初中数学分式章节知识点及典型例题解析[1]
人教版八年级数学上册《分式》知识点复习及典例解析
人教版八年级数学上册《分式》知识点复习及典例解析《分式》知识点复习及典例解析一、复习目标1.理解并记住分式的乘法法则、除法法则,会进行简单的分式乘除法计算.能解决一些与分式的乘除运算有关的简单的实际问题.2.了解同分母分式的加减法法则,会进行同分母分式的加减运算,理解通分的意义,会通过通分把异分母的分式加减转化为同分母的分式加减.3.能熟练地进行分式的加减乘除混合运算,提高类比的能力和代数化归的能力.4.了解分式方程的概念,掌握解一元一次方程的分式方程的方法,了解产生增根的原因,会检捡一个数是不是分式方程的增根.5.能够列出可化为一元一次方程的分式方程解简单实际问题.二、重点难点重点:分式乘除法、加减法法则的应用. 分式方程的概念,分式方程的解法难点:异分母分式加减法. 解分式方程时,去分母可能会出现增根。
三、知识概要1. 分式的乘除乘法法则:分式乘分式时,分子的积作积的分子,分母的积作积的分母. 除法法则:分式除以分式,把除式的分子和分母颠倒位置后与被除式相乘. 式子表示:.;bcad c d b a d c b a bd ac d c b a =?=÷=? 2. 分式的加减(1)分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分.(2)法则:同分母分式相加减,分母不变,分子相加减.异分母分式相加减,先通分,变为同分母的分式,再加减.式子表示:;c b a c b c a ±=±.bdbc ad bd bc bd ad d c b a ±=±=± 3.分式方程的概念分式是一种表示具体情境中数量的模型,分式方程则是表示这些数量关系之间相等关系的模型,分式方程是分母中含有未知数的方程.4.分式方程的解法分式方程是转化为一元一次方程来求解,它是通过去分母实现转化的.主要步骤:去分母,去括号,移项,合并同类项,系数化为1,检验.因为分式方程可能产生增根,所以解分式方程最后一步“检验”,检查所解整式方程的根到底是不是分式方程的根.5.去分母的技巧解分式方程的基本思路是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.去分母是解分式方程的第一步,也是关键的一步,当分式方程中分式的分母是一次式时,可直接确定最简公分母,方程两边同乘以最简公分母后实现去分母,当各分式的分母中有二次式时,要先进行因式分解,再确定最简公分母,然后再去分母.6.验根的方法因为解分式方程可能出现增根,所以验根是必要的,验根的方法有两种,一种是把求得的未知数的值代入原方程进行检验,这种方法道理简单,而且可以检查解方程时有无计算错误,另一种是把求得的末知数的值代入最简公分母,看分母的值是否为零,这种方法比较简便,但不能检查解方程过程中出现的计算错误.7.列分式方程解决实际问题的方法步骤(1)、审:分析问题,寻找已知、未知及相相等关系,(2)、设:设恰当的未知数(3)、列:根据相等关系列出分式方程(4)、解:求出所列方程的解(5)、验:首先检验所求的解是不是分式方程的解,然后检验所求的解是否与实际符合(6)、答:写出答案.四、典例解析考点一、分式概念的运用例1.若分式||33x x --的值为零,则x 的值等于。
新人教版初中数学——分式方程-知识点归纳及典型题解析
新人教版初中数学——分式方程知识点归纳及典型题解析1.分式方程的概念分母中含有未知数的方程叫做分式方程.注意:“分母中含有未知数”是分式方程与整式方程的根本区别,也是判定一个方程为分式方程的依据.2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母.(2)解分式方程的步骤:①找最简公分母,当分母是多项式时,先分解因式;②去分母,方程两边都乘最简公分母,约去分母,化为整式方程;③解整式方程;④验根.易错提醒:解分式方程过程中,易错点有:①去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项;②忘记验根,最后的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.3.增根在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.由于可能产生增根,所以解分式方程要验根,其方法是将根代入最简公分母中,使最简公分母为零的根是增根,否则是原方程的根.温馨提示:增根虽然不是方程的根,但它是分式方程去分母后变形而成的整式方程的根.若这个整式方程本身无解,当然原分式方程就一定无解.4.分式方程的应用(1)分式方程的应用主要涉及工程问题,有工作量问题、行程问题等.每个问题中涉及到三个量的关系,如:工作时间=工作量工作效率,时间=路程速度等.(2)列分式方程解应用题的一般步骤: ①设未知数; ②找等量关系; ③列分式方程; ④解分式方程;⑤检验(一验分式方程,二验实际问题); ⑥答.考向一 解分式方程分式方程的解法:①能化简的应先化简;②方程两边同乘以最简公分母,化为整式方程; ③解整式方程;④验根.典例1 解分式方程:312242x x x -=--. 【解析】去分母得:6-x =x -2, 解得:x =4,经检验x =4是分式方程的解.【名师点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 典例2 方程33122x x x-+=--的解为_______________. 【答案】1x =【解析】方程两边同乘以(2)x -,得(32)3x x -+-=-, 解得1x =,检验:1x =时,20x -≠, 所以1x =是原分式方程的解. 故填1x =.【名师点睛】分式方程的解题步骤:去分母,去括号,移项,合并同类项,系数化为1.同时应注意分式方程必须检验.1.解分式方程13211x x-=--,去分母得 A .12(1)3x --=-B .12(1)3x --=C .1223x --=-D .1223x -+=2.方程24222x x x x =-+--的解为 A .2B .2或4C .4D .无解考向二 分式方程的解(1)求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根.(2)验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根;否则这个根就是原分式方程的根,若解出的根都是增根,则原方程无解. (3)如果分式本身约分了,也要代入进去检验.(4)一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.典例3 若关于x 的方程3111ax x x -=++的解为整数解,则满足条件的所有整数a 的和是 A .6B .0C .1D .9【答案】D【解析】分式方程去分母得:ax -1-x =3, 解得:x =41a -, 由分式方程的解为整数解,得到a -1=±1,a -1=±2,a -1=±4, 解得:a =2,0,3,-1,5,-3(舍去), 则满足条件的所有整数a 的和是9, 故选D .【名师点睛】此题考查了分式方程的解,熟练掌握运算法则是解本题的关键.典例4 若关于x 的分式方程121k x -=+的解为负数,则k 的取值范围为_______________. 【答案】3k <且1k ≠【解析】分式方程去分母转化为整式方程,去分母得122k x -=+,解得32x k =-,由分式方程的解为负数,可得203k -<且10x +≠,即213k -≠-,解得3k <且1k ≠.3.若关于x 的方程21111a x x -=++有增根,则a 的值为 A .-12B .12C .2D .2-4.关于x 的方程2334ax a x +=-的解为1x =,则a =A .1B .3C .-1D .-3考向三 分式方程的应用分式方程解实际问题的求解步骤:审题、设未知数、列方程、解方程、检验、写出答案,检验时要注意从方程本身和实际问题两个方面进行.典例5 某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为A .2010154x x +=+B .2010154x x -=+C .201015x x+=D .201015x x-= 【答案】A【解析】由题意可知原计划每天生产x 个零件,则实际每天生产了(4)x +个零件,实际15天共生产了(200)1x +个零件,因此根据题意可列分式方程为2010154x x +=+.故选A .典例6 元旦假期即将来临,某旅游景点超市用700元购进甲、乙两种商品260个,其中甲种商品比乙种商品少用100元,已知甲种商品单价比乙种商品单价高20%,那么乙种商品单价是A .2元B .2.5元C .3元D .5元【答案】B【解析】设乙种商品单价为x 元,则甲种商品单价为(1)20%x +元,由题易得,甲种商品花费300元,乙种商品花费400元,所以300400260120)%(x x+=+,解得 2.5x =元. 故选B .5.某单位向一所希望小学赠送1080本课外书,现用A ,B 两种不同的包装箱进行包装,单独使用B 型包装箱比单独使用A 型包装箱可少用6个;已知每个B 型包装箱比每个A 型包装箱可多装15本课外书.若设每个A 型包装箱可以装书x 本,则根据题意列得方程为A .10801080615x x =+- B .10801080615x x =-- C .10801080615x x=-+D .10801080615x x=++6.在“双十一”购物节中,某儿童品牌玩具淘宝专卖店购进了A 、B 两种玩具,其中A 类玩具的进价比B 玩具的进价每个多3元,经调查发现:用900元购进A 类玩具的数量与用750元购进B 类玩具的数量相同(1)求A 、B 的进价分别是每个多少元?(2)该玩具店共购进了A 、B 两类玩具共100个,若玩具店将每个A 类玩具定价为30元出售,每个B 类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则该淘宝专卖店至少购进A 类玩具多少个?1.下列关于x 的方程: ①153x -=,②121x x =-,③()111x x x -+=,④31x a b =-中,是分式方程的有 A .4个 B .3个 C .2个D .1个2.方程2131x x 的解为 A .3x B .4x C .5xD .5x3.解分式方程11222x x x-+=-- A .2x =是方程的解 B .3x =是方程的解 C .4x =是方程的解 D .无解 4.若关于x 的方程223ax a x =-的解为x =1,则a 等于 A .0.5B .-0.5C .2D .-25.若代数式12x -和321x +的值相等,则x 的值为 A .x =-7B .x =7C .x =-5D .x =36.若关于x 的方程3111k x x=---有增根,则k 的值为 A .3 B .1 C .0D .1-7.若分式方程3211x m x x =+++无解,则m = A .1- B .3- C .0D .2-8.关于x 的方程2211x a ax x++=--的解不小于0,则a 的取值范围是 A .2a ≤且1a ≠ B .2a ≥且3a ≠ C .2a ≤D .2a ≥9.一艘船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度.设船在静水中的速度为x 千米/时,则可列出的方程为A .906022x x =+-B .906022x x =-+ C .90602x x += D .60902x x+=10.若分式方程22111x m x x x x x++-=++有增根,则m 的值是A .-1或1B .-1或2C .1或2D .1或-211.已知关于x 的分式方程212x ax +=--的解为非负数,则a 的取值范围是 A .a ≤2B .a <2C .a ≤2且a ≠-4D .a <2且a ≠-412.一项工程,甲队单独做需20天完成,甲、乙合作需12天完成,则乙队单独做需多少天完成?若设乙单独做需x 天完成,则可得方程A .1112012x += B .2012x x +=1 C .111220+=xD .1112012x +=13.九年级(1)班学生周末从学校出发到某实践基地研学旅行,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地,已知快车的速度是慢车速度的1.2倍,如果设慢车的速度为x 千米/时,根据题意列方程得A .1501503012x x -=. B .1501503012x x +=. C .1501150212x x-=.D .1501150212x x+=. 14.整数a 满足下列两个条件,使不等式-2≤352x +<12a +1恰好只有3个整数解,使得分式方程13522ax x x x-----=1的解为整数,则所有满足条件的a 的和为 A .2B .3C .5D .615.某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,施工时对“……”,设实际每天铺设管道x 米,则可得方程300030001510x x-=-.根据此情景,题中用“……”表示的缺失的条件应补为 A .每天比原计划多铺设10米,结果延期15天才完成B .每天比原计划少铺设10米,结果延期15天才完成C .每天比原计划多铺设10米,结果提前15天才完成D .每天比原计划少铺设10米,结果提前15天才完成16.某中学为了创建“最美校园图书屋”新购买了一批图书,其中科普类图书平均每本的价格是文学类图书平均每本书价格的1.2倍,已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是 A .20元B .18元C .15元D .10元17.分式方程xx 412=+的解为_______________. 18.若关于x 的分式方程33x ax x+--=2a 无解,则a 的值为__________. 19.关于x 的方程123(2)(3)x x x ax x x x ++-=-+-+的解为非正数,则a 的取值范围为__________. 20.分式72x -与2x x-的和为4,则x 的值为_______________. 21.已知x =3是方程211kx k x x---=2的解,那么k 的值为__________. 22.某物流仓储公司用A ,B 两种型号的机器人搬运物品,已知A 型机器人比B 型机器人每小时多搬运20 kg ,A 型机器人搬运1000 kg 所用时间与B 型机器人搬运800 kg 所用时间相等,设B 型机器人每小时搬运x kg 物品,列出关于x 的方程为_______________.23.