分式方程应用题含答案1

合集下载

分式方程应用题训练(有答案)

分式方程应用题训练(有答案)

分式方程应用题训练(有答案)1.(2018•昆明)甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A. =B. =C. =D. =2.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.﹣=100 B.﹣=100C.﹣=100 D.﹣=1003.(2018•黑龙江)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠24(2018•衡阳)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.﹣=10 B.﹣=10C.﹣=10 D. +=105.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3 B.﹣2 C.1 D.26.(2018•临沂)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()A. =B. =C. =D. =7.(2018•黔南州)施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.=2 B.=2C.=2 D.=28(2018•淄博)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.9.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是元.10(2018•齐齐哈尔)若关于x的方程+=无解,则m的值为.11.(2018•嘉兴)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程:1至11题答案:1A 2B 3.D 4A 5C 6A 7A 8C 9.410.﹣1或5或﹣11. =×(1﹣10%)行程12.(2018•徐州)从徐州到南京可乘列车A与列车B,已知徐州至南京里程约为350km,A与B车的平均速度之比为10:7,A车的行驶时间比B车的少1h,那么两车的平均速度分别为多少?解:设A车的平均速度为10xkm/h,则B车的平均速度为7xkm/h,根据题意得:﹣=1,解得:x=15,经检验,x=15是分式方程的根,∴10x=150,7x=105.答:A车的平均速度为150km/h,B车的平均速度为105km/h.行程13. (2018•东营)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.13.解:设小明的速度为3x米/分,则小刚的速度为4x米/分,根据题意得:﹣=4,解得:x=25,经检验,x=25是分式方程的根,且符合题意,∴3x=75,4x=100.答:小明的速度是75米/分,小刚的速度是100米/行程14.某校组织学生去9km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.己知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?14.解:设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据题意得:﹣=,解得:x=12,经检验,x=12是原分式方程的解,∴3x=36.答:自行车的速度是12km/h,公共汽车的速度是36km/h.行程15.(2018•山西)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.15解:设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据题意得: =+40,解得:x=,经检验,x=是原分式方程的解,∴x+=.答:乘坐“复兴号”G92次列车从太原南到北京西需要小时.行程.16.“2017年张学友演唱会”于6月3日在我市观山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.解:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据题意得:﹣=4,解得:x=210,经检验,x=210是原方程组的解.答:小张跑步的平均速度为210米/分钟.(2)小张跑步到家所需时间为2520÷210=12(分钟),小张骑车所用时间为12﹣4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.17.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,AC=5cm.点D在AC上,AD=1,点P 从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持速度不变,并继续沿原路径匀速运动,两点在D点处再次相遇后停止运动,设点P原来的速度为xcm/s.(1)点Q的速度为x cm/s(用含x的代数式表示).(2)求点P原来的速度.解:(1)设点Q的速度为ycm/s,由题意得3÷x=4÷y,∴y=x,故答案为:x;CD=5﹣1=4,在B点处首次相遇后,点P的运动速度为(x+2)cm/s,由题意得=,解得:x=(cm/s),答:点P原来的速度为cm/s.任务.18. (2018•桂林)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天解:(1)设二号施工队单独施工需要x天,根据题意得: +=1,解得:x=60,经检验,x=60是原分式方程的解.答:若由二号施工队单独施工,完成整个工期需要60天.(2)根据题意得:1÷(+)=24(天).答:若由一、二号施工队同时进场施工,完成整个工程需要24天.任务19.(2018•岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500是原方程的解,∴1.2x=600.答:实际平均每天施工600平方米.任务20.(2018•威海)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据题意得:﹣=+,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+)x=80.答:软件升级后每小时生产80个零件利润21.(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•=,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.利润.22.(2018•宁波)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.根据题意,得, =,解得 x=40.经检验,x=40是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;(2)甲乙两种商品的销售量为=50.设甲种商品按原销售单价销售a件,则(60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,解得 a≥20.答:甲种商品按原销售单价至少销售20件.与方程结合23.(2018•广东)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得: =,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.与不等式结合24.(2018•贵阳)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?解:(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意=,解得:x=30.经检验,x=30是原方程的解,x+10=30+10=40.答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y为整数,∴y最大为11.答:他们最多可购买11棵乙种树苗.。

(完整版)八年级下册数学分式方程应用题与答案

(完整版)八年级下册数学分式方程应用题与答案

5 1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要 40 分完工;若甲、乙共同整理 20 分钟后,乙需要再单独整理 20 分才能完工。

问:乙单独整理需多少分钟完工? 解:设乙单独整理需 x 分钟完工,则20 + 20 + 20 = 1 解,得 x =80 40 x经检验:x =80 是原方程的解。

