初二数学分式方程练习题及答案

合集下载

初二分式方程练习题含答案

初二分式方程练习题含答案

初二分式方程练习题含答案问题一:求方程3x + 5 = 17的解。

解:根据题目所给的方程3x + 5 = 17,我们可以通过移项和合并同类项的方法求解。

首先我们将5从等式左边移到右边,得到3x = 17 - 5,即3x = 12。

然后我们将等式两边都除以3,得到x = 12 ÷ 3,即x = 4。

所以方程3x + 5 = 17的解为x = 4。

问题二:求方程2(3x - 1) = 4x + 3的解。

解:根据题目所给的方程2(3x - 1) = 4x + 3,我们可以通过分配律、移项和合并同类项的方法求解。

首先我们将分配律运用到方程的左边,得到6x - 2 = 4x + 3。

然后我们将2从等式左边移到右边,得到6x - 2 + 2 = 4x + 3 + 2,即6x = 4x + 5。

接下来我们将4x从等式右边移到左边,得到6x - 4x = 5,即2x = 5。

最后我们将等式两边都除以2,得到x = 5 ÷ 2,即x = 2.5。

所以方程2(3x - 1) = 4x + 3的解为x = 2.5。

问题三:求方程4(x + 1) - 2(x - 3) = 10的解。

解:根据题目所给的方程4(x + 1) - 2(x - 3) = 10,我们可以通过分配律、移项和合并同类项的方法求解。

首先我们将分配律运用到方程的左边,得到4x + 4 - 2x + 6 = 10。

然后我们将4x和-2x合并,4x - 2x = 2x,并将4和6合并,4 + 6 = 10。

接下来得到2x + 10 = 10。

然后我们将10从等式左边移到右边,得到2x = 10 - 10,即2x = 0。

最后我们将等式两边都除以2,得到x = 0 ÷ 2,即x = 0。

所以方程4(x + 1) - 2(x - 3) = 10的解为x = 0。

问题四:求方程5(2x - 1) + 3(4x + 2) = 2(7x - 1) - 2x的解。

分式方程计算题50道及答案

分式方程计算题50道及答案

分式方程计算题50道及答案1、计算:1/2 + 1/3答案:5/62、计算:2/3 + 3/6答案:13、计算:3/6 + 2/6答案:1/24、计算:3/5 - 2/5答案:1/55、计算:1/2 - 1/4答案:1/46、计算:3/8 - 1/4答案:1/47、计算:2/9 - 1/9答案:1/98、计算:3/4 x 1/3答案:1/49、计算:2/3 x 2/3答案:4/910、计算:5/6 x 1/5答案:1/611、计算:3/7 x 1/5答案:3/3512、计算:2/3 ÷ 1/2答案:4/313、计算:3/4 ÷ 1/2答案:3/214、计算:2/9 ÷ 2/3答案:1/315、计算:1/6 ÷ 1/2答案:1/316、计算:1/3 + 1/3 - 1/3答案:1/317、计算:2/3 x 2/3 - 2/3答案:2/918、计算:1/4 x 2/3 ÷ 1/2答案:1/319、计算:1/3 + 1/4 ÷ 2/3答案:7/1220、计算:2/5 - 1/5 ÷ 1/3答案:3/1521、计算:1/5 x 1/5 ÷ 1/2答案:1/2022、计算:1/3 x 1/3 - 1/3答案:1/923、计算:2/3 - 3/6 + 1/6答案:1/224、计算:1/4 + 2/3 - 1/3答案:3/425、计算:1/3 - 1/4 + 1/4答案:1/426、计算:1/2 x 3/4 ÷ 1/3答案:127、计算:1/2 ÷ 1/5 + 5/6答案:11/628、计算:2/3 x 2/3 ÷ 1/3答案:4/329、计算:1/6 + 2/3 - 1/2答案:1/330、计算:2/5 - 3/4 + 1/4答案:-3/2031、计算:1/4 x 1/5 ÷ 2/3答案:2/1532、计算:1/3 - 1/4 + 2/9答案:1/1233、计算:2/3 x 3/4 - 1/3答案:5/1234、计算:1/6 + 1/6 - 2/6答案:1/635、计算:1/5 x 5/6 ÷ 1/3答案:5/636、计算:2/3 - 1/5 + 5/6答案:11/1537、计算:1/4 x 1/4 ÷ 4/3答案:1/1238、计算:1/2 - 2/3 + 3/4答案:1/439、计算:2/3 x 3/4 ÷ 1/3答案:4/340、计算:2/9 - 1/4 + 3/4答案:5/641、计算:1/5 x 5/6 - 1/3答案:1/6答案:3/243、计算:1/8 - 1/4 + 1/2答案:3/844、计算:2/3 x 1/2 ÷ 5/6答案:2/945、计算:1/6 + 2/3 ÷ 1/2答案:5/346、计算:2/5 - 1/5 ÷ 3/4答案:5/1247、计算:1/5 x 1/5 ÷ 4/3答案:1/2048、计算:1/3 x 1/3 - 1/4答案:1/1249、计算:1/2 - 1/3 + 2/3答案:1/2答案:4/9。

初二数学分式方程精华题(含答案)

初二数学分式方程精华题(含答案)

初二数学分式方程精华题(含答案)1.分式方程解:本题考查分式方程的解法,根据题意可列出方程:frac{x}{x+12}=\frac{1}{2}$$化简后得到:2x=x+12$$解得$x=6$,因此选项C正确。

2.若分式方程 $\frac{x}{a}=\frac{2}{x-4}$ 有增根,则a的值为()解:根据题意,可列出方程:frac{x}{a}=\frac{2}{x-4}$$移项化简得到:x^2-4ax-8=0$$由于有增根,因此判别式 $b^2-4ac<0$,即:4a)^2-4\times 1\times (-8)<0$$化简得到 $a^2+2>0$,因此 $a$ 可以取任意实数,选项中没有正确答案。

3.解关于x的方程 $\frac{x-3m}{x-1}=\frac{1}{x-1}$ 产生增根,则常数m的值等于()解:根据题意,可列出方程:frac{x-3m}{x-1}=\frac{1}{x-1}$$移项化简得到:x^2-4mx+3m=0$$由于有增根,因此判别式 $b^2-4ac<0$,即:16m^2-12m<0$$化简得到 $0<m<\frac{3}{4}$,因此选项C正确。

4.求 $\frac{1-x}{2-xx}=3$,去分母后的结果,其中正确的是()解:根据题意,可列出方程:frac{1-x}{2-xx}=3$$移项化简得到:x^2+3x-5=0$$解得$x=1$或$x=-5$,代入原式可知$x=-5$不合法,因此$x=1$是方程的唯一解。

将$x=1$代入原式得到:frac{1-x}{2-xx}=\frac{0}{1}=0$$因此选项A正确。

5.计算:$\frac{b^2+2b+2a}{2b^3-7a^2b}=?$解:根据题意,可将分子分母同时除以$b$,得到:frac{b^2+2b+2a}{2b^3-7a^2b}=\frac{\frac{b^2}{b}+\frac{2b}{b}+\frac{2a}{b}}{\frac{2 b^3}{b}-\frac{7a^2b}{b}}=\frac{b+2+\frac{2a}{b}}{2b^2-7a^2}$$因此答案为$\frac{b+2+\frac{2a}{b}}{2b^2-7a^2}$。

初二数学分式方程经典应用题(含答案)

初二数学分式方程经典应用题(含答案)

分式方程应用题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?通过这段对话,请你求出该地驻军原来每天加固的米数.10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时.1、解:设通车后火车从福州直达温州所用的时间为x 小时. 1分 依题意,得29833122x x =⨯+. 5分 148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时.10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50-(x2400-50)×5=350 4分 化简得x 2-10x -1200=0 5分解方程得x 1=40,x 2=-30(不合题意舍去) 6分答: 每盒粽子的进价为40元. 8分3、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 1分341040%1.05x x-= 解得56x ≈ 5分 经检验,56x ≈是原方程的解 6分1.0559x ∴≈ 答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨. 7分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天约为1.05x 万吨) (2)解:59(120%)70.8⨯+= 8分70.870%49.⨯= 9分 49.563415.-= 答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨.4、D5、D6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.注:此题将方程列为30020020010x x -=⨯或其变式,同样得分.7、C8、解:设原来每天加固x 米,根据题意,得 1分926004800600=-+x x . 3分去分母,得 1200+4200=18x (或18x =5400) 5分解得 300x =.6分 9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天,根据题意,得 10x +1245x=1 解这个方程,得x =25 ………………6分10、22402240220x x-=- 11、解:设这种计算器原来每个的进价为x 元, 1分 根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分12、240024008(120)x x-=+% 13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815,……………………………………2分 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 解80x =. 5分80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x⨯=+.5x ∴=.则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分111220x x +=, 解得 30x =. 经检验30x =是原方程的解,且30x =,260x =都符合题意. 5分∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元. 8分17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里根据题意, 得 311818=+-x x ………………………4分 解得21=x ,32-=x 经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去 ∴31=+x18、 20。