解下列方程:(1)1233x x x=+--; (2)2316111x x x +=+--;(3 (4)241111x x x +=---.24.“六一”儿童节前,某玩具商店根据市场调查,用1500元购进一批儿童玩具,上市后很快脱销,接着又用2700元购进第二批,所购数量是第一批数量的1.5倍,但每套进价多了10元,求第二批玩具每套的进价是多少元?25.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元.甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?26.某商店计划购进甲、乙两种商品,乙种商品的进价是甲种商品进价的九折,用3600元购买乙种商品要比购买甲种商品多买10件.(1)求甲、乙两种商品的进价各是多少元?(2)该商店计划购进甲、乙两种商品共80件,且乙种商品的数量不低于甲种商品数量的3倍.甲种商品的售价定为每件80元,乙种商品的售价定为每件70元,若甲、乙两种商品都能卖完,求该商店能获得的最大利润.A .x =1B .x =-1C .x =2D .x =-2A .x =-1B .x =1C .x =2D .x =-23.解分式方程21x x -+212x-=3时,去分母化为一元一次方程,正确的是( ) A .x +2=3B .x -2=3C .x -2=3(2x -1)D .x +2=3(2x -1)A .m ≤3B .m <3C .m >-3D .m ≥-35.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =- B .1201508x x =+ C .120150= D .120150=7.方程1x -+21x -=1的解是__________.8.一艘轮船在静水中的最大航速为30 km /h ,它以最大航速沿江顺流航行120 km 所用时间,与以最大航速逆流航行60 km 所用时间相同,则江水的流速为__________km /h .9.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A -B -C 横穿双向行驶车道,其中AB =BC =6米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得:__________.10.解分式方程:21x-=251x-.12.端午节前后,张阿姨两次到超市购买同一种粽子.节前,按标价购买,用了96元;节后,按标价的6折购买,用了72元,两次一共购买了27个.这种粽子的标价是多少?13.列方程解应用题:小明和小刚约定周末到某体育公园打羽毛球.他们两家到体育公园的距离分别是1200米,3000米,小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度.14.列方程(组)解应用题:德上高速公路巨野至单县段正在加速建设,预计2019年8月竣工.届时,如果汽车行驶高速公路上的平均速度比在普通公路上的平均速度提高80%,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在高速公路上的平均速度.15.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.16.列方程解应用题:小明和小刚约定周末到某体育公园打羽毛球.他们两家到体育公园的距离分别是1200米,3000米,小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度.1.【答案】A【解析】方程两边同乘以1x -得到12(1)3x --=-, 故选A . 2.【答案】C【解析】去分母得:2x =(x -2)2+4,分解因式得:(x -2)[2-(x -2)]=0, 解得:x =2或x =4,经检验x =2是增根,分式方程的解为x =4, 故选C . 3.【答案】B【解析】方程21111a x x -=++两边同时乘以(1)x +,可得211a x -=+, 因为方程21111a x x -=++有增根,所以最简公分母10x +=,即增根是1x =-, 把1x =-代入整式方程,可得12a =.故选B . 4.【答案】D【解析】把x =1代入原方程得:23314a a +=-, 去分母得,8a +12=3a -3, 解得a =-3, 故选D . 5.【答案】C【解析】设每个A 型包装箱可以装书x 本,则每个B 型包装箱可以装书(15)x +本,根据单独使用B 型包装箱比单独使用A 型包装箱可少用6个,列方程得10801080615x x=-+, 故选C .6.【解析】(1)设B 类玩具的进价为x 元,则A 类玩具的进价是(3)x +元,由题意得:9007503x x=+, 解得:15x =,经检验:15x =是原方程的解. 所以15+3=18(元).答:A 类玩具的进价是18元,B 类玩具的进价是15元.(2)设购进A 类玩具a 个,则购进B 类玩具(100)a -个,由题意得:1210(100)1080a a +-≥,解得:40a ≥,答:该淘宝专卖店至少购进A 类玩具40个.1.【答案】C【解析】关于x 的方程①153x -=,该方程分母中不含未知数,不是分式方程. 关于x 的方程②121x x =-,该方程分母中含有未知数,是分式方程. 关于x 的方程③()111x x x -+=,该方程分母中含有未知数,是分式方程.关于x 的方程④31x a b =-中,该方程分母中不含未知数,不是分式方程.综上,是分式方程的有②、③,共2个. 故选C . 2.【答案】C【解析】方程两边同乘()(31)x x +-,可得()213x x -=+,即223x x -=+,即5x =, 检验:当5x =时,1)03()(x x -≠+,所以5x =是原方程的根, 故选C . 3.【答案】D【解析】方程两边分别乘以x -2得:1-x +2(x -2)=-1, 去括号整理得:x =2, 经检验x =2是方程的增根, 故原方程无解. 故选D . 4.【答案】B【解析】把x =1代入方程223ax a x =-得:2213a a =-, 解得:a =-0.5,经检验a =-0.5是原方程的解, 故选B . 5.【答案】B【解析】根据题意得:13221x x =-+, 去分母得:3x -6=2x +1, 解得:x =7,经检验x =7是分式方程的解. 故选B . 6.【答案】A【解析】将方程的两边同时乘以(1)x -,可得31x k =-+,解得4x k =-,根据方程有增根可得1x =,即41k -=,所以3k =.故选A . 7.【答案】B【解析】去分母,可得32(1)x m x =++,解得2x m =+, 因为分式方程3211x mx x =+++无解,所以12130x m m +=++=+=,解得3m =-, 故选B . 8.【答案】A 【解析】2211x a ax x++=-- 方程两边同时乘以(x -1)得:x +a -2a =2(x -1), 解得:x =2-a ,∵方程的解不小于0,∴2-a ≥0,解得:a ≤2, ∵分式方程分母不为0,∴2-a ≠1,解得:a ≠1, 即a 的取值范围是:a ≤2且a ≠1, 故选A . 9.【答案】A【解析】因为船在静水中的速度为x 千米/时,所以由题意可得906022x x =+-, 故选A . 10.【答案】D【解析】方程两边都乘x (x +1),得2x 2-(m +1)=(x +1)2, ∵最简公分母x (x +1)=0, ∴x =0或x =-1. 当x =0时,m =-2;当x =-1时,m =1.故选D . 11.【答案】C 【解析】212x ax +=--, 去分母可得:22x a x +=-+, 移项可得:22x x a +=- , 合并同类项可得:32x a =-, 系数化为1可得:23ax -=, 根据分式方程的解为非负数和分式有解可得:203a -≥,且223a-≠,解得:a ≤2且a ≠-4, 故选C . 12.【答案】D【解析】设乙单独做需x 天完成, 由题意得:1112012x +=,故选D . 13.【答案】C【解析】设慢车的速度为x 千米/小时,则快车的速度为1.2x 千米/小时, 根据题意可得:1501150212x x-=.. 故选C . 14.【答案】C【解析】由不等式组-2≤352x +<12a +1,可知-3≤x <33a -, ∵x 有且只有3个整数解,∴-1<33a -≤0,∴0<a ≤3, 由分式方程可知:x =-64a -,将x =-64a -代入x -2≠0,∴a ≠1,∵关于x 的分式方程有整数解,∴6能被a -4整除, ∵a 是整数,∴a =2、3、5、6、7、10、-2; ∵0<a ≤3,∴a =2或3,∴所有满足条件的整数a 之和为5, 故选C .【解析】题中方程表示原计划每天铺设管道(10)x -米,即实际每天比原计划多铺设10米,结果提前15天完成, 故选C . 16.【答案】A【解析】设文学类图书平均价格为x 元/本,则科普类图书平均价格为1.2x 元/本, 依题意得:12000120001001.2x x-=, 解得:x =20,经检验,x =20是原方程的解,且符合题意. 故选A . 17.【答案】2x =【解析】方程x x 412=+两边都乘以x ,可得24x +=,解得2x =,检验:当2x =时,0x ≠,即2x =是原方程的解,故答案为:2x =. 18.【答案】1或12【解析】去分母得:x -a =2a (x -3), 整理得:(1-2a )x =-5a , 当1-2a =0时,方程无解,故a =12; 当1-2a ≠0时,x =521aa -=3时,分式方程无解,则a =3, 则a 的值为:1或12;故答案为:1或12.19.【答案】a ≤3且a ≠-12【解析】去分母,得:(x +1)(x +3)-x (x -2)=x +a ,解得x =35a -, 由题意知35a -≤0且35a -≠-3, 解得:a ≤3且a ≠-12, 故答案为:a ≤3且a ≠-12.【解析】首先根据分式72x -与2xx-的和为4,可得7422x x x +=--,去分母,可得748x x -=-,解得3x =,经检验3x =是原方程的解,故x 的值为3.故答案为:3.21.【答案】2【解析】当x =3时,有321223k k --=, 去分母得:9k -4k +2=12,5k =10, 解得:k =2,故答案为:2. 22.【答案】100080020x x=+ 【解析】设B 型机器人每小时搬运x kg 物品,则A 型机器人每小时搬运(x +20)kg 物品,根据题意可得100080020x x =+,故答案为:100080020x x=+.23.【解析】(1)去分母,可得126x x =--,解得7x =,经检验7x =是分式方程的解, 所以方程1233x x x=+--的解为7x =. (2)去分母,可得3316x x -++=,解得2x =, 经检验2x =是分式方程的解,所以方程2316+=的解为2x =.(3 即5(4)2111x x =---,去分母得2241(1)x x =-++,化简得321x =+,解得1x =, 经检验1x =为方程的增根, 所以方程无解.24.【解析】设第一批玩具每套的进价是x 元,则1500x×1.5=270010x +,解得:x =50.经检验:x =50是原方程的解,则第二批玩具每套的进价是x +10=60(元). 答:第二批玩具每套的进价为60元.25.【解析】(1)设乙种款型T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,根据题意:78006400301.5x x+=, 解得40x =,经检验,40x =是原方程的解,且符合题意,1.560x =.答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件. (2)6400160x=,16030130-=(元), 13060%6016060%(402)160[1(160%)0.5](402)⨯⨯+⨯⨯÷-⨯-+⨯⨯÷468019206405960=+-=(元)答:售完这批T 恤衫商店共获利5960元.26.【解析】(1)设甲种商品的进价为x 元/件,则乙种商品的进价为0.9x 元/件,36003600100.9x x+=, 解得,x =40,经检验,x =40是原分式方程的解, ∴0.9x =36,答:甲、乙两种商品的进价各是40元/件、36元/件.(2)设甲种商品购进m 件,则乙种商品购进(80-m )件,总利润为w 元, w =(80-40)m +(70-36)(80-m )=6m +2720, ∵80-m ≥3m , ∴m ≤20,∴当m =20时,w 取得最大值,此时w =2840, 答:该商店获得的最大利润是2840元.经检验x=-1是原方程的根;故选B.2.【答案】A【解析】方程两边同时乘以x(x-1)得,x(x-5)+2(x-1)=x(x-1),解得x=-1,把x=-1代入原方程的分母均不为0,故x=-1是原方程的解.故选A.3.【答案】C【解析】方程两边都乘以(2x-1),得x-2=3(2x-1),故选C.7.【答案】x=-2【解析】2121 1(1)(1)xx x x--=-+-,去分母,得(2x-1)(x+1)-2=(x+1)(x-1),去括号,得2x2+x-3=x2-1,移项并整理,得x2+x-2=0,所以(x+2)(x-1)=0,解得x=-2或x=1,经检验,x=-2是原方程的解.故答案为:x=-2.8.【答案】10【解析】设江水的流速为x km/h,根据题意可得:12030x+=6030x-,解得:x=10,10.【解析】两边都乘以(x+1)(x-1),得:2(x+1)=5,解得:x=32,检验:当x=32时,(x+1)(x-1)=54≠0,∴原分式方程的解为x=32.11.【答案】x=2【解析】方程两边都乘以(x+1)(x-1),去分母得x(x+1)-(x2-1)=3,即x2+x-x2+1=3,解得x=2.检验:当x=2时,(x+1)(x-1)=(2+1)(2-1)=3≠0,∴x=2是原方程的解,故原分式方程的解是x=2.12.【解析】设这种粽子的标价是x元/个,则节后的价格是0.6x元/个,依题意,得:96x+720.6x=27,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:这种粽子的标价是8元/个.经检验得:x=50是原方程的根,故3x=150,答:小明的速度是50米/分钟,则小刚骑自行车的速度是150米/分钟.14.【解析】设汽车行驶在普通公路上的平均速度是x千米/分钟,则汽车行驶在高速公路上的平均15.【解析】设甲校师生所乘大巴车的平均速度为x km/h,则乙校师生所乘大巴车的平均速度为1.5x km/h.根据题意得24027011.5x x-=,解得x=60,经检验,x=60是原分式方程的解,1.5x=90.答:甲、乙两校师生所乘大巴车的平均速度分别为60 km/h和90 km/h.16.【解析】设小明的速度是x米/分钟,则小刚骑自行车的速度是3x米/分钟,根据题意可得:1200x-4=30003x,解得:x=50,经检验得:x=50是原方程的根,故3x=150,答:小明的速度是50米/分钟,则小刚骑自行车的速度是150米/分钟.。