答:乙单独整理需 80 分钟完工。

2、有两块面积相同的试验田,分别收获蔬菜 900 千克和 1500 千克,已知第一块试验田每亩收获蔬菜比第二块少 300 千克,求第一块试验田每亩收获蔬菜多少千克? 解:设第一块试验田每亩收获蔬菜 x 千克,则900 = x 1500x + 300解,得 x =450 经检验:x =450 是原方程的解。

答:第一块试验田每亩收获蔬菜 450 千克。

3、甲、乙两地相距 19 千米,某人从甲地去乙地,先步行 7 千米,然后改骑自行车,共用了 2 小时到达乙地。

已知这个人骑自行车的速度是步行速度的 4 倍。

求步行的速度和骑自行车的速度。

解:设步行速度是 x 千米/时,则7 + 19 - 7 = 2 解,得 x =5 x 4x经检验:x =5 是原方程的解。

进尔 4x =20(千米/时)答:步行速度是 5 千米/时,骑自行车的速度是 20 千米/时。

4、小兰的妈妈在供销大厦用 12.50 元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜 0.2 元,因此,当第二次买酸奶时,便到百货商场去买,结果用去 18.40 元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶? 解:⑴设她第一次在供销大厦买了 x 瓶酸奶,则12.5 = x 18.40 ⎛1 + 3 ⎫x + 0.2 解,得 x =5⎪⎝ ⎭经检验:x =5 是原方程的解。

答:她第一次在供销大厦买了 5 瓶酸奶。

5、某商店经销一种纪念品,4 月份的营业额为 2000 元,为扩大销售,5 月份该商店对这种纪念品打九折销售,结果销售量增加 20 件,营业额增加 700 元。

初二数学分式方程经典应用题(含答案)

初二数学分式方程经典应用题(含答案)

分式方程应用题1、温(州)--福(州)铁路全长298千米.将于2009 年6 月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短 2 小时.已知福州至温州的高速公路长331 千米,火车的设计时速是现行高速公路上汽车行驶时速的 2 倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400 元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50 盒;节日过后每盒以低于进价 5 元作为售价,售完余下的粽子,整个买卖过程共盈利350 元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作 2 天完成总量的三分之一,这时增加了乙队,两队又共同工作了 1 天,总量全部完成.那么乙队单独完成总量需要()A.6 天B.4 天C.3 天D.2 天5、炎炎夏日,甲安装队为 A 小区安装66 台空调,乙安装队为 B 小区安装60 台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装 2 台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是()A.66 60x x 2 B.66 60x 2 xC.66 60x x 2D.66 60x 2 x6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300 本图书所用的时间相同,且李强平均每分钟比张明多清点10 本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg,根据题意,可得方程()A.900 1500x 300 xB.900 1500x x 300C.900 1500x x 300D.900 1500x 300 x8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:我们加固600 米后,采用新的加固模你们是用9 天完成4800 米式,这样每天加固长度是原来的 2 倍.长的大坝加固任务的?通过这段对话,请你求出该地驻军原来每天加固的米数.9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的求甲、乙两个施工队单独完成此项工程各需多少天?4 5,10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m,则得方程为.11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润售利润价进价,利润率100%进价)12、某市在旧城改造过程中,需要整修一段全长2400m的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m,则根据题意可得方程.13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用71小8时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的 3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是千米/时.1、解:设通车后火车从福州直达温州所用的时间为x 小时.1 分依题意,得298 2 331x x 2148x .1.6491. 5 分答:通车后火车从福州直达温州所用的时间约为1.64小时.10 分2、解:设每盒粽子的进价为x 元,由题意得 1 分240020%x×50 (50)×5 350 4 分x2 10x 1200 0 5 分化简得x解方程得x1 40,x2 30(不合题意舍去) 6 分答:每盒粽子的进价为40 元.8 分3、解:(1)设2006 年平均每天的污水排放量为x万吨,则2007 年平均每天的污水排放量为1.05x 万吨,依题意得: 1 分3 4 1 01.05 x x40% 解得x 56 5 分经检验,x 56 是原方程的解 6 分1 . 0x5 5 9答:2006年平均每天的污水排放量约为56 万吨,2007年平均每天的污水排放量约为59 万吨.7 分x (可以设2007 年平均每天污水排放量约为x 万吨,2007年的平均每天约为1.05(2)解:59 (1 20%) 70.8 8分万吨)7 0 . 8 7 0 % 4 9 . 9 分4 9 .56 3 4 1 5 .答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56 万吨.4、D5、D6、解:设张明平均每分钟清点图书x本,则李强平均每分钟清点(x 10) 本,依题意,得200 300x x 10. 3 分解得x 20 .注:此题将方程列为300 x200 x200 10 或其变式,同样得分.7、C8、解:设原来每天加固x米,根据题意,得1分600 x 48002x6009 . 3 分去分母,得1200+4200=18x(或18x=5400) 5 分解得x 300 . 6 分49、解:设甲施工队单独完成此项工程需x天,则乙施工队单独完成此项工程需5x 天,10 12根据题意,得+=1 解这个方程,得x=25 ⋯⋯⋯⋯⋯⋯6分x 45x10、2240 2240x 20 x211、解:设这种计算器原来每个的进价为x元, 1 分%48 x 48 (1 4 ) x根据题意,得% % %. 5 分100 5 100%x (1 4 ) x解这个方程,得x 40 .8 分12、2400 2400x (1 20%) x813、解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x+40)公里/时.根据题意,得:1 5 0 0 1500 15-= ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分x x 40 82+40x-32000=0,去分母,整理得: x解之,得: x1=160,x2=-200,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分经检验,x1=160,x2=-200 都是原方程的解,但x2=-200<0,不合题意,舍去.∴x=160,x+40=200.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分答:第五次提速后的平均时速为160 公里/时,第六次提速后的平均时速为200 公里/时.15、解法一:设列车提速前的速度为x千米/时,则提速后的速度为3.2x 千米/时,根据题意,得1280 1280x 3.2 x11.解x 80 . 5 分80 3.2 256 (千米/时).所以,列车提速后的速度为256千米/时. 7 分解法二:设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(x 11) 小时,根据题意,得1280 12803.2x 11 x.x 5.则列车提速后的速度为=256(千米/时)答:列车提速后的速度为256 千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x天.根据题意得 1 分1 1 1,解得x30 .x 2x 2 0经检验x30 是原方程的解,且x 30 ,2x 60 都符合题意. 5 分应付甲队30 1000 30000 (元).应付乙队30 2 550 33000 (元).公司应选择甲工程队,应付工程总费用30000 元.8 分17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道( x 1)公里18 18根据题意, 得 3x x 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分解得 2x ,x2 3 经检验x1 2 ,x2 3都是原方程的根1但x 3不符合题意 ,舍去∴x 1 3218、 20。