初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析1.若关于的分式方程有增根,则.【答案】2.【解析】方程两边都乘(x﹣3),得m =2+x﹣3,∵原方程有增根,∴最简公分母,x﹣3=0,解得x=3,当x=3时,m=2.故答案是2.【考点】分式方程的增根.2.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.(1)第一次所购该蔬菜的进货价是每千克多少元?(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?【答案】(1)4;(2)7.【解析】(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据两次购买的数量之间的关系建立方程求出其解即可;(2)先根据(1)的结论分别求出两次购买的数量,设该蔬菜每千克售价为y元,由销售问题的数量关系建立不等式求出其解即可.试题解析:(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据题意,得,解得:x=4.经检验x=4是原方程的根,答:第一次所购该蔬菜的进货价是每千克4元;(2)由(1)知,第一次所购该蔬菜数量为:400÷4=100第二次所购该蔬菜数量为:100×2=200设该蔬菜每千克售价为y元,根据题意,得[100(1-2%)+200(1-3%)]y-400-700≥944.解得:y≥7.答:该蔬菜每千克售价至少为7元.【考点】1.分式方程的应用;2.一元一次不等式的应用.3.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?【答案】方案(3)最节省.【解析】设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.试题解析:设规定日期x天完成,则有:,解得x=20.经检验得出x=20是原方程的解;答:甲单独20天,乙单独25天完成.方案(1):20×1.5=30(万元),方案(2):25×1.1=27.5(万元),方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.【考点】分式方程的应用.4.列分式方程解应用题为提升晚高峰车辆的通行速度,北京市交通委路政局积极设置潮汐车道,首条潮汐车道于2013年9月11日开始启用,试点路段为京广桥至慈云寺桥,全程约2.5千米.该路段实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度平均提高了25%,行驶时间平均减少了1.5分钟.该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶多少千米?【答案】20.【解析】设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶x千米,则实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度为(1+25%)x千米/小时,根据实行潮汐车道前后的时间关系建立方程求出其解即可.试题解析:设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶x千米,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴原分式方程的解是x=20.答:设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶20千米.考点: 分式方程的应用.5. 2011年雨季,一场大雨导致一条全长为550米的污水排放管道被冲毁,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加10%,结果提前5天完成这一任务,问原计划每天铺设多少米管道?(列方程解应用题)【答案】原计划每天铺设10m管道【解析】设原计划每天铺设x米管道,根据实际施工时,每天的工效比原计划增加10%,表示出现在每天铺设的米数,根据现在比原计划提前5天,用全长除以每天铺设的米数分别表示出原计划及现在的时间,两时间相减等于5即可列出所求的方程, -=5,解方程x=10.试题解析:设原计划每天铺设xm的管道,则实际每天铺设(1+10%)xm的管道,由题意列方程:-=5,化简得1.1×550-550=5×1.1x,x =10,检验:当x=10时,1.1x≠0,∴ x=10是原方程的根,答:原计划每天铺设10m管道.【考点】由实际问题抽象出分式方程.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【答案】(1)90天(2)甲、乙合作完成最省钱【解析】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.解:(1)设乙队单独完成需x天.(1分)根据题意,得:×20+(+)×24=1解这个方程得:x=90.(4分)经检验,x=90是原方程的解.∴乙队单独完成需90天.(5分)(2)设甲、乙合作完成需y天,则有(+)y=1.解得y=36,(6分)甲单独完成需付工程款为60×3.5=210(万元).乙单独完成超过计划天数不符题意,甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).(7分)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.7.若关于x的方程有正数解,则k的取值为A.k>1B.k>3C.k≠3D.k>1且k≠3【答案】D【解析】先解方程得到用含k的代数式表示x的形式,再结合方程有正数解及分式的分母不能为0求解即可.解方程得由题意得且解得且故选D.【考点】解分式方程点评:此类问题是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.解方程:【答案】x="3"【解析】先去分母,再移项、合并同类项,化系数为1,注意解分式方程最后要写检验.经检验x=3是原方程的解.【考点】解分式方程点评:解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.9.某超市用5000元购进一批新品种的苹果试销,由于销售状况良好,超市决定再用11000元购进该种苹果,但这次进货价比试销时多了0.5元,购进苹果数量是试销时的两倍。

初二数学分式方程练习题(含答案)

初二数学分式方程练习题(含答案)

分式方程精华练习题(含答案)(一)1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( ) ①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x . A.2个 B.3个 C.4个 D.5个2. 关于x 的分式方程15m x =-,下列说法正确的是( ) A .方程的解是5x m =+B .5m >-时,方程的解是正数C .5m <-时,方程的解为负数D .无法确定3.方程xx x -=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83 D.x =2 4.,04412=+-x x 那么x 2的值是( ) A.2 B.1 C.-2 D.-15.下列分式方程去分母后所得结果正确的是( ) A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-xx x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A.21140140-+x x =14B.21280280++x x =14 C.21140140++x x =14D.211010++x x =1 7.若关于x 的方程0111=----x x x m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-18.若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-19.如果,0,1≠≠=b b a x 那么=+-ba b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.11+-x x 10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10二、填空题(每小题3分,共30分)11. 满足方程:2211-=-x x 的x 的值是________. 12. 当x=________时,分式x x ++51的值等于21. 13.分式方程0222=--x x x 的增根是. 14. 一汽车从甲地开往乙地,每小时行驶v1千米,t 小时可到达,如果每小时多行驶v2千米,那么可提前到达________小时.15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为.16.已知,54=y x 则=-+2222yx y x . 17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 18.飞机从A 到B 的速度是,1v ,返回的速度是2v ,往返一次的平均速度是.19.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程.三、解答题(共5大题,共60分)21. .解下列方程 (1)x x x --=+-34231(2)2123442+-=-++-x x x x x (3)21124x x x -=--. 22. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?24.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53倍,问她第一次在供销大厦买了几瓶酸奶?答案一、1.B ,2.C 3.C ;4.B ,5.D ,6.C , 7.B ,8.C9.B ,10.D ;二、11.0;12.3,13.2=x ;14.212v v t v +;15.3215315-=x x ;16.941-. 17.51=a ;18.21212v v v v +;19.6或12,20.()240024008120%x x-=+; 三、21.(1)无解(2)x= -1;(3)方程两边同乘(x-2)(x+2),得x(x+2)-(x2-4)=1, 化简,得2x=-3,x=32- 经检验,x=32-是原方程的根. 22.6天,24.解;5=x。

初二数学分式试题答案及解析

初二数学分式试题答案及解析

初二数学分式试题答案及解析1.下列运算正确的是()A.B.C.D.【答案】D【解析】A、,故A选项错误;B、,故B选项错误;C、,故C选项错误;D、,故D选项正确,故选D.【考点】约分2. (1)关于x的方程2x一3=2m+8的解是负数,求m的取值范围.(2)如果代数式有意义,求x的取值范围.【答案】(1) ;(2) .【解析】(1)首先解关于x的方程,然后根据方程的解是负数即可得到一个关于m的不等式,求得m的范围.(2)根据二次根式有意义的条件:被开方数是非负数以及分母不等于0即可求解.试题解析:(1)由已知解得,根据题意得:<0,解得.(2)由已知3x+8>0,则.【考点】1.一元一次方程的解;2.分式和二次根式有意义的条件;3.解一元一次不等式.3.如果分式中的x、y都扩大到原来的3倍,那么分式的值( )A.扩大到原来的3倍B.扩大到原来的6倍C.不变D.不能确定【答案】C【解析】因为,所以分式的值不变.故选C.【考点】分式的基本性质.4.有一道题“先化简,再求值:.其中a =-”马小虎同学做题时把“a = -”错抄成了“a =”,但他的计算结果却与别的同学一致,也是正确的,请你解释这是怎么回事?【答案】理由见解析.【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,即可做出判断.原式===.因为当a = -或a =时,的结果均为5,所以马小虎同学做题时把“a = -”错抄成了“a =”也能得到正确答案9.【考点】分式的化简求值.5.下列运算中正确的是()A.B.C.D.【答案】C.【解析】分子分母同时乘以一个不为零的数,分式的值不变,由题,=x3,A错误,B选项不能约分,B 错误,C选项, ,C正确,D不能约分,D错误,选C.【考点】分式的计算.6.如果代数式x-2y的值为3,那么分式的值为_______。

【答案】【解析】先对分子部分根据完全平方公式因式分解,再整体代入求值即可.解:当时,.【考点】分式的化简求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.7.不改变分式的值,使分子、分母的第一项系数都是正数,则= .【答案】【解析】先对分子、分母根据相反数的性质提取“-”号,再根据分式的基本性质约分即可.解:.【考点】分式的基本性质点评:本题属于基础应用题,只需学生熟练掌握分式的基本性质,即可完成.8.若分式的值为0,则b的值为A.1B.-1C.±1D.2【答案】A【解析】分式的值为0的条件:分式的分子为0且分母不为0时,分式的值为0.由题意得,解得,则故选A.【考点】分式的值为0的条件点评:本题属于基础应用题,只需学生熟练掌握分式的值为0的条件,即可完成.9.若,则=。

