三相不平衡危害及治理方式

合集下载

三相电不平衡的危害及解决措施

三相电不平衡的危害及解决措施
10
三、三相电不平衡的解决措施
(一)传统解决方法
1、均匀分布负荷
将不对称负荷分散到不同的供电点,减少集中连接导致的不
平衡度超标,此种方法无需任何设备投资,只需将单相负载均匀
分布到A、B、C三相就可以改善三相不平衡,但我们需要面对一
个客观的问题,各个用户的负荷量不一致且用电时间不一致,又
不能人为控制,因此不能从根本上解决问题。
三相电不平衡的危害及解决措施
一、三相电 二、三相电不平衡的危害 三、三相电不平衡的解决措施
1
一、三相电
1.概念
三相电是一组幅值相等、频率相等、相位互相差120°的三相 交流电,由有三个绕组的三相发电机产生。
2.三相电负载的接法
分为三角形接法(符号△)和星形接法(符号Y)。 三角形接法的负载引线为三条火线和一条地线,三条火线之
三相电不平衡是指在电力系统中三相电流(或电压) 幅值不一致,且幅值差超过规定范围。各相负载分布不均、单 相负载用电的不同时性、以及单相大功率负载接入是导致三相 不平衡的主要原因,由于城市民用电网及农用电网中存在大量 单相负载,使得当今三相不平衡现象普遍存在且尤为严重。电 网中的三相不平衡会增加线路及变压器的铜损,增加变压器的 铁损,降低变压器的出力甚至会影响变压器的安全运行,会造 成因三相电压不平衡而降低供电质量,甚至会影响电能变的精 度而造成计量损失。
13
如图1所示,假设A、B、C三相负载电流分别为:5A、10A、 15A,这时候我们就认为此系统的三相电流出现了不平衡,三相 电流完全平衡的状态应该是A、B、C三相电流全部为10A。
图1
14
盛弘SVG在运行时,会通过外接电流互感器(CT)实时检测 系统电流,然后将CT采集到的电流信息发给内部控制器进行处理, 经过控制器分析之后, SVG就会发现系统的电流不平衡状态,同 时计算出三相电流达到平衡状态所需转换的电流值。以图1为例, A相电流想达到平衡状态则需要增加5A的电流,B相电流正好为 10A无需调整,C相电流想达到平衡状态则需要减少5A的电流。计 算完成之后,控制器就会通过IGBT驱动电路来驱动IGBT动作,从 而使得电流从系统C相流入SVG 5A,从SVG内部流出5A到系统A相。 从而使得A、B、C三相电流全部重新分配为10A,而系统的三相总 电流保持不变。当然,这一系列的计算及控制动作都是在很短的 时间内完成的,并且,在这一过程中 SVG只是起到一个重新分流 的作用,只需消耗很小一部分的能量(如风扇运转、控制器件的 能量消耗、开关器件的能量消耗)。

低压配电网三相不平衡运行的影响及治理措施_林志雄

低压配电网三相不平衡运行的影响及治理措施_林志雄

低压配电网三相不平衡运行的影响及治理措施_林志雄三相不平衡运行主要影响包括:1.减少配电网的供电能力:由于三相不平衡会导致最小相电压过低,从而限制电网的供电能力,降低电网的可靠性。

2.增加线路和设备的损耗:三相不平衡会导致线路和设备的电流不平衡,使得其中一相电流过大,从而增加线路和设备的损耗,降低设备的寿命。

3.增加电能的损耗:三相不平衡会增加电能在线路中的损耗,降低电网的能量利用效率。

4.影响用户的电能质量:三相不平衡会使电压波动较大,从而影响用户的用电设备的正常运行,降低用电设备的寿命。

针对低压配电网三相不平衡运行的影响,可以采取以下治理措施:1.完善电力系统设计:在低压配电网的设计中,可以考虑增加电源变压器容量,提高电网的供电能力;合理规划线路和设备的选型,减少线路和设备的电流不平衡;增加变电站容量和蓄电池组,提高配电网的稳定性。