分式方程应用题总汇及答案

分式方程应用题总汇及答案

分式方程应用题总汇及答案1、A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,小汽车比公共汽车迟20分钟到达B地,求两车的速度。

【提示】设共交车速度为x,小汽车速度为3x,列方程得:80/(3x) +3=80/x +20/602、为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。

如果甲工程队单独施工,那么刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,那么刚好如期完成。

问原来规定修好这条公路需多长时间?【提示】设时间为x个月,列方程得:[1/x+1/(x+6)]*4+(x-4)/(x+6)=13、某工人原方案在规定时间恰好加工1500个零件,改良了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原方案提前了五小时,问原方案每小时加工多少个零件?【提示】设原方案每小时加工x个零件,列方程得:1500/2x +5=1500/x4、甲、乙两组学生去距学校4.5千米的敬老院清扫卫生,甲组学生步行出发半小时后,乙组学生骑自行车开场出发,结果两组学生同时到达敬老院,如果步行的速度是骑自行车的速度的1/3,求步行和骑自行车的速度各是多少?【提示】设步行的速度是每小时x千米,那么4.5/3x +0.5=4.5/x5、某质检部门抽取甲、乙两个一样数量的产品进展质量检测,结果甲厂有48件合格产品,乙厂有45件合格产品,甲厂合格率比乙厂高5%,求抽取检验的产品数量及甲厂的合格率。

【提示】设抽取检验的产品数量为x,那么(48/x -45/x)*100%=5%6、某车间加工1200个零件后,采用了新工艺,工效提高50%,这样加工同样多的零件就少用10小时,采用新工艺前后每小时分别加工多少个零件?7、A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,水流速度为4千米/时,假设设该轮船在静水中的速度为x 千米/时,那么可列方程求解。

初二数学分式方程经典应用题(含答案)

初二数学分式方程经典应用题(含答案)