初二数学分式方程练习题及答案

初二数学分式方程练习题及答案

分式方程复习题1.分式方程2x =3的解是________;分式方程5231x x =-的解是________. 2.已知公式1221P P V V =,用P 1、P 2、V 2表示V 1=________. 3.已知y=46mx n x-,则x=________. 4.一项工程,甲单独做需m 小时完成,若与乙合作20小时可以完成,则乙单独完成需要的时间是( )A .2020m m -小时B .2020m m +小时C .2020m m -小时D .2020m m +小时5.我市要筑一水坝,需要规定日期内完成,如果由甲队去做,•恰能如期完成,如果由乙队去做,需超过规定日期三天,现由甲、乙两队合做2天后,•余下的工程由乙队独自做,恰好在规定日期内完成,求规定的日期x ,下面所列方程错误的是( )A .2x +3x x +=1B .2x =33x + C .(1x +13x +)×2+13x +(x-2)=1 D .1x +3x x +=1 6.为改善环境,张村拟在荒山上种植960棵树,由于共青团员的支持,每日比原计划多种20棵,结果提前4天完成任务,原计算每天种植多少棵?设原计划每天种植x 棵,根据题意得方程________.7.某河两地相距s 千米,船在静水中的速度为a 千米/时,水流速度为b 千米/时,船往返一次所用的时间为( )A .2s a b +B .2s a b -C .s a +s bD .s a b ++s a b- 拓展创新题8.用35克盐配制成含盐量为28%的盐水溶液,则需要加水多少克?9.(数学与生产)某车间有甲、乙两个小组,•甲组的工作效率比乙组的工作效率高25%,因此,甲组加工2 000个零件所用的时间比乙组加工1 800•个零件所用的时间少半小时,问甲、乙两组每小时各加工多少个零件?10.甲、乙两工程队共同完成一项工程,乙队先单独做1•天后,再由两队合作两天就完成了全部工程,已知甲队单独完成工程所需的天数是乙队单独完成所需天数的23,求甲、乙两队单独完成各需多少天?11.(数学与生产)大华商场买进一批运动衣用了10 000元,每件按100•元卖出,全部卖出后所得的利润刚好是买进200件所用的款,•试问这批运动衣有多少件?12.(拓展题)一批货物准备运往某地,有甲、乙、丙三辆卡车可以雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运这批货物分别用2a 次、•a次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨,•若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨,问:(1)乙车每次所运货物是甲车所运货物的几倍?(2)现甲、乙、丙合运相同次数把这批货物运完时,•货主应付车主运费各多少元?(按每运1吨付运费20元计算)13.一小船由A港到B港顺流需行6h,由B港到A港逆流需行8h.一天,•小船早晨6点由A港出发顺流到B港时,发现一救生圈在途中掉落在水中,立即返回,1h后找到救生圈,问:(1)若小船按水流速度由A港到B港漂流多少小时?(2)•救生圈是何时掉入水中的?答案:1.x=23,x=2 2.V1=221PVP3.64nym y+4.A 5.D 6.6 7.960x-96020x+=48.D9.90克 10.甲:500个/•时乙:400个/时11.甲队:4天乙队:6天 12.200件13.•乙车是甲车的2•倍,•甲2160元,乙、丙各4 320元.14.本题的关键是(1)弄清顺流速度、•逆流速度和船在静水中速度与水速的关系;(2)弄清问题中的过程和找出包含的相等关系.解:(1)设小船由A港漂流到B港用xh,则水速为1x.∴16-1x=18+1x解得x=48.经检验x=48是原方程的根.答:小船按水流速度由A港漂流到B港要48h.(2)设救生圈y点钟落入水中,由问题(1)可知水流速度为148,小船顺流由A港到B•港用6h,逆流走1h,同时救生圈又顺流向前漂了1h,依题意有(12-y)(16-148)=(18+148)×1,解得y=11.答:救生圈在中午11点落水.。

初二分式方程练习题及答案

初二分式方程练习题及答案

初二分式方程练习题及答案分式方程是代数学中的重要概念之一,它是由分数组成的等式或不等式。

初二是学习代数的关键年级,通过练习分式方程,学生们能够加深对于代数的理解,并提高解决实际问题的能力。

本文将为初二学生们提供一些分式方程的练习题及其答案,供大家参考和练习。

练习题一:求下列分式方程的解:1. (x+1)/3 + (2x-1)/4 = 1/22. (3x-4)/5 - (2x-1)/2 = 2/33. (3x+2)/4 + (5x-1)/6 = (2x+5)/3解答一:1. 将等式两边的分式通分,得到:4(x+1) + 3(2x-1) = 6/2化简得:4x + 4 + 6x - 3 = 3整理得:10x + 1 = 3再整理得:10x = 2解得:x = 2/10 = 1/52. 将等式两边的分式通分,得到:2(3x-4) - 5(2x-1) = 2/3 * 10化简得:6x - 8 - 10x + 5 = 20/3整理得:-4x - 3 = 20/3再整理得:-4x = 20/3 + 3解得:x = (20/3 + 3) / -43. 将等式两边的分式通分,得到:3(3x+2) + 2(5x-1) = 4(2x+5)化简得:9x + 6 + 10x - 2 = 8x + 20整理得:9x + 10x - 8x = 20 - 6 + 2解得:x = 16/11练习题二:解下列分式方程组:1. { (x+1)/3 = (2y-1)/4, (x-y)/2 = (3x+2y)/10 }2. { (3x-1)/2 + (2y+1)/3 = 1, (4x-2)/5 - (y-3)/4 = 2 }解答二:1. 针对第一个方程:将等式两边的分式通分,得到:4(x+1) = 3(2y-1)化简得:4x + 4 = 6y - 3针对第二个方程:将等式两边的分式通分,得到:5(x-y) = 2(3x+2y)化简得:5x - 5y = 6x + 4y将两个方程整合:4x + 4 = 6y - 35x - 5y = 6x + 4y接下来,通过解方程组得到变量的值,再代入检验:解出:x = -19/21, y = 5/21将x、y代入原方程组,检验是否成立。

初二数学 分式练习题及答案

初二数学 分式练习题及答案

分式方程练习题及答案一、选择题(每小题 3 分,共30 分)1.下列式子是分式的是()A.xB.2C.xD.x +y 2 x π22.下列各式计算正确的是()A.a=a -1B.b=bC.n=na , (a ≠ 0)D.n=n +a b b -1 a ab m ma m m +a3.下列各分式中,最简分式是()A.3(x -y) m2-n2B. a 2-b2C.2 2x 2 -y 2D.7(x +y) m +n a b +ab x 2 - 2xy +y 24.化简m2- 3m9 -m2的结果是()A.mB. -m + 3mC.m + 3mD.m - 3m3 -m5.若把分式x +y中的x 和y 都扩大2 倍,那么分式的值()xyA.扩大2 倍B.不变C.缩小2 倍D.缩小4 倍6.若分式方程1x - 2+3 =a -x有增根,则a 的值是()a +xA.1 B.0 C.—1 D.—2a =b=c a +b7.已知2 3 4 ,则 c 的值是()4 A.57B.45C.1D. 428. 一艘轮船在静水中的最大航速为 30 千米/时,它沿江以最大航速顺流航行 100 千米所用时间,与以最大航速逆流航行 60 千米所用时间相等,江水的流速为多少?设江水的流速为 x 千米/时,则可列方程( )A .100 x + 30 C .100 30 - x =6030 - x=6030 + xB .100 =x + 30 D .100 =x - 30 60x - 3060x + 309. 某学校学生进行急行军训练,预计行 60 千米的路程在下午 5 时到达,后来由于把速度加快 20% ,结果于下午 4 时到达,求原计划行军的速度。

设原计划行军的速度为 xkm/h ,,则可列方程()60 = A. x 60 + 1x + 20%60 = B. x 60 - 1 x + 20%60 = 60 + 1 60 = 60 - 1 C. xx (1 + 20%) D. xx (1 + 20%)10. 已知ab +c = b a + c = c a + b= k ,则直线 y = kx + 2k 一定经过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限二、填空题(每小题 3 分,共 18 分) 11.计算a -2b 3 ÷(a 2b )-3 =.12.用科学记数法表示—0.000 000 0314=.13. 计算 2a - a 2- 4 1 =.a - 214. 方程 3= x 4 70 - x的解是.15.瑞士中学教师巴尔末成功地从光谱数据 9 ,16 , 25 , 36,中得到巴尔末公式,从而打开了光谱奥5 12 21 32秘的大门。

初中数学分式方程精选试题(含答案和解析)

初中数学分式方程精选试题(含答案和解析)

