孔板流量计工作原理
孔板流量计测量原理

孔板流量计测量原理
孔板流量计是一种流量测量工具,它能够记录液体流量的被测试物体,根据孔板内部流体流动规律计算出流量值。
它具有精确度高、结构紧凑、操作便捷、安装容易等优点。
孔板流量计在一定程度上可以取代传统的流量计,如单位容积流量计。
孔板流量计的工作原理是通过孔板上的流量传感器的反应来计
算出流量,其原理主要是求解出两个延伸直线,一边是垂直于孔板的外壁的水流线,另一边是水流线和孔板的平行线,它的水流量计的结果取决于这两条线之间的距离,当水流线和孔板的平行线之间的距离发生变化时,流量也会随之发生变化。
孔板流量计相比于其他流量计具有很多优势,比如它可以精确测量出更低流量,在孔板中设置的孔数越多,精度也越高。
此外,它的结构紧凑,安装容易,操作便捷,可以自动记录液体流量信息。
同时,由于孔板由非金属材料制成,可以有效地降低系统中的腐蚀和冲击,提高整个系统的可靠性。
由于孔板流量计具有如此多的优点,它已经广泛地应用于水处理系统、船舶和航空行业等方面,在大多数情况下,它们可以替代传统的流量计,更有效地提高精度和效率,从而提高工作效率。
孔板流量计的精度主要取决于孔板的结构和制造工艺,孔的形状多种多样,但是最常见的形状是圆孔,它可以确保水流非常稳定,以确保流速的准确度。
此外,缝隙的大小和直径也非常重要,它是测量流量的关键因素之一,孔板应当由专业的制造商制造,以确保其精度
和性能。
总之,孔板流量计作为流量测量工具已经得到越来越多应用,它可以替代传统的流量计,从而更有效地提高精度和效率,提高工作效率。
孔板流量计的制造应当由专业制造商进行,以保证精度和性能。
各种流量计的工作原理

各种流量计的工作原理1/ 12
各种流量计的工作原理
1.孔板流量计
孔板流量计
工作原理:流体充满管道,流经管道内的节流装置时,流束会出现局部收缩,从而使流速增加,静压力低,于是在节流件前后便产生了压力降,即压差,介质流动的流量越大,在节流件前后产生的压差就越大,所以孔板流量计可以通过测量压差来衡量流体流量的大小。
这种测量方法是以能量守衡定律和流动连续性定律为基准的。
工作特点:①节流装置结构简单、牢固,性能稳定可靠,使用期限长,价格低廉;②应用范围广,全部单相流皆可测量,部分混相流亦可应用;③标准型节流装置无须实流校准,即可投用;④一体型孔板安装更简单,无须引压管,可直接接差压变送器和压力变送器。
2.电磁流量计。
孔板流量计的工作原理

孔板流量计的工作原理一、引言孔板流量计是工业生产中常用的一种流量计,它通过测量流体通过孔板时的压差来确定流量大小,具有结构简单、使用方便、价格低廉等优点,被广泛应用于石油、化工、冶金、电力等领域。
本文将从孔板流量计的结构和工作原理两个方面来详细介绍其工作原理。
二、孔板流量计的结构1. 孔板孔板是孔板流量计最关键的部件之一,它是一个圆形或方形的薄板,在中央钻有一个直径为d的小孔。
由于小孔直径较小,因此通过小孔时会产生一个局部收缩现象,使得局部速度增加、压力降低。
这种现象被称为“泊松效应”,是孔板测量原理的基础。
2. 进口与出口管道进口与出口管道是将待测流体引入和导出到孔板处进行测量的通道。
进口管道上游设置压力传感器,出口管道下游设置压力传感器。
3. 压力传感器压力传感器是用于测量进口和出口处压差变化的装置,一般采用压电传感器、电阻应变式传感器等。
三、孔板流量计的工作原理孔板流量计是利用泊松效应测量流体流量的一种方法。