分式方程应用题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,通过这段对话,请你求出该地驻军原来每天加固的米数.求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时.1、解:设通车后火车从福州直达温州所用的时间为x 小时. 1分 依题意,得29833122x x =⨯+. 5分 148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时. 10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50-(x2400-50)×5=350 4分 化简得x 2-10x -1200=0 5分解方程得x 1=40,x 2=-30(不合题意舍去) 6分答: 每盒粽子的进价为40元. 8分3、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 1分341040%1.05x x-= 解得56x ≈ 5分 经检验,56x ≈是原方程的解 6分1.0559x ∴≈ 答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨. 7分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天约为1.05x 万吨) (2)解:59(120%)70.8⨯+= 8分70.870%49.⨯= 9分 49.563415.-= 答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨.4、D5、D6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.注:此题将方程列为30020020010x x -=⨯或其变式,同样得分.7、C8、解:设原来每天加固x 米,根据题意,得 1分926004800600=-+x x . 3分去分母,得 1200+4200=18x (或18x =5400) 5分解得 300x =.6分 9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天,根据题意,得 10x +1245x=1 解这个方程,得x =25 ………………6分10、22402240220x x-=- 11、解:设这种计算器原来每个的进价为x 元, 1分 根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分12、240024008(120)x x-=+%13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815,……………………………………2分 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 解80x =. 5分 80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分111220x x +=, 解得 30x =. 经检验30x =是原方程的解,且30x =,260x =都符合题意. 5分∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元. 8分17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里根据题意, 得 311818=+-x x ………………………4分 解得21=x ,32-=x 经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去 ∴31=+x18、 20。

分式方程应用题-含答案

分式方程应用题-含答案

分式方程应用题一、解答题1.(2023春·重庆沙坪坝·九年级重庆一中校考期中)4月,正是春暖花开,踏青徒步的好时节,某校初三年级开展了“踏青觅春,走进自然”的春游活动.甲、乙两班都从学校出发沿相同路线去距学校7.5千米的徒步终点,已知甲班的步行速度是乙班的1.5倍.(步行过程为匀速运动)(1)若乙班比甲班先走750米,甲班才开始从学校出发,半小时后两班相遇,则两班的速度分别为多少千米/小时?(2)若乙班在出发后第一小时内按原计划的速度匀速前进,一小时后将速度提高到与甲班一致,并比原计划提前10分钟到达徒步终点,求乙班到达终点用了多少小时?2.(2023春·重庆沙坪坝·九年级重庆一中校考期中)烟花三月的重庆天气变得非常暖和,正当春装上市之时,某商家2月初购进一批衬衣一共花费1000元,购进一批T恤一共花费3000元,每件T恤的进价比每件衬衣进价高50元,且T恤数量刚好是衬衣数量的2倍.(1)求2月初衬衣和T恤的进价各是多少元?(2)由于2月份T恤畅销,3月初商家按照2月初的进价购进m件T恤进行销售,且进货的总价不超过6750元,在实际销售过程中T恤先按照标价400元卖了10件,剩余的按照标价打7折促进销售,为保证总利润不低于6790元,求满足条件的m的最小值.3.(2023春·重庆江北·九年级校考阶段练习)重庆市政府为了美化生态环境,给居民创造舒适生活,计划将北滨二路安全堤坝路段改建为滨江步道,一期工程共1100米,计划由甲施工队施工10天,乙施工队施工15天完成,已知甲施工队比乙施工队每天多修20米.(1)求甲乙施工队平均每天各修多少米?(2)因步道延长,二期工程还需修建2260米,甲施工队和乙施工队同时开工合作修建这条步道,直至完工.甲施工队按计划速度进行施工,乙施工队修建180米后,通过技术更新提高了工作效率.步道完工时,在二期工作中,乙施工队修建的长度比甲施工队修建的长度多20米.则乙施工队技术更新后每天修建多少米?4.(2023秋·重庆沙坪坝·九年级重庆八中校考开学考试)某服装制造厂在开学前赶制3000套校服.(1)若甲组先做2天,然后乙组加入,甲、乙两组再共做10天完成任务.已知每天乙组比甲组多做25套,问甲组每天能做多少套校服?(2)为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的校服比原计划多了20%,结果提前4天完成任务.问原计划每天能做多少套校服?。

分式方程应用题(含答案)

分式方程应用题(含答案)