初中数学分式方程精选试题一.选择题1. (2018·湖南怀化·4分)一艘轮船在静水中的最大航速为30km/h.它以最大航速沿江顺流航行100km所用时间.与以最大航速逆流航行80km所用时间相等.设江水的流速为v km/h.则可列方程为()A.=B.=C.=D.=【分析】根据“以最大航速沿江顺流航行100km所用时间.与以最大航速逆流航行80km所用时间相等.”建立方程即可得出结论.【解答】解:江水的流速为v km/h.则以最大航速沿江顺流航行的速度为(30+v)km/h.以最大航速逆流航行的速度为(30﹣v)km/h. 根据题意得..故选:C.【点评】此题是由实际问题抽象出分式方程.主要考查了水流问题.找到相等关系是解本题的关键.2.(2018•临安•3分)下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.【分析】此类题目难度不大.可用验算法解答.【解答】解:A.a12÷a6是同底数幂的除法.指数相减而不是相除.所以a12÷a6=a6.错误;B.(x+y)2为完全平方公式.应该等于x2+y2+2xy.错误;C.===﹣.错误;D.正确.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:①a m÷a n=a m﹣n.②÷=(a≥0.b>0).3.(2018•金华、丽水•3分)若分式的值为0.则x的值是()A. 3B.C. 3或D. 0【解析】【解答】解:若分式的值为0.则.解得.故答案为:A.【分析】分式指的是分母是含字母的整式且分母的值不为0的代数式;当分式为0时.则分子为零.分母不能为0.5.(2018·黑龙江哈尔滨·3分)方程=的解为()A.x=﹣1 B.x=0 C.x=D.x=1【分析】分式方程去分母转化为整式方程.求出整式方程的解得到x 的值.经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x.解得:x=1.经检验x=1是分式方程的解.故选:D.【点评】此题考查了解分式方程.利用了转化的思想.解分式方程注意要检验.6.(2018·黑龙江龙东地区·3分)已知关于x的分式方程=1的解是负数.则m的取值范围是()A.m≤3B.m≤3且m≠2 C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零.再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3.∵关于x的分式方程=1的解是负数.∴m﹣3<0.解得:m<3.当x=m﹣3=﹣1时.方程无解.则m≠2.故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解.正确得出分母不为零是解题关键.7.(2018•贵州黔西南州•4分)施工队要铺设1000米的管道.因在中考期间需停工2天.每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米.所列方程正确的是()A.=2 B.=2C.=2 D.=2【分析】设原计划每天施工x米.则实际每天施工(x+30)米.根据:原计划所用时间﹣实际所用时间=2.列出方程即可.【解答】解:设原计划每天施工x米.则实际每天施工(x+30)米. 根据题意.可列方程:﹣=2.故选:A.【点评】本题考查了由实际问题抽象出分式方程.关键是读懂题意.找出合适的等量关系.列出方程.8.(2018•海南•3分)分式方程=0的解是()A.﹣1 B.1 C.±1D.无解【分析】根据解分式方程的步骤计算可得.【解答】解:两边都乘以x+1.得:x2﹣1=0.解得:x=1或x=﹣1.当x=1时.x+1≠0.是方程的解;当x=﹣1时.x+1=0.是方程的增根.舍去;所以原分式方程的解为x=1.故选:B.【点评】本题主要考查分式方程的解.解题的关键是熟练掌握解分式方程的步骤.9.(2018湖南张家界3.00分)若关于x的分式方程=1的解为x=2.则m的值为()A.5 B.4 C.3 D.2【分析】直接解分式方程进而得出答案.【解答】解:∵关于x的分式方程=1的解为x=2.∴x=m﹣2=2.解得:m=4.故选:B.【点评】此题主要考查了分式方程的解.正确解方程是解题关键.二.填空题1. (2018·湖北襄阳·3分)计算﹣的结果是.【分析】根据同分母分式加减运算法则计算即可.最后要注意将结果化为最简分式.【解答】解:原式===.故答案为:.【点评】本题考查了分式的加减.归纳提炼:分式的加减运算中.如果是同分母分式.那么分母不变.把分子直接相加减即可;如果是异分母分式.则必须先通分.把异分母分式化为同分母分式.然后再相加减.2. (2018•达州•3分)若关于x的分式方程=2a无解.则a 的值为.【分析】直接解分式方程.再利用当1﹣2a=0时.当1﹣2a≠0时.分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3).整理得:(1﹣2a)x=﹣3a.当1﹣2a=0时.方程无解.故a=;当1﹣2a≠0时.x==3时.分式方程无解.则a=1.故关于x的分式方程=2a无解.则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.3. (2018•遂宁•4分)A.B两市相距200千米.甲车从A市到B市.乙车从B市到A市.两车同时出发.已知甲车速度比乙车速度快15千米/小时.且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时.则根据题意.可列方程.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时.则根据题意.可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程.正确表示出两车所用时间是解题关键.4. (2018•湖州•4分)当x=1时.分式的值是.【分析】将x=1代入分式.按照分式要求的运算顺序计算可得.【解答】解:当x=1时.原式==.故答案为:.【点评】本题主要考查分式的值.在解答时应从已知条件和所求问题的特点出发.通过适当的变形、转化.才能发现解题的捷径.5. (2018•嘉兴•4分.)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%.若设甲每小时检测个.则根据题意,可列出方程:________.【答案】【解析】【分析】若设甲每小时检测个.检测时间为.乙每小时检测个.检测时间为.根据甲检测300个比乙检测200个所用的时间少.列出方程即可.【解答】若设甲每小时检测个.检测时间为.乙每小时检测个.检测时间为.根据题意有:.故答案为:【点评】考查分式方程的应用.解题的关键是找出题目中的等量关系.7.(2018·黑龙江哈尔滨·3分)函数y=中.自变量x的取值范围是x≠4.【分析】根据分式分母不为0列出不等式.解不等式即可.【解答】解:由题意得.x﹣4≠0.解得.x≠4.故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围.掌握分式分母不为0是解题的关键.8.(2018·黑龙江齐齐哈尔·3分)若关于x的方程+=无解.则m的值为﹣1或5或﹣.【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【解答】解:去分母得:x+4+m(x﹣4)=m+3.可得:(m+1)x=5m﹣1.当m+1=0时.一元一次方程无解.此时m=﹣1.当m+1≠0时.则x==±4.解得:m=5或﹣.综上所述:m=﹣1或5或﹣.故答案为:﹣1或5或﹣.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.9.(2018•广西贵港•3分)若分式的值不存在.则x的值为﹣1 .【分析】直接利用分是有意义的条件得出x的值.进而得出答案.【解答】解:若分式的值不存在.则x+1=0.解得:x=﹣1.故答案为:﹣1.【点评】此题主要考查了分式有意义的条件.正确把握分式有意义的条件:分式有意义的条件是分母不等于零是解题关键.11.(2018•贵州铜仁•4分)分式方程=4的解是x= ﹣9 .【分析】分式方程去分母转化为整式方程.求出整式方程的解得到x 的值.经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=4x+8.解得:x=﹣9.经检验x=﹣9是分式方程的解.故答案为:﹣912. (2018湖南长沙3.00分)化简:= 1 .【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减.分母不变.把分子相加减计算即可.【解答】解:原式==1.故答案为:1.【点评】本题考查了分式的加减法法则.解题时牢记定义是关键.13.(2018湖南湘西州4.00分)要使分式有意义.则x的取值范围为x≠﹣2 .【分析】根据根式有意义的条件即可求出答案.【解答】解:由题意可知:x+2≠0.∴x≠﹣2故答案为:x≠﹣2【点评】本题考查分式有意义的条件.解题的关键是正确理解分式有意义的条件.本题属于基础题型.14. (2018•达州•3分)若关于x的分式方程=2a无解.则a 的值为.【分析】直接解分式方程.再利用当1﹣2a=0时.当1﹣2a≠0时.分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3).整理得:(1﹣2a)x=﹣3a.当1﹣2a=0时.方程无解.故a=;当1﹣2a≠0时.x==3时.分式方程无解.则a=1.故关于x的分式方程=2a无解.则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.15. (2018•遂宁•4分)A.B两市相距200千米.甲车从A市到B市.乙车从B市到A市.两车同时出发.已知甲车速度比乙车速度快15千米/小时.且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时.则根据题意.可列方程.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时.则根据题意.可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程.正确表示出两车所用时间是解题关键.三.解答题1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·5分)化简:•.【分析】先将分子、分母因式分解.再约分即可得.【解答】解:原式=•=.【点评】本题主要考查分式的乘除法.解题的关键是掌握分式乘除运算顺序和运算法则.2. (2018·湖北随州·6分)先化简.再求值:.其中x为整数且满足不等式组.【分析】根据分式的除法和加法可以化简题目中的式子.由x为整数且满足不等式组可以求得x的值.从而可以解答本题.【解答】解:===.由得.2<x≤3.∵x是整数.∴x=3.∴原式=.【点评】本题考查分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解.解答本题的关键是明确分式的化简求值的计算方法.3. (2018·湖北襄阳·6分)正在建设的“汉十高铁”竣工通车后.若襄阳至武汉段路程与当前动车行驶的路程相等.约为325千米.且高铁行驶的速度是当前动车行驶速度的2.5倍.则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.【分析】设高铁的速度为x千米/小时.则动车速度为0.4x千米/小时.根据题意列出方程.求出方程的解即可.【解答】解:设高铁的速度为x千米/小时.则动车速度为0.4x千米/小时.根据题意得:﹣=1.5.解得:x=325.经检验x=325是分式方程的解.且符合题意.则高铁的速度是325千米/小时.【点评】此题考查了分式方程的应用.弄清题中的等量关系是解本题的关键.4.(2018•内蒙古包头市•3分)化简;÷(﹣1)= ﹣.【分析】根据分式混合运算顺序和运算法则计算可得.【解答】解:原式=÷(﹣)=÷=•=﹣.故答案为:﹣.【点评】本题主要考查分式的混合运算.解题的关键是掌握分式混合运算顺序和运算法则.2.(2018•内蒙古包头市•10分)某商店以固定进价一次性购进一种商品.3月份按一定售价销售.销售额为2400元.为扩大销量.减少库存.4月份在3月份售价基础上打9折销售.结果销售量增加30件.销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元.那么该商店4月份销售这种商品的利润是多少元?【分析】(1)设该商店3月份这种商品的售价为x元.则4月份这种商品的售价为0.9x元.根据数量=总价÷单价结合4月份比3月份多销售30件.即可得出关于x的分式方程.解之经检验即可得出结论;(2)设该商品的进价为y元.根据销售利润=每件的利润×销售数量.即可得出关于y的一元一次方程.解之即可得出该商品的进价.再利用4月份的利润=每件的利润×销售数量.即可求出结论.【解答】解:(1)设该商店3月份这种商品的售价为x元.则4月份这种商品的售价为0.9x元.根据题意得:=﹣30.解得:x=40.经检验.x=40是原分式方程的解.答:该商店3月份这种商品的售价是40元.(2)设该商品的进价为y元.根据题意得:(40﹣a)×=900.解得:a=25.∴(40×0.9﹣25)×=990(元).答:该商店4月份销售这种商品的利润是990元.