人教版初中八年级数学上册第十五章《分式》知识点(含答案解析)(1)
一、选择题1.使分式21xx -有意义的x 的取值范围是( )A .x ≠1B .x ≠0C .x ≠±1D .x 为任意实数2.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ayy y++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4B .5C .6D .33.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6-4.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510yy a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2 B .3C .6D .115.已知分式34x x -+的值为0,则x 的值是( ) A .3B .0C .-3D .-46.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④7.下列各式中,正确的是( )A .22a a b b =B .11a ab b +=+ C .2233a b a ab b= D .232131a ab b ++=--8.已知2340x x --=,则代数式24xx x --的值是( )A .3B .2C .13D .129.若2x 11x x 1+--的值小于3-,则x 的取值范围为( ) A .x 4>- B .x 4<-C .x 2>D .x 2<10.若分式()22222x y x y a x a yax ay+-÷-+的值等于5,则a 的值是( )A .5B .-5C .15D .15-11.2222x y x y x y x y -+÷+-的结果是( ) A .222()x y x y ++B .222()x y x y +-C .222()x y x y -+D .222()x y x y ++12.020*******)(0.125)8+⨯的结果是( )A B 2C .2D .013.下列各式中,无论x 取何值,分式都有意义的是( ). A .132x - B .213x + C .231x x+ D .21xx + 14.当1x 0-<<时, 1x -,0x ,2x 的大小顺序是( ) A .102x x x -<< B .012x x x -<<C .021x x x -<<D .120x x x -<<15.计算a ba b a÷⨯的结果是() A .aB .2aC .2b aD .21a二、填空题16.已知5a b +=,6ab =,b aa b+=______. 17.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 18.已知5,3a b ab -==,则b aa b+的值是__________. 19.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店抓住商机购进甲、乙、丙三种口罩进行销售.已知销售每件甲种口罩的利润率为30%,每件乙种口罩的利润率为20%,每件丙种口罩的利润率为5%.当售出的甲、乙、丙口罩件数之比为1:3:2时,药店得到的总利润率为20%;当售出的甲、乙、丙口罩件数之比为3:2:2时,药店得到的总利润率为24%.因丙种口罩利润较低,现药店准备只购进甲、乙两种口罩进行销售,若该药店想要获得的总利润率为28%,则该药店应购进甲、乙两种口罩的数量之比是______.20.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人.21.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品? 根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________. (2)乙型机器人每小时搬运产品_______________kg .22.计算:2120192-⎛⎫-= ⎪⎝⎭______. 23.如图,将形状大小完全相同的“□”按照一定规律摆成下列图形,第1幅图中“□”的个数为1a ,第2幅图中“□”的个数为2a ,第3幅图中“□”的个数为3a ,……,以此类推,若123201922222020n a a a a +++⋅⋅⋅+=(n 为正整数),则(1)5a =________;(2)n 的值为________.24.已知(3)1a a -=,则整数a 的值为______. 25.方程11212x x =+-的解是x =_____. 26.方程22020(1)1x x x ++-=的整数解的个数是_____.三、解答题27.雪梨是石家庄市某地的特色时令水果.雪梨上市后,水果店的老板用2400元购进一批雪梨,很快售完;老板又用3750元购进第二批雪梨,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)求第一批雪梨每件进价是多少元?(2)老板以每件225元的价格销售第二批雪梨,售出80%后,为了尽快售完,剩下的决定打折促销,要使得第二批雪梨的销售利润为2460元,剩余的雪梨每件售价应该打几折?(利润=售价-进价) 28.计算:(1)化简:()()22n m n m n -++;(2)解分式方程:2132163x x x -=---. 29.分式计算与解方程:(1)21211a a a a ----; (2)121221xx x +=-+. 30.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中5x =.。
人教版八年级数学分式知识点及典型例题
d. 顺水逆水问题 : v 顺水 =v 静水 +v 水 . v 逆水=v 静水 -v 水 .
工程问题: 例 1:一项工程,甲需 x 小时完成,乙需 y 小时完成,则两人一起完成这项工程需要
xy
x xy y
)A
7
B
7C
2D
2
2
2
7
7
例 5:已知 2x
3y ,求 xy x2 y2
y2
的值;
x2 y2
例 6:如果
a =2,则 b
a 2 ab b 2 a2 b2
=
例 7:已知
a 与 b 的和等于 x2 x2
4x
2
,则 a=
x4
,b=
。
15 、分式的应用题:
( 1)列方程应用题的步骤是什么? (1) 审; (2) 设; (3) 列; (4) 解; (5) 答. ( 2)应用题有几种类型;基本公式是什么?基本上有四种:
( 1)使分式有意义:令分母≠ 0 按解方程的方法去求解;
( 2)使分式无意义:令分母 =0 按解方程的方法去求解;
注意:( x 2 1 ≠ 0)
例 1:当 x 例 3:当 x
时,分式 1 有意义; x5
时,分式
1
2
有意义。
x1
例 2:分式 2x 1 中,当 x ____ 时,分式没有意义 2x
例 4:当 x
3 ,求
x2 y2
4
x 2 2xy y 2
xy y 2
初中数学分式章节知识点及典型例题解析[1]
分式的知识点及典型例题分析1、分式的定义:例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2-a 2、m 1、65xy x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 .⑴275x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +. (2)下列式子,哪些是分式?5a -; 234x +;3y y ; 78x π+;2x xy x y +-;145b-+.2、分式有,无意义,总有意义:(1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12+x ≠0)例1:当x 时,分式51-x 有意义; 例2:分式xx -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义。
例4:当x 时,分式12+x x有意义例5:x ,y 满足关系 时,分式x yx y-+无意义; 例6:无论x 取什么数时,总是有意义的分式是( )A .122+x x B.12+x x C.133+x x D.25x x - 例7:使分式2+x x有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2<x例8:要是分式)3)(1(2-+-x x x 没有意义,则x 的值为( )A. 2 B.-1或-3 C. -1 D.3同步练习题:3、分式的值为零:使分式值为零:令分子=0且分母≠0,注意:当分子等于0使,看看是否使分母=0了,如果使分母=0了,那么要舍去。
例1:当x 时,分式121+-a a的值为0 例2:当x 时,分式112+-x x 的值为0例3:如果分式22+-a a 的值为为零,则a 的值为( ) A. 2± B.2 C. 2- D.以上全不对例4:能使分式122--x xx 的值为零的所有x 的值是 ( )A 0=xB 1=xC 0=x 或1=xD 0=x 或1±=x例5:要使分式65922+--x x x 的值为0,则x 的值为( )A.3或-3 B.3 C.-3 D 2例6:若01=+aa,则a 是( )A.正数 B.负数 C.零 D.任意有理数 4、分式的基本性质的应用:分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
分式章节知识点总结归纳解析
分式重点知识复习及相应练习5、 下列各式:土,也,迥(宀1),哄丄(―刃中,是分式的共有()2 x n 4 a-b mA 、1个B 、2个C 、3个D 、4个_^a-b x + 3 5 + x a + b _ 1 t亠6、 在 ---- , ----- , ---- , ------ ,2 —中,是分式的有()2 x 7T a-b aA 、1个B 、2个C 、3个D 、4个7、 下列各式:巳二2,兰旦,土上,—(X 2 +1),—(x-y )中,是分式的共有()2 x 7t 4 a-b mA 、1个B 、2个C 、3个D 、4个A二、分式有意义;分式亓中,当BHO 时,分式有意义:当B=0时,分式无意义。
2 x 1、 若分式——有意义,则X 的取值范围是 _________ :当 ___________ 时,分式 ------- 无意义.3-x2x-3x-32、 己知分式 ------------ ,当兀=2时,分式无意义,则d 的值爬 _______________x~ -5x +a4W-3 3、 当x_时,分式一有意义,当兀= 时,分式一无意义.x 2-lx-3 2x x + 1 4、 当xH —时,分式 ----- 有意义;当x=— 时,分式 ----------- 有意义:X+2X-14x — 2 5、 当x=—时,分式一有意义。
当时,分式 ---------------------------- 无意义:x 2-l3x + 8|x|-36、 当XH_________ 时,分式■无意义.x-3A 一、分式的概念:形如万(A 、B 是整式,B 中含有字母,BHO )的式子。
1、在代数式3x + g, 6x 2y 3 2 b 2abc^ x 2 -1 ——,—+ —,a 35+y X~ ,‘一中,分式的个数有. X-1 X 个。
2、下列代数式中:- 71 1]2_j2夕厘,是分式的有: 3.各式中,一x+ — y,3 2 1 1 4xy X X 分式的个数有() 期'5 +a jr n A 、1 个B 2个 c 、3个D 、4个亠 a_b x + 35 + x a + b2 +丄中,a绘分式的有()2x7t a-bA 、1个B 、2个C 、3个D 、4个x+ y7、 当X 为任意实数时,下列分式一定有意义的是( )2 1 1 1 A. ------ B. — ---- C. — D.—; ---x+3x- -2|x|jr+18、 下列分式,对于任意的X 的值总有意义的是()x —5x —1x" +1 X" — 1A 、 jB 、jC 、D 、x~—1 x~ +18 兀X —19、当兀为任意实数时,下列分式一定有意义的是()2 11 A. B. C. x+3x 2-2x 1 D ,,X~ +1三、分式的值为零:两个条件同时满足:①分子为0,即A=0;②分式有意义,即BH0X 2 — 1I 、分式 -------- 的值为0,则X 的值是 _______________X + 1%■ -9浜若分式厂市的值族则询值为( A.O B. -3C. 36 3或一32x-7 3、 当%= _________ 时,分式 ---- 的值为1.x-32x +14、 分式 ------ 中,当兀= ________ 时,分式没有意义,当/ = _______ 时,分式的值为寥:2-xX" — x5、 能使分式 一的值为零的所有X 的值是()X' -IX= 1 C 、X = 0 或X=l D 、X=0或X = ±lx-b,分式无意义,兀=4时,此分式的值为0,则a+b 的值等于(x-aB. -2C. 6D. 27、解下列不等式口20.(4) /+5 >0 X+3 x~ + 2x + 3四、分式的基本性质:分式的分子和分母同时乘以(或除以〉同一个不等于0的整式,分式的值不变。
(完整版)初中数学分式方程典型例题讲解
第十六章分式知识点和典型例习题【知识网络】【思想方法】 1.转化思想转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.第一讲 分式的运算【知识要点】1.分式的概念以及基本性质;2.与分式运算有关的运算法则3.分式的化简求值(通分与约分)4.幂的运算法则【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd ac ac •=,b c b d bda d a c ac÷=•= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;am●a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m= a mb n, (a m)n= amn7.负指数幂: a-p=1pa a 0=18.乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)= a2- b 2 ;(a ±b)2= a 2±2ab+b 2(一)、分式定义及有关题型题型一:考查分式的定义(一)分式的概念: 形如AB(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.【例1】下列代数式中:yx yx y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件:1、分母中字母的取值不能使分母值为零,否则分式无意义2、当分子为零且分母不为零时,分式值为零。