分式方程应用题1.某校为了丰富学生的课外体育活动,购买了排球和跳绳,已知排球的单价是跳绳的单价的3倍,购买跳绳共花费了750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.2.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?3.甲地到乙地的距离约为210 km,小刘开着小轿车,小张开着大货车,都从甲地去乙地,小刘比小张晚出发1小时,最后两车同时到达乙地,已知小轿车的速度是大货车速度的1.5倍.(1)小轿车和大货车的速度各是多少?(2)当小刘出发时,小张离乙地还有多远?4.某商家预测一种衬衫能畅销市场,就用12 000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26 400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫都按每件150元的价格销售,则两批衬衫全部售完后的利润是多少元?5.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,若两个工程队修路总费用恰好为5.2万元,则甲工程队修路用了多少天?6.某工厂对零件进行检测,引进了检测机.已知一台检测机的工作效率相当于一名检测员的20倍.若用这台检测机检测900个零件要比15名检测员检测这些零件少3小时.(1)一台零件检测机每小时检测零件多少个?(2)现有一项零件检测任务,要求不超过7小时检测完3 450个零件.该厂调配了2台检测机和30名检测员,工作3小时后又调配了一些检测机进行支援,则该厂至少再调配几台检测机才能完成任务?1.解:设跳绳的单价为x 元,则排球的单价为3x 元,依题意得750x -9003x=30,解方程,得x =15. 经检验,x =15是原方程的根,且符合题意.答:跳绳的单价是15元.2.解:(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x 万平方米,根据题意,得360x -3601.6x=4, 解得x =33.75. 经检验,x =33.75是原分式方程的解.则1.6x =1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米.(2)设平均每年绿化面积增加a 万平方米,根据题意得54×3+2(54+a )≥360,解得a ≥45.答:实际平均每年绿化面积至少还要增加45万平方米.3.解:(1)设大货车速度为x km /h ,则小轿车的速度为1.5x km/h ,根据题意得210x -2101.5x=1,解得x =70. 经检验,x =70是原分式方程的解.则1.5x =105. 答:大货车速度为70 km /h ,小轿车的速度为105 km/h.(2)210-70×1=140(km). 答:当小刘出发时,小张离乙地还有140 km.4.解:(1)设第一批衬衫x 件,则第二批衬衫为2x 件,根据题意得12 000x =26 4002x-10,解得x =120. 经检验,x =120是原分式方程的解. 答:该商家购进的第一批衬衫是120件.(2)12 000÷120=100,100+10=110.两批衬衫全部售完后的利润为120×(150-100)+240×(150-110)=15 600(元). 答:两批衬衫全部售完后的利润是15 600元.5.解:(1)设甲工程队每天修路x 千米,则乙工程队每天修路(x -0.5)千米,根据题意,可列方程1.5×15x =15x -0.5,解得x =1.5. 经检验,x =1.5是原方程的解,且x -0.5=1.答:甲工程队每天修路1.5千米,乙工程队每天修路1千米.(2)设甲工程队修路用了a 天,则乙工程队还需修路(15-1.5a )千米,∴乙工程队需要修路15-1.5a 1=15-1.5a (天). 由题意可得0.5a +0.4(15-1.5a )=5.2,解得a =8.答:甲工程队修路用了8天.6.解:(1)设一名检测员每小时检测零件x 个,由题意得 90015x -90020x=3,解得x =5. 经检验x =5是分式方程的解.20x =20×5=100.答:一台零件检测机每小时检测零件100个.(2)设该厂再调配a 台检测机才能完成任务,由题意得 (2×100+30×5)×7+100a ×(7-3)≥3450,解得a ≥2.5.∵a 为正整数,∴a 的最小值为3.答:该厂至少再调配3台检测机才能完成任务.。

分式方程应用题含答案(经典)

分式方程应用题含答案(经典)

分式方程 应用题专题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.3、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( )A.6天 B.4天 C.3天 D.2天4、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 5、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.6.(2008西宁)“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修x 米,所列方程正确的是( )A .12012045x x -=+B .12012045x x -=+ C .12012045x x -=- D .12012045x x -=-7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( C )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)12、某市在旧城改造过程中,需要整修一段全长2400m的道路.为了减少施工对通过这段对话,请你求出该地驻军原来每天加固的米数.城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是千米/时.19、(2008咸宁) A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?20.(2008山西)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。

分式方程应用题总汇和答案

分式方程应用题总汇和答案

分式方程应用题总汇及答案1、A、B两地的距离是80公里.一辆公共汽车从A地驶出3小时后.一辆小汽车也从A地出发.它的速度是公共汽车的3倍.已知小汽车比公共汽车迟20分钟到达B地.求两车的速度。

【提示】设共交车速度为x.小汽车速度为3x.列方程得:80/(3x) +3=80/x +20/602、为加快西部大开发.某自治区决定新修一条公路.甲、乙两工程队承包此项工程。

如果甲工程队单独施工.则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成.现在甲、乙两队先共同施工4个月.剩下的由乙队单独施工.则刚好如期完成。

问原来规定修好这条公路需多长时间【提示】设时间为x个月.列方程得:[1/x+1/(x+6)]*4+(x-4)/(x+6)=13、某工人原计划在规定时间内恰好加工1500个零件.改进了工具和操作方法后.工作效率提高为原来的2倍.因此加工1500个零件时.比原计划提前了五小时.问原计划每小时加工多少个零件【提示】设原计划每小时加工x个零件.列方程得:1500/2x +5=1500/x4、甲、乙两组学生去距学校千米的敬老院打扫卫生.甲组学生步行出发半小时后.乙组学生骑自行车开始出发.结果两组学生同时到达敬老院.如果步行的速度是骑自行车的速度的1/3.求步行和骑自行车的速度各是多少【提示】设步行的速度是每小时x千米.则3x +=x5、某质检部门抽取甲、乙两个相同数量的产品进行质量检测.结果甲厂有48件合格产品.乙厂有45件合格产品.甲厂合格率比乙厂高5%.求抽取检验的产品数量及甲厂的合格率。

