阻抗匹配概念

合集下载

单片机电路中的阻抗匹配

单片机电路中的阻抗匹配

单片机电路中的阻抗匹配单片机电路中的阻抗匹配1. 引言单片机电路中的阻抗匹配是一个重要的概念,它对于确保电路稳定性、性能优化以及能量传输都有着至关重要的作用。

在本文中,我们将深入探讨单片机电路中的阻抗匹配的重要性、应用领域以及相关的技术和方法。

2. 阻抗匹配的背景与概念阻抗匹配是指在电路中确保信号源和负载之间的阻抗一致,从而最大限度地传输信号能量并减少反射。

在单片机电路中,阻抗匹配不仅可以确保信号的无失真传输,还可以提高电路性能和稳定性。

3. 阻抗匹配的重要性阻抗匹配在单片机电路中起着至关重要的作用,它可以消除信号反射,提高传输效率,减少功耗,并确保电路的稳定性。

阻抗不匹配可能导致信号衰减、失真和不稳定性。

4. 单片机电路中的阻抗匹配技术在单片机电路中,有几种常用的阻抗匹配技术,包括传输线匹配、阻抗变换器和阻抗适配器等。

这些技术可以通过调整电路设计中的元件参数,如电感、电容和电阻等,来实现阻抗匹配。

4.1 传输线匹配传输线匹配是一种常见的阻抗匹配技术,它通过选择适当的传输线特性来匹配信号源和负载的阻抗。

常见的传输线有微带线、同轴电缆和双绞线等。

传输线匹配可以实现高频信号的传输稳定性和传输效率的提高。

4.2 阻抗变换器阻抗变换器是一种通过改变电路中的阻抗来实现阻抗匹配的技术。

常见的阻抗变换器有变压器、电容和电感等。

阻抗变换器可用于将信号源的高阻抗转换为负载的低阻抗,或者将负载的高阻抗转换为信号源的低阻抗。

4.3 阻抗适配器阻抗适配器是一种能够在信号源和负载之间匹配阻抗的电路。

它通过改变适配器的阻抗值来实现阻抗匹配。

常见的阻抗适配器有平衡器和不平衡器等。

阻抗适配器可以使信号源和负载之间的阻抗一致,从而实现信号的无失真传输。

5. 阻抗匹配的应用领域阻抗匹配广泛应用于单片机电路的设计和实现中。

它可以在无线通信系统中提高信号传输质量和信噪比,并减少功率损耗。

阻抗匹配还可以用于声音和图像处理、传感器接口和电力传输等领域。

阻抗匹配的概念

阻抗匹配的概念

阻抗匹配的概念你知道啥是阻抗匹配不?咱就这么说吧,阻抗匹配就像是一场完美的舞蹈搭档组合。

你想想看,跳舞的时候,如果两个人的节奏、步伐完全不协调,那能跳出好看的舞蹈吗?肯定不能啊!阻抗匹配也是这个道理。

在电子世界里,阻抗匹配就是要让不同的电子元件或者电路之间能够和谐地工作。

如果阻抗不匹配,那可就麻烦了。

就好比两个人说话,一个人声音特别大,另一个人声音特别小,那能交流得好吗?肯定不行嘛!阻抗不匹配会导致信号反射、功率损耗等一系列问题。

那阻抗匹配到底是咋做到的呢?这就需要一些技巧和方法啦。

比如说,可以通过调整电路中的电阻、电容、电感等元件的参数,来实现阻抗的匹配。

这就像是给两个不太合拍的舞蹈搭档调整步伐和节奏一样,需要耐心和技巧。

你可能会问,为啥要这么费劲地去做阻抗匹配呢?这可太重要啦!如果不进行阻抗匹配,信号在传输过程中就会像在崎岖的山路上行驶的汽车一样,颠簸得厉害,甚至可能会翻车。