人教版八年级数学上册第十五章分式知识点总结和题型归纳(无答案)
分式知识点总结和题型归纳第一部分分式的运算 (一)分式定义及有关题型题型一:考查分式的定义 :A一般地,如果 A ,B 表示两个整数,并且 B 中含有字母,那么式子 A 叫做分式,A 为分子,BB 为分母。
i-y ,是分式的有: x y题型二:考查分式有意义的条件 分式有意义:分母不为 0( B 0) 分式无意义:分母为 0( B 0) 【例1】当x 有何值时,下列分式有意义(1)—(2)-3^ ( 3)(4)( 5)丄x4x 22 x 21| x| 3x1x题型三:考查分式的值为 0的条件分式值为0:分子为0且分母不为0 ( A 0)B 0【例1】当x 取何值时, 下列分式的值为0.(1)Jx 3(2)|x| 2 x 242(3) x 22x 3x 5x 6【例2】当x 为何值时,下列分式的值为零:题型四:考查分式的值为正、负的条件分式值为正或大于 0:分子分母冋号(A或A 0 )B 0B 0【例1】下列代数式中:(1)5 |x 1 | x 4(2) 2^5 xx 6x 5x 1 -,2x分式值为负或小于0:分子分母异号(A °或八°)B 0 B0【例"(1)当x为何值时,分式为正;(3)当x为何值时,分式工为非负数.【例2】解下列不等式(1)1古 °(2)U题型五:考查分式的值为1,-1的条件分式值为1 :分子分母值相等(A=B)分式值为-1 :分子分母值互为相反数(A+B=°)【例1】若也L上的值为1,-1,则x的取值分别为________________________ x 2思维拓展练习题:a b1、若a>b>0, a2+ b2—6ab=0,则一a b2、一组按规律排列的分式:b2 b5 b8b11,2 , 3, 4 , L L ( ab 0),则第n个分式为a a a a(2)当x为何值时,分式5 x23 (x 1)2为负;A3、已知x23x 1 0,求X2 -2的值。
分式知识点题型总结
分式知识点题型总结分式是数学中的一个重要概念,在代数运算和实际问题中都有广泛的应用。
下面我们来对分式的相关知识点和常见题型进行总结。
一、分式的定义形如\(\dfrac{A}{B}\)(\(A\)、\(B\)是整式,且\(B\)中含有字母)的式子叫做分式。
其中\(A\)叫做分子,\(B\)叫做分母。
需要注意的是:1、分式的分母不能为零,否则分式无意义。
2、分式的值为零的条件是分子为零且分母不为零。
二、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为零的整式,分式的值不变。
即:\(\dfrac{A}{B} =\dfrac{A \times M}{B \times M}\),\(\dfrac{A}{B} =\dfrac{A \div M}{B \div M}\)(\(M\)为不为零的整式)三、分式的约分与通分1、约分:把一个分式的分子和分母的公因式约去,叫做分式的约分。
约分的关键是确定分子和分母的公因式。
2、通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
通分的关键是确定几个分式的最简公分母。
四、分式的运算1、分式的乘除乘法法则:\(\dfrac{a}{b} \times \dfrac{c}{d} =\dfrac{ac}{bd}\)除法法则:\(\dfrac{a}{b} \div \dfrac{c}{d} =\dfrac{a}{b} \times \dfrac{d}{c} =\dfrac{ad}{bc}\)2、分式的加减同分母分式相加减:\(\dfrac{a}{c} ±\dfrac{b}{c} =\dfrac{a ± b}{c}\)异分母分式相加减:先通分,化为同分母分式,再按照同分母分式的加减法法则进行计算。
五、分式方程1、定义:分母中含有未知数的方程叫做分式方程。
2、解分式方程的步骤:去分母,将分式方程化为整式方程。
解整式方程。
验根,将求得的未知数的值代入原分式方程的分母,若分母不为零,则是原方程的解;若分母为零,则不是原方程的解,应舍去。
分式知识点总结及例题
分式知识点总结及例题一、分式的概念分式是指以分数的形式表示的数,通常由分子和分母两部分组成,分子表示分数的一部分,分母表示分数的总份额。
分式通常用来表示比例、部分和整体的关系。
二、分式的基本性质1. 分式的分子和分母可以分别约分。
2. 分式的值与分子和分母的乘除有关。
3. 分式的运算可以转化为通分和通分的计算问题。
三、分式的化简分式的化简是指将分式表示的数化为最简形式的操作,主要包括分子分母约分、常数和分式的转化等。
四、分式的加减法分式的加减法是指对分式的分子和分母进行通分后,进行加减运算的操作。
五、分式的乘法和除法分式的乘法是指对分式的分子和分母分别进行乘法运算后,化简为最简形式的操作。
分式的除法是指对分式进行倒数运算,然后化简为最简形式的操作。
六、分式的应用分式在实际问题中有着广泛的应用,如物体的比例尺、物体的比重、长方形的面积和周长等问题都可以用分式进行表示和计算。
七、例题1. 化简分式$\frac{6}{8}$解:分子和分母可以同时除以2,得到$\frac{6}{8}=\frac{3}{4}$,所以$\frac{6}{8}$的最简形式为$\frac{3}{4}$。
2. 计算$\frac{3}{5}+\frac{2}{3}$解:先将两个分式通分,得到$\frac{3}{5}+\frac{2}{3}=\frac{9}{15}+\frac{10}{15}=\frac{19}{15}$,再化简得$\frac{19}{15}=1 \frac{4}{15}$。
3. 计算$\frac{5}{6} \times \frac{2}{3}$解:将两个分式分别相乘得到$\frac{5}{6} \times \frac{2}{3}=\frac{10}{18}$,再将$\frac{10}{18}$化简为最简形式,得$\frac{10}{18}=\frac{5}{9}$。
4. 计算$\frac{4}{5} \div \frac{2}{3}$解:将两个分式进行倒数运算,得到$\frac{4}{5} \div \frac{2}{3}=\frac{4}{5} \times\frac{3}{2}=\frac{12}{10}=1 \frac{2}{10}=1 \frac{1}{5}$。
初中数学方程与不等式之分式方程知识点总复习附答案解析(1)
初中数学方程与不等式之分式方程知识点总复习附答案解析(1)一、选择题1.关于x 的分式方程230+=-x x a解为4x =,则常数a 的值为( ) A .1a = B .2a =C .4a =D .10a =【答案】D 【解析】 【分析】根据分式方程的解的定义把x=4代入原分式方程得到关于a 的一次方程,解得a 的值即可. 【详解】解:把x=4代入方程230+=-x x a,得 23044a +=-, 解得a=10.经检验,a=10是原方程的解 故选D .点睛:此题考查了分式方程的解,分式方程注意分母不能为0.2.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为( )A .10000x ﹣10=147000(140)0x + B .10000x +10=147000(140)0x + C .100000(140)0x -﹣10=14700x D .100000(140)0x -+10=14700x【答案】B 【解析】 【分析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可. 【详解】解:设第一批购进x 件衬衫,则所列方程为:10000x +10=()1470001400x +.故选B .此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.3.如果关于x 的分式方程11222a x x-+=--有整数解,且关于x 的不等式组43(1)211(1)22x x x x a ≥-⎧⎪⎨-+<-⎪⎩有且只有四个整数解,那么符合条件的所有整数a 的和是( ) A .4 B .-2C .-3D .2【答案】A 【解析】 【分析】分式方程去分母转化为整式方程,表示出整数方程的解,不等式组整理后,由解只有四个整数解,确定出a 的值,求出之和即可. 【详解】解:分式方程去分母得:1-a+2x-4=-1, 解得:22a x +=,且222a +≠,a 为偶数, 即2a ≠,a 为偶数,不等式组整理得:34x a x ≥-⎧⎪⎨⎪⎩<,由不等式组只有四个整数解,得到x=-3,-2,-1,0,可得0<4a≤1,即0<a≤4,即a=1,2,3,4, 经检验a=4, 则和为4, 故选:A . 【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.4.已知关于x 的分式方程211x k x x-=--的解为正数,则k 的取值范围为( ) A .20k -<< B .2k >-且1k ≠- C .2k >-D .2k <且1k ≠【答案】B 【解析】 【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案.解:211x k x x-=--Q, 21x kx +∴=-, 2x k ∴=+,Q 该分式方程有解,21k ∴+≠, 1k ∴≠-, 0x Q >, 20k ∴+>, 2k ∴>-,2k ∴>-且1k ≠-, 故选:B . 【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.5.对于非零实数a 、b ,规定a ⊗b =21a b a-.若x ⊗(2x ﹣1)=1,则x 的值为( ) A .1 B .13 C .﹣1D .-13【答案】A 【解析】 【分析】 【详解】解:根据题中的新定义可得:()21x x ⊗-=21121x x x-=-, 解得:x=1,经检验x=1是分式方程的解, 故选A . 【点睛】本题考查了新定义、解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.6.若关于x 的分式方程233x mx x -=--有增根,则m 的值是( ) A .1- B .1C .2D .3【答案】B 【解析】根据分式方程的增根的定义得出x-3=0,再进行判断即可. 【详解】 去分母得:x-2=m , ∴x=2+m ∵分式方程233x mx x -=--有增根, ∴x-3=0, ∴x= 3, ∴2+m=3, 所以m=1, 故选:B . 【点睛】本题考查了对分式方程的增根的定义的理解和运用,能根据题意得出方程x-3=0是解此题的关键,题目比较典型,难度不大.7.从4-,2-,1-,0,1,2,4,6这八个数中,随机抽一个数,记为a .若数a 使关于x 的一元二次方程()22240x a x a --+=有实数解.且关于y 的分式方程1311y a y y+-=--有整数解,则符合条件的a 的值的和是( ) A .6- B .4- C .2- D .2【答案】C 【解析】 【分析】由一元二次方程()22240x a x a --+=有实数解,确定a 的取值范围,由分式方程1311y a y y+-=--有整数解,确定a 的值即可判断. 【详解】方程()22240x a x a --+=有实数解,∴△=4(a −4)2−4a 2⩾0, 解得a ⩽2∴满足条件的a 的值为−4,−2,−1,0,1,2方程1311y a y y+-=-- 解得y=2a+2 ∵y 有整数解 ∴a=−4,0,2,4,6综上所述,满足条件的a 的值为−4,0,2, 符合条件的a 的值的和是−2 故选:C 【点睛】本题考查了一元二次方程根据方程根的情况确定方程中字母系数的取值范围;以及分式方程解的定义:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫分式方程的解.8.把分式方程11122x x x--=--,的两边同时乘以x-2,约去分母,得( ) A .1-(1-x)=1 B .1+(1-x)=1C .1-(1-x)=x-2D .1+(1-x)=x-2【答案】D 【解析】 【分析】本题需要注意的有两个方面:①、第二个分式的分母为2-x ,首先要化成x -2;②、等式右边的常数项不要漏乘. 【详解】 解:11122x x x--=-- 11+122x x x -=-- 两边同时乘以x-2,约去分母,得1+(1-x)=x-2 故选:D 【点睛】本题考查解分式方程.9.某一景点改造工程要限期完成,甲工程队独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,若设工程期限为x 天,则下面所列方程正确的是( ) A .4116x x x +=+- B .416x x x =-+ C .4116x x x +=-- D .4116x x x +=-+ 【答案】D 【解析】 【分析】首先根据工程期限为x 天,结合题意得出甲每天完成总工程的11x -,而乙每天完成总工程的16x +,据此根据题意最终如期完成了工程进一步列出方程即可. 【详解】∵工程期限为x 天,∴甲每天完成总工程的11x -,乙每天完成总工程的16x +, ∵由两工程队合做4天后,余下的由乙工程队独做,正好如期完成, ∴可列方程为:4116x x x +=-+, 故选:D. 【点睛】本题主要考查了分式方程的实际应用,根据题意正确找出等量关系是解题关键.10.为有效落实党中央“精准扶贫”战略决策,某市对农村实施“户户通”修路计划,已知该市计划在某村修路5000m ,在修了1000m 后,由于引入新技术,工作效率提高到原来的1.2倍,结果提前5天完成了任务.若设原来每天修路 m x ,则可列方程为( ) A .50004000100051.2x x x=+- B .5000100040005 1.2x x x +=+ C .5000400010005 1.2x x x -=+ D .5000100040005 1.2x x x-=+ 【答案】D 【解析】 【分析】本题依题意可知等量关系为原计划工作时间-实际工作时间=5,根据等量关系列出方程即可.