【提示】设抽取检验的产品数量为x.则(48/x -45/x)*100%=5%6、某车间加工1200个零件后.采用了新工艺.工效提高50%.这样加工同样多的零件就少用10小时.采用新工艺前后每小时分别加工多少个零件7、A、B两地相距48千米.一艘轮船从A地顺流航行至B地.又立即从B地逆流返回A地.共用去9小时.已知水流速度为4千米/时.若设该轮船在静水中的速度为x千米/时.则可列方程求解。

分式方程 应用题专题含答案

分式方程  应用题专题含答案

分式方程 应用题专题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.3、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天B.4天C.3天D.2天4、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =- B .66602x x=- C .66602x x =+ D .66602x x=+ 6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( ) A .9001500300x x =+ B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?通过这段对话,请你求出该地驻军原来每天加固的米数.10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为.11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?分式方程 应用题专题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到小时).解:设通车后火车从福州直达温州所用的时间为x 小时.依题意,得29833122x x =⨯+. 解这个方程,得148 1.6491x =≈ 14991x = 经检验14991x =是原方程的解. 2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价. 解:设每盒粽子的进价为x 元,由题意得 20%x ×50-(x2400-50)×5=350 化简得x 2-10x -1200=0 解方程得x 1=40,x 2=-30(不合题意舍去) 经检验,x 1=40,x 2=-30都是原方程的解, 但x 2=-30不合题意,舍去. 答: 每盒粽子的进价为40元.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =- B .66602x x=- C .66602x x =+ D .66602x x=+ 6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本,依题意,得20030010x x =+. 解得20x =. 经检验20x =是原方程的解. 答:张明平均每分钟清点图书20本. 注:此题将方程列为30020020010x x -=⨯或其变式,同样得分7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+B .9001500300x x =-C .9001500300x x =+D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:解:设原来每天加固x 米,根据题意,得926004800600=-+xx . 去分母,得 1200+4200=18x (或18x =5400) 解得 300x =. 检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解. 答:该地驻军原来每天加固300米. 9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?通过这段对话,请你求出该地驻军原来每天加固的米数.解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天根据题意,得 10x +1245x =1解这个方程,得x =25 经检验,x =25是所列方程的根10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为.22402240220x x-=-11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价) 解:设这种计算器原来每个的进价为x 元, 根据题意,得4848(14)1005100(14)x xx x---⨯+=⨯-%%%%%. 解这个方程,得40x =. 经检验,40x =是原方程的根. 答:这种计算器原来每个的进价是40元.12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 . 240024008(120)x x-=+%13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?解:设第五次提速后的平均速度是x 公里/时, 则第六次提速后的平均速度是(x +40)公里/时. 根据题意,x 1500-401500+x =815, 去分母,整理得:x 2+40x -32000=0, 解之,得:x 1=160,x 2=-200, 经检验,x 1=160,x 2=-200都是原方程的解, 但x 2=-200<0,不合题意,舍去. ∴x =160,x +40=200. 答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.14、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2x x+=解得:5x = 经检验5x =是原方程的解 所以第一次购书为12002405=(本).第二次购书为24010250+=(本) 第一次赚钱为240(75)480⨯-=(元) 第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元)所以两次共赚钱48040520+=(元) 答:该老板两次售书总体上是赚钱了,共赚了520元.15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 解这个方程,得80x =. 经检验,80x =是所列方程的根. 80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时.解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时, 根据题意,得128012803.211x x⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时) 答:列车提速后的速度为256千米/时.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 111220x x +=解得 30x =. 经检验30x =是原方程的解,且30x =,260x =都符合题意. ∴应付甲队30100030000⨯=(元). 应付乙队30255033000⨯⨯=(元). ∴公司应选择甲工程队,应付工程总费用30000元.17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?解:设甲工程队每周铺设管道x 公里, 则乙工程队每周铺设管道(1+x )公里 根据题意, 得311818=+-x x 解得21=x ,32-=x 经检验21=x ,32-=x 都是原方程的根 但32-=x 不符合题意,舍去 ∴31=+x答: 甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里。