2.提高设备的负荷均衡性:通过合理的线路规划、设备选型和负荷管理,避免过度集中负荷在其中一相,减小电流不平衡,提高系统的可靠性和稳定性。

3.定期进行电力负荷调整和优化:通过合理的负荷调整和平衡,减小电网中的电流不平衡,提高电能的利用效率和供电质量。

4.安装电流互感器和电流回路:通过安装电流互感器和电流回路,实时监测和控制电流不平衡,及时采取调整措施,防止电流不平衡的发生和扩大。

综上所述,低压配电网三相不平衡运行会对电网的供电能力、设备损耗、电能消耗和用户用电质量等方面造成影响,需要采取一系列的治理措施来提高电网的稳定性和可靠性。

这些措施包括完善电力系统设计、提高设备负荷均衡性、定期进行电力负荷调整和优化,以及安装电流互感器和电流回路等。

通过全面的治理措施,可以减小电网中的三相不平衡现象,提高电网的运行效率和供电质量。

三相不平衡的危害及解决办法

三相不平衡的危害及解决办法

三相不平衡的危害及解决办法第一篇:三相不平衡的危害及解决办法三相不平衡的危害及解决办现代电力系统除了满足电能的供求需要外,也必须保障供电系统及用户对电能质量的要求。

电能是电力系统的唯一产品,电能质量的好坏,直接影响到电网和工业生产,及人民生活的正常秩序。

大量非线性设备及负荷的干扰会使电网电能质量下降,其对电网及用户的危害是多方面的,严重时会造成设备损坏和电网事故。

一、三相电压或电流不平衡等因素产生的主要危害:1、旋转电机在不对称状态下运行,会使转子产生附加损耗及发热,从而引起电机整体或局部升温,此外反向磁场产生附加力矩会使电机出现振动。

对发电机而言,在定子中还会形成一系列高次谐波。

2、引起以负序分量为启动元件的多种保护发生误动作,直接威胁电网运行。

3、不平衡电压使硅整流设备出现非特征性谐波。

4、对发电机、变压器而言,当三相负荷不平衡时,如控制最大相电流为额定值,则其余两相就不能满载,因而设备利用率下降,反之如要维持额定容量,将会造成负荷较大的一相过负荷,而且还会出现磁路不平衡致使波形畸变,设备附加损耗增加等。

二、由不对称负荷引起的电网三相电压不平衡可以采取的解决办法:1、将不对称负荷分散接在不同的供电点,以减少集中连接造成不平衡度严重超标的问题。

2、使用交叉换相等办法使不对称负荷合理分配到各相,尽量使其平衡化。

3、加大负荷接入点的短路容量,如改变网络或提高供电电压级别提高系统承受不平衡负荷的能力。

4、装设平衡装置。

简要列出以上几种解决三相电压或电流不平衡对电网及电能质量危害的技术措施。

具体应该采取哪一种措施更为合理有效,还要根据实际情况,经过技术和经济比较后确定实施。

第二篇:三相不平衡损耗计算农村低压电网改造后低压电网结构发生了很大的变化,电网结构薄弱环节基本上已经解决,低压电网的供电能力大大增强,电压质量明显提高,大部分配电台区的低压线损率降到了11%以下,但仍有个别配电台区因三相不平衡负载等原因而造成线损率居高不下,给供电管理企业特别是基层供电所电工组造成较大的困难和损失,下面针对这些情况进行分析和探讨。

三相不平衡的危害及综合治理措施

三相不平衡的危害及综合治理措施

702023.07.DQGY三相不平衡的危害及综合治理措施王丙强1 付怀英2 吕燕华1(1.山东华天科技集团股份有限公司 2.山东华天电气有限公司)摘要:本文分析三相不平衡的危害及治理措施,对有源型电能质量优化装置的工作原理和治理效果进行重点介绍,并通过实际案例分析典型应用,为三相不平衡治理提供理论依据和经验指导。

关键词:三相不平衡;电能质量;有源0 引言在电力系统中,三相电压和三相电流具有相同的幅值、相位差为120°,则称为平衡系统,反之为不平衡系统。

不平衡又分为三相电压不平衡和三相电流不平衡,在实际工程中,三相电流不平衡是引起三相电压不平衡的主要原因。

单相负载的存在会引起三相电流不平衡,单相负载在公共建筑、居民小区以及农网中普遍存在,因此在这些场合中三相不平衡现象较为突出。

1 三相不平衡的危害三相不平衡的危害比较大,可以造成电能损失、引起设备的损坏和故障、影响电力系统的稳定性和安全性。

具体分析如下。

(1)三相不平衡造成额外电能损失电流流经导线时,因为阻抗的存在会产生热损耗,热损耗的大小和电流的平方成正比,当电流平衡时,三相四线系统线缆的热损耗最小,效率最高。

例如当三相平衡时,相线电流为I ,中线电流为零,三相系统线缆的总发热损耗为Q =3×I ×I ×R ×t 。

当电流存在最大不平衡时,即其中一相为3I ,另外两相为零,中线电流也为3I ,此时线缆的总发热损耗为Q =2×3I ×3I ×R ×t =18×I ×I ×R ×t 。

可以看出来,此时的总发热损耗是系统平衡时发热损耗的6倍。

(2)影响电动机效率及稳定运行以应用最为广泛的交流异步电动机为例。

异步电动机内部有旋转的感应磁场,因为外部供电电压的不平衡,感应磁场由正常供电的圆形变成椭圆。

会造成电动机不能产生满功率的转矩,电动机的轴承也会因为承受不平衡的感应力矩而造成机械破坏。

三相不平衡的危害以及解决措施

三相不平衡的危害以及解决措施

三相不平衡的危害以及解决措施1如果说起三相不平衡的危害就要先知道它形成的原因1.1三相负荷的不合理分配很多的工作人员并没有专业的对于三相负荷平衡的知识概念,因此在接线的时候并没有注意到要控制三相负荷平衡,只是盲目和随意的进行电路的接电荷装表,这在很大程度上造成了三相负荷的不平衡。

其次,我国的大多数电路都是动力和照明混为一体的,所以在使用单相的用电设备时,用电的效率就会降低,这样的差异进一步加剧了配电变压器三相负荷的不平衡状况。

1.2用电负荷的不断变化造成用电负荷不稳定的原因临时用电和季节性用电的不稳定性。

这样在总量上和时间上的不确定和不集中性使得用电的负荷也不得不跟随实际情况而变化。

1.3对于配变负荷的监视力度的削弱在配电网的管理上,经常会忽略三相负荷分配中的管理问题。

在配电网的检测上,对配电变压器的三相负荷也没有进行定期的检测和调整。

2三相不平衡的危害2.1增加线路的电能损耗在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。

当三相负载不平衡运行时,中性线即有电流通过。

这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。

2.2增加配电变压器的电能损耗配电变压器是低压电网的供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗的增加。

因为配变的功率损耗是随负载的不平衡度而变化的。

2.3影响用电设备的安全运行配电变压器是根据三相负载平衡运行工况设计的,其每相绕组的电阻、漏抗和激磁阻抗基本一致。

当配变在三相负载平衡时运行,其三相电流基本相等,配变内部每相压降也基本相同,则配变输出的三相电压也是平衡的。

假如配变在三相负载不平衡时运行,其各相输出电流就不相等,其配变内部三相压降就不相等,这必将导致配变输出电压三相不平衡。

同时,配变在三相负载不平衡时运行,三相输出电流不一样,而中性线就会有电流通过。

因而使中性线产生阻抗压降,从而导致中性点漂移,致使各相相电压发生变化。

三相不平衡的原因危害以及解决措施!

三相不平衡的原因危害以及解决措施!

三相不平衡的原因危害以及解决措施!三相不平衡是指三相电路中的三个相电压或电流的幅值不相等或者相角不等的情况。

三相不平衡可能由多种原因造成,例如电网电压不稳定、负载不均衡、线路阻抗不等等。

三相不平衡会给电力系统带来一系列的危害,包括降低电力系统效率、增加能耗、使设备损坏、影响电能质量等。

为了解决三相不平衡带来的问题,可以采取一系列的措施,包括优化负载分配、使用平衡设备、增加系统容量等。

首先,我们来分析一下导致三相不平衡的原因。

三相不平衡的原因可以从系统、负载和线路三个方面来分析。

从系统来看,电网电压不稳定是导致三相不平衡的主要原因之一、电网电压的不稳定性可能由于电网负荷变化大、供电线路阻抗不等、电源变压器故障等原因造成,这会导致不同相电压的幅值和相角发生变化,从而引起三相不平衡。

从负载来看,不同电器设备的功率需求不同,导致各个相的负载不均衡。

例如,在住宅区,电视、冰箱、洗衣机等电器设备的用电需求可能不同,这就会使得三相负载不平衡。

此外,由于三相线路中的负载采用的三相变压器可能存在不同的连接方式或者单相负载连接方式,也会导致三相不平衡。

从线路来看,线路阻抗不等是一种导致三相不平衡的常见现象。

由于线路长度、导线截面积、接触电阻等因素的差异,导致三相线路中的阻抗不同,进而导致电压不平衡。

三相不平衡会给电力系统带来一系列的危害。

首先,三相不平衡会降低电力系统的效率,增加系统能耗。

由于系统的三相电压或电流不平衡,会导致电能在传输过程中的损耗增加,使得系统的能效降低。

其次,三相不平衡会导致设备损坏。

由于系统中存在电流不平衡,会导致电机、变压器等设备的工作不平稳,增加设备的运行负荷,导致设备过热、烧损等问题。

此外,三相不平衡还会给用户带来电能质量问题,例如电压波动、谐波等,影响用电设备的正常运行。

为了解决三相不平衡带来的问题,可以采取以下措施。

首先,需要优化负载分配。

可以通过合理规划电器设备的用电方式、改善负载的均衡性,尽量减小三相负载不平衡。

三相不平衡危害及治理方式

三相不平衡危害及治理方式

三相不平衡一、概述:三相不平衡是指在电力系统中三相电流(或电压)幅值不一致,且幅值差超过规定范围。

各相负载分布不均、单相负载用电的不同时性、以及单相大功率负载接入是导致三相不平衡的主要原因,由于城市民用电网及农用电网中存在大量单相负载,使得当今三相不平衡现象普遍存在且尤为严重。

电网中的三相不平衡会增加线路及变压器的铜损,增加变压器的铁损,降低变压器的出力甚至会影响变压器的安全运行,会造成因三相电压不平衡而降低供电质量,甚至会影响电能变的精度而造成计量损失。

二、危害:1.增加线路及配电变压器电能损耗在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比,当相电流平衡的时候,系统的电能损耗最小。

例如设某系统的三相线路、变压器绕组每相的总阻抗为Z(暂不记中性线),如果三相电流平衡,IA=100A,IB=100A,IC=1OOA,则;总损耗=100²Z+100²Z+100²Z=300Z。

如果三相电流不平衡,IA=50A,IB=100A,IC=15OA,则;总损耗=50²Z+100²Z+150²Z=35000Z。

比平衡状态的损耗增加了17%。

在最严重的状态下,如果IA=0A,IB=0A,IC=30OA,则;总损耗=300²Z =900Z。

比平衡状态的损耗增加了3倍。

可见不平衡度愈严重,所造成损耗越大。

2.降低配变变压器出力以及增加铁损配变设计时,其绕组结构是按负载平衡运行工况设计的,其绕组性能基本一致,各相额定容量相等。

配变的最大允许出力要受到每相额定容量的限制。

假如当配变处于三相负载不平衡工况下运行,负载轻的一相就有富余容量,从而使配变的出力减少。

其出力减少程度与三相负载的不平衡度有关。

三相负载不平衡越大,配变出力减少越多。

为此,配变在三相负载不平衡时运行,其输出的容量就无法达到额定值,其备用容量亦相应减少,过载能力也降低。

三相电不平衡的危害及解决措施

三相电不平衡的危害及解决措施

三相电不平衡的危害及解决措施三相电不平衡指的是三相电网中的三相电流或电压之间存在不平衡的情况。

当电网中出现三相电不平衡时,会引起一系列的危害,包括设备寿命缩短、能源浪费、安全事故等。

因此,为了确保电力系统的正常运行,需要采取相应的解决措施。

首先,三相电不平衡会引起设备寿命缩短。

当三相电流或电压不平衡时,会导致各个设备的负荷不均衡,从而使得设备在运行过程中承受不均衡的负荷。

这样会导致设备的热负荷不均衡,加速设备的温度上升,缩短设备的寿命。

另外,不平衡的电流还会使电机发生轴向力,进一步损坏设备。

其次,三相电不平衡会导致能源浪费。

在三相电不平衡的情况下,不同的负载和设备承受的电流或电压不同,这将使得电能的分配不均匀。

有些电压和电流会被过载,而有些电压和电流则会被低负载。

一方面,过载电压和电流会浪费能源,另一方面,低负载电压和电流则不能发挥其最佳效能,也浪费了能源。

三相电不平衡还会引起电力系统的安全事故。

电力系统中的不平衡电流会导致线路过热、设备绝缘老化、电弧产生等问题,增加了火灾和电击的风险。

根据统计数据,电力系统的三相电不平衡是导致大部分电力设备事故的主要原因之一、因此,必须采取措施来解决三相电不平衡问题。

解决三相电不平衡问题的措施如下:1.定期检测和监测电力系统的三相电压和电流,发现不平衡的情况及时进行处理。

可以使用专业的电能质量分析仪器,对电力系统进行全面的检测和分析,找出不平衡的原因。

2.进行负载均衡。

根据电能质量分析的结果,可以调整电力系统中各个负载的接入方式,使各个负载平均分布,降低三相电不平衡。

3.安装三相电流互感器或电流差动保护装置。

三相电流互感器可以实时监测电力系统中三相电流的大小和不平衡度,并及时提醒操作人员进行处理。

电流差动保护装置可以感知不平衡电流,并迅速切断供电,保护设备和人员的安全。

4.安装无功补偿装置。

无功补偿装置可以在电力系统产生无功电流时进行调节,提高电力系统的功率因数,减少电力系统的负荷不平衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相不平衡、概述:三相不平衡是指在电力系统中三相电流(或电压)幅值不一致,且幅值差超过规定范围。

各相负载分布不均、单相负载用电的不同时性、以及单相大功率负载接入是导致三相不平衡的主要原因,由于城市民用电网及农用电网中存在大量单相负载,使得当今三相不平衡现象普遍存在且尤为严重。

电网中的三相不平衡会增加线路及变压器的铜损,增加变压器的铁损,降低变压器的出力甚至会影响变压器的安全运行,会造成因三相电压不平衡而降低供电质量,甚至会影响电能变的精度而造成计量损失。

二、危害:1. 增加线路及配电变压器电能损耗在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比,当相电流平衡的时候,系统的电能损耗最小。

例如设某系统的三相线路、变压器绕组每相的总阻抗为Z (暂不记中性线),如果三相电流平衡,IA=100A, IB=100A,IC=100A贝;总损耗=1002Z+1002Z+1002Z=300Z。

如果三相电流不平衡,IA=50A IB=100A,IC=150A贝卩;总损耗=505Z+100Z+1505Z=35000Z比平衡状态的损耗增加了17%。

在最严重的状态下,如果IA=0A,IB=0A,IC=30OA贝S;总损耗=300近=900Z比平衡状态的损耗增加了3 倍。

可见不平衡度愈严重,所造成损耗越大。

2. 降低配变变压器出力以及增加铁损配变设计时,其绕组结构是按负载平衡运行工况设计的,其绕组性能基本致,各相额定容量相等。

配变的最大允许出力要受到每相额定容量的限制。

假如当配变处于三相负载不平衡工况下运行,负载轻的一相就有富余容量,从而使配变的出力减少。

其出力减少程度与三相负载的不平衡度有关。

三相负载不平衡越大,配变出力减少越多。

为此,配变在三相负载不平衡时运行,其输出的容量就无法达到额定值,其备用容量亦相应减少,过载能力也降低。

假如配变在过载工况下运行,即极易引发配变发热,严重时甚至会造成配变烧损。

配变产生零序电流。

配变在三相负载不平衡工况下运行,将产生零序电流,该电流将随三相负载不平衡的程度而变化,不平衡度越大,则零序电流也越大。

运行中的配变若存在零序电流,则其铁芯中将产生零序磁通。

(高压侧没有零序电流)这迫使零序磁通只能以油箱壁及钢构件作为通道通过,而钢构件的导磁率较低,零序电流通过钢构件时,即要产生磁滞和涡流损耗,从而使配变的钢构件局部温度升高发热。