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.6.(2018•山东烟台市•6分)先化简.再求值:(1+)÷.其中x满足x2﹣2x﹣5=0.【分析】原式括号中两项通分并利用同分母分式的加法法则计算.同时利用除法法则变形.约分得到最简结果.把已知等式变形后代入计算即可求出值.【解答】解:原式=•=•=x(x﹣2)=x2﹣2x.由x2﹣2x﹣5=0.得到x2﹣2x=5.则原式=5.【点评】此题考查了分式的化简求值.熟练掌握运算法则是解本题的关键.7.(2018•山东东营市•8分)小明和小刚相约周末到雪莲大剧院看演出.他们的家分别距离剧院1200m和2000m.两人分别从家中同时出发.已知小明和小刚的速度比是3:4.结果小明比小刚提前4min到达剧院.求两人的速度.【分析】设小明的速度为3x米/分.则小刚的速度为4x米/分.根据时间=路程÷速度结合小明比小刚提前4min到达剧院.即可得出关于x 的分式方程.解之经检验后即可得出结论.【解答】解:设小明的速度为3x米/分.则小刚的速度为4x米/分. 根据题意得:﹣=4.解得:x=25.经检验.x=25是分式方程的根.且符合题意.∴3x=75.4x=100.答:小明的速度是75米/分.小刚的速度是100米/分.【点评】本题考查了分式方程的应用.找准等量关系.正确列出分式方程是解题的关键.8.(2018•山东济宁市•7分)先化简.再求值:﹣÷(﹣).其中a=﹣.【分析】首先计算括号里面的减法.然后再计算除法.最后再计算减法.化简后.再代入a的值可得答案.【解答】解:原式=﹣÷[﹣].=﹣÷[﹣].=﹣÷.=﹣•.=﹣.=﹣.当a=﹣时.原式=﹣=﹣4.【点评】此题主要考查了分式的化简求值.关键是掌握化简求值.一般是先化简为最简分式或整式.再代入求值.9. (2018•达州•6分)化简代数式:.再从不等式组的解集中取一个合适的整数值代入.求出代数式的值.【分析】直接将=去括号利用分式混合运算法则化简.再解不等式组.进而得出x的值.即可计算得出答案.【解答】解:原式=×﹣×=3(x+1)﹣(x﹣1)=2x+4..解①得:x≤1.解②得:x>﹣3.故不等式组的解集为:﹣3<x≤1.把x=﹣2代入得:原式=0.【点评】此题主要考查了分式的化简求值以及不等式组解法.正确掌握分式的混合运算法则是解题关键.10. (2018•遂宁•8分)先化简.再求值•+.(其中x=1.y=2)【分析】根据分式的运算法则即可求出答案.【解答】解:当x=1.y=2时.原式=•+=+==﹣3【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.11.(2018•资阳•7分)先化简.再求值:÷(﹣a).其中a=﹣1.b=1.【分析】先根据分式混合运算顺序和运算法则化简原式.再将A.b的值代入计算可得.【解答】解:原式=÷=•=.当a=﹣1.b=1时.原式====2+.【点评】本题主要考查分式的化简求值.解题的关键是掌握分式混合运算顺序和运算法则.12.(2018•乌鲁木齐•10分)某校组织学生去9km外的郊区游玩.一部分学生骑自行车先走.半小时后.其他学生乘公共汽车出发.结果他们同时到达.己知公共汽车的速度是自行车速度的3倍.求自行车的速度和公共汽车的速度分别是多少?【分析】设自行车的速度为xkm/h.则公共汽车的速度为3xkm/h.根据时间=路程÷速度结合乘公共汽车比骑自行车少用小时.即可得出关于x的分式方程.解之经检验即可得出结论.【解答】解:设自行车的速度为xkm/h.则公共汽车的速度为3xkm/h. 根据题意得:﹣=.解得:x=12.经检验.x=12是原分式方程的解.∴3x=36.答:自行车的速度是12km/h.公共汽车的速度是36km/h.【点评】本题考查了分式方程的应用.找准等量关系.正确列出分式方程是解题的关键.13.(2018•临安•6分)(1)化简÷(x﹣).(2)解方程:+=3.【分析】(1)先计算括号内分式的减法.再计算除法即可得;(2)先去分母化分式方程为整式方程.解整式方程求解的x值.检验即可得.【解答】解:(1)原式=÷(﹣)=÷=•=;(2)两边都乘以2x﹣1.得:2x﹣5=3(2x﹣1).解得:x=﹣.检验:当x=﹣时.2x﹣1=﹣2≠0.所以分式方程的解为x=﹣.【点评】本题主要考查分式的混合运算与解分式方程.解题的关键是掌握解分式方程和分式混合运算的步骤.14.(2018•嘉兴•4分)化简并求值()•.其中a=1.b=2.【答案】原式= =a-b当a=1.b=2时.原式=1-2=-1【考点】利用分式运算化简求值【解析】分式的化简当中.可先运算括号里的.或都运用乘法分配律计算都可16. (2018•贵州安顺•10分)先化简.再求值:.其中.【答案】..【解析】分析:先化简括号内的式子.再根据分式的除法进行计算即可化简原式.然后将x=-2代入化简后的式子即可解答本题.详解:原式=.∵.∴.舍.当时.原式.点睛:本题考查分式的化简求值.解题的关键是明确分式化简求值的方法.17.(2018•广西桂林•8分)某校利用暑假进行田径场的改造维修.项目承包单位派遣一号施工队进场施工.计划用40天时间完成整个工程:当一号施工队工作5天后.承包单位接到通知.有一大型活动要在该田径场举行.要求比原计划提前14天完成整个工程.于是承包单位派遣二号与一号施工队共同完成剩余工程.结果按通知要求如期完成整个工程.(1)若二号施工队单独施工.完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工.完成整个工程需要多少天?【答案】(1)60天;(2)24天.【解析】分析:(1)设二号施工队单独施工需要x天.根据题意可知一号施工队5天工作总量与一号施工队和二号施工队合作工作总量之和=1列出方程求解即可;(2)根据工作总量÷工作效率=工作时间求解即可.详解:(1)设二号施工队单独施工需要x天.依题可得解得x=60.经检验.x=60是原分式方程的解.∴由二号施工队单独施工.完成整个工期需要60天.(2)由题可得(天).∴若由一、二号施工队同时进场施工.完成整个工程需要24天.点睛:本题考查了列分式方程解应用题.灵活运用和掌握工作总量÷工作效率=工作时间是解题关键.18.(2018•广西南宁•6分)解分式方程:﹣1=.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论依次计算可得.【解答】解:两边都乘以3(x﹣1).得:3x﹣3(x﹣1)=2x.解得:x=1.5.检验:x=1.5时.3(x﹣1)=1.5≠0.所以分式方程的解为x=1.5.【点评】本题主要考查解分式方程.解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.19. 2018·黑龙江大庆·4分)解方程:﹣=1.【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2.求出方程的解.再代入x(x+3)进行检验即可.【解答】解:两边都乘以x(x+3).得:x2﹣(x+3)=x(x+3).解得:x=﹣.检验:当x=﹣时.x(x+3)=﹣≠0.所以分式方程的解为x=﹣.20. (2018·黑龙江哈尔滨·7分)先化简.再求代数式(1﹣)÷的值.其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=4cos30°+3tan45°时.所以a=2+3原式=•=【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.21(2018·黑龙江龙东地区·5分)先化简.再求值:(1﹣)÷.其中a=sin30°.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=sin30°时.所以a=原式=•=•==﹣1【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.22..(2018·湖北省恩施·8分)先化简.再求值:•(1+)÷.其中x=2﹣1.【分析】直接分解因式.再利用分式的混合运算法则计算得出答案.【解答】解:•(1+)÷=••把x=2﹣1代入得.原式===.【点评】此题主要考查了分式的化简求值.正确进行分式的混合运算是解题关键.23.(2018•福建A卷•8分)先化简.再求值:(﹣1)÷.其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子.然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===.当m=+1时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确分式化简求值的方法.24.(2018•福建B卷•8分)先化简.再求值:(﹣1)÷.其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子.然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===.当m=+1时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确分式化简求值的方法.25.(2018•广东•6分)先化简.再求值:•.其中a=.【分析】原式先因式分解.再约分即可化简.继而将a的值代入计算.【解答】解:原式=•=2a.当a=时.原式=2×=.【点评】本题主要考查分式的化简求值.解题的关键是熟练掌握分式混合运算顺序和运算法则.26.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.27.(2018•广西北海•6分)解分式方程:【答案】 x = 1.5【考点】解分式方程【解答】解:方程左右两边同乘3(x -1).得3x - 3(x -1) = 2x3x - 3x + 3 = 2x2x = 3x = 1.5检验:当x = 1.5时 . 3(x -1) ≠ 0所以.原分式方程的解为 x = 1.5 .【点评】根据解分式的一般步骤进行去分母.然后解一元一次方程,最后记得检验即可.28.(2018•广西贵港•10分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.【分析】(1)先计算绝对值、零指数幂、负整数指数幂、代入三角函数值.再计算加减可得;(2)分式方程去分母转化为整式方程.求出整式方程的解得到x的值.经检验即可得到分式方程的解.【解答】解:(1)原式=5﹣3﹣1﹣+=1;(2)方程两边都乘以(x+2)(x﹣2).得:4+(x+2)(x﹣2)=x+2. 整理.得:x2﹣x﹣2=0.解得:x1=﹣1.x2=2.检验:当x=﹣1时.(x+2)(x﹣2)=﹣3≠0.当x=2时.(x+2)(x﹣2)=0.所以分式方程的解为x=﹣1.【点评】此题考查了实数的运算与解分式方程.解分式方程的基本思想是“转化思想”.把分式方程转化为整式方程求解.解分式方程一定注意要验根.29.(2018•贵州黔西南州•12分)(2)先化简(1﹣)•.再在1.2.3中选取一个适当的数代入求值.【分析】(2)根据分式的减法和乘法可以化简题目中的式子.再从1.2.3中选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:(2)(1﹣)•===. 当x=2时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确它们各自的计算方法.31.(2018年湖南省娄底市)先化简.再求值:( +)÷.其中x=.【分析】原式括号中两项通分并利用同分母分式的加法法则计算.同时利用除法法则变形.约分得到最简结果.把x的值代入计算即可求出值.【解答】解:原式=•=.当x=时.原式==3+2.【点评】此题考查了分式的化简求值.熟练掌握运算法则是解本题的关键.31.(2018湖南省邵阳市)(8分)某公司计划购买A.B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料.且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A.B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A.B两种型号的机器人共20台.要求每小时搬运材料不得少于2800kg.则至少购进A型机器人多少台?【分析】(1)设B型机器人每小时搬运x千克材料.则A型机器人每小时搬运(x+30)千克材料.根据A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同建立方程求出其解就可以得出结论.(2)设购进A型机器人a台.根据每小时搬运材料不得少于2800kg 列出不等式并解答.【解答】解:(1)设B型机器人每小时搬运x千克材料.则A型机器人每小时搬运(x+30)千克材料.根据题意.得=.解得x=120.经检验.x=120是所列方程的解.当x=120时.x+30=150.答:A型机器人每小时搬运150千克材料.B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台.则购进B型机器人(20﹣a)台.根据题意.得150a+120(20﹣a)≥2800.解得a≥.∵a是整数.∴a≥14.答:至少购进A型机器人14台.【点评】本题考查了分式方程的运用.一元一次不等式的运用.解决问题的关键是读懂题意.找到关键描述语.进而找到所求的量的数量关。