初二分式方程应用题及答案

初二分式方程应用题及答案

初二分式方程应用题及答案
题目:某工厂生产一批零件,甲车间单独完成需要15天,乙车间单
独完成需要20天。

现在甲乙两个车间合作,共同完成这批零件的生产,问需要多少天?
解答:
设甲车间每天完成这批零件的\( \frac{1}{15} \),乙车间每天完成
这批零件的\( \frac{1}{20} \)。

设甲乙两个车间合作完成这批零件
需要\( x \)天。

根据题意,甲乙两个车间合作\( x \)天完成的零件数等于这批零件的
总数,即:
\[ \frac{1}{15}x + \frac{1}{20}x = 1 \]
为了解这个方程,我们首先找到两个分数的最小公倍数,即60,然后
将方程两边同时乘以60,得到:
\[ 4x + 3x = 60 \]
合并同类项,得到:
\[ 7x = 60 \]
解得:
\[ x = \frac{60}{7} \]
所以,甲乙两个车间合作需要\( \frac{60}{7} \)天完成这批零件的生产。

答案:甲乙两个车间合作需要\( \frac{60}{7} \)天完成这批零件的生产。

八年级下册数学分式方程应用题及答案

八年级下册数学分式方程应用题及答案

1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。

问:乙单独整理需多少分钟完工?解:设乙单独整理需x 分钟完工,则120204020=++x解,得x =80 经检验:x =80是原方程的解。

答:乙单独整理需80分钟完工。

2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x 千克,则3001500900+=x x 解,得x =450 经检验:x =450是原方程的解。

答:第一块试验田每亩收获蔬菜450千克。

3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。

已知这个人骑自行车的速度是步行速度的4倍。

求步行的速度和骑自行车的速度。

解:设步行速度是x 千米/时,则247197=-+xx 解,得x =5 经检验:x =5是原方程的解。

进尔4x =20(千米/时)答:步行速度是5千米/时,骑自行车的速度是20千米/时。

4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x 瓶酸奶,则2.053140.185.12+⎪⎭⎫ ⎝⎛+=x x 解,得x =5 经检验:x =5是原方程的解。

答:她第一次在供销大厦买了5瓶酸奶。

5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。

⑴ 求这种纪念品4月份的销售价格。

⑵ 若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?解:⑴设4月份销售价为每件x 元,则xx 9.07002000202000+=+ 解,得x =50 经检验:x =50是原方程的解。

分式方程应用题含答案

分式方程应用题含答案

分式方程应用题含答案1.问题描述:温州到福州有一条298千米长的铁路即将通车,预计从福州到温州的火车行驶时间将比现在开车到温州的时间缩短2小时。

已知福州到温州的高速公路长331千米,火车的设计速度是现行高速公路上汽车行驶速度的2倍。

求通车后从福州到温州的火车行驶时间(结果精确到小时)。

2.解题过程:设通车后从福州到温州的火车行驶时间为x小时。

则根据题意,有以下方程:298/2x + 331/x = x + 2XXXx ≈ 1.64(小时)经检验,x ≈ 1.64是原方程的解。

因此,通车后从福州到温州的火车行驶时间约为1.64小时。

1.问题描述:某商店在端午节前以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元的价格售出,售完余下的粽子,整个买卖过程共盈利350元。

求每盒粽子的进价。

2.解题过程:设每盒粽子的进价为x元。

则根据题意,有以下方程:2400 + 20%x×50 - 5(50-x) = 2400 + 350化简得x - 10x - 1200 = 0解方程得x = 40经检验,x = 40是原方程的解。

因此,每盒粽子的进价为40元。

1.问题描述:甲、乙两个清洁队共同参与了城中垃圾场的清运工作。

甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成。

那么乙队单独完成总量需要几天?2.解题过程:设垃圾场的总量为x。

则根据题意,有以下方程:2/3x + (2/3x + 1/2x)×1 = x解方程得x = 6因此,垃圾场的总量为6,乙队单独完成总量需要6/3-2 = 2天。

1.问题描述:甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台。

设乙队每天安装x台,根据题意,下面所列方程中正确的是()。

A。

66/(x-2)=60/xB。

(完整版)分式方程应用题总汇和答案

(完整版)分式方程应用题总汇和答案

分式方程应用题总汇及答案1、A、B两地的距离是80公里。

一辆公共汽车从A地驶出3小时后.一辆小汽车也从A地出发.它的速度是公共汽车的3倍.已知小汽车比公共汽车迟20分钟到达B地.求两车的速度.【提示】设共交车速度为x。