配变的绕组绝缘因过热而加快老化,导致设备寿命降低。

同时,零序电流的存也会增加配变的损耗。

3 电动机效率降低配变在三相负载不平衡工况下运行,将引起输出电压三相不平衡。

由于不平衡电压存在着正序、负序、零序三个电压分量,当这种不平衡的电压输入电动机后,负序电压产生旋转磁场与正序电压产生的旋转磁场相反,起到制动作用。

但由于正序磁场比负序磁场要强得多,电动机仍按正序磁场方向转动。

而由于负序磁场的制动作用,必将引起电动机输出功率减少,从而导致电动机效率降低。

同时,电动机的温升和无功损耗,也将随三相电压的不平衡度而增大。

所以电动机在三相电压不平衡状况下运行,是非常不经济和不安全的。

4.影响用电设备的安全运行三相负荷平衡是安全供电的基础。

三相负荷不平衡,轻则降低线路和配电变压器的供电效率,重则会因重负荷相超载过多,可能造成某相导线烧断、开关烧坏甚至配电变压器单相烧毁等严重后果。

由于配变是根据三相负载平衡运行工况设计的,其每相绕组的电阻、漏抗和激磁阻抗基本一致。

当配变在三相负载平衡时运行,其三相电流基本相等,配变内部每相压降也基本相同,则配变输出的三相电压也是平衡的。

当配变在三相负载不平衡时运行,其各相输出电流就不相等,其配变内部三相压降就不相等,这必将导致配变输出电压三相不平衡。

同时,配变在三相负载不平衡时运行,三相输出电流不一样,而中性线就会有电流通过。

因而使中性线产生阻抗压降,从而导致中性点漂移,致使各相相电压发生变化。

负载重的一相电压降低,而负载轻的一相电压升高。

在电压不平衡状况下供电,即容易造成电压高的一相接带的用户用电设备烧坏,而电压低的一相接带的用户用电设备则可能无法使用。

所以三相负载不平衡运行时,将严重危及用电设备的安全运行。

5.影响用户用电质量当三相负荷严重不对称,中性点电位就会发生偏移,线路压降和功率损失就会大大增加。

接在重负荷相的单相用户易出现电压偏低,电灯不亮、电器效能降低、小水泵易烧毁等问题。

而接在轻负荷相的单相用户易出现电压偏高,可能造成电器绝缘击穿、缩短电器使用寿命或损坏电器。

对动力用户来说,三相电压不平衡,会引起电机过热现象。

所以只有三相负荷平衡才能保证用户的电能质量。

6.影响电能计量影响根据对称分量法,三相不平衡电流可以分解为三相平衡的正序、负序、和零序三个分量。

负序和零序电流分量的存在必然会对计量仪表的精度产生影响。

即使在高压侧,虽然零序电流在变压器内环流,不会向系统传递,但负序电流分量可以豪无阻碍地向系统传递,因此仍然会对计量仪表的精度产生影响。

三、解决方法一)传统解决方法1、均匀分布负荷将不对称负荷分散到不同的供电点,减少集中连接导致的不平衡度超标,此种方法无需任何设备投资,只需将单相负载均匀分布到A、B、C三相就可以改善三相不平衡,但我们需要面对一个客观的问题,各个用户的负荷量不一致且用电时间不一致,又不能人为控制,因此不能从根本上解决问题。

2、增加短路容量将不对称负荷接到更高的电压的级上供电,使连接点的短路容量足够大,以提高系统承受不平衡的负荷能力。

此方法改善了三相不平衡的用电环境,但没有实质性的解决三相不平衡问题,且同样存在一个客观问题,用电设备都有自己的额定电压,一般正常运行所允许的电压偏差范围并不大,所以将负荷接到更高电压等级供电的方法不是很实际。