(完整)初二数学分式习题(附答案).doc

(完整)初二数学分式习题(附答案).doc

第十六章 分式单元复习一、选择题1.下列各式中,不是分式方程的是()1x11 ( x 1) x 1A.xB.xxC.1 x2 x 1D.1 [ 1( x 1) 1] 1 10 xx322.如果分式 | x | 5 的值为 0,那么 x 的值是()x 25xA . 0B . 5C .- 5D .± 53.把分式 2x2 y中的 x , y 都扩大 2 倍,则分式的值()x yA .不变B .扩大 2 倍C .扩大 4 倍D .缩小 2 倍4.下列分式中,最简分式有()a 3 x y m 2 n 2 m 1 a 2 2ab b 23x 2,x2y 2 , m2n 2,m21 ,a 2 2ab b 2A .2 个B .3 个C .4 个D .5 个 5.分式方程114的解是()3x3 x 2x 9A . x=± 2B . x=2C . x= -2D .无解6.若 2x+y=0 ,则 x 2xy y 2)2xy x 2的值为(A .-1B. 3C .1D .无法确定55xk7.关于 x 的方程2化为整式方程后, 会产生一个解使得原分式方程的最简公分母为 0,则 k 的值为()3xx 3A . 3B . 0C .± 3D .无法确定8.使分式 x2等于 0 的 x 值为()x 24A . 2B .- 2C .± 2D .不存在9.下列各式中正确的是()a b a ba b a bA.babB.b a ba a ab a ba b a bC.babD.bb aa a10.下列计算结果正确的是( )A. b g a1 B.ab (a 2 ab)12a 2 b 2 2abaa 2C.mn nD .( 3xy ) 29xyxy xx m5a5a 2二、填空题1.若分式| y | 5的值等于 0,则 y= __________ .5y2.在比例式 9:5=4: 3x 中, x=_________________ .b 1 a 1 b 1 a1=_________________ .3.计算 :ga gabb2的值为正数. 4.当 x> __________ 时,分式1 11 3x=_______________ .5.计算 :x 11 x6.当分式x2 与分式 x23x2的值相等时, x 须满足 _______________ . x 1 x 2 1117.已知 x+ x =3 ,则 x 2+ x 2 = ________ .8.已知分式2x 1_时,分式没有意义; 当 x= _______ 时,分式的值为 0;当 x= -2 时,分式的值为 _______.x :当 x=29.当 a=____________ 时,关于 x 的方程2ax3 = 5的解是 x=1 .a x 410.一辆汽车往返于相距 akm 的甲、乙两地,去时每小时行mkm , ?返回时每小时行 nkm ,则往返一次所用的时间是_____________ . 三、解答题 1.计算题 :a 242 a 2 4a 4 (1)a 22a 8 ( a4)ga 2;x 2 1x 23x 2 (2)g.2 4x 4x x12.化简求值.(1)( 1+1)÷( 1- 1 ),其中 x= - 1;x 1 x 1 2(2)2 1 x ( x 23 ) ,其中 x= 1. x 2 xx 2 23.解方程 :( 1)10 5 =2 ; ( 2) 23x 3 .2x 1 1 2xx 1 x 1 x 2 14.课堂上,李老师给大家出了这样一道题:当x=3, 5- 2 2 ,7+ 3 时,求代数式 x22x 12x 2的值.小明x 2 1 x1一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗? ?请你写出具体的解题过程.5.对于试题: “先化简,再求值:x 3 1 ,其中 x=2.”小亮写出了如下解答过程:x 2 1 1 x∵ x 31 x 3 1①x 2 1 1 x (x 1)( x 1) x 1x 3x 1②( x 1)(x 1) ( x 1)( x1)=x - 3-( x+1) =2x - 2,③ ∴当 x=2 时,原式 =2× 2- 2=2.④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号) ;(2)从②到③是否正确:不正确 ;若不正确,错误的原因是 把分母去掉了;(3)请你写出正确的解答过程.6.小亮在购物中心用 12.5 元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5 元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14 元,买的饼干盒数比第一次买的盒数多2, ?5问他第一次在购物中心买了几盒饼干?答案一、选择题1.下列各式中,不是分式方程的是(D )1x111) x 1A.xB. ( xxxC.1 x2 x 1 D.1 [ 1( x 1) 1] 1 10 xx3 22.如果分式 | x |5的值为 0,那么 x 的值是( B )x 2 5xA . 0B . 5C .- 5D .± 53.把分式 2x2 y中的 x , y 都扩大 2 倍,则分式的值( A )x yA .不变B .扩大 2 倍C .扩大 4 倍D .缩小 2 倍4.下列分式中,最简分式有(C )a 3 x y m 2 n 2 m 1 a 2 2ab b 23x 2,x2y2,m 2 n 2 ,m 21 ,a 2 2ab b 2A .2 个B .3 个C .4 个D .5 个5.分式方程1 1x 2 4 的解是( B )3 x3x 9A . x=± 2B . x=2C . x= -2D .无解6.若 2x+y=0 ,则x 2xy y 2 的值为( B )2xy x 2A .-1B. 3C .1D .无法确定55xk7.关于 x 的方程2化为整式方程后, 会产生一个解使得原分式方程的最简公分母为0,则 k 的值为( A )3xx3A . 3B . 0C .± 3D .无法确定8.使分式 x2等于 0 的 x 值为( D )x 2 4A . 2B .- 2C .± 2D .不存在9.下列各式中正确的是(C )a b a ba b a bA.ba bB.b a ba a ab a ba b a bC.ba bD.bb aa a10.下列计算结果正确的是( B )A. b g a1 B.a b (a 2 ab)1 2a2 b 2 2abaa 2C.mn n D .(3xy) 2 9xy xy xx m5a 5a 2二、填空题1.若分式| y | 5的值等于 0,则 y= - 5 .5y2.在比例式 9: 5=4 : 3x 中, x=20.273.b 1g ab 1 b 1g a 1 的值是 2( a b) .aa bab4.当 x>1 时,分式 12 的值为正数. 13 12 3x=.5.1 x 1 x 21 x6.当分式x2 与分式 x 23x2的值相等时, x 须满足 x ≠± 1 .x1x 217.已知 x+ 1 =3 ,则 x 2+1 = 7 .x x 28.已知分式 2 x1,当 x= 2 时,分式没有意义; 当 x=-1时,分式的值为 0;当 x=- 2 时,分式的值为3 .x 2249.当 a= - 17 时,关于 x 的方程2ax3 = 5的解是 x=1 .3a x 410.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行 mkm , ?返回时每小时行 nkm ,则往返一次所用的时间是(a a)h . m n三、解答题1.计算题.a 2 4( a 2a 2 4a 4(1) 22a8 4)ga 2 ; a解: 原式a 2 4g 1 ( a 2) 21.ga 4( a 2)(a 4) a 24 a 2x 2 1x 2 3x 2(2)2(xg.4x 4 1)x 1 x解: 原式 ( x 1)(x 1)g 1 g (x 1)(x 2)x 1 .( x 2)2x 1 x 1x 22.化简求值.(1)( 1+1 )÷( 1- 1 1 ),其中 x=- 1;x 1 x2 解:原式 =x1 1 x 1 1 x g x 1 x .x 1 x 1x 1 x2 x 2当 x= -1时,原式 =1.25(2)x1 x ( x23 ) ,其中 x= 1.2 2 xx 2 2解:原式 =( x 1) ( x2)( x 2) 31 g x2 1 .( x 2)( x 1)x 2x 2 x 2 1x 2 1当 x=1时,原式 =4 .233.解方程.(1)10 5=2 ;2x 1 1 2x解: x= 7 .4(2)x 2 3x 3 .1 x 1x 2 1解:用( x+1)( x - 1)同时乘以方程的两边得,2( x+1)- 3( x - 1)=x+3 .解得 x=1.经检验, x=1 是增根. 所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3, 5- 2 2 ,7+ 3 时,求代数式 x22x 12x 2的值.小明x 2 1 x1一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗??请你写出具体的解题过程.解:原式 =(x 1)2g x1 = 1 .( x 1)(x 1) 2( x 1) 2由于化简后的代数中不含字母x ,故不论 x 取任何值,所求的代数式的值始终不变.所以当 x=3, 5- 2 2 ,7+ 3 时,代数式的值都是1 .x 3 125.对于试题: “先化简,再求值:,其中 x=2.”小亮写出了如下解答过程:x 2 1 1 x∵ x 31 x 3 1①x 2 1 1 x (x 1)( x 1) x 1x 3x 1②( x 1)(x 1) ( x 1)( x 1)=x - 3-( x+1) =2x - 2, ③ ∴当 x=2 时,原式 =2× 2- 2=2.④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号) ;(2)从②到③是否正确:不正确 ;若不正确,错误的原因是 把分母去掉了;(3)请你写出正确的解答过程.解:正确的应是:x 3 1x 3 x 1 2x 2 1 1 x=( x 1)(x 1)x 1( x 1)(x 1)当 x=2 时,原式 =2 .36.小亮在购物中心用 12.5 元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5 元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14 元,买的饼干盒数比第一次买的盒数多2, ?5问他第一次在购物中心买了几盒饼干?7 解:设他第一次在购物中心买了x 盒,则他在一分利超市买了x 盒.512.5 14由题意得:=0.5x7 x5解得x=5.经检验, x=5 是原方程的根.答:他第一次在购物中心买了5 盒饼干.初中数学分式方程同步练习题一、选择题(每小题 3 分,共 30 分) 1.下列式子是分式的是()x2xxyA .B .C .D .22x2.下列各式计算正确的是()A . a a 1B .bb2C .nna, a 0D .nn a bb 1aabmmamm a3.下列各分式中,最简分式是()3 x ym 2n 2C .a 2b 2D .x 2 y 2 A .B .a 2b ab 22xy y 27 x ym nx 2 m 2 3m )4.化简m 2 的结果是(9m B. mm D.mA.m 3C.33 mm 3m5.若把分式 xy中的 x 和 y 都扩大 2 倍,那么分式的值()xyA .扩大 2 倍B .不变C .缩小 2倍D .缩小 4 倍6.若分式方程1 3 a x有增根,则 a 的值是()x 2 axA . 1B . 0C .— 1D .— 2ab ca b7.已知2 34,则 c的值是( )475A .5B.4C.1D. 48.一艘轮船在静水中的最大航速为30 千米 /时,它沿江以最大航速顺流航行100 千米所用时间,与以最大航速逆流航行 60 千米所用时间相等,江水的流速为多少?设江水的流速为x 千米 /时,则可列方程()100 60100 60A .30 xB .x 30x 30x 30 100 60100 60C .30 xD .x3030 xx 309.某学校学生进行急行军训练,预计行60 千米的路程在下午 5 时到达,后来由于把速度加快20% ,结果于下午 4 时到达,求原计划行军的速度。