小汽车速度为3x.列方程得:80/(3x) +3=80/x +20/602、为加快西部大开发.某自治区决定新修一条公路。

甲、乙两工程队承包此项工程。

如果甲工程队单独施工.则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成。

现在甲、乙两队先共同施工4个月.剩下的由乙队单独施工.则刚好如期完成.问原来规定修好这条公路需多长时间?【提示】设时间为x个月。

列方程得:[1/x+1/(x+6)]*4+(x—4)/(x+6)=13、某工人原计划在规定时间内恰好加工1500个零件.改进了工具和操作方法后。

工作效率提高为原来的2倍。

因此加工1500个零件时。

比原计划提前了五小时.问原计划每小时加工多少个零件?【提示】设原计划每小时加工x个零件.列方程得:1500/2x +5=1500/x4、甲、乙两组学生去距学校4。

5千米的敬老院打扫卫生.甲组学生步行出发半小时后。

乙组学生骑自行车开始出发.结果两组学生同时到达敬老院。

如果步行的速度是骑自行车的速度的1/3.求步行和骑自行车的速度各是多少?【提示】设步行的速度是每小时x千米.则4。

5/3x +0.5=4.5/x5、某质检部门抽取甲、乙两个相同数量的产品进行质量检测.结果甲厂有48件合格产品.乙厂有45件合格产品。

甲厂合格率比乙厂高5%。

求抽取检验的产品数量及甲厂的合格率.【提示】设抽取检验的产品数量为x.则(48/x —45/x)*100%=5%6、某车间加工1200个零件后.采用了新工艺.工效提高50%。

这样加工同样多的零件就少用10小时.采用新工艺前后每小时分别加工多少个零件?7、A、B两地相距48千米.一艘轮船从A地顺流航行至B地。

又立即从B地逆流返回A地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程 应用题专题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( )A.6天 B.4天 C.3天D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =- B .66602x x =- C .66602x x =+D .66602x x =+6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+B .9001500300x x =-C .9001500300x x =+D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)通过这段对话,请你求出该地驻军原来每天加固的米数.12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时.2007分式方程的应用题 答案1、解:设通车后火车从福州直达温州所用的时间为x 小时.1分 依题意,得29833122x x =⨯+. 5分 解这个方程,得14991x =. 8分 经检验14991x =是原方程的解. 9分148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时.10分2、解:设每盒粽子的进价为x 元,由题意得1分20%x ×50-(x2400-50)×5=350 4分化简得x 2-10x -1200=05分解方程得x 1=40,x 2=-30(不合题意舍去)6分经检验,x 1=40,x 2=-30都是原方程的解,但x 2=-30不合题意,舍去.7分答: 每盒粽子的进价为40元. 8分3、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得:1分341040%1.05x x-= 4分解得56x ≈5分经检验,56x ≈是原方程的解6分1.0559x ∴≈ 答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨.7分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天的污水排放量约为1.05x 万吨) (2)解:59(120%)70.8⨯+= 8分70.870%49.⨯= 9分49.563415.-= 答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨.10分4、D5、D6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.经检验20x =是原方程的解.答:张明平均每分钟清点图书20本. 5分注:此题将方程列为30020020010x x -=⨯或其变式,同样得分.7、C8、解:设原来每天加固x 米,根据题意,得 1分926004800600=-+xx . 3分 去分母,得 1200+4200=18x (或18x =5400) 5分解得 300x =. 6分检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解. 7分答:该地驻军原来每天加固300米. 8分9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x天, ……………………1分根据题意,得 10x +1245x=1 ………………………………… 4分解这个方程,得x =25 ………………………………………6分经检验,x =25是所列方程的根 ……………………………7分当x =25时,45x =20 …………………………………………9分答:甲、乙两个施工队单独完成此项工程分别需25天和20天.……………10分10、22402240220x x-=- 11、解:设这种计算器原来每个的进价为x 元, 1分 根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分解这个方程,得40x =. 8分经检验,40x =是原方程的根.9分 答:这种计算器原来每个的进价是40元. 10分12、240024008(120)x x-=+% 13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x1500-401500+x =815,……………………………………2分 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ………………………………4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时. ……………………… 7分14、解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2x x+= 4分解得:5x =经检验5x =是原方程的解6分 所以第一次购书为12002405=(本). 第二次购书为24010250+=(本)第一次赚钱为240(75)480⨯-=(元)第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元)所以两次共赚钱48040520+=(元)8分答:该老板两次售书总体上是赚钱了,共赚了520元.9分15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 4分解这个方程,得80x =.5分经检验,80x =是所列方程的根.6分80 3.2256∴⨯=(千米/时).所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分111220x x +=, 3分解得 30x =.经检验30x =是原方程的解,且30x =,260x =都符合题意. 5分∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元.8分17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里 ………………………1分根据题意, 得311818=+-x x ………………………4分 解得21=x ,32-=x ………………………6分经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去 ………………………7分∴31=+x答: 甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里.………………………8分18、 20。

相关文档
最新文档