当流体通过孔板时,由于小孔直径较小,使得局部速度增加、压力降低。
根据贝努利方程式,速度越大、压力越低。
因此,进口和出口处压差变化与流量大小成正比关系。
1. 流体通过孔板时的压差当流体通过孔板时,由于泊松效应,局部速度增加、压力降低。
进口处压力为P1,出口处压力为P2,则它们之间的压差ΔP=P1-P2。
2. 流体通过孔板时的速度根据连续性方程式可知,在相同时间内通过截面积相等的管道中的液体质量相等。
因此,在小孔处截面积为A1时,液体质量为ρQ=A1v1ρ;在出口处截面积为A2时,液体质量为ρQ=A2v2ρ。
其中v1和v2分别是进口和出口处的平均速度。
3. 流量计算公式根据泊松方程式可知,在小孔处的压力降ΔP与流速v1之间成正比关系。
因此,可以得到流量计算公式:Q=CdA1√(2ρΔP);其中Cd是孔板的流量系数,A1是小孔截面积,ρ是流体密度,ΔP是进口和出口处的压差。
四、总结孔板流量计是一种结构简单、使用方便、价格低廉的流量计,它利用泊松效应测量流体通过孔板时的压差来确定流量大小。
各种化工流量计工作原理

流量计是工业生产的眼睛,与国民经济、国防建设、科学研究有着密切的关系,在国民经济中占据重要地位与作用,可用于气体、液体、蒸汽等介质流量的测量。
为了更好的展示流量计测量原理,小编采用动画演示的方法来给大家介绍流量计的工作原理!1.孔板流量计孔板流量计工作原理:流体充满管道,流经管道内的节流装置时,流束会出现局部收缩,从而使流速增加,静压力低,于是在节流件前后便产生了压力降,即压差,介质流动的流量越大,在节流件前后产生的压差就越大,所以孔板流量计可以通过测量压差来衡量流体流量的大小。
这种测量方法是以能量守衡定律和流动连续性定律为基准的。
工作特点:①节流装置结构简单、牢固,性能稳定可靠,使用期限长,价格低廉;②应用范围广,全部单相流皆可测量,部分混相流亦可应用;③标准型节流装置无须实流校准,即可投用;④ 一体型孔板安装更简单,无须引压管,可直接接差压变送器和压力变送器。
2. ^磁流量计r电磁流量计工作原理:基于法拉第电磁感应定律。
在电磁流量计中,测量管内的导电介质相当于法拉第试验中的导电金属杆,上下两端的两个电磁线圈产生恒定磁常当有导电介质流过时,则会产生感应电压。
管道内部的两个电极测量产生的感应电压。
测量管道通过不导电的内衬(橡胶,特氟隆等)实现与流体和测量电极的电磁隔离。
工作特点:①具有双向测量系统;② 传感器所需的直管段较短,长度为5倍的管道直径。
③压力损失小④测量不受流体密度、粘度、温度、压力和电导率变化的影响⑤主要应用于污水处理方面。
3.涡轮流量计涡轮流量计际山得幌器P 1::皿R在一定的流IT电网内,剌轮的转速与液体的流通成正比. 物制轮的忖闹比怙成零比恢成乜脉冲.井川一欢位我显示.植莪品示的数粥।反映了流体的淌匹涡轮流量计工作原理:在一定的流量范围内,涡轮的转速与流体的流速成正比。
流体流动带动涡轮转动,涡轮的转速转换成电脉冲,用二次表显示出数据,反应流体流速。
工作特点:①抗杂质能力强;②抗电磁干扰和抗振能力强:③其结构与原理简单,便于维修;④几乎无压力损失,节省动力消耗。
14种流量计的工作原理

14种流量计的工作原理流量计(Flowmeter)是工业生产的眼睛,与国民经济、国防建设、科学研究有着密切的关系,在国民经济中占据重要地位与作用,可用于气体、液体、蒸汽等介质流量的测量。
为了更好的展示流量计测量原理,小编采用动画演示的方法来给大家介绍流量计的工作原理!1.孔板流量计板流量计工作原理:流体充满管道,流经管道内的节流装置时,流束会出现局部收缩,从而使流速增加,静压力低,于是在节流件前后便产生了压力降,即压差,介质流动的流量越大,在节流件前后产生的压差就越大,所以孔板流量计可以通过测量压差来衡量流体流量的大小。
这种测量方法是以能量守衡定律和流动连续性定律为基准的。
工作特点:①节流装置结构简单、牢固,性能稳定可靠,使用期限长,价格低廉;②应用范围广,全部单相流皆可测量,部分混相流亦可应用;③标准型节流装置无须实流校准,即可投用;④一体型孔板安装更简单,无须引压管,可直接接差压变送器和压力变送器。
2. 电磁流量计电磁流量计工作原理:基于法拉第电磁感应定律。
在电磁流量计中,测量管内的导电介质相当于法拉第试验中的导电金属杆,上下两端的两个电磁线圈产生恒定磁常当有导电介质流过时,则会产生感应电压。
管道内部的两个电极测量产生的感应电压。
测量管道通过不导电的内衬(橡胶,特氟隆等)实现与流体和测量电极的电磁隔离。
工作特点:①具有双向测量系统;②传感器所需的直管段较短,长度为5倍的管道直径;③压力损失小;④测量不受流体密度、粘度、温度、压力和电导率变化的影响;⑤主要应用于污水处理方面。
3. 涡轮流量计涡轮流量计工作原理:在一定的流量范围内,涡轮的转速与流体的流速成正比。
流体流动带动涡轮转动,涡轮的转速转换成电脉冲,用二次表显示出数据,反应流体流速。
工作特点:①抗杂质能力强;②抗电磁干扰和抗振能力强;③其结构与原理简单,便于维修;④几乎无压力损失,节省动力消耗。
4. 文丘里流量计工作原理:当流体流经文丘里流量计管道内的节流件时,流速在文丘里节流件初形成局部收缩,导致流速增加,静压差下降,文丘里流量计前后便产生了静压差,流体流量越大,静压差就越大,根据压差来衡量流量。
孔板流量计工作原理安全操作及保养规程

孔板流量计工作原理安全操作及保养规程一、工作原理孔板流量计是一种常用的流量计量仪表,通过测量流体通过孔板时的压差来间接测量流量。
其工作原理如下:1.流体通过孔板时,流速增加,静压降低,形成一个高速流出口和低速流进口。
2.孔板前后两侧的静压差与流速成正比,即静压差越大,流速越大。
3.静压差由差压传感器测量得到,通过公式计算得到流体的流速和流量。
二、安全操作为了保证孔板流量计的正常工作和使用安全,请按以下步骤进行操作:1.在使用之前,先检查孔板流量计的外观是否完整,仪表是否牢固安装,各连接口是否严密。
2.仔细阅读孔板流量计的使用说明书和安全手册,熟悉仪表的工作原理和使用方法。
3.在操作过程中,应穿戴好相应的防护设备,如手套、护目镜等。
4.在启动孔板流量计之前,应确保流体系统处于正常工作状态,排除可能存在的其他故障和隐患。
5.在进行流量测量时,应将流体系统平稳过渡到稳定状态,并等待一段时间以确保流体稳定流动。
6.避免在高压或高温下操作孔板流量计,在操作过程中应遵循相关安全规范和操作规程。
7.定期检查孔板流量计的差压传感器、阀门和管道连接等关键部件,并及时进行维护和更换。
8.若发现仪表异常,如测量值偏差过大或指示不准确,应立即停止使用,并进行检修和维护。
三、保养规程为了延长孔板流量计的使用寿命和保证测量精度,请按以下规程进行保养:1.定期清洁仪表外壳和传感器,可以使用软毛刷和干净的布擦拭,避免使用有腐蚀性的溶剂。
2.定期检查差压传感器的电缆连接是否松动,若发现松动应进行紧固。
3.定期检查仪表的密封圈和密封垫是否完好,若发现损坏或老化应及时更换。
