, 并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断) 注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点 ③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy =αtan其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦”5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 67.基本公式同角1cos sin 22=+αα αααtan cos sin =和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =±()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α-叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质单调性: )2,2(-增 ),0(π减 )2,2(-增注:Z k ∈9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sin C B A =+正弦定理:A asin =Bb sin =CcsinA R a sin 2= CB A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bccosA (求边)cosA=bca cb 2222-+(求角)面积公式:S △=21absinC注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2⇔ ∠A >2π七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+=求和:2)(1n n a a n S +=d n n na )1(211-+= 中项:2c a b +=(c b a ,,成等差)性质:若q p n m +=+,则q p n m a a a a +=+ 2、等比数列 定义:)0(1≠=+q q a a n n通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn 4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=共始点中点公式:⇔=+AD AC AB 2D 是BC 中点2. 向量数量积 b a ⋅=θcos ⋅⋅=2121y y x x +注:①b a ,夹角:00≤θ≤1800②b a ,同向:b a =⋅3.基本定理 2211e e aλλ+=(21,e e 不共线--基底) 平行:⇔b a //b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥b a b a 02121=+⇔y y x x模:a =22y x +=+=+2)(夹角:=θcos ||||b a ba 注:①0∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -=模:22b a z += 2z z z =⋅复平面:复数z 对应的点),(b a2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=? 除法: dic bi a ++=))(())((di c di c di c bi a -+-+==…乘方:12-=i ,=n i r r k i i =+4 3.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论 分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立 注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+by ax一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件)平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+-点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭半径2r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外 7、直线截圆所得弦长AB =十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|)双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0)顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a,-b ≤y ≤b 双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -) 双曲线2c (c=22b a +) 2a 、2b:椭圆长轴、短轴长, 双曲线实轴、虚轴长 离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a b y ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴)开口(向右) 范围x ≥0 离心率e=1 焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量 2输出语句:PRINT “提示内容”;表达式3赋值语句:变量=表达式4条件语句“IF—THEN—ELSE”语句“IF—THEN”语句IF 条件 THEN IF 条件 THEN 语句1 语句ELSE END IF 语句2END IF5循环语句当型循环语句直到型循环语句WHILE 条件 DO循环体循环体WEND LOOP UNTIL 条件当型“先判断后循环”直到型“先循环后判断”三.算法案例1、求两个数的最大公约数辗转相除法:到达余数为0更相减损术:到达减数和差相等2、多项式f(x)= a n x n+a n-1x n-1+….+a1x+a0的求值秦九韶算法: v1=a n x+a n-1 v2=v1x+a n-2v3=v2x+a n-3 v n=v n-1x+a0注:递推公式v0=a n v k=v k-1X+a n-k(k=1,2,…n) 求f(x)值,乘法、加法均最多n次3、进位制间的转换k进制数转换为十进制数:11111.........)(.....akakakakaaaa nnnnnn+⨯++⨯+⨯=---十进制数转换成k进制数:“除k取余法”例1辗转相除法求得123和48最大公约数为3 例2已知f(x)=2x5-5x4-4x3+3x2-6x+7,秦九韶算法求f(5)123=2×48+27 v0=248=1×27+21 v1=2×5-5=527=1×21+6 v2=5×5-4=2121=3×6+3 v3=21×5+3=1086=2×3+0 v4=108×5-6=534v5=534×5+7=2677十三、立体几何1.三视图正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度 平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件:①不共线的三点 ②一条直线和这直线外一点③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

相关文档
最新文档