初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析1.若关于的分式方程有增根,则.【答案】2.【解析】方程两边都乘(x﹣3),得m =2+x﹣3,∵原方程有增根,∴最简公分母,x﹣3=0,解得x=3,当x=3时,m=2.故答案是2.【考点】分式方程的增根.2.为了改善生态环境,防止水土流失,某村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵树是原计划的倍,结果提前4天完成任务,原计划每天种树多少棵?【答案】原计划每天种树60棵.【解析】设原计划每天种树x棵,则实际每天种树为x棵,根据实际比原计划提前4天完成任务,列方程求解.试题解析:设原计划每天种树x棵,则实际每天种树为x棵,由题意得,,解得:x=60,经检验,x=60是原方程的解,且符合题意.答:原计划每天种树60棵.【考点】分式方程的应用.3.若关于的分式方程无解,则.【答案】a=1或a=-2【解析】该分式方程无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.试题解析:去分母得:x(x-a)-3(x-1)=x(x-1),去括号得:x2-ax-3x+3=x2-x,移项合并得:(a+2)x=3.(1)把x=0代入(a+2)x=3,∴a无解;把x=1代入(a+2)x=3,解得a=1;(2)(a+2)x=3,当a+2=0时,0×x=3,x无解即a=-2时,整式方程无解.综上所述,当a=1或a=-2时,原方程无解.【考点】解分式方程.4.一项工程要在限期内完成,若第一组单独做,则恰好在规定日期完成,若第二组单独做,则超过规定日期4天才能完成,若两组合做3天后剩下的工程由第二组单独做,则正好在规定日期内完成,问规定日期是多少天?【答案】12天【解析】设规定日期为x天,则第一组单独完成用x天,第二组单独完成用()天,根据“两组合做3天后剩下的工程由第二组单独做,则正好在规定日期内完成”即可列方程求解.解:设规定日期为x天,则第一组单独完成用x天,第二组单独完成用()天,由题意得解得:经检验:是原方程的解答:规定日期为12天。

初二分式方程应用题及答案

初二分式方程应用题及答案

初二分式方程应用题及答案
题目:某工厂生产一批零件,甲车间单独完成需要15天,乙车间单
独完成需要20天。

现在甲乙两个车间合作,共同完成这批零件的生产,问需要多少天?
解答:
设甲车间每天完成这批零件的\( \frac{1}{15} \),乙车间每天完成
这批零件的\( \frac{1}{20} \)。

设甲乙两个车间合作完成这批零件
需要\( x \)天。

根据题意,甲乙两个车间合作\( x \)天完成的零件数等于这批零件的
总数,即:
\[ \frac{1}{15}x + \frac{1}{20}x = 1 \]
为了解这个方程,我们首先找到两个分数的最小公倍数,即60,然后
将方程两边同时乘以60,得到:
\[ 4x + 3x = 60 \]
合并同类项,得到:
\[ 7x = 60 \]
解得:
\[ x = \frac{60}{7} \]
所以,甲乙两个车间合作需要\( \frac{60}{7} \)天完成这批零件的生产。

答案:甲乙两个车间合作需要\( \frac{60}{7} \)天完成这批零件的生产。

八年级数学分式方程题目

八年级数学分式方程题目

八年级数学分式方程题目一、分式方程题目。

1. 解方程:(1)/(x - 2)=(3)/(x)- 解析:- 方程两边同乘x(x - 2)(这是x-2与x的最简公分母)得:x=3(x - 2)。

- 展开括号得x = 3x-6。

- 移项得3x - x=6,即2x = 6。

- 解得x = 3。

- 检验:当x = 3时,x(x - 2)=3×(3 - 2)=3≠0,所以x = 3是原分式方程的解。

2. 解方程:(2)/(x+1)+(3)/(x - 1)=(6)/(x^2)-1- 解析:- x^2-1=(x + 1)(x - 1),方程两边同乘(x + 1)(x - 1)得:2(x - 1)+3(x + 1)=6。

- 展开括号得2x-2 + 3x+3 = 6。

- 合并同类项得5x+1 = 6。

- 移项得5x=6 - 1,即5x = 5。

- 解得x = 1。

- 检验:当x = 1时,(x + 1)(x - 1)=(1 + 1)×(1 - 1)=0,所以x = 1是增根,原分式方程无解。

3. 若关于x的分式方程(x)/(x - 3)-2=(m)/(x - 3)有增根,求m的值。

- 解析:- 方程两边同乘(x - 3)得x-2(x - 3)=m。

- 展开括号得x-2x + 6=m,即-x+6 = m。

- 因为分式方程有增根,所以x - 3 = 0,即x = 3。

- 把x = 3代入-x + 6=m得m=-3 + 6 = 3。

4. 解方程:(3)/(x - 1)-(x + 3)/(x^2)-1=0- 解析:- 方程两边同乘(x + 1)(x - 1)(x^2-1=(x + 1)(x - 1))得:3(x + 1)-(x + 3)=0。

- 展开括号得3x+3 - x - 3 = 0。

- 合并同类项得2x = 0。

- 解得x = 0。

- 检验:当x = 0时,(x + 1)(x - 1)=(0 + 1)×(0 - 1)= - 1≠0,所以x = 0是原分式方程的解。

初二数学分式方程练习题及答案

初二数学分式方程练习题及答案

初二数学分式方程练习题及答案题目:1. 解方程:$\frac{a}{b} + \frac{1}{b} = \frac{5}{2}$,其中$a$和$b$都是正整数。

2. 解方程:$\frac{2}{3x} - \frac{1}{x} = \frac{1}{2}$,其中$x$为非零实数。

3. 解方程:$\frac{5}{2(a-1)} - \frac{1}{3(a-1)} = \frac{4}{5}$,其中$a \neq 1$。

4. 寻找方程$\frac{2}{x} - \frac{1}{y} = \frac{1}{z}$的整数解,其中$x, y, z$为正整数。

答案:1. 首先,将两个分数的分母取公倍数$b$,得到$\frac{a}{b} +\frac{1}{b} = \frac{5}{2}$。

合并分数后得到$\frac{a+1}{b} =\frac{5}{2}$。

为了消去分母,我们可以采用交叉相乘的方法,即$2(a+1) = 5b$。

将等式化简后得到$2a + 2 = 5b$。

根据题意$a$和$b$都是正整数,因此我们可以尝试不同的正整数值来求解。

通过试算,我们发现当$a=4$,$b=3$时等式成立。

所以$a=4$,$b=3$是该方程的一个解。

2. 将方程$\frac{2}{3x} - \frac{1}{x} = \frac{1}{2}$的分母取公倍数$6x$,得到$\frac{4}{6x} - \frac{3}{6x} = \frac{3x}{6x} - \frac{6}{6x}$。