【详解】设原来每天修路xm ,引入新技术后每天修路1.2xm ,实际工作天数为(100040001.2x x+),原计划工作天数为5000x天,根据题意得, 5000100040005 1.2x x x -=+, 故选D. 【点睛】本题考查了由实际问题抽象出分式方程,理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.11.对于实数a 、b ,定义一种新运算“⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若32x x ⊗⊗(﹣)=,则x 的值为( )A .-2B .-1C .1D .2【答案】B 【解析】 【分析】利用题中的新定义变形已知等式,然后解方程即可. 【详解】根据题中的新定义化简得:339342x x=+-,去分母得:12﹣6x =27+9x ,解得:x =﹣1,经检验x =﹣1是分式方程的解. 故选B . 【点睛】本题考查了新定义和解分式方程,利用了转化的思想,解分式方程注意要检验.12.已知关于x 的分式方程213x mx -=-的解是非正数,则m 的取值范围是( ) A .3m ≤ B .3m <C .3m >-D .3m ≥-【答案】A 【解析】 【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m 的范围即可 【详解】213x mx -=-, 方程两边同乘以3x -,得23x m x -=-,移项及合并同类项,得3x m =-,Q 分式方程213x mx -=-的解是非正数,30x -≠,30(3)30m m -≤⎧∴⎨--≠⎩, 解得,3m ≤, 故选:A . 【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m 的值13.如果关于x 的分式方程2ax 423x x 3++=--有正整数解,且关于y 的不等式组()3y 34yy a⎧-⎨≥⎩>无解,那么符合条件的所有整数a 的和是( ) A .﹣16 B .﹣15C .﹣6D .﹣4【答案】D 【解析】 【分析】先根据分式方程有正整数解确定出a 的值,再由不等式组无解确定出满足题意的a 的值,求出之和即可. 【详解】解:分式方程去分母得:2+ax ﹣2x+6=﹣4, 整理得:(a ﹣2)x =﹣12(a ﹣2≠0), 解得:x 12a 2=--, 由分式方程有正整数解,得到a =1,0,﹣1,﹣2,﹣4,﹣10, 当a =﹣2时,x =3,原分式方程无解, 所以a =1,0,﹣1,﹣4,﹣10, 不等式组整理得:y<9y a-⎧⎨≥⎩,由不等式组无解,即a≥﹣9,∴符合条件的所有整数a 有1,0,﹣1,﹣4, ∴a =1,0,﹣1,﹣4,之和为﹣4, 故选:D . 【点睛】此题考查了分式方程的解,解一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.14.若关于x 的分式方程2233x mx x -=--有增根,则m 的值为( ). A .3 B.CD.【答案】D 【解析】解关于x 的方程2233x mx x -=--得:26x m =-, ∵原方程有增根,∴30x -=,即2630m --=,解得:m = 故选D.点睛:解这类题时,分两步完成:(1)按解一般分式方程的步骤解方程,用含待定字母的式子表示出方程的根;(2)方程有增根,则把(1)中所得的结果代入最简公分母中,最简公分母的值为0,由此即可求得待定字母的值.15.关于x的方程2111axx x-=++的解为非正数,且关于x的不等式组22533a xx+⎧⎪+⎨⎪⎩„…无解,那么满足条件的所有整数a的和是()A.﹣19 B.﹣15 C.﹣13 D.﹣9【答案】C【解析】解:分式方程去分母得:ax﹣x﹣1=2,整理得:(a﹣1)x=3,由分式方程的解为非正数,得到31a-≤0,且31a-≠﹣1,解得:a<1且a≠﹣2.不等式组整理得:224axx-⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a-<4,解得:a>﹣6,∴满足题意a的范围为﹣6<a<1,且a≠﹣2,即整数a的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a的和是﹣13,故选C.点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.16.2017年,全国部分省市实施了“免费校车工程”.小明原来骑自行车上学,现在乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.已知小明家距学校5千米,若校车速度是他骑车速度的2倍,设小明骑车的速度为x千米/时,则下面所列方程正确的为()A.5x+16=52xB.5x=52x+16C.5x+10=52xD.5x-10=52x【答案】B【解析】【分析】设小明骑车的速度为x千米/小时,校车速度为2x千米/小时,等量关系为:小明骑车所走的时间减去校车所走的时间=10分钟,据此列方程.【详解】设小明骑车的速度为x千米/小时,校车速度为2x千米/小时,由题意得, 5x=52x+16所以答案为B.【点睛】本题考查了分式方程,解题的关键是根据实际问题列出分式方程.17.《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x天,则可列方程为()A.900900213x x⨯=+-B.900900213x x=⨯+-C.900900213x x⨯=-+D.900900213x x=⨯-+【答案】A【解析】【分析】设规定时间为x天,可得到慢马和快马需要的时间,根据快马的速度是慢马的2倍的速度关系即可列出方程.【详解】解:设规定时间为x天,则慢马需要的时间为(x+1)天,快马的时间为(x-3)天,∵快马的速度是慢马的2倍∴900900213 x x⨯=+-故选A.【点睛】本题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.18.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.1806x+=1206x-B.1806x-=1206x+C.1806x+=120xD.180x=1206x-【答案】A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:1806 x+=1206x-.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.19.从4-,1-,0,2,5,8这六个数中,随机抽一个数,记为a,若数a使关于x的不等式组0331016x a x -⎧<⎪⎨⎪+≥⎩无解,且关于y 的分式方程2233y a y y -+=--有非负数解,则符合条件的a 的值的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】由不等式组无解确定出a 的一个取值范围、由分式方程其解为非负数确定a 的一个取值范围,综上可确定a 的最终取值范围,根据其取值范围即可判定出满足题意的值.【详解】 解:0331016x a x -⎧<⎪⎨⎪+≥⎩①②解①得,x a <解②得,2x ≥∵不等式组无解∴2a ≤ ∵2233y a y y-+=-- ∴83a y -= ∵关于y 的分式方程2233y a y y -+=--有非负数解 ∴803a y -=≥且833a -≠ ∴8a ≤且a≠-1∴综上所述,2a ≤且1a ≠-∴符合条件的a 的值有4-、0、2共三个.故选:C【点睛】本题考查了不等式(组)的解法、分式方程的解法,能根据已知条件确定a 的取值范围是解决问题的关键.20.若关于x 的方程244x a x x =+--有增根,则a 的值为( ) A .-4B .2C .0D .4【答案】D【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.让最简公分母x-4=0,得到x=4.再将x=4代入去分母后的方程即可求出a=4.【详解】解:由分式方程的最简公分母是x-4,∵关于x 的方程244x a x x =+--有增根, ∴x-4=0,∴分式方程的增根是x=4. 关于x 的方程244x a x x =+--去分母得x=2(x-4)+a, 代入x=4得a=4故选D .【点睛】 本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.。
初二数学八上第十五章分式知识点总结复习和常考题型练习
初二数学八上第十五章分式知识点总结复习和常考题型练习第十五章分式一、知识框架:二、知识概念:,A B、是整式,B中含有字母且B不1.分式:形如AB等于0的整式叫做分式.其中A叫做分式的分子,B叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:n n n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()n m mn a a =(m n 、是正整数) ⑶()n n n ab a b =(n 是正整数) ⑷m n m naa a -÷=(0a ≠,m n 、是正整数,m n >)⑸n n n a a b b ⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n a a -=(0a ≠,n 是正整数)9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).常考例题精选1.(2015·宜昌中考)若分式有意义,则a 的取值范围是 ( ) A.a=0 B.a=1C.a≠-1D.a≠02.(2015·丽水中考)把分式方程=转化为一元一次方程时,方程两边需同乘以( )A.xB.2xC.x+4D.x(x+4)3.(2015·宜宾中考)分式方程-=的解为( )A.3B.-3C.无解D.3或-34.(2015·海南中考)今年我省荔枝喜获丰收,有甲、乙两块面积相同的荔枝园,分别收获荔枝8 600kg和9 800kg,甲荔枝园比乙荔枝园平均每亩少60kg,问甲荔枝园平均每亩收获荔枝多少kg?设甲荔枝园平均每亩收获荔枝xkg,根据题意,可得方程( )A.=B.=C.=D.=5.(2015·河池中考)若分式有意义,则x的取值范围是.6.(2015·白银中考)若代数式-1的值为零,则x= ________.7.(2015·齐齐哈尔中考)若关于x的分式方程=-2有非负数解,则a的取值范围是.8.(2015·呼和浩特中考)化简:÷.9.(2015·连云港中考)先化简,再求值:÷,其中m=-3,n=5.10.(2015·凉山州中考)某车队要把4000t货物运到雅安地震灾区(方案定后,每天的运量不变).(1)从运输开始,每天运输的货物吨数n(单位:t)与运输时间t(单位:天)之间有怎样的函数关系式?(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.11.(2015·重庆中考)先化简,再求值:÷,其中x是不等式3x+7>1的负整数解.12.(2015·玉溪中考)某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:同学们,请求出篮球和排球的单价各是多少元?13.(2015·娄底中考)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4 800元.已知甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?1.(2015·黔西南州)分式1x-1有意义,则x的取值范围是( )A.x>1 B.x≠1 C.x<1 D.一切实数2.下列各分式与ba相等的是( )A.b2a2B.b+2a+2C.aba2D.a+b2a3.下列分式的运算正确的是( )A.1a+2b=3a+bB.(a+bc)2=a2+b2c2C.a2+b2a+b=a+b D.3-aa2-6a+9=13-a4.(2015·泰安)化简(a+3a-4a-3)(1-1a-2)的结果等于( )19.计算或化简:(1)38-2-1+|2-1|;(2)2xx2-4-1x-2;(3)3-a2a-4÷(a+2-5a-2).20.解分式方程:(1)1x-x-2x=1; (2)12x-1=12-34x-2.21.化简求值:(1)(2015·淮安)先化简(1+1x-2)÷x-1x2-4x+4,再从1,2,3三个数中选一个合适的数作为x的值,代入求值;(2)已知x2x2-2=3,求(11-x-11+x)÷(xx2-1+x)的值.22.当x取何值,式子3(2x-3)-1与12(x-1)-1的值相等.23.(2015·宜宾)近年来,我国逐步完善养老金保险制度,甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?24.小明去离家2.4 km的体育馆看球赛,进场时,发现门票还放在家中,此时离比赛还有45 min,于是他立即步行(匀速)回家取票,在家取票用时2 min,取到票后,他马上骑自行车(匀速)赶往体育馆.已知小明骑自行车从家赶往体育馆比从体育馆步行回家所用时间少20 min,骑自行车的速度是步行速度的3倍.(1)小明步行的速度是多少?(2)小明能否在球赛开始前赶到体育馆?25.某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?(总费用=施工费+工程师食宿费)。
初中数学方程与不等式之分式方程知识点总复习附解析(1)