3、电感与电容组合调整此种方法是在不平衡的三相中、选择在相与相之间跨接电容与电阻,可提高每相的功率因数,转移相间有功功率,以平衡三相电流,但此方法需要投入电感,在调节不平衡电流装置中安装电感式件很麻烦的事情,电感又大又重,成本也高,损耗也大,虽说电网中大多数负载为感性,可利用其中的电感,只需接入电容,但接入电容很讲究方法,稍有不合理便不能达到理想的治理效果,所以从经济性、简易性角度此方法还需考虑。

二)新型三相平衡技术1、APF\SVG一般出现三相不平衡的电力系统功率因数都比较低,这就形成了一种需求,要是能有一款产品能在治理三相不平衡的同时又能补偿无功,那么这在电能质量治理领域会是很具性价比的一款产品。

盛弘有源滤波器(APF及静止无功器(SVG便是一款兼具三相不平衡及无功补偿的产品,它们可以在补偿无功提高功率因数的基础上,解决三相不平衡电流。

其原理是通过CT实时检测电流信息,然后将采集信息发给DSP数字控制处理器分析,之后驱动功率电路、和利用内部储能电容将系统三相不平衡电流转移、均匀分配,使三相电流达到平衡状态,具体原理如下(以SVG为例):如图1 所示,假设A、B、C三相负载电流分别为:5A、10A、15A,这时候我们就认为此系统的三相电流出现了不平衡,三相电流完全平衡的状态应该是A、B、C三相电流全部为10A。

盛弘SVG在运行时,会通过外接电流互感器(CT)实时检测系统电流,然后将CT采集到的电流信息发给内部控制器进行处理,经过控制器分析之后,SVG就会发现系统的电流不平衡状态,同时计算出三相电流达到平衡状态所需转换的电流值。

以图1为例,A相电流想达到平衡状态则需要增加5A的电流, B相电流正好为10A无需调整,C相电流想达到平衡状态则需要减少5A的电流。

计算完成之后,控制器就会通过IGBT驱动电路来驱动IGBT动作,从而使得电流从系统C相流入SVG 5A从SVG内部流出5A到系统A相。

从而使得A、B、C三相电流全部重新分配为10A,而系统的三相总电流保持不变。

当然,这一系列的计算及控制动作都是在很短的时间内完成的,并且,在这一过程中SVG只是起到一个重新分流的作用,只需消耗很小一部分的能量(如风扇运转、控制器件的能量消耗、开关器件的能量消耗)。

图1正如通常我们所说的电流值的大小是电流有效值一样,我们前文所述的SVG分流电流的大小也是在一定时间内的有效值。

而实际上SVG补偿三相不平衡时开关器件的动作都是瞬时的。

在某一个瞬时,C相的IGBT动作,将C相的交流电整流为直流电之后储存在SVG内部的母线电容中,如图2所示。

图2而在另一个瞬时,A相的IGBT动作,装SVG内部的母线电容(A、B、C公用同一组母线电容)上的直流电进行逆变,然后释放到系统A 相上,如图3 所示。

图3盛弘SVG的动作是瞬时的,而在某一段时间内其收发电流的有效值却是平衡的,因此可以将其动作的结果理解为分流作用,使得系统三相电流的有效值达到一个平衡状态。

当系统三相电流都偏离平衡点时,补偿原理与以上所述的两相偏离平衡点的状况类似。

其根本原则就是将某相多出来的电流存储到SVG母线电容中,然后从母线电容取出电流补偿需要补偿的某相。

由于盛弘SVG治理三相不平衡面向的对象是电流且实时采集,使得无论负载分布如何、用电时间不一致,只要实时检测的三相电流因负载变化导致不平衡,SVG都能快速动作平衡电流。

这就解决了三相不平衡传统解决方法中的客观局限性。

而且相比电感与电容组合调整”这类不平衡治理方式,盛弘SVG治理三相不平衡时安装更简便、无需前期繁琐的计算、接入方法的堪忧,能即装即治。

相关文档
最新文档