而进行了阻抗匹配,信号就能够顺畅地传输,就像在平坦的高速公路上飞驰的跑车一样,速度快又稳定。

再打个比方,阻抗匹配就像是给电子设备穿上了一双合脚的鞋子。

如果鞋子不合脚,走路就会不舒服,甚至会磨脚。

电子设备也是一样,如果阻抗不匹配,就会影响性能,甚至可能会损坏设备。

在实际应用中,阻抗匹配无处不在。

比如在通信领域,为了保证信号的质量和传输距离,就必须进行阻抗匹配。

在音频设备中,阻抗匹配可以让声音更加清晰、动听。

在电力系统中,阻抗匹配可以提高能源的利用效率。

总之,阻抗匹配是电子世界里非常重要的一个概念。

它就像一场无声的舞蹈,让不同的电子元件能够和谐地共舞。

只有进行了阻抗匹配,电子设备才能发挥出最佳的性能,为我们的生活带来更多的便利和乐趣。

所以,一定要重视阻抗匹配哦!。

阻抗匹配的原理及应用

阻抗匹配的原理及应用

阻抗匹配的原理及应用1. 阻抗匹配的定义在电子电路设计中,阻抗匹配是指将输入和输出电路的阻抗调整为互相匹配的过程。

阻抗匹配可以使信号在电路之间传输时最大限度地传递能量,减少能量反射和损耗。

通过阻抗匹配,可以提高电路的性能和信号传输质量。

2. 阻抗匹配的原理阻抗匹配的原理是基于两个基本的电路理论:傅里叶变换和最大功率传输定理。

2.1 傅里叶变换傅里叶变换是将一个时域信号分解成不同频率的正弦和余弦分量的数学技术。

在阻抗匹配中,傅里叶变换用于将时域信号转换为频域信号,从而分析信号的频谱特性。

2.2 最大功率传输定理最大功率传输定理是指当负载电阻与源电阻相等时,电路能够以最大功率传输能量。

阻抗匹配通过调整电路的阻抗使其与源电阻或负载电阻相等,从而实现最大功率传输。

3. 阻抗匹配的应用阻抗匹配在电子电路设计和通信系统中有广泛的应用。

3.1 无线通信系统在无线通信系统中,阻抗匹配用于将天线阻抗与无线发射机或接收机的阻抗匹配。

这可以提高无线信号的传输效率,减少信号损失和反射。

3.2 放大器设计在放大器设计中,阻抗匹配被广泛应用于放大器的输入和输出端口。

阻抗匹配可以使信号在放大器中传输时最大限度地传递能量,提高放大器的增益和线性度。

3.3 系统集成在系统集成中,阻抗匹配用于连接不同的电路模块。

通过阻抗匹配,可以使各个模块之间的阻抗匹配,确保信号的正确传输和系统的正常运行。

4. 阻抗匹配的方法在实际应用中,有多种方法可用于实现阻抗匹配。

以下是几种常见的方法:•使用阻抗变换器:阻抗变换器可以将一个阻抗转换为另一个阻抗,以实现阻抗匹配。

常见的阻抗变换器有电感、电容、变压器等。

•使用匹配网络:匹配网络是由电感、电容和电阻等元件构成的网络,用于调整输入和输出电路的阻抗以实现匹配。

•使用负馈:负馈可以将一个电路的输出信号反馈到输入端,以调整输入电路的阻抗与负载电路的阻抗匹配。

负馈可以通过放大器或运算放大器来实现。

•使用传输线:传输线可以通过调整传输线的长度或特性阻抗来实现阻抗匹配。

阻抗匹配的原理和应用

阻抗匹配的原理和应用

阻抗匹配的原理和应用1. 引言阻抗匹配是电子电路设计中的一种重要技术,用于确保信号的最大功率传输和防止信号反射。

本文将介绍阻抗匹配的基本原理和应用。

2. 阻抗匹配的基本原理阻抗匹配是指将不同阻抗的两个电路或电子设备连接在一起,使得信号在两者之间传输时的阻碍最小化。

阻抗匹配的基本原理涉及到两个重要概念:输入阻抗和输出阻抗。

2.1 输入阻抗输入阻抗是指电路或电子设备向外部信号源提供的阻力。

当信号源的输出阻抗与电路的输入阻抗匹配时,输入的功率能够被完全传输到电路中,最大化利用信号源的能量。

2.2 输出阻抗输出阻抗是指电路或电子设备与外部负载之间的阻力。

当电路的输出阻抗与负载的输入阻抗匹配时,电路能够向外部负载提供最大功率传输。

3. 阻抗匹配的应用阻抗匹配在实际电路设计中有许多应用。

以下是阻抗匹配的一些常见应用场景:3.1 通信系统在通信系统中,阻抗匹配非常重要。

例如,在无线电发射器和天线之间实现阻抗匹配可以最大程度地传输信号,并减少信号的反射。

这种阻抗匹配通常是通过天线调谐器或发射器的输出网络来实现的。

3.2 音频放大器阻抗匹配在音频放大器中也是必不可少的。

音频放大器通常将低阻抗的音频源连接到负载阻抗较高的扬声器。

通过阻抗匹配,可以确保音频信号的最大功率传输,并避免信号反射。

3.3 无线电频率调谐在无线电接收器和调谐器中,阻抗匹配用于确保信号从天线输入到调谐电路时的最大功率传输。

匹配电路通常使用变压器或匹配网络来实现。

3.4 高频电路设计阻抗匹配在高频电路设计中也是非常重要的。

例如,在微波射频电路中,通过匹配网络将信号源的输出阻抗与负载的输入阻抗匹配,可以实现信号的最大功率传输。

4. 阻抗匹配技术为了实现阻抗匹配,有几种常用的技术和电路可供选择:4.1 变压器变压器是一种常用的阻抗匹配器。

通过选择适当的变压器变比,可以实现输入阻抗和输出阻抗之间的匹配。

4.2 匹配网络匹配网络是一种通过电容、电感和电阻等被动元件连接而成的网络。

传输线理论阻抗匹配

传输线理论阻抗匹配
27
2. 串联单支节公式:
BL
t
tg
d
BL
2Y0
GL Y0
Y0
GL
2
BL2
GL Y0
GL Y0 GL Y0
d的两个主要解为:
d
d
1
2
1
2
arctgt t
+arctgt
0
t
0
Z0
Z 1/Y Z0
ZL
Z0
l
短路或 开路
2020/7/22
28
短路支节:lsc
1
2
arctg
(3.3)
假定信号源阻抗是固定的,考虑以下三种负载阻抗情况:
负载与传输线匹配(ZL= Z0)
传给负载传输的功率
ГL=0
P
1 2
EG
2
Z0
Z0
RG 2 XG 2
(3.4)
2020/7/22
6
信号源与端接传输线匹配(Zin= ZG) Гin=0
传给负载传输的功率
P 1 2
EG 2 4
RG
RG2
yL
负载匹配,加+j 0.3
归一化导纳落在
zL
1 j圆b周上
归一化导纳 y 0.4 j0.5
z 1 j1.2
阻抗 z 1 j1.2 要落在归一化阻抗圆周上 1 jx
串联电抗 x j1.2
2020/7/22
14
由此得到相应的元件值为:
C b 0.92pF;
2 fZ0
C 1 2.61pF;
Zin
Z
* G
假定信号源的内阻抗为固定,可改变输入阻抗Zin使送 到负载的功率最大。

RF电路分析——阻抗匹配

RF电路分析——阻抗匹配

RF电路分析——阻抗匹配RF电路中的阻抗匹配是一个非常重要的概念,它在保证信号传输和能量传递的同时,最大化提高系统的效率。

本文将从理论和实际应用两个方面,介绍阻抗匹配的概念和方法。

首先,我们需要了解阻抗的概念。

在RF电路中,阻抗是指电路中的电流和电压之间的比值,通常用复数表示。

阻抗由两个参数组成:阻抗大小(模)和阻抗相位(角度)。

阻抗大小反映了电流和电压的比例关系,而阻抗相位代表了电流和电压之间的时间差。

在RF电路中,如果不同部分的阻抗不匹配,就会导致信号的损失和反射。

这种反射会产生回波,在系统中形成驻波,从而降低了功率传输效率。

因此,阻抗匹配是为了减少信号反射和提高系统效率的重要手段。

一种常见的阻抗匹配方法是使用变压器。

变压器具有恒压传输特性,可以将输入的高阻抗变成输出的低阻抗,或者将低阻抗变成高阻抗。

这种变压器的两个线圈之间通过互感耦合,使得输入和输出之间的能量传输更加高效。

变压器的阻抗匹配适用于宽频段的应用,可以有效提高系统的频响性能。

另一种常见的阻抗匹配方法是使用网络匹配电路。

网络匹配电路由一系列电感、电容和电阻组成,可以通过调整这些元件的阻抗来匹配不同部分之间的阻抗。

其中最常用的网络匹配电路是pi型和T型的匹配电路。

这两种匹配电路可以分别将高阻抗变成低阻抗或者将低阻抗变成高阻抗。

在实际应用中,阻抗匹配有许多重要的应用。

例如,在无线通信系统中,发射天线和接收天线之间的阻抗匹配是非常重要的,以确保尽可能多的信号能够传输到接收端。

此外,在射频功率放大器中,阻抗匹配可以最大化功率的传输和转换效率,确保系统能够以最佳性能工作。

总之,在RF电路中,阻抗匹配是一项重要的技术,它可以最大限度地提高信号传输和能量传递的效率。

使用变压器和网络匹配电路是常见的手段,可以将不同部分之间的阻抗进行匹配。

在实际应用中,阻抗匹配有许多重要的应用,如无线通信和功率放大器。

通过合理地进行阻抗匹配,可以提高系统的性能和效率。

阻抗匹配与阻抗线线宽设置_1129

阻抗匹配与阻抗线线宽设置_1129

一、阻抗匹配概念定义:1、指信号源或者传输线跟负载之间的一种合适的搭配方式;阻抗匹配分为低频和高频两种情况讨论。

2、阻抗匹配(Impeda nee matchi ng是微波电子学里的一部分,主要用于负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。

我们以下例(软管送水浇花来感性认识一下阻抗匹配的功用A、一端于手握处加压使其射出水柱,另一端接在水龙头,。

当握管处所施压的力道恰好,而让水柱的射程正确洒落在目标区.如下图所示:B、然而一旦用力过度水注射程太远,不但腾空越过目标浪费水资源。

也有可能因强力水压无处宣泄,以致往来源反弹造成软管自龙头上的挣脱(阻抗太高;如下图所示:C、反之,当握处之挤压不足以致射程太近者,则照样得不到想要的结果。

(阻抗太低,如下图所示;唯有拿捏恰到好处才能符合实际需求的距离。

(阻抗匹配二、PCB走线的阻抗匹配与阻抗控制(1定义阻抗匹配是电路学里的重要议题,也是射频微波电路的重点。

一般的传输线都是一端接电源,另一端接负载,此负载可能是天线或任何具有等效阻抗ZL的电路<传输线阻抗和负载阻抗达到匹配的定义,简单说就是:ZO=ZL。

在阻抗匹配的环境中,负载端是不会反射电波的,换句话说,电磁能量完全被负载吸收。

因为传输线的主要功能就是传输能量和传送电子讯号或数字数据,一个阻抗匹配的负载和电路网络,将可确保传输到最终负载的电磁能量值能达到最大量。

(2 PCB走线作阻抗控制的原因1:针对目前高频高速的要求,及对信号失真状况越来越高的要求,在设计PCB时方波信号在多层板讯号线中,其特性阻抗值必须要和电子元件的内置电子阻抗相匹配,才能保证信号的完整的传输。

2:当特性阻抗值超出公差时,所传讯号的能量将出现反射、散失、衰减或延误等劣化现象,严重时会出现错误讯号。

3:由于元件的电子阻抗越高,其传输速率越快。

吸波材料的阻抗匹配

吸波材料的阻抗匹配

吸波材料的阻抗匹配1. 引言吸波材料是一种能够有效吸收电磁波的材料,广泛应用于电磁兼容和无线通信领域。

然而,吸波材料的效果往往受到其阻抗与周围环境阻抗之间的匹配程度影响。

本文将探讨吸波材料的阻抗匹配问题,并介绍一些常用的方法和技术。

2. 阻抗匹配的概念阻抗匹配是指将吸波材料的阻抗与周围环境的阻抗相匹配,使得电磁波能够在吸波材料和周围环境之间无反射地传播。

阻抗匹配的好坏直接影响到吸波材料的吸收效果,对于提高电磁兼容性和无线通信质量至关重要。

2.1 阻抗的定义阻抗是指电磁波在材料中传播时所遇到的阻力。

在电磁学中,阻抗由电阻和电抗两部分组成,分别对应着电磁波在材料中的能量损耗和相位差。

2.2 阻抗匹配的原理阻抗匹配的原理是通过调整吸波材料的特性,使得其阻抗与周围环境的阻抗相匹配。

当吸波材料和周围环境的阻抗匹配良好时,电磁波在两者之间传播时不会发生反射,从而实现最大程度的能量吸收。

3. 阻抗匹配的方法实现吸波材料的阻抗匹配有多种方法和技术,下面将介绍几种常见的方法。

3.1 厚度匹配法厚度匹配法是最简单也是最常用的阻抗匹配方法之一。

该方法通过调整吸波材料的厚度,使得其阻抗与周围环境的阻抗相等,从而实现阻抗匹配。

具体来说,当吸波材料的厚度为四分之一波长时,可以实现较好的阻抗匹配效果。

3.2 多层结构法多层结构法是一种通过叠加多层吸波材料来实现阻抗匹配的方法。

通过选择不同材料和厚度的组合,可以实现吸波材料与周围环境的阻抗匹配。

多层结构法可以提高吸波材料的吸收带宽和吸收效果。

3.3 梯度结构法梯度结构法是一种通过改变吸波材料的阻抗分布来实现阻抗匹配的方法。

通过在吸波材料中引入阻抗梯度,可以实现阻抗的平滑过渡,从而提高吸波材料的吸收效果。

3.4 反射层法反射层法是一种通过在吸波材料的背面添加反射层来实现阻抗匹配的方法。

反射层可以反射回射入吸波材料的电磁波,从而实现阻抗匹配和能量的吸收。

4. 阻抗匹配的影响因素阻抗匹配的效果受到多种因素的影响,下面将介绍几个重要的影响因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阻抗匹配概念阻抗匹配概念阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。

对于不同特性的电路,匹配条件是不一样的。

在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。

当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。

这种匹配条件称为共扼匹配。

阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。

大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。

要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。

改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。

如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。

重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。

调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。

最大功率传输定理,如果是高频的话,就是无反射波。

对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。

阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。

高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。

这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便.阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。

在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。

电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西。

但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。

电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。

它们的计量单位与电阻一样是奥姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。

此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。

阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。

对于不同特性的电路,匹配条件是不一样的。

在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。

当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。

这种匹配条件称为共扼匹配。

一.阻抗匹配的研究在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。

阻抗匹配的技术可以说是丰富多样,但是在具体的系统中怎样才能比较合理的应用,需要衡量多个方面的因素。

例如我们在系统中设计中,很多采用的都是源段的串连匹配。

对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式。

例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配;1、串联终端匹配串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射.串联终端匹配后的信号传输具有以下特点:A由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播;B信号在负载端的反射系数接近+1,因此反射信号的幅度接近原始信号幅度的50%。

C反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同;D负载端反射信号向源端传播,到达源端后被匹配电阻吸收;?E反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。

相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。

选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。

理想的信号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。

比如电源电压为+4.5V的CMOS驱动器,在低电平时典型的输出阻抗为3 7Ω,在高电平时典型的输出阻抗为45Ω[4];TTL驱动器和CMOS驱动一样,其输出阻抗会随信号的电平大小变化而变化。

因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考虑。

链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端。

否则,接到传输线中间的负载接受到的波形就会象图3.2.5中C点的电压波形一样。

可以看出,有一段时间负载端信号幅度为原始信号幅度的一半。

显然这时候信号处在不定逻辑状态,信号的噪声容限很低。

串联匹配是最常用的终端匹配方法。

它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗;而且只需要一个电阻元件。

2、并联终端匹配并联终端匹配的理论出发点是在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。

实现形式分为单电阻和双电阻两种形式。

并联终端匹配后的信号传输具有以下特点:A驱动信号近似以满幅度沿传输线传播;B所有的反射都被匹配电阻吸收;C负载端接受到的信号幅度与源端发送的信号幅度近似相同。

在实际的电路系统中,芯片的输入阻抗很高,因此对单电阻形式来说,负载端的并联电阻值必须与传输线的特征阻抗相近或相等。

假定传输线的特征阻抗为50Ω,则R值为50Ω。

如果信号的高电平为5V,则信号的静态电流将达到100m A。

由于典型的TTL或CMOS电路的驱动能力很小,这种单电阻的并联匹配方式很少出现在这些电路中。

双电阻形式的并联匹配,也被称作戴维南终端匹配,要求的电流驱动能力比单电阻形式小。

这是因为两电阻的并联值与传输线的特征阻抗相匹配,每个电阻都比传输线的特征阻抗大。

考虑到芯片的驱动能力,两个电阻值的选择必须遵循三个原则:⑴.两电阻的并联值与传输线的特征阻抗相等;⑵.与电源连接的电阻值不能太小,以免信号为低电平时驱动电流过大;⑶.与地连接的电阻值不能太小,以免信号为高电平时驱动电流过大。