初中数学方程与不等式之分式方程知识点总复习附解析(1)一、选择题1.关于x 的方程无解,则m 的值为( )A .﹣5B .﹣8C .﹣2D .5【答案】A【解析】解:去分母得:3x ﹣2=2x +2+m ①.由分式方程无解,得到x +1=0,即x =﹣1,代入整式方程①得:﹣5=﹣2+2+m ,解得:m =﹣5.故选A .2.关于x 的方程m 3+=1x 11x--解为正数,则m 的范围为( ) A .m 2m 3≥≠且B . 2 B 3m m >≠C .m<2m 3≠且D .m>2 【答案】B【解析】【分析】首先解分式方程,然后令其大于0即可,注意还有1x ≠.【详解】方程两边同乘以()1x -,得2x m =-∴210x m x =-⎧⎨-≠⎩解得2m >且3m ≠故选:B.【点睛】此题主要考查根据分式方程的解求参数的取值范围,熟练掌握,即可解题.3.若数a 使关于x 的不等式组()3x a 2x 11x 2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( )A .5B .4C .3D .2 【答案】D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a 的值即可.【详解】不等式组整理得:13x a x ≥-⎧⎨≤⎩, 由不等式组有解且都是2x+6>0,即x >-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个,故选:D .【点睛】 本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.4.如果关于x 的分式方程11222a x x-+=--有整数解,且关于x 的不等式组43(1)211(1)22x x x x a ≥-⎧⎪⎨-+<-⎪⎩有且只有四个整数解,那么符合条件的所有整数a 的和是( ) A .4B .-2C .-3D .2 【答案】A【解析】【分析】分式方程去分母转化为整式方程,表示出整数方程的解,不等式组整理后,由解只有四个整数解,确定出a 的值,求出之和即可.【详解】解:分式方程去分母得:1-a+2x-4=-1, 解得:22a x +=,且222a +≠,a 为偶数, 即2a ≠,a 为偶数, 不等式组整理得:34x a x ≥-⎧⎪⎨⎪⎩<, 由不等式组只有四个整数解,得到x=-3,-2,-1,0,可得0<4a ≤1,即0<a≤4,即a=1,2,3,4, 经检验a=4,则和为4,故选:A .【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.5.若关于x 的分式方程2x x -﹣12m x--=3的解为正整数,且关于y 的不等式组2()522126m y y y ⎧-≤⎪⎪⎨+⎪+>⎪⎩至多有六个整数解,则符合条件的所有整数m 的取值之和为( ) A .1B .0C .5D .6【答案】A【解析】【分析】先求出一元一次不等式组的解集,根据“不等式组的解至多有六个整数解”确定m 的取值范围,再解分式方程,依据“解为正整数”进一步确定m 的值,最后求和即可.【详解】 解:化简不等式组为25632y m y y -≤⎧⎨+>+⎩, 解得:﹣2<y ≤52m +, ∵不等式组至多有六个整数解, ∴52m +≤4, ∴m ≤3,将分式方程的两边同时乘以x ﹣2,得x +m ﹣1=3(x ﹣2),解得:x =52m +, ∵分式方程的解为正整数,∴m +5是2的倍数,∵m ≤3,∴m =﹣3或m =﹣1或m =1或m =3,∵x ≠2, ∴52m +≠2, ∴m ≠﹣1,∴m =﹣3或m =1或m =3,∴符合条件的所有整数m 的取值之和为1,故选:A .【点睛】本题考查分式方程的解法、解一元一次不等式组;熟练掌握分式方程的解法、一元一次不等式组的解法,是解题关键,分式方程切勿遗漏增根的情况是本题易错点.6.“母亲节”当天,某花店主打“康乃馨花束”,上午销售额为3000元,下午因市场需求量增大,店家将该花束单价提高30元,且下午比上午多售出40束,销售额为7200元,设该花束上午单价为每束x 元,则可列方程为( )A .300072004030x x -=+ B .720030004030x x -=+ C .720030004030x x-=+ D .300072004030x x -=+ 【答案】C【解析】【分析】设该花束上午单价为每束x 元,则下午单价为每束(x+30)元,根据数量=总价÷单价,结合下午比上午多售出40束,即可得出关于x 的分式方程,此题得解.【详解】设该花束上午单价为每束x 元,则下午单价为每束(x+30)元,依题意,得:720030004030x x-=+ 故选:C【点睛】本题考查了列分式方程解决实际问题,审题是基础,难点是找出能够表示应用题全部含义的一个相等关系,关键是设未知数和用未知数的代数式表示有关的未知量.7.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=- B .120100x x 10=+ C .120100x 10x =- D .120100x 10x=+ 【答案】A【解析】【分析】【详解】 甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同, 所以,120100x x 10=-. 故选A.8.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 【答案】D【解析】【分析】 根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a -+,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 的数量关系.【详解】根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故11+423a a -+=0, 解得:a=13. 故答案选:D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质.9.中秋节是我国的传统节日,人们素有吃月饼的习俗.汾阳月饼不仅汾阳人爱吃,而且风靡省城市场.省城某商场在中秋节来临之际购进A 、B 两种汾阳月饼共1500个,已知购进 A 种月饼和 B 种月饼的费用分别为3000元和2000元,且 A 种月饼的单价比 B 种月饼单价多1元.求 A 、B 两种月饼的单价各是多少?设 A 种月饼单价为x 元,根据题意,列方程正确的是( )A .3000200015001x x +=+ B .2000300015001x x +=+ C .3000200015001x x +=- D .2000300015001x x +=- 【答案】C【解析】【分析】设A 种月饼单价为x 元,再分别表示出A 种月饼和B 种月饼的个数,根据“购进A 、B 两种汾阳月饼共1500个”,列出方程即可.【详解】设A 种月饼单价为x 元,则B 种月饼单价为(x -1)元, 根据题意可列出方程3000200015001x x +=-, 故选C.【点睛】本题考查分式方程的应用,读懂题意是解题关键.10.已知关于x 的分式方程13222mx x x -+=--有解,则m 应满足的条件是( ) A . 1 2m m ≠≠且B .2m ≠C .1m =或2m =D .1m ≠或2m ≠ 【答案】A【解析】【分析】分式方程去分母转化为整式方程(m-2)x=-2,由分式方程有解可知m-2≠0,最简公分母x-2≠0,求出x 的值,进一步求出m 的取值即可.【详解】 13222mx x x-+=--, 去分母得,1-(3-mx )=2(x-2)整理得,(m-2)x=-2 ∵分式方程13222mx x x-+=--有解, ∴m-2≠0,即m≠2,∴22x m -=- ∵分式方程13222mx x x-+=--有解, ∴x-2≠0,即x≠2, ∴222m -≠-,解得,m≠1, 所以,m 的取值为: 1 m ≠且2m ≠故选:A.【点睛】此题主要考查了分式方程的求解,关键是会解出方程的解,注意隐含条件.11.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =- B .1201508x x =+ C .1201508x x =- D .1201508x x =+ 【答案】D【解析】【分析】 首先用x 表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x 个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x =+, 故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.12.方程1235x x =+的解为( ). A .1x =-B .0x =C .3x =-D .1x = 【答案】D【解析】【分析】方程两边同乘以3x (x+5),化分式方程为整式方程,解整式方程求得x 的值,检验即可求得分式方程的解.【详解】方程两边同乘以3x (x+5)得,x+5=6x ,解得x=1,经检验,x=1是原分式方程的解.故选D.【点睛】本题考查了分式方程的解法,方程两边同乘以最简公分母化分式方程为整式方程是解决问题的关键.注意,解分式方程一定要验根.13.解分式方程221112x x x x --=--时,去分母后所得的方程正确的是( ) A .220x x -+= B .4241x x x -+=-C .4241x x x +-=-D .221x x x +-=- 【答案】C【解析】【分析】根据等式的性质,方程两边同时乘以最简公分母2(x-1),整理即可得答案.【详解】 ∵221112x x x x --=--, ∴221112x x x x -+=--, 方程两边同时乘以最简公分母2(x-1)得:4x+2(x-2)=x-1,去括号得:4x+2x-4=x-1,故选:C .【点睛】本题考查解分式方程,正确得出最简公分母是解题关键.14.已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/小时,依题意列方程正确的是( )A .405012x x =- B .405012x x =- C .405012x x =+ D .405012x x=+ 【答案】B【解析】 试题解析:设乙车的速度为x 千米/小时,则甲车的速度为(x-12)千米/小时, 由题意得,405012x x=-. 故选B .15.若数k 使关于x 的不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩只有4个整数解,且使关于y 的分式方程1k y -+1=1y k y ++的解为正数,则符合条件的所有整数k 的积为( ) A .2B .0C .﹣3D .﹣6【答案】A【解析】【分析】解不等式组求得其解集,根据不等式组只有4个整数解得出k 的取值范围,解分式方程得出y=-2k+1,由方程的解为整数且分式有意义得出k 的取值范围,综合两者所求最终确定k 的范围,据此可得答案.【详解】 解:解不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩得:﹣3≤x ≤﹣3k , ∵不等式组只有4个整数解,∴0≤﹣3k <1, 解得:﹣3<k ≤0, 解分式方程1k y -+1=1y k y ++得:y =﹣2k +1, ∵分式方程的解为正数,∴﹣2k +1>0且﹣2k +1≠1,解得:k <12且k ≠0, 综上,k 的取值范围为﹣3<k <0,则符合条件的所有整数k 的积为﹣2×(﹣1)=2,故选A .【点睛】本题考查了解一元一次不等式组、分式方程的解,有难度,注意分式方程中的解要满足分母不为0的情况.16.如果关于x 的分式方程2ax 423x x 3++=--有正整数解,且关于y 的不等式组()3y 34y y a⎧-⎨≥⎩>无解,那么符合条件的所有整数a 的和是( ) A .﹣16 B .﹣15 C .﹣6 D .﹣4【答案】D【解析】【分析】先根据分式方程有正整数解确定出a的值,再由不等式组无解确定出满足题意的a的值,求出之和即可.【详解】解:分式方程去分母得:2+ax﹣2x+6=﹣4,整理得:(a﹣2)x=﹣12(a﹣2≠0),解得:x12a2 =--,由分式方程有正整数解,得到a=1,0,﹣1,﹣2,﹣4,﹣10,当a=﹣2时,x=3,原分式方程无解,所以a=1,0,﹣1,﹣4,﹣10,不等式组整理得:y<9 y a-⎧⎨≥⎩,由不等式组无解,即a≥﹣9,∴符合条件的所有整数a有1,0,﹣1,﹣4,∴a=1,0,﹣1,﹣4,之和为﹣4,故选:D.【点睛】此题考查了分式方程的解,解一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.17.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.10000x﹣90005x-=100 B.90005x-﹣10000x=100C.100005x-﹣9000x=100 D.9000x﹣100005x-=100【答案】B【解析】【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.【详解】科普类图书平均每本的价格是x元,则可列方程为:9000 x5 -﹣10000x=100,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.18.小明上月在某文具店正好用 20 元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜 1 元,结果小明只比上次多用了 4 元钱,却比上次多买了 2 本.若设他上月买了 x 本笔记本,则根据题意可列方程()A.24x2+-20x=1 B.20x-24x2+=1C.24x-20x2+=1 D.20x2+-24x=1【答案】B【解析】试题解析:设他上月买了x本笔记本,则这次买了(x+2)本,根据题意得:2020412x x+-=+,即:202412x x-=+.故选B.考点:分式方程的应用.19.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需x个月,则根据题意可列方程中错误的是()A.3212x x+=-B.32212x x x++=-C.3+2212x x+=-D.3112()12x x x++=-【答案】A【解析】【分析】设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据甲队施工5个月的工程量+乙队施工2个月的工程量=总工程量1列出方程,然后依次对各方程的左边进行变形即可判断.【详解】解:设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据题意,得:5212x x+=-;A、3212x x+=-,与上述方程不符,所以本选项符合题意;B 、32212x x x ++=-可变形为5212x x +=-,所以本选项不符合题意; C 、3+2212x x +=-可变形为5212x x +=-,所以本选项不符合题意; D 、3112()12x x x ++=-的左边化简得5212x x +=-,所以本选项不符合题意. 故选:A .【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.20.已知关于x 的分式方程22124x mx x x --=+-无解,则m 的值为( ) A .0B .0或-8C .-8或-4D .0或-8或-4 【答案】D【解析】【分析】分式方程无解的条件是:去分母后所得整式方程无解或解这个整式方程得到的解使原方程的分母等于0.【详解】解:分式方程去分母得:(x−2)2−mx =(x +2)(x−2),整理得:(4+m )x =8,当m =−4时整式方程无解;当x =−2时原方程分母为0,此时m =−8;当x =2时原方程分母为0,此时m =0,故选:D .【点睛】本题考查了分式方程无解的条件,分式方程无解分两种情况:去分母后所得整式方程无解;分式方程产生增根;是需要识记的内容.。