4.定期校准孔板流量计的测量精度,可以使用标准流量计或其他准确的校准仪表进行比对。
5.避免长时间使用过载条件下的工作,以免影响仪表的性能和寿命。
6.避免在有腐蚀性或高温的介质中使用孔板流量计,应选择适用的材质和型号。
7.若遇到长时间停机或长时间不使用孔板流量计时,应将仪表进行防潮处理,并妥善存放。
孔板流量计工作原理

孔板流量计工作原理
孔板流量计是一种常用的流量测量设备,它基于某个流体通过一个孔板的速度变化来计算流量的原理。
其工作原理如下:
1. 流体通过孔板:流体在管道中流动时,经过一个安装在管道中心的孔板。
2. 孔板引起流体速度变化:当流体通过孔板时,由于孔板的存在,流体通过孔板的截面积变小,从而引起流速增加。
3. 产生局部压力降:由于孔板引起流速增加,根据伯努利方程,流速增加会导致静压降低,从而在孔板上方产生一个局部压力降。
4. 压力差测量:在孔板上下游分别安装压力传感器,用于测量上下游的压力差。
5. 流量计算:根据流体力学理论和一定的修正公式,可以将压力差转换为流量,并根据孔板的几何参数和流体性质进行修正计算,得到准确的流量值。
需要注意的是,孔板流量计的测量精度受到多种因素的影响,例如孔板的几何形状、流体的压力、温度、密度等。
为了提高测量精度,常常需要进行修正计算,使用修正系数来校正实际测量值。
孔板流量计介绍及选型要求

孔板流量计介绍及选型要求一、孔板流量计介绍孔板流量计又称为孔板式流量计,是一种流体测量仪器,重要用于测量管道中的流体流量。
孔板流量计是依据伯努利定理设计的。
它的工作原理是将流体通过一个孔板限制,使其速度加速,从而产生压力差,这个压力差与流量成正比,可以通过计算压力差来计算流量。
孔板流量计具有结构简单、使用便利、精准牢靠等特点,被广泛应用于石化、冶金、水利、环保和航空等领域。
依据国家标准GB/T2624—2006,孔板流量计分为标准孔板、锥形孔板、圆锥孔板等不同类型。
二、选型要求在使用孔板流量计时,需要考虑很多因素,如管道直径、流体特性、流量范围等等。
选型要求如下:1. 流量范围流量范围是选择孔板流量计时必需要考虑的一个关键因素。
孔板流量计的测量范围通常是从0.1m/s至50m/s之间。
在测量流体流量前需要确定流量范围,以便选择合适的孔板流量计。
2. 流量精度孔板流量计的流量精度通常依据使用的孔板和计算公式来决议。
因此,在选择孔板流量计时,需要考虑精度要求。
精度通常由孔板孔口直径、厚度、展弦角等因素决议,需要认真考虑。
3. 测量介质孔板流量计适用于测量非腐蚀性、非腐蚀性气体或液体。
测量介质对孔板流量计的选择也是非常紧要的,不同介质具有不同的密度、黏度等物理性质,会对孔板流量计的测量产生差异。
因此,选型时必需注意测量介质的物理性质。
4. 温度和压力温度和压力对孔板流量计的性能有很大的影响,需要依据实际应用情况选择合适的材料和型号。
通常,孔板流量计的设计压力为0.6MPa,可承受最高工作温度为350℃左右,但也有些特别要求的应用需要选择更高温度和压力的型号。
5. 安装环境孔板流量计的安装环境也影响到其性能和使用寿命。
假如孔板流量计暴露于恶劣的环境中,可能会导致堵塞、腐蚀等问题。
因此,在选择孔板流量计时需注意其安装环境,如有必要可选择耐腐蚀、耐高温等特别材质。
6. 维护保养孔板流量计需要定期维护和清洗,以保持其正常运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