并联终端匹配优点是简单易行;显而易见的缺点是会带来直流功耗:单电阻方式的直流功耗与信号的占空比紧密相关?;双电阻方式则无论信号是高电平还是低电平都有直流功耗。

因而不适用于电池供电系统等对功耗要求高的系统。

另外,单电阻方式由于驱动能力问题在一般的TTL、CMOS系统中没有应用,而双电阻方式需要两个元件,这就对PCB的板面积提出了要求,因此不适合用于高密度印刷电路板。

当然还有:AC终端匹配;基于二极管的电压钳位等匹配方式。

二.将讯号的传输看成软管送水浇花2.1数位系统之多层板讯号线(Signal Line)中,当出现方波讯号的传输时,可将之假想成为软管(hose)送水浇花。

一端于手握处加压使其射出水柱,另一端接在水龙头。

当握管处所施压的力道恰好,而让水柱的射程正确洒落在目标区时,则施与受两者皆欢而顺利完成使命,岂非一种得心应手的小小成就?2.2然而一旦用力过度水注射程太远,不但腾空越过目标浪费水资源,甚至还可能因强力水压无处宣泄,以致往来源反弹造成软管自龙头上的挣脱!不仅任务失败横生挫折,而且还大捅纰漏满脸豆花呢!2.3反之,当握处之挤压不足以致射程太近者,则照样得不到想要的结果。

过犹不及皆非所欲,唯有恰到好处才能正中下怀皆大欢喜。

2.4上述简单的生活细节,正可用以说明方波(Square Wave)讯号(Signal)在多层板传输线(Transmission Line,系由讯号线、介质层、及接地层三者所共同组成)中所进行的快速传送。

此时可将传输线(常见者有同轴电缆Coaxial Cable,与微带线Microstrip Line或带线Strip Line等)看成软管,而握管处所施加的压力,就好比板面上“接受端”(Receiver)元件所并联到Gnd的电阻器一般,可用以调节其终点的特性阻抗(Characteristic Impedance),使匹配接受端元件内部的需求。

三.传输线之终端控管技术(Termination)3.1由上可知当“讯号”在传输线中飞驰旅行而到达终点,欲进入接受元件(如C PU或Meomery等大小不同的IC)中工作时,则该讯号线本身所具备的“特性阻抗”,必须要与终端元件内部的电子阻抗相互匹配才行,如此才不致任务失败白忙一场。

用术语说就是正确执行指令,减少杂讯干扰,避免错误动作”。

一旦彼此未能匹配时,则必将会有少许能量回头朝向“发送端”反弹,进而形成反射杂讯(Noise)的烦恼。

3.2当传输线本身的特性阻抗(Z0)被设计者订定为28ohm时,则终端控管的接地的电阻器(Zt)也必须是28ohm,如此才能协助传输线对Z0的保持,使整体得以稳定在28ohm的设计数值。

也唯有在此种Z0=Zt的匹配情形下,讯号的传输才会最具效率,其“讯号完整性”(Signal Integrity,为讯号品质之专用术语)也才最好。

四.特性阻抗(Characteristic Impedance)4.1当某讯号方波,在传输线组合体的讯号线中,以高准位(High Level)的正压讯号向前推进时,则距其最近的参考层(如接地层)中,理论上必有被该电场所感应出来的负压讯号伴随前行(等于正压讯号反向的回归路径Return Path),如此将可完成整体性的回路(Loop)系统。

该“讯号”前行中若将其飞行时间暂短加以冻结,即可想象其所遭受到来自讯号线、介质层与参考层等所共同呈现的瞬间阻抗值(Instantanious Impedance),此即所谓的“特性阻抗”。

相关文档
最新文档