初中数学分式相关知识点及例题
分式模块一、分式的概念和基本性质1、分式的概念:如果A 、B 表示两个整式,并且B 中含有字母,那么代数式BA 叫做分式。
A 是分式的分子,B 是分式的分母。
2、注意点:分式的分母不能为0,如果分式中字母所取的值使分母的值为0,那么分式无意义。
3、分式的基本性质:分式的分子和分母都乘(或除以)同一个不等于0的整式,分式的值不变4、分式的约分:把一个分式的分子和分母分别除以他们的公因式,叫做分式的约分。
5、最简分式:分子与分母没有公因式的分式叫做最简分式。
6、分式的通分:根据分式的基本性质,把几个异分母的分式变形成同分母的分式,叫做分式的通分。
变形后的分母叫做这几个分式的公分母。
7、最简公分母。
几个分式中各分母系数(都是整数)的最小公倍数与所有字母的最高次幂的积叫做这几个分式的最简公分母例题:例1:当x 满足很忙条件时,分式x 11111++有意义例2:先化简:)1121(1222+---÷--x x x x x x ,再从33-<<x 的范围内选取一个合适的整数x 代入求值。
例3:已知0832=-+x x ,求代数式21144*212+--++--x x x x x x 的值模块二:分式的恒等变形分式恒等的概念:对于两个代数式而言,如果两个代数式里面的字母换成任意的数值,这两个代数式的值相等,就说这两个代数式恒等。
表示这两个代数式恒等的等式叫做恒等式。
恒等变形的概念:将一个代数式换成另一个和它恒等的代数式,叫做恒等变形,也叫恒等变换。
恒等变形的意义:将一个代数式从一种形式变成另一种形式,变形前和变形后的两个代数式是恒等的。
就是“形”变“值”不变。
例1:(1) 若b a 12=,则=-+ba b a 2____________ (2) 若b a b a -=-111,则_________=+ba ab (3) 已知211=+b a ,求ab a b b a ab 33++--的值例2:已知31=+x x ,求221x x +,441x x +,xx 1-的值例3:已知0142=++a a ,求:①a a 1+;②2241a a a ++;例4:先化简代数式xx x x x x x 2111422+-÷--++,并写出当x 为何整数时,该代数式的值也是整数模块三 分式方程的基本解法1、分式方程的概念:分式中含有未知数的方程叫做分式方程2、分式方程的解法(可化为一元一次方程)(1) 基本思想:把分式方程化为整式方程(2) 一般步骤:① 去分母,即在方程的两边同时乘以最简公分母,把原方程化为整式方程② 解这个整式方程③ 验根:把整式方程的根代入最简公分母中,使最简公分母不等于零的值是原方程的根;使最简公分母等于零的值是原方程的增根。
(人教版)八年级上册第十五章分式知识点总结及练习【精美版】
第十五章 分式一、知识概念: 1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母. 2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bccc±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cbbdbd±±=⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a cac b dbd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad bdb cbc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m na a a +⨯=(m n 、是正整数)⑵()nm mn aa =(m n 、是正整数) ⑶()nn n ab a b =(n 是正整数)⑷mnm na a a-÷=(0a ≠,m n 、是正整数,m n >)⑸nn n a a b b ⎛⎫= ⎪⎝⎭(n 是正整数)⑹1nn a a-=(0a ≠,n 是正整数)9. 分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).分式常考例题精选1.若分式2a+1有意义,则a 的取值范围是 ( ) A.a=0 B.a=1 C.a ≠-1D.a ≠02.把分式方程2x+4=1x 转化为一元一次方程时,方程两边需同乘以 ( ) A.xB.2xC.x+4D.x(x+4)3.分式方程12x −9-2x−3=1x+3的解为 ( ) A.3B.-3C.无解D.3或-34.今年我省荔枝喜获丰收,有甲、乙两块面积相同的荔枝园,分别收获荔枝8 600kg 和9 800kg ,甲荔枝园比乙荔枝园平均每亩少60kg ,问甲荔枝园平均每亩收获荔枝多少kg?设甲荔枝园平均每亩收获荔枝xkg ,根据题意,可得方程 ( )A.8 600x= 9 800x+60B.8 600x= 9 800x−60C.8 600x−60=9 800xD.8 600x+60=9 800x5.若分式 2x−1 有意义,则x 的取值范围是 .6.若代数式 2x−1 -1的值为零,则x= ________.7.若关于x 的分式方程xx−1=3a2x−2-2有非负数解,则a 的取值范围是 .8.化简:(a −1a)÷a 2−2a+1a.9.先化简,再求值:(1m −1n )÷m 2−2mn+n 2mn,其中m=-3,n=5.10.某车队要把4000t 货物运到雅安地震灾区(方案定后,每天的运量不变). (1)从运输开始,每天运输的货物吨数n(单位:t)与运输时间t(单位:天)之间有怎样的函数关系式?(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.11.先化简,再求值:(x+2x−x−1x−2)÷x−4x −4x+4,其中x 是不等式3x+7>1的负整数解.12.某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题: 请求出篮球和排球的单价各是多少元?1.分式1x -1有意义,则x 的取值范围是( ) A .x>1 B .x ≠1 C .x<1 D .一切实数2.下列各分式与ba 相等的是( ) A .b 2a 2 B .b +2a +2 C .aba 2 D .a +b 2a3.下列分式的运算正确的是( ) A .1a +2b =3a +bB .(a +b c )2=a 2+b 2c 2C .a 2+b 2a +b =a +bD .3-a a 2-6a +9=13-a4.化简(a +3a -4a -3)(1-1a -2)的结果等于( ) A .a -2c B .a +2 C .a -2a -3 D .a -3a -25.若x =3是分式方程a -2x -1x -2=0的根,则a 的值是( )A .5B .-5C .3D .-36.已知关于x 的分式方程m x -1+31-x =1的解是非负数,则m 的取值范围是( )A .m>2B .m ≥2C .m ≥2且m ≠3D .m>2且m ≠37.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x 本笔记本,则根据题意可列方程( )A .24x +2-20x =1B .20x -24x +2=1C .24x -20x +2=1D .20x +2-24x =18.当x =1时,分式x -b x +a 无意义;当x =2时,分式2x -b3x +a 的值为0,则a +b= .9.方程5x =7x -2的解是x = .10.若(x -y -2)2+|xy +3|=0,则(3x x -y -2x x -y )÷1y的值是 .11.关于x 的分式方程m x 2-4-1x +2=0无解,则m = .12.计算或化简:(1)38-2-1+|2-1|;(2)2xx2-4-1x-2;(3)3-a2a-4÷(a+2-5a-2).13.解分式方程:(1)1x-x-2x=1; (2)12x-1=12-34x-2.14.先化简(1+1x-2) ÷x-1x2-4x+4,再从1,2,3三个数中选一个合适的数作为x的值,代入求值;15.小明去离家2.4 km的体育馆看球赛,进场时,发现门票还放在家中,此时离比赛还有45 min,于是他立即步行(匀速)回家取票,在家取票用时2 min,取到票后,他马上骑自行车(匀速)赶往体育馆.已知小明骑自行车从家赶往体育馆比从体育馆步行回家所用时间少20 min,骑自行车的速度是步行速度的3倍.(1)小明步行的速度是多少?(2)小明能否在球赛开始前赶到体育馆?第1节探究电流与电压、电阻的关系实验(建议时间:20分钟)1. (2019铜仁)小李为了探究“电流与电压的关系”,请你与他合作并完成以下实验步骤.(1)请你在虚线框中设计出相应的电路图.第1题图(2)小李在探究电流与电压的关系时,要控制________不变.通过实验探究,得到以下数据,在进行数据分析时,小李发现表格中有一组错误的数据,请你找出第________组数据是错误的.序号 1 2 3 4 5电压U/V 0.8 1.2 1.6 2.0 2.4电流I/A 0.16 0.24 0.32 0.44 0.48(3)为了分析电流与电压的定量关系,请你利用正确的数据,在坐标中绘制出电流与电压关系的图像.2. (2019巴中)同学们想探究“导体中电流跟导体两端电压的关系”:(1)小明同学通过学习知道了________是形成电流的原因,因此做出了如下三种猜想:A. 电流跟电压成反比B. 电流跟电压成正比C. 电流跟电压无关(2)为了验证猜想,小明设计了如图甲所示的电路图,其中电源为三节新干电池,电阻R为10 Ω,滑动变阻器R标有“50 Ω 1 A”字样,电压表电流表均完好.第2题图实验次数 1 2 3电压U/V 2 2.6 3电流I/A 0.20 0.26 0.30第2题图丙①根据甲电路图将乙图实物电路连接完整;②闭合开关前,小明应将滑动变阻器滑片移到________阻值处(选填“最大”或“最小”);③他检查电路时发现电压表、电流表位置互换了,若闭合开关电流表________(选填“会”或“不会”)被烧坏;④排除故障后小明进行了实验,得到表格中的实验数据.分析数据,可得出的正确结论是:电阻一定时,________________________________.(3)小明还想用这个电路测量小灯泡的额定功率,于是他将电阻R换成一只额定电压是4 V 的小灯泡(阻值约为13 Ω),电阻一定时,并将电压表量程更换为15 V,闭合开关S后,调节滑片至电压表示数为4.0 V时,电流表示数如图丙所示为______A,小灯泡的额定功率为________W.3. (2019临沂)在“探究电流与电阻关系”的实验中,小明依次选用阻值为5 Ω、10 Ω、20 Ω的定值电阻进行实验.第3题图(1)图甲是实验的实物连线图,其中有一条导线连接错误,请在该导线上打“×”并画出正确连线.(2)改正错误后闭合开关,电流表有示数而电压表无示数,电路故障可能是________.(3)排除故障后闭合开关,移动滑动变阻器的滑片至某一位置,电流表的示数如图乙所示,此时电路中的电流为________A.(4)断开开关,将5 Ω的定值电阻换成10 Ω的并闭合开关,此时应将滑动变阻器的滑片向______(选填“左”或“右”)端移动,这一过程中眼睛要一直观察________表示数的变化.(5)下表是实验中记录的数据,分析数据可知:①10 Ω定值电阻的功率为________W.②当导体两端的电压一定时,通过导体的电流与导体的电阻成________比.参考答案第十五章欧姆定律第1节探究电流与电压、电阻的关系实验1. (1)如答图甲所示第1题答图甲(2)电阻 4 (3)如答图乙所示第1题答图乙2. (1)电压(2)①如答图所示②最大③不会④导体中的电流与它两端的电压成正比(3)0.3 1.2第2题答图3. (1)如答图所示(2)R短路 (3)0.4 (4)右电压(5)①0.4 ②反第3题答图第十五章电流和电路摩擦起电:摩擦过的物体具有吸引轻小物体的现象——带电体==本质:电荷的转移正电荷:被丝绸摩擦过的玻璃棒带的电荷种类电荷负电荷:被毛皮摩擦过的橡胶棒带的电荷性质:同种电荷互相排斥,异种电荷互相排斥检验:验电器——原理:同种电荷互相排斥电量:q 单位:库伦简称:库符号:CC元电荷:最小电荷:e=1.6×1019组成:电源、开关、导线、用电器电源:提供电能开关:控制电路通断作用用电器:消耗电能导线:传输电能的路径导体:金属、人体、食盐水两种材料绝缘体:橡胶、玻璃、塑料电流产生条件①电路闭合②保持通路定义:正电荷移动的方向电路电流的方向在电源中电源的正极→用电器→电源的负极1617单位:A −→−310mA −→−310A μ 工具:电流表 ○A测量 使用方法 ①电流表必须和被测的用电器串联 电流的大小(I ) ②看清量程、分度值,不准超过电流表的量程 ③必须正入负出④任何情况下都不能直接连到电源的两极 电路的连接:先串后并,就近连线,弄清首尾 通路:接通的电路 三种状态 断路:断开的电路短路:电流不经过用电器直接回到电源的负极 两种类型:一、电荷1、物体有了吸引轻小物体的性质,我们就说物体带了电荷;换句话说,带电体具有吸引轻小物体的性质。
分式 知识点及典型例题
分式知识点及典型例题一、分式的定义如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A/B 就叫做分式。
其中 A 叫做分子,B 叫做分母。
需要注意的是,分式的分母不能为 0,因为分母为 0 时,分式没有意义。
例如:\(\frac{x}{y}\),\(\frac{a + b}{c}\)都是分式,而\(\frac{3}{5}\)(分母不含有字母)就不是分式。
二、分式有意义的条件分式有意义的条件是分母不为 0。
即:对于分式\(\frac{A}{B}\),当\(B ≠ 0\)时,分式有意义。
例如:对于分式\(\frac{x + 1}{x 2}\),要使其有意义,则\(x 2 ≠ 0\),即\(x ≠ 2\)。
三、分式的值为 0 的条件分式的值为 0 时,要同时满足两个条件:1、分子为 0,即\(A = 0\);2、分母不为 0,即\(B ≠ 0\)。
例如:若分式\(\frac{x 3}{x + 5}\)的值为 0,则\(x 3 = 0\)且\(x +5 ≠ 0\),解得\(x = 3\)。
四、分式的基本性质分式的分子与分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。