合并分数后得到$\frac{4-3}{6x} = \frac{3x-6}{6x}$。

再次化简得到$\frac{1}{6x} = \frac{3x-6}{6x}$。

此时可以将等式两边乘以$6x$消去分母,得到$1 = 3x-6$。

继续将等式化简得到$3x = 7$,解得$x =\frac{7}{3}$。

所以$x = \frac{7}{3}$是该方程的唯一解。

分式方程计算题100道及答案

分式方程计算题100道及答案

分式方程计算题100道及答案1. 2/x + 3/4 = 1/2答案:x=122. 5/6x - 7/12 = 1/4答案:x=243. 7/2x + 10/7 = 9/14答案:x=7/24. 1/6x + 4/3 = 7/9答案:x=185. 3/7x - 4/11 = 8/13答案:x=143/226. 6/8x - 9/10 = 5/7答案:x=105/147. 5/2x + 3/4 = 13/6答案:x=15/48. 2/5x - 4/3 = 4/15答案:x=129. 1/4x + 5/6 = 3/5答案:x=20/3答案:x=35/411. 9/16x - 2/3 = 7/8 答案:x=56/712. 1/2x + 3/4 = 11/6 答案:x=1213. 3/2x - 7/11 = 2/3 答案:x=77/1114. 5/4x - 1/3 = 7/12 答案:x=77/615. 7/5x + 4/9 = 13/10 答案:x=45/716. 3/4x - 8/5 = 5/7答案:x=105/1417. 2/3x + 1/7 = 11/8 答案:x=63/818. 4/3x - 5/2 = 3/8答案:x=27/419. 7/9x + 8/5 = 9/7 答案:x=45/7答案:x=1221. 6/4x + 1/5 = 16/15 答案:x=322. 8/3x - 5/7 = 17/9 答案:x=119/723. 2/7x + 5/8 = 9/14 答案:x=84/724. 3/2x - 9/5 = 11/7 答案:x=63/525. 5/2x + 7/6 = 11/8 答案:x=33/426. 6/5x - 4/3 = 7/8答案:x=56/727. 1/7x + 2/3 = 9/10 答案:x=90/728. 4/5x + 6/7 = 13/14 答案:x=182/3529. 5/3x - 7/4 = 12/11 答案:x=143/1130. 6/5x + 8/9 = 7/4 答案:x=35/431. 7/9x - 5/8 = 10/11 答案:x=77/1132. 2/3x + 7/8 = 17/9 答案:x=119/733. 3/2x - 1/3 = 5/8答案:x=27/434. 7/6x + 4/5 = 9/7 答案:x=45/735. 4/3x - 3/2 = 11/6 答案:x=1236. 5/4x + 1/5 = 16/15 答案:x=337. 8/3x - 3/2 = 11/7 答案:x=63/538. 1/7x + 3/4 = 11/6 答案:x=1239. 6/5x - 8/9 = 7/440. 7/9x - 4/5 = 10/11 答案:x=77/1141. 2/3x + 5/7 = 17/9 答案:x=119/742. 3/2x - 9/4 = 5/8答案:x=27/443. 7/6x + 8/9 = 9/7 答案:x=45/744. 4/3x - 5/2 = 11/6 答案:x=1245. 5/4x + 6/7 = 16/15 答案:x=346. 8/3x - 1/2 = 11/7 答案:x=63/547. 1/7x + 3/5 = 11/6 答案:x=1248. 6/5x - 7/8 = 7/4答案:x=35/449. 7/9x - 8/5 = 10/1150. 2/3x + 4/5 = 17/9 答案:x=119/751. 3/2x - 2/3 = 5/8答案:x=27/452. 7/6x + 1/2 = 9/7 答案:x=45/753. 4/3x - 7/6 = 11/6 答案:x=1254. 5/4x + 5/6 = 16/15 答案:x=355. 8/3x - 9/4 = 11/7 答案:x=63/556. 1/7x + 4/9 = 11/6 答案:x=1257. 6/5x - 1/3 = 7/4答案:x=35/458. 7/9x - 6/7 = 10/11 答案:x=77/1159. 2/3x + 8/7 = 17/9 答案:x=119/760. 3/2x - 5/4 = 5/8答案:x=27/461. 7/6x + 4/3 = 9/7 答案:x=45/762. 4/3x - 9/5 = 11/6 答案:x=1263. 5/4x + 7/8 = 16/15 答案:x=364. 8/3x - 7/5 = 11/7 答案:x=63/565. 1/7x + 2/5 = 11/6 答案:x=1266. 6/5x - 8/9 = 7/4答案:x=35/467. 7/9x - 3/2 = 10/11 答案:x=77/1168. 2/3x + 6/7 = 17/9 答案:x=119/769. 3/2x - 4/3 = 5/8答案:x=27/470. 7/6x + 8/5 = 9/7 答案:x=45/771. 4/3x - 9/4 = 11/6 答案:x=1272. 5/4x + 1/2 = 16/15 答案:x=373. 8/3x - 7/6 = 11/7 答案:x=63/574. 1/7x + 3/4 = 11/6 答案:x=1275. 6/5x - 5/6 = 7/4答案:x=35/476. 7/9x - 8/5 = 10/11 答案:x=77/1177. 2/3x + 7/8 = 17/9 答案:x=119/778. 3/2x - 2/5 = 5/8答案:x=27/479. 7/6x + 9/10 = 9/7 答案:x=45/780. 4/3x - 1/2 = 11/6 答案:x=1281. 5/4x + 6/7 = 16/15 答案:x=382. 8/3x - 5/4 = 11/7 答案:x=63/583. 1/7x + 4/5 = 11/6 答案:x=1284. 6/5x - 3/4 = 7/4答案:x=35/485. 7/9x - 8/7 = 10/11 答案:x=77/1186. 2/3x + 5/6 = 17/9 答案:x=119/787. 3/2x - 7/5 = 5/8答案:x=27/488. 7/6x + 8/7 = 9/7 答案:x=45/789. 4/3x - 9/10 = 11/6 答案:x=1290. 5/4x + 1/3 = 16/15 答案:x=391. 8/3x - 9/7 = 11/7 答案:x=63/592. 1/7x + 5/6 = 11/6 答案:x=1293. 6/5x - 7/8 = 7/4答案:x=35/494. 7/9x - 9/4 = 10/11 答案:x=77/1195. 2/3x + 8/9 = 17/9 答案:x=119/796. 3/2x - 5/6 = 5/8答案:x=27/497. 7/6x + 9/7 = 9/7 答案:x=45/798. 4/3x - 3/4 = 11/6 答案:x=1299. 5/4x + 8/9 = 16/15 答案:x=3100. 8/3x - 2/5 = 11/7 答案:x=63/5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程及应用练习
1.分式方程
2x =3的解是________;分式方程5231x x =-的解是________. 2.已知公式1221P P V V =,用P 1、P 2、V 2表示V 1=________.3.已知y=46mx n x
-,则x=________. 4.一项工程,甲单独做需m 小时完成,若与乙合作20小时可以完成,则乙单独完成需要的时间
是( ) A .2020m m -小时 B .2020m m +小时 C .2020m m -小时 D .2020m m
+小时 5.我市要筑一水坝,需要规定日期内完成,如果由甲队去做,•恰能如期完成,如果由乙队去做,需超过规定日期三天,现由甲、乙两队合做2天后,•余下的工程由乙队独自做,恰好在规定日期内完成,求规定的日期x ,下面所列方程错误的是( )
A .
2x +3x x +=1 B .2x =33
x + C .(1x +13x +)×2+13x +(x-2)=1 D .1x +3x x +=1 6.物理学中,并联电路中总电阻R 和各支路电阻R 1、R 2满足关系
1R =11R +2
1R ,若R 1=10,R 2=15,求总电阻R .
7.为改善环境,张村拟在荒山上种植960棵树,由于共青团员的支持,每日比原计划多种20棵,
结果提前4天完成任务,原计算每天种植多少棵?设原计划每天种植x 棵,根据题意得
方程_______ _.
8.某河两地相距s 千米,船在静水中的速度为a 千米/时,水流速度为b 千米/时,船往返一次所
用的时间为( ) A .
2s a b + B .2s a b - C .s a +s b D .s a b ++s a b
- 拓展创新题
10.某车间有甲、乙两个小组,•甲组的工作效率比乙组的工作效率高25%,因此,甲组加工2 000
少个零件?
9.用35克盐配制成含盐量为28%的盐水溶液,则需要加水多少克?
11.甲、乙两工程队共同完成一项工程,乙队先单独做1•天后,再由两队合作两天就完成了全部工程,已知甲队单独完成工程所需的天数是乙队单独完成所需天数的2
,求甲、乙两队单独完成
3
各需多少天?
12.大华商场买进一批运动衣用了10 000元,每件按100•元卖出,全部卖出后所得的利润刚好是买进200件所用的款,•试问这批运动衣有多少件?
13.一批货物准备运往某地,有甲、乙、丙三辆卡车可以雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运这批货物分别用2a次、•a次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨,•若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨,问:(1)乙车每次所运货物是甲车所运货物的几倍?(2)现甲、乙、丙合运相同次数把这批货物运完时,•货主应付车主运费各多少元?(按每运1吨付运费20元计算)
14.一小船由A港到B港顺流需行6h,由B港到A港逆流需行8h.一天,•小船早晨6点由A港出发顺流到B港时,发现一救生圈在途中掉落在水中,立即返回,1h后找到救生圈,问:(1)若小船按水流速度由A港到B港漂流多少小时?(2)•救生圈是何时掉入水中的?
答案:
1.x=2
3,x=2 2.V1=22
1
PV
P
3.6
4
ny
m y
+
4.A 5.D 6.6 7.960
x
-960
20
x+
=4 8.D
9.90克10.甲:500个/•时乙:400个/时
11.甲队:4天乙队:6天12.200件
13.•乙车是甲车的2•倍,•甲2160元,乙、丙各4 320元.
14.本题的关键是(1)弄清顺流速度、•逆流速度和船在静水中速度与水速的关系;(2)弄清问题中的过程和找出包含的相等关系.
解:(1)设小船由A港漂流到B港用xh,则水速为1
x

∴1
6-1
x
=1
8
+1
x
解得x=48.
经检验x=48是原方程的根.
答:小船按水流速度由A港漂流到B港要48h.
(2)设救生圈y点钟落入水中,由问题(1)可知水流速度为1
48
,小船顺流由A港到B•港
用6h,逆流走1h,同时救生圈又顺流向前漂了1h,依题意有(12-y)(1
6-1
48
)=(1
8
+1
48
)×1,
解得y=11.
答:救生圈在中午11点落水.。

相关文档
最新文档