孔板流量计工作原理充满管道的流体,当它们流经管道内的节流装置时,流束将在节流装置的节流件处形成局部收缩,从而使流速增加,静压力低,于是在节流件前后便产生了压力降,即压差,介质流动的流量越大,在节流件前后产生的压差就越大,所以孔板流量计可以通过测量压差来衡量流体流量的大小。
这种测量方法是以能量守衡定律和流动连续性定律为基准的。
孔板流量计又称为差压式流量计,是由一次检测件(节流件)和二次装置(差压变送器和流量显示仪)组成,广泛应用于气体、蒸汽和液体的流量测量。
具有结构简单,维修方便,性能稳定,使用可靠等特点。
详细介绍:一、概述孔板流量计又称为差压式流量计,是由一次检测件(节流件)和二次装置(差压变送器和流量显示仪)组成,广泛应用于气体、蒸汽和液体的流量测量。
具有结构简单,维修方便,性能稳定,使用可靠等特点。
孔板节流装置是标准节流件可不需标定直接依照国家标准生产,1.国家标准GB2624-81<流量测量节流装置的设计安装和使用;2.国际标准ISO5167<国际标准组织规定的各种节流装置; 3.化工部标准GJ516-87-HK06。
二、工作原理充满管道的流体流经管道内的节流装置,在节流件附近造成局部收缩,流速增加,在其上、下游两侧产生静压力差。
在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。
孔板流量计由截流元件孔板、均压环、三阀组和智能多参数变送器组成。
三阀组:三阀组的作用是将差压变送器的正负压室与引压管导通或切断,导通或切断差压变送器。
停用时:关闭负压阀,打开平衡阀,关闭正压阀.投用时:打开正压阀,关闭平衡阀,打开负压阀.在有隔离液的情况下要确保三阀组不能同时打开,防止隔离液因为差压而跑掉.五阀组比三阀组多2个排污阀。
初次使用时应先打开平衡阀,再打开低压侧负压阀,接着是打开高压侧正压阀,最后关闭平衡阀,变送器工作,这样操作很好的保护了变送器。
在变送器的工作过程中也可以打开平衡阀给变送器调零等操作孔板流量计的安装位置是直管的前10D后5D。
造成孔板测量不准的几个原因:1.若孔板装反了,造成变送器指示偏小;2.孔板厚度超过规定值,流量偏大;3.孔板开孔圆筒部分长度太长,流量偏大;4.取负压孔距离孔板端面距离偏大,流量偏大。
5.孔板流量计指示偏大的原因可能是孔板的磨损,引起管子堵塞,造成压差大,引起流量大。
6.孔板负压管不畅通,流量偏大。
7.负压管有泄漏,也会引起指示偏大。
磁翻板液位计根据浮力原理和磁性耦合作用原理工作的。
当被测容器中的液位升降时,液位计主导管中的浮子也随之升降,浮子内的永久磁钢通过磁耦合传递到现场指示器、驱动红、白翻柱翻转180°,当液位上升时,翻柱由白色转为红色,当液位下降时,翻柱由红色转为白色,指示器的红、白界位处为容器内介质液位的实际高度,从而实现液位的指示。
孔板流量计安装节流装置的安装和适用于下列管段和管件有关:节流件上游侧第一阻力件、第二阻力件,节流件下右侧第一阻力件,从节流件上游第二阻力件到下游第一阻力件之间的管段以及差压讯号管路等。
1、管道条件:(1)节流件前后的直管段必须是直的,不得有肉眼可见的弯曲。
(2)安装节流件用得直管段应该是光滑的,如不光滑,流量系数应乘以粗糙度修正稀疏。
(3)为保证流体的流动在节流件前1D出形成充分发展的紊流速度分布,而且使这种分布成均匀的轴对称形,所以1)直管段必须是圆的,而且对节流件前2D范围,其圆度要求其甚为严格,并且有一定的圆度指标。
具体衡量方法:(A)节流件前OD,D/2,D,2D4个垂直管截面上,以大至相等的角距离至少分别测量4个管道内径单测值,取平均值D。
任意内径单测量值与平均值之差不得超过±0。
3%(B)在节流件后,在OD和2D位置用上述方法测得8个内径单测值,任意单测值与D比较,其最大偏差不得超过±2%2)节流件前后要求一段足够长的直管段,这段足够长的直管段和节流件前的局部阻力件形式有关和直径比β有关,见表1(β=d/D, d为孔板开孔直径,D为管道内径)。
(4)节流件上游侧第一阻力件和第二阻力件之间的直管段长度可按第二阻力件的形式和β=0。
7(不论实际β值是多少)取表一所列数值的1/2(5)节流件上游侧为敞开空间或直径≥2D大容器时,则敞开空间或大容器与节流件之间的直管长不得小于30D(15D)。
若节流件和敞开空间或大容器之间尚有其它局部阻力件时,则节流件上下游侧的最小直管段长度表 1节流件上游侧局部阴力件形式和最小直管段长度L注:1、上表只对标准节流装置而言,对特殊节流装置可供参考2、列数系为管内径 D 的倍数。
3、上表括号外的数字为“附加相对极限误差为零”的数值,括号内的数字为“附加相对极限误差为±0.5%”的数值。
即直管段长度中有一个采用括号内的数值时,流量测量的极限相对误差τQ/Q。
4、若实际直管段长度大于括号内数值,而小于括号外的数值时,需按“附加极限相对误差为0.5%”处理。
(1)直流件安装在管道中,其前端面必须与管道轴线垂直,允许的最大不垂直度不得超过±1°。
(2)节流件安装在管道中后,其开孔必须与管道同心,其允许的最大不同心度ε不得超过下列公式计算结果:ε≤0.015D(1/β-1)。
(3)所有垫片不能用太厚的材料,最好不超过0.5mm,垫片不能突出管壁内否则可能引起很大的测量误差。
(4)凡是调节流量用的阀门,应装在节流件后最小值管段长度以外5(5)节流装置在工艺管道上的安装,必须在管道清洗吹扫后进行。
(6)在水平或倾斜管道安装的节流装置的取压方式。
1)被测流体为液体时,为防止气泡进工艺管道入到牙关,取压扣应处于工艺管道中心线下偏≤45°的位置上正负取ααα1压口处于与管道对称位置时,两者应在同一水平面上(见图5)截止阀图52)被测流体为气体时,为防止液体截止阀导压管(冷凝液)进入导压管,取压口应处工艺管道中心管道上方线上插≤45° 的位置,正负取压口处于与管道对αα1称位置时,两者应在同一水平线上。
(见图6)工艺管道α=α1≤45° 图63)被测流体为蒸汽时,应保证冷凝器中冷凝液面恒定和正负导压管上的截止阀冷凝面高度一致,正负压口处于与6管道对称位置时,两者应在同一水平面上(见图7)工艺管道图7上述三种取压口的安装量式,均可与管道对称和管道的同一侧进行安装。
(7)安装节流装置的管道处于垂直时,冷凝器应处于同一水平位置上,这样可以消除因取压孔位置高度不同而引起的测量误差。
(8)导压管应按被测流体的性质和参数使用耐压,耐腐蚀的材质制造,其内径不得小于6㎜长度最好在16M之内,视被测流体性质而安,不同长度下的最小内径见表 2导压管的内径和长度表 2导压管长度导压管内径被测流体<1600016000-4500045000-90000水、水蒸汽、干汽体7~91013湿汽体131313低,中粘度表的油品131925脏的液体和气体252538(9)安装差压信号按1:10倾斜度敷设。
四、安装方式与使用1、安装方式(1)(1)测量液体2、节流装置≤45° 测量液体流量时工艺管道水4、平安装,差压变送器的位置放出空气处于节流装置下方时,取压3、倾斜度口应在节流装置的水平中心输出至下>1:107轴线下偏45°角引出,这水道可以消样除由流体传放出的输入 5气体进入导压管和差压变送气源器(如图8)。
若差压变送器1、+-至下水道至仪表处于节流装置的上方时,除图8测量液体,仪表低于节流装取压口下偏≤45°角然后向置上引导压管外,应在导压管1、仪表2、节流装置3、上的最高点装置集器或排气冲洗阀4、导压管5、沉阀。
(如图9)积器放出空气 36至仪表输出气源图9测量液体,仪表高于节流装置1 +-放出1、仪表2、节流装置空气3、排气阀4、导压管b) 5、沉积器6、空气收集4 5 器。
2 至下水道≤45° α)8(2)测量水蒸汽测量蒸汽流量时,安装方式一般为差压变送器低于、高于节流装置两种。
(如图12)取压口位置应附合上述安装要求,并在导压管制高点处装上放气阀和气体收集器。
a)2 图10测量蒸汽,仪表低全节流装置于节流装置4 倾斜度>1:10 1、仪表2节流装置3、冲洗阀4、导压管3 5、隔离器输出至仪表气源 51 b)+-至下水道(3)测量气体测量介质为清洁的气体流量时,安装方式一般为差压变送器高于、低于节流装置两种(如图11、12)取压口位置应符合上述安装要求,当差压变送器低于节流装置时,导压管必须向下弯至差压变送(4)测量腐蚀性液体和气体测量腐蚀性的液体和气体流量时,取压口应附合上述安装要求,不论管道是水平安装或垂直安装,差压变送器高于或低于节流装置,均必须在差压变送器和节流装置之间的隔离器,并在隔离器至差2、使用节流装置是利用流体流经节流件(标准孔板,标准喷咀)时,前后所产生的压差来计算流量的,流量与差压的平方根成正比。
即:ΔP1Q测= ΔP2 2Q刻Q测—所测得的流量值Q测—刻度量值9ΔP1-计算差压值ΔP2—实际测量差压值应用举例:节流装置计算结果通知书内容:1、被测介质:饱和蒸气2、刻度流量:25T/H3、计算差压:0-4000MMH2O4、配用仪表型号:(1)气动差压变送器QBC-550测量范围:0-4000 MMH2O(2)气动积算器QXS-100-10(3)气动一笔记录仪QXJ-111流量示值读数设当差压为3000MH2O则4000ΔP1Q测= ΔP2 2Q刻= 3000 225T/H=21.65T/H设当8小时内积算器转过字数为6658据已知条件(刻度流量25T/H,积处器R=1000)得25㎏/每字则8小时产气总量为:25㎏/每字36658=166450㎏=166.45吨平均每小时产气量20.80吨/小时标准节流装置从制造到安装都应该符合国家标准要求,其误差可按GB-2624-81直接用计算方法确定,但在现场使用时,如在温度,压力变化较大的情况下,可按下列修正公式处理当流体的成份不变,工作压力和工作温度改变时;对于液体P110qm2=qm2- p2式中,qm2-流过节流装置的流体质量流量设计时采用的值qm2-为温度,压力改变后的质量流量值p1-流体密度设计时采用的值p2-为温度,压力改变后的流体密度值如温度,压力变化较大,引起流量系数α的改变,则用下式式中:α1—为设计时的流量系数。
α2—温度、压力改变后,引起的流量改变,所对应的实际流量系数对于气体;式中: ε1 —流体流过节流装置时设计时采用的膨胀系数P1—“”压力值T1—“”温度值Z1—“”可压缩流体的压缩系数。
qm2、ε2、p2、T2、Z2—为温度、压力改变后的实际值。