用式子表示为:\(\frac{A}{B} =\frac{A×C}{B×C}\),\(\frac{A}{B} =\frac{A÷C}{B÷C}\)(\(C ≠ 0\))例如:\(\frac{2}{3} =\frac{2×2}{3×2} =\frac{4}{6}\),\(\frac{6}{9} =\frac{6÷3}{9÷3} =\frac{2}{3}\)五、约分把一个分式的分子与分母的公因式约去,叫做分式的约分。
约分的关键是确定分子与分母的公因式。
例如:对分式\(\frac{6x}{9x^2}\)进行约分,分子分母的公因式为\(3x\),约分后为\(\frac{2}{3x}\)六、通分把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
八年级数学上册“第十五章分式”必背知识点
八年级数学上册“第十五章分式”必背知识点一、分式的定义与意义1. 分式的定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式,A为分子,B为分母。
整式是分母中没有字母的代数式,而分式是分母中含有字母的代数式。
2. 分式有意义的条件:分母不能为0,即B≠0时,分式A/B才有意义。
3. 分式无意义的条件:分母为0,即B=0时,分式A/B无意义。
二、分式的基本性质基本性质:分式的分子与分母同乘 (或除以)一个不等于0的整式,分式的值不变。
用式子表示为:若C≠0,则A/B = A×C / B×C。
约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
分子与分母没有公因式的分式叫做最简分式。
通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
最简公分母是取各分母所有因式的最高次幂的积作公分母。
三、分式的运算1. 乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
即:(a/b) ×(c/d) = ac/bd。
2. 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
即:(a/b) ÷(c/d) = (a/b) ×(d/c) = ad/bc。
3. 乘方法则:分式乘方要把分子、分母分别乘方。
即:(a/b)^n = a^n/b^n (其中n为正整数)。
4. 加减法法则:同分母分式相加减,分母不变,把分子相加减。
即:(a/c) ±(b/c) = (a±b)/c。
异分母分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。
四、分式方程的解法定义:分母中含有未知数的方程叫做分式方程。
解法步骤:1. 去分母:把方程两边同乘以各分母的最简公分母,得到整式方程。
2. 解整式方程:解这个整式方程,得到整式方程的解。
人教版八年级上册数学分式知识点
人教版八年级上册数学分式知识点
八年级上册数学中的分式知识点主要包括以下几个方面:
1. 分式的定义:分式是一个有分子和分母的数,分子和分母都是整数,分母不能为0。
2. 分式的性质:
- 两个分式相等的条件是它们的分子与分母成比例。
- 分式的倒数是将分式的分子和分母对调得到的新分式。
3. 分式的化简:
- 将分子和分母都除以它们的最大公约数,化简成最简形式。
- 分母是1的分式可以化简成整数。
- 含有多个分数的分式可以通过通分化为一个分数。
4. 分式的四则运算:
- 分式的加法和减法:将两个分式的分母取最小公倍数作为新分母,然后按照相应的分数运算规则进行计算。
- 分式的乘法:将两个分式的分子相乘作为新的分子,分母相乘作为新的分母。
- 分式的除法:将除数的分子和被除数的分母相乘作为新的分子,除数的分母和被除数的分子相乘作为新的分母。
5. 分式的应用:
- 在解决实际问题中,可以运用分式来表示比例、倍数、平均数等关系。
以上是八年级上册数学中有关分式的主要知识点,希望能对你有所帮助。
人教版八年级数学上册第十五章分式全章知识点总结及经典例题复习
分式全章知识点总结及经典例题复习知识点一:分式的定义一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子BA 叫做分式,A 为分子,B 为分母。
知识点二:与分式有关的条件①分式有意义:分母不为0(0B )②分式无意义:分母为0(0B)③分式值为0:分子为0且分母不为0(0B A )④分式值为正或大于0:分子分母同号(00B A 或00B A )⑤分式值为负或小于0:分子分母异号(0BA 或00BA )⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)经典例题1、代数式14x是()A.单项式B.多项式C.分式D.整式2、在2x,1()3x y ,3,5ax,24x y中,分式的个数为()A.1B.2C.3D.43、总价9元的甲种糖果和总价是9元的乙种糖果混合,混合后所得的糖果每千克比甲种糖果便宜1元,比乙种糖果贵0.5元,设乙种糖果每千克x 元,因此,甲种糖果每千克元,总价9元的甲种糖果的质量为千克.4、当a 是任何有理数时,下列式子中一定有意义的是()A.1a aB.21a aC.211a aD.211a a5、当1x 时,分式①11x x ,②122x x,③211x x,④311x中,有意义的是()A.①③④ B.③④ C.②④D.④6、当1a 时,分式211a a()A.等于0B.等于 1C.等于-1D.无意义7、使分式8483x x 的值为0,则x 等于()A.38B.12 C.83D.128、若分式2212x xx 的值为0,则x 的值是()A.1或-1 B.1 C.-1D.-29、当x 时,分式11x x 的值为正数. 10、当x 时,分式11x x 的值为负数.11、当x时,分式132x x的值为 1.12、分式1111x有意义的条件是()A.0xB.1x且0x C.2x 且0x D.1x 且2x 13、如果分式33x x的值为1,则x 的值为()A.0xB.3xC.0x 且3x D.3x 14、下列命题中,正确的有()①A 、B 为两个整式,则式子A B 叫分式;②m 为任何实数时,分式13m m有意义;③分式2116x有意义的条件是4x;④整式和分式统称为有理数. w ww.x kb1. comA.1个B.2个 C.3个D.4个15、在分式222x ax xx中a 为常数,当x 为何值时,该分式有意义?当x 为何值时,该分式的值为0?知识点三:分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
人教版八年级数学第十六章分式知识点总结
第十六章 分式知识点及典型例子一、分式的定义:如果A 、B 表示两个整式,且B 中含有未知数,那么式子BA 叫做分式。
二、在分式中,如果________,则分式AB 有意义;如果________,则分式A B无意义;如果________且_________不为零时,则分式A B的值为零;如果__________,则分式0A B > 如果____________,则分式0A B <; 例1.下列各式a π,11x +,15x+y ,22a b a b --,-3x 2,0•中,是分式的有( )个。
例2.下列分式,当x 取何值时有意义。
(1)2132x x ++; (2)2323x x +-。
例3. 当x________时,分式2134x x +-的值为正数,当x________时,分式2134x x +-的值为负数 例4.当x______时,分式2134x x +-无意义。
当x_______时,分式2212x x x -+-的值为零。
当x_________时,分式2361x x -+的值为负数。
三、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变,用字母表示为_________________________________.分式的分子、分母和分式本身的符号改变其中任何____个,分式的值不变.四、约分:把分式的分子与分母的公因式约去,这样的分式变形叫做分式的约分,约分的理论依据是分式的___________________。
约分的方法:分式的分子与分母同除以他们的公因式,如果分式的分子、分母都是单项式,就直接约去分子、分母的__________;如果分式的分子或分母是多项式,就先__________,再判断公因式进行约分。
最简分式:分子与分母没有____________的分式,叫做最简分式。
(注意约分一定要彻底)五、通分:利用分式的基本性质把几个异分母的分式化为_________的分式,这样的分式变形叫做分式的通分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使分式值为零:令分子=0且分母≠0,注意:当分子等于0使,看看是否使分母=0了,如果使分母=0了,那么要舍去。
例1:当x时,分式 的值为0例2:当x时,分式 的值为0
例3:如果分式 的值为为零,则a的值为()A. B.2C. D.以上全不对
例4:能使分式 的值为零的所有 的值是()
①约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分
②分式约分的依据:分式的基本性质.
③分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.
④约分的结果:最简分式(分子与分母没有公因式的分式,叫做最简分式)
约分主要分为两类:第一类:分子分母是单项式的,主要分数字,同字母进行约分。
例1:分式 的最简公分母是()
A. B. C. D.
例2:对分式 , , 通分时,最简公分母是()
A.24x2y3B.12x2y2C.24xy2D.12xy2
例3:下面各分式: , , , ,其中最简分式有()个。
练习题:(1)下列式子中,是分式的有.
⑴ ;⑵ ;⑶ ;⑷ ;⑸ ;⑹ .
(2)下列式子,哪些是分式?
; ; ; ; ; .
2、分式有,无意义,总有意义:
(1)使分式有意义:令分母≠0按解方程的方法去求解;
(2)使分式无意义:令分母=0按解方程的方法去求解;
注意:( ≠0)
例1:当x时,分式 有意义;例2:分式 中,当 时,分式没有意义
例如: 最简公分母就是 。
“二、四”型:指其一个分母完全包括另一个分母,最简公分母就是其一的那个分母。
例如: 最简公分母就是
“四、六”型:指几个分母之间有相同的因式,同时也有独特的因式,最简公分母要有独特的;相同的都要有。
例如: 最简公分母是:
这些类型自己要在做题过程中仔细地去了解和应用,仔细的去发现之间的区别与联系。
6、分式的乘,除,乘方:
分式的乘法:乘法法测: · = .
分式的除法:除法法则: ÷ = · =
分式的乘方:求n个相同分式的积的运算就是分式的乘方,用式子表示就是( )n.分式的乘方,是把分子、分母各自乘方.用式子表示为:( )n= (n为正整数)
例题:
计算:(1) (2) (3)
计算:(4) (5) (6)
例2:
例3:如果把分式 中的a和b都扩大10倍,那么分式的值()
A、扩大10倍B、缩小10倍C、是原来的20倍D、不变
例4:如果把分式 中的x,y都扩大10倍,则分式的值()
A.扩大100倍B.扩大10倍C.不变D.缩小到原来的
例5:如果把分式中的x和y都扩大2倍,即分式的值()
A、扩大2倍;B、扩大4倍;C、不变; D缩小2倍
例6:如果把分式 中的x和y都扩大2倍,即分式的值()
A、扩大2倍;B、扩大4倍;C、不变;D缩小2倍
例7:如果把分式 中的x和y都扩大2倍,即分式的值()
A、扩大2倍;B、扩大4倍;C、不变;D缩小 倍
例8:若把分式 的x、y同时缩小12倍,则分式的值()
A.扩大12倍ﻩB.缩小12倍ﻩC.不变ﻩﻩD.缩小6倍
例9:若x、y的值均扩大为原来的2倍,则下列分式的值保持不变的是()
A、 B、 C、 D、
例10:根据分式的基本性质,分式 可变形为()
A B C D
例11:不改变分式的值,使分式的分子、分母中各项系数都为整数, ;
例12:不改变分式的值,使分子、分母最高次项的系数为正数, =。
5、分式的约分及最简分式:
A、 B、 C、 D、
例5:下列式子正确的是()
A. B. C. D.
例6:化简 的结果是( )A、 B、 C、 D、
例7:约分: ; =; ; 。
例8:约分: =; ; ;
; ; __________ __________。
例9:分式 , , , 中,最简分式有()
A.1个B.2个C.3个D.4个
例题:化简 的结果是()A.1B. xyC. D.
计算:(1) ;(2) (3)(a2-1)· ÷
7、分式的通分及最简公分母:
通分:主要分为两类:第一类:分母是单项式;第二类:分母是多项式(要先把分母因式分解)
分为三种类型:“二、三”型;“二、四”型;“四、六”型等三种类型。
“二、三”型:指几个分母之间没有关系,最简公分母就是它们的乘积。
初中数学分式章节知识点及典型例题解析[1]
————————————————————————————————作者:
————————————————————————————————日期:
ﻩ
分式的知识点及典型例题分析
1、分式的定义:
例:下列式子中, 、8a2b、- 、 、 、2- 、 、 、 、 、 、 、 中分式的个数为()(A)2(B)3(C)4(D)5
计算:(7) (8) (9)
计算:(10) (11) (12)
计算:(13) (14)
求值题:(1)已知: ,求 的值。
(2)已知: ,求 的值。
(3)已知: ,求 的值。
例题:
计算:(1) (2) =(3) =
计算:(4) =(5)
(6)
求值题:(1)已知: 求 的值。
(2)已知: 求 的值。
例题:计算 的结果是()A B C D
A B C 或 D 或
例5:要使分式 的值为0,则x的值为()A.3或-3ﻩB.3C.-3D2
例6:若 ,则a是()A.正数B.负数C.零D.任意有理数
4、分式的基本性质的应用:
分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
例1: ; ;如果 成立,则a的取值范围是________;
第二类:分子分母是多项式的,把分子分母能因式分解的都要进行因式分解,再去找共同的因式约去。
例1:下列式子(1) ;(2) ;(3) ;(4) 中正确的是()A、1个B、2个C、3个D、4个
例2:下列约分正确的是()
A、 ;B、 ;C、 ;D、
例3:下列式子正确的是()
A B. C. D.
例4:下列运算正确的是()
例3:当x时,分式 有意义。例4:当x时,分式 有意义
例5: , 满足关系时,分式 无意义;
例6:无论x取什么数时,总是有意义的分式是()
A. B. C. D.
例7:使分式 有意义的x的取值范围为()A. B. C. D.
例8:要是分式 没有意义,则x的值为()A.2B.-1或-3C.-1D.3
同步练习题: