专题 滑块与木板模型
专题05+滑块木板模型
专题05 滑块木板模型【模型归纳】模型一 光滑面上外力拉板加速度分离不分离m 1最大加速度a 1max =μg m 2加速度a 2=(F -μm 1g )/m 2条件:a 2>a 1max 即F >μg (m 1+m 2)条件:a 2≤a 1max 即 F ≤μg (m 1+m 2) 整体加速度a =F /(m 1+m 2) 内力f =m 1F /(m 1+m 2)模型二 光滑面上外力拉块加速度分离不分离m 2最大加速度a 2max =μm 1g/m 2 m 1加速度a 1=(F -μm 1g )/m 1条件:a 1>a 2max 即F >μm 1g (1+m 1/m 2)条件:a 2≤a 1max 即 F ≤μm 1g (1+m 1/m 2) 整体加速度a =F /(m 1+m 2) 内力f =m 2F /(m 1+m 2)模型三 粗糙面上外力拉板不分离(都静止) 不分离(一起加速)分离条件: F ≤μ2(m 1+m 2)g条件:a 2≤a 1max即 μ2(m 1+m 2)g<F ≤(μ1+μ2)g (m 1+m 2) 整体加速度a =[F -μ2(m 1+m 2)g )]/(m 1+m 2) 内力f =m 1a条件:a 2>a 1max =μ1g 即F >(μ1+μ2)g (m 1+m 2)外力区间范围模型四 粗糙面上刹车减速一起减速减速分离m 1最大刹车加速度:a 1max =μ1g 整体刹车加速度a =μ2g 条件:a >a 1max 即μ2>μ1 m 1刹车加速度:a 1=μ1gm 2 m 1 μ Ff光滑afm 2 m 1 μ F f光滑a fm 2 m 1 μ1 Ff 1af 1μ2f 2 F (μ1+μ2)g (m 1+m 2)μ2(m 1+m 2)g分离一起加速都静止m 2 m 1 μ1f 1 vf 1 μ2f 2a条件:a ≤a 1max 即μ2≤μ1 m 2刹车加速度:a 2=μ2(m 1+m 2)g -μ1m 1g )]/m 2 加速度关系:a 1<a 2模型五 粗糙面上外力拉块μ1m 1g>μ2(m 1+m 2)g 一起静止 一起加速分离条件: F ≤μ2(m 1+m 2)g 条件:μ2(m 1+m 2)g<F ≤(μ1-μ2)m 1g (1+m 1/m 2) 整体加速度a =[F -μ2(m 1+m 2)g )]/(m 1+m 2) 内力f 1=μ2(m 1+m 2)g+m 2a条件:a 1>a 2max =[μ1m 1g -μ2(m 1+m 2)g ]/m 2 即F >(μ1-μ2)m 1g (1+m 1/m 2)外力区间范围【常见问题分析】问题1. 板块模型中的运动学单过程问题恒力拉板恒力拉块分离,位移关系:x 相对=½a 2t 02-½a 1t 02=L 分离,位移关系:x 相对=½a 1t 02-½a 2t 02=Lm 2 m 1 μ1Ff 1 a f 1 μ2f 2F (μ1-μ2)m 1g (1+m 1/m 2μ2(m 1+m 2)g分离一起加速一起静止m 1Fm 2Lm 1F m 2 Lx 1F Fx 2 x 相对m 1m 2v 1v 2 x 1 F Fx 2x 相对m m 2 v 1v 2 t 0t/sv 2v/ms -1 a 1a 2 v 1 x 相对 t 0t/sv 1 v/ms -1a 2a 1 v 2 x 相对问题2. 板块模型中的运动学多过程问题1——至少作用时间问题问题:板块分离,F 至少作用时间?过程①:板块均加速过程:①板加速、块减速位移关系:x 1相对+x 2相对=L 即Δv·(t 1+t 2)/2=L ; 利用相对运动Δv =(a 2-a 1)t 1 、Δv =(a 2+a 1')t 2问题3. 板块模型中的运动学多过程问题2——抽桌布问题抽桌布问题简化模型过程①:分离过程:①匀减速m 1F m 2 Lx 1 F F x 2x 相对mm 2 v 1v 2 x 1'F x 2' x 2相对 mm 2v 1v 2t 1t/sv 1 v/ms -1 a 2a 1v 2 x 1相对 t 1t/sv 1 v/ms -1 a 2 a 1v 2 x 1相对 x 2相对 a 1't 2 ABam 1 F m 2 L 1L 2x 1 FFx 2L 1 m 1 m 2 v 1v 2x 1 FL 2m 1 m 2v 1x 1分离,位移关系:x 2-x 1=L 1 0v 0多过程问题,位移关系:x 1+x 1'=L 2问题4. 板块模型中的运动学粗糙水平面减速问题块带板板带块μ1≥μ2μ1<μ2t 0t/sv 2v/ms -1 a 1a 2 v 1 x 相对 t 0t/sv 1 v/ms -1a 1 v 2 x 1x 1' a 1' m 1 v 0 m 2μ2 μm 1v 0m 2μ2μx 1 v 0 x 2x 相对mm 2 v 共v 共 x 1v 0 x 2 x 相对m 1m 2v 共v 共t 0 t/s0 v 0 v/ms -1a 2 a 1v 共 x 相对a 共t 0 t/s0 v 0 v/ms -1a 2 a 1v 共 x 相对a 共t 0 t/s 0 v 0 v/ms -1 a 2a 1v 共 x 1相对a 1' x 2相对 a 2'【例1】一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5 m ,如图(a)所示。
高考物理《滑块—木板模型》真题练习含答案
高考物理《滑块—木板模型》真题练习含答案1.如图所示,货车车厢中央放置一装有货物的木箱,该木箱可视为质点.已知木箱与车厢之间的动摩擦因数μ=0.4.下列说法正确的是()A.若货车向前加速时,木箱对车厢的摩擦力方向向左B.为防止木箱发生滑动,则货车加速时的最大加速度不能超过4 m/s2C.若货车行驶过程中突然刹车,木箱一定与车厢前端相撞D.若货车的加速度为5 m/s2时,木箱受到的摩擦力为静摩擦力答案:B解析:若货车向前加速时,车厢对木箱的摩擦力方向向左,根据牛顿第三定律得木箱对车厢的摩擦力方向向右,A错误;当摩擦力达到最大静摩擦力时刚好不发生相对滑动,最大加速度a=μg=4 m/s2,B正确;若货车行驶过程突然刹车,加速度小于等于4 m/s时木箱不会相对车厢滑动,发生相对滑动时也不一定与车的前端相撞,C错误;货车的加速度5 m/s2>4 m/s2,木箱已经发生相对滑动,木箱受到的摩擦力为滑动摩擦力,D错误.2.[2024·广东省中山市第一次模拟](多选)如图甲所示,物块A与木板B静止地叠放在水平地面上,A、B间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,地面光滑.现对A施加水平向右的大小不同的拉力F,测得B的加速度a与力F的关系如图乙所示,取g =10 m/s2,则()A.当F<24 N时,A、B间的摩擦力保持不变B.当F>24 N时,A、B间的摩擦力保持不变C.A的质量为4 kgD.B的质量为2 kg答案:BCD解析:由图乙可知,当F<24 N时,A、B保持相对静止,B的加速度逐渐增大,则A、B间的摩擦力逐渐增大;当F>24 N时,A、B发生相对滑动,A、B间滑动摩擦力保持不变,A错误,B正确;设A、B的质量分别为m1、m2,当F=24 N时,根据牛顿第二定律,对A,有F-μm1g=m1a,对B,有μm1g=m2a,解得A、B的质量分别为m1=4 kg,m2=2 kg,C、D正确.3.[2024·广西南宁市开学考试]如图所示,质量m A=2 kg的小物块A可以看作质点,以初速度v0=3 m/s滑上静止的木板B左端,木板B足够长,当A、B的速度达到相同后,A、B又一起在水平面上滑行直至停下.已知m B=1 kg,A、B间的动摩擦因数μ1=0.2,木板B 与水平面间的动摩擦因数μ2=0.1,g取10 m/s2.求:(1)小物块A刚滑上木板B时,A、B的加速度大小a A和a B;(2)A、B速度达到相同所经过的时间t;(3)A、B一起在水平面上滑行至停下的距离x.答案:(1)a A=2 m/s2,a B=1 m/s2(2)t=1 s(3)x=0.5 m解析:(1)根据题意可知,A与B之间的滑动摩擦力大小f1=μ1m A g=4 NB与水平面之间的滑动摩擦力大小f2=μ2(m A+m B)g=3 N当A刚滑上B时,由牛顿第二定律,对A有f1=m A a A对B有f1-f2=m B a B解得a A=2 m/s2,a B=1 m/s2(2)设A、B达到相同的速度为v,对A、B相对滑动的过程,由公式v=v0+at对A有v=v0-a A t对B有v=a B t解得t=1 s,v=1 m/s(3)以A、B整体为研究对象,由牛顿第二定律得f2=(m A+m B)a一起在水平面上滑行至停下过程0-v2=-2ax解得x=0.5 m4.[2024·辽宁省阜新市月考]如图所示,水平桌面上质量m1为0.01 kg的薄纸板上,放有一质量m2为0.04 kg的小水杯(可视为质点),小水杯距纸板左端距离x1为0.5 m,距桌子右端距离x2为1 m,现给纸板一个水平向右的恒力F,欲将纸板从小水杯下抽出.若纸板与桌面、水杯与桌面间的动摩擦因数μ1均为0.4,水杯与纸板间的动摩擦因数μ2为0.2,重力加速度g取10 m/s2,设水杯在运动过程中始终不会翻倒,则:(1)求F多大时,抽动纸板过程水杯相对纸板不滑动;(2)当F为0.4 N时,纸板的加速度是多大?(3)当F满足什么条件,纸板能从水杯下抽出,且水杯不会从桌面滑落?答案:(1)0.3 N(2)12 m/s2(3)F≥0.315 N解析:(1)当抽动纸板且水杯相对纸板滑动时,对水杯进行受力分析,根据牛顿第二定律得μ2m2g=m2a1,解得a1=2 m/s2对整体分析,根据牛顿第二定律得F1-μ1(m1+m2)g=(m1+m2)a1解得F1=0.3 N故当F1≤0.3 N抽动纸板过程水杯相对纸板不滑动;(2)当F2=0.4 N时,纸杯和纸板已经发生相对滑动,则有F2-μ2m2g-μ1(m1+m2)g=m1a解得a=12 m/s2(3)纸板抽出的过程,对纸板有F-μ2m2g-μ1(m1+m2)g=m1a纸板抽出的过程,二者位移关系满足x1=12at2-12a1t2纸板抽出后,水杯在桌面上做匀减速直线运动,设经历时间t′恰好到桌面右边缘静止,有μ1m2g=m2a′1由速度关系有a1t=a′1t′纸杯的位移关系有x2-12a1t2=a1t2×t′联立解得F=0.315 N所以,当F≥0.315 N时,纸板能从水杯下抽出,且水杯不会从桌面滑落.。
专题16-滑块、木板组合模型
专题16 滑块—木板模型以“滑块-木板”为模型的物理问题,将其进行物理情景的迁移或对其初始条件与附设条件做某些演变、拓展,便构成了许多内涵丰富、情景各异的综合问题。
这类问题涉及受力分析、运动分析、动量和功能关系分析,是运动学、动力学、动量守恒、功能关系等重点知识的综合应用。
因此“滑块-木板”模型问题已成为高考考查学生知识基础和综合能力的一大热点。
滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f ;比较f 与最大静摩擦力f m 的关系,若f > f m ,则发生相对滑动;否则不会发生相对滑动。
3.计算滑块和木板的相对位移(即两者的位移差或位移和);4.如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;5.滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
下面我们将“滑块-木板”模型按照常见的四种类型进行分析:一.木板受到水平拉力类型一:如图A 是小木块,B 是木板,A 和B 都静止在地面上。
A 在B 的右端,从某一时刻起,B 受到一个水平向右的恒力F 作用开始向右运动。
AB 之间的摩擦因数为μ1,B 与地面间的摩擦因数为μ2,板的长度L 。
根据A 、B 间有无相对滑动可分为两种情况:假设最大静摩擦力max f 和滑动摩擦力相等,A 受到的摩擦力g m f A 11μ≤,因而A 的加速度g a A 1μ≤。
A 、B 间滑动与否的临界条件为:A 、B 的加速度相等,即:a a A B =,亦即:2212111/])([m g m m g m F g +--=μμμ。
4.6专题三滑块-木板模型课件ppt-高一上学期物理教科版必修第一册
❶初始时刻:相对状态、摩擦力如何?aA=_______aB=____________
❷恰好不掉下B板长L=XA对B=________________ ❷足够长,共速后:aAB=________,做何运动?
v
B
μ1A
v0
地面光滑 v0 < v
【例题1】(多选)如图所示,一足够长的木板静止在粗糙的水平面上, t=0时刻滑块从木板的左端以速度vo水平向右滑行,木板与滑块间存在摩 擦,且最大静摩擦力等于滑动摩擦力. 下列描述滑块的V-t 图像中可能
【例题3】质量M=3kg的长木板放在光滑的水平面上,在水平恒力F=11 N 作用下由静止开始向右运动,如图所示,当速度达到1 m/s 时,将质量 m=4kg的物块轻轻放到木板的右端,已知物块与木板间的动摩擦因数 μ=0.2,g取 10m/s²,求∶ (1)物块经多少时间与木板保持相对静止; (2)在这一段时间内,物块相对于木板滑行的距离多大; (3)物块与木板相对静止后,物块受到的摩擦力多大.
❶ 初始初时始❷刻时、刻相共:速相时对对刻运的动滑受状力态动和?过摩程各擦力如自何?加速,力的最小值___________________________。
➊木板能够运动,动摩擦因数有何要求?
加速度a临界值: a整体=a隔离临界=F隔离合/m
(1)求冲上木板后,木块减速的加速度大小a1,木板加速的加速度大小a2,两者一起减速的加速度a3 谁有最大加速度?为多少?
A
0
μ 下列描述滑块的V-t 图像中可能正确的是( )
1
B
(2)求木❷块和初木板始的质量时比 刻:aA=_________aB=___________________
地面μ2
➌木板足够长,共速后:aAB=________,一起匀减速
机械能守恒定律专题9 功能关系 能量守恒定律(3) 板块模型18.5.21
机械能守恒定律专题9 能量守恒定律应用(3)板块模型1.滑块—木板模型根据情况可以分成水平面上的滑块—木板模型和斜面上的滑块—木板模型.2.滑块从木板的一端运动到另一端的过程中,若滑块和木板沿同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板沿相反方向运动,则滑块的位移和木板的位移之和等于木板的长度.3.此类问题涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口,求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度.滑块—木板模型问题的分析和技巧1.解题关键正确地对各物体进行受力分析(关键是确定物体间的摩擦力方向),并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.2.规律选择既可由动能定理和牛顿运动定律分析单个物体的运动,又可由能量守恒定律分析动能的变化、能量的转化,在能量转化过程往往用到ΔE 内=-ΔE 机=F f x相对,并要注意数学知识(如图象法、归纳法等)在此类问题中的应用.例题1、如图5,质量为M 、长度为L 的小车静止在光滑的水平面上.质量为m 的小物块(可视为质点)放在小车的最左端.现用一水平恒力F 作用在小物块上,使物块从静止开始做匀加速直线运动,物块和小车之间的摩擦力为F f ,物块滑到小车的最右端时,小车运动的距离为s .在这个过程中,以下结论正确的是(BC)图5A .物块到达小车最右端时具有的动能为F (L +s )B .物块到达小车最右端时,小车具有的动能为F f sC .物块克服摩擦力所做的功为F f (L +s )D .物块和小车增加的机械能为F f s解析 对物块分析,物块相对于地的位移为L +s ,根据动能定理得(F -F f )(L +s )=12m v 2-0,则知物块到达小车最右端时具有的动能为(F -F f )(L +s ),故A 错误;对小车分析,小车对地的位移为s ,根据动能定理得F f s =12M v ′2-0,则知物块到达小车最右端时,小车具有的动能为F f s ,故B 正确;物块相对于地的位移大小为L +s ,则物块克服摩擦力所做的功为F f (L +s ),故C 正确;根据能量守恒得,外力F 做的功转化为小车和物块的机械能和摩擦产生的内能,则有F (L +s )=ΔE +Q ,则物块和小车增加的机械能为ΔE =F(L+s)-F f L,故D错误.例题2、图7甲中,质量为m1=1kg的物块叠放在质量为m2=3kg的木板右端.木板足够长,放在光滑的水平面上,木板与物块之间的动摩擦因数为μ1=0.2.整个系统开始时静止,重力加速度g取10m/s2.甲图7(1)在木板右端施加水平向右的拉力F,为使木板和物块发生相对运动,拉力F至少应为多大?(2)在0~4s内,若拉力F的变化如图乙所示,2s后木板进入μ2=0.25的粗糙水平面,在图丙中画出0~4s 内木板和物块的v-t图象,并求出0~4s内物块相对木板的位移大小和整个系统因摩擦而产生的内能.答案(1)8N(2)见解析系统产生的内能可以直接用能量守恒等于力F做的功解析(1)把物块和木板看成整体,由牛顿第二定律得F=(m1+m2)a物块与木板将要相对滑动时,μ1m1g=m1a联立解得F=μ1(m1+m2)g=8N.(2)物块在0~2s内做匀加速直线运动,木板在0~1s内做匀加速直线运动,在1~2s内做匀速运动,2s后物块和木板均做匀减速直线运动,故二者在整个运动过程中的v-t图象如图所示.0~2s内物块相对木板向左运动,2~4s内物块相对木板向右运动.0~2s内物块相对木板的位移大小Δx1=2m,系统摩擦产生的内能Q1=μ1m1gΔx1=4J.2~4s内物块相对木板的位移大小Δx2=1m,物块与木板因摩擦产生的内能Q2=μ1m1gΔx2=2J;木板对地位移x 2=3m ,木板与地面因摩擦产生的内能Q 3=μ2(m 1+m 2)gx 2=30J.0~4s 内系统因摩擦产生的总内能为Q =Q 1+Q 2+Q 3=36J.例题3、如图4所示,在光滑水平地面上放置质量M =2kg 的长木板,木板上表面与固定的竖直弧形轨道相切.一质量m =1kg 的小滑块自A 点沿弧面由静止滑下,A 点距离长木板上表面高度h =0.6m .滑块在木板上滑行t =1s 后,和木板一起以速度v =1m /s 做匀速运动,取g =10 m/s 2.求:图4(1)滑块与木板间的摩擦力;(2)滑块沿弧面下滑过程中克服摩擦力做的功;(3)滑块相对木板滑行的距离.解析 (1)对木板受力分析F f =Ma 1 由运动学公式,有v =a 1t 解得F f =2N.(2)对滑块受力分析-F f =ma 2 设滑块滑上木板时的初速度为v 0 由公式v -v 0=a 2t 解得v 0=3m/s滑块沿弧面下滑的过程,由动能定理得mgh -W f =12m v 20 W f =mgh -12m v 20=1.5J. (3)t =1s 内木板的位移x 1=12a 1t 2 此过程中滑块的位移 x 2=v 0t +12a 2t 2 故滑块相对木板滑行距离 L =x 2-x 1=1.5m.答案 (1)2N (2)1.5J (3)1.5m例题4、如图1所示,AB 段为一半径R =0.2m 的14光滑圆弧轨道,EF 是一倾角为30°的足够长的光滑固定斜面,斜面上有一质量为0.1kg 的薄木板CD ,开始时薄木板被锁定.一质量也为0.1kg 的物块(图中未画出)从A 点由静止开始下滑,通过B 点后水平抛出,经过一段时间后恰好以平行于薄木板的方向滑上薄木板,在物块滑上薄木板的同时薄木板解除锁定,下滑过程中某时刻物块和薄木板能达到共同速度.已知物块与薄木板间的动摩擦因数μ=36.(g =10m/s 2,结果可保留根号)求:图1(1)物块到达B 点时对圆弧轨道的压力;(2)物块滑上薄木板时的速度大小;(3)达到共同速度前物块下滑的加速度大小及从物块滑上薄木板至达到共同速度所用的时间.答案 (1)3N ,方向竖直向下 (2)433m/s (3)2.5m/s 2 4315s 解析 (1)物块从A 运动到B 的过程,由动能定理得:mgR =12m v 2B,解得:v B =2m/s 在B 点由牛顿第二定律得:F N -mg =m v 2B R解得:F N =3N 由牛顿第三定律得物块对轨道的压力大小为3N ,方向竖直向下.(2)设物块滑上薄木板时的速度为v ,则:cos30°=v B v解得:v =433m/s. (3)物块和薄木板下滑过程中,由牛顿第二定律得:对物块:mg sin30°-μmg cos30°=ma 1对薄木板:mg sin30°+μmg cos30°=ma 2设物块和薄木板达到的共同速度为v ′,则:v ′=v +a 1t =a 2t解得:a 1=2.5m/s 2,t =4315s. 练习1:如图8所示,长木板A 放在光滑的水平地面上,物体B 以水平速度冲上A 后,由于摩擦力作用,最后停止在木板A 上,则从B 冲到木板A 上到相对木板A 静止的过程中,下述说法中正确的是( CD )图8A .物体B 动能的减少量等于系统损失的机械能B .物体B 克服摩擦力做的功等于系统内能的增加量C .物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和D .摩擦力对物体B 做的功和对木板A 做的功的总和等于系统内能的增加量解析 物体B 以水平速度冲上木板A 后,由于摩擦力作用,B 减速运动,木板A 加速运动,根据能量守恒定律,物体B 动能的减少量等于木板A 增加的动能和产生的热量之和,选项A 错误;根据动能定理,物体B 克服摩擦力做的功等于物体B 损失的动能,选项B 错误;由能量守恒定律可知,物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和,选项C 正确;摩擦力对物体B 做的功等于物体B 动能的减少量,摩擦力对木板A 做的功等于木板A 动能的增加量,由能量守恒定律,摩擦力对物体B 做的功和对木板A 做的功的总和等于系统内能的增加量,选项D 正确.练习2:光滑水平面上静止一质量为M 的木块,一颗质量为m 的子弹以水平速度v 1射入木块,并以速度v 2穿出,对这个过程,下列说法正确的是( AD )A .子弹克服阻力做的功等于12m (v 21-v 22) B .子弹对木块做的功等于子弹克服阻力做的功C .子弹对木块做的功等于木块获得的动能与子弹跟木块摩擦生热产生的内能之和D .子弹损失的动能等于木块的动能和子弹与木块摩擦转化的内能之和练习3-3:如图6所示,木块A 放在木块B 的左端,用恒力F 将A 拉至B 的右端,第一次将B 固定在地面上,F 做功为W 1,生热为Q 1;第二次让B 可以在光滑地面上自由滑动,仍将A 拉到B 的右端,这次F 做功为W 2,生热为Q 2.则应有( A )图6A .W 1<W 2,Q 1=Q 2B .W 1=W 2,Q 1=Q 2C .W 1<W 2,Q 1<Q 2D .W 1=W 2,Q 1<Q 2解析 拉力F 做的功由公式W =Fl cos α求得,其中l 是物体对地的位移,所以W 1<W 2,滑动摩擦力做功过程中产生的内能等于系统克服摩擦力做的功,即ΔE =Q =F f l相对,其中l 相对表示物体之间的相对位移,在这里是B 的长度,所以Q 1=Q 2.练习4:如图9所示,一块长木块B 放在光滑的水平面上,在B 上放一物体A ,现以恒定的外力F 拉B ,由于A 、B 间摩擦力的作用,A 将在B 上滑动,以地面为参考系,A 、B 都向前移动一段距离.在此过程中( BD )图9A .外力F 做的功等于A 和B 动能的增量B .B 对A 的摩擦力所做的功等于A 的动能的增量C .A 对B 的摩擦力所做的功等于B 对A 的摩擦力所做的功D .外力F 对B 做的功等于B 的动能的增量与B 克服摩擦力所做的功之和解析 A 物体所受的合外力等于B 对A 的摩擦力,对A 物体运用动能定理,则B 对A 的摩擦力所做的功等于A 的动能的增量,B 正确.A 对B 的摩擦力与B 对A 的摩擦力是一对作用力与反作用力,大小相等,方向相反,但是由于A 在B 上滑动,A 、B 对地的位移不等,故二者做功不等,C 错误.对B 应用动能定理W F-W f=ΔE k B,W F=ΔE k B+W f,即外力F对B做的功等于B的动能的增量与B克服摩擦力所做的功之和,D正确.由上述讨论知B克服摩擦力所做的功与A的动能的增量(等于B对A的摩擦力所做的功)不等,故A错误.练习5:(2013·山东·16)如图4所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中(CD)图4A.两滑块组成系统的机械能守恒B.重力对M做的功等于M动能的增加C.轻绳对m做的功等于m机械能的增加D.两滑块组成系统的机械能损失等于M克服摩擦力做的功解析两滑块释放后,M下滑、m上滑,摩擦力对M做负功,系统的机械能减小,减小的机械能等于M 克服摩擦力做的功,选项A错误,D正确.除重力对滑块M做正功外,还有摩擦力和绳的拉力对滑块M 做负功,选项B错误.绳的拉力对滑块m做正功,滑块m机械能增加,且增加的机械能等于拉力做的功,选项C正确.练习6:如图所示,上表面光滑,长度为3m、质量M=10kg的木板,在F=50N的水平拉力作用下,以v0=5m /S的速度沿水平地面向右匀速运动。
高一物理期末复习专题强化:滑块--木板模型
班级姓名学号专题强化:滑块--木板模型【教学目标】1、掌握滑块—滑板类问题的主要题型及特点。
2、强化受力分析,运动过程分析;抓住运动状态转化时的临界条件。
【课堂活动】例1:质量m=1kg的滑块(滑块大小忽略不计)放在质量为M=2kg的长木板左端,木板放在光滑的水平地面上,滑块与木板之间的动摩擦因数为μ=0.2,木板长L=75cm,开始时两者都处于静止状态,如图所示,试求:(1)用水平恒力F0拉滑块,使滑块与木板以相同的速度一起滑动,力F0的最大值应为多少?(2)用水平恒力F1=2N拉滑块,此时滑块与木板间摩擦力多大?(3)用水平恒力F2=8N拉滑块向木板的右端运动,求滑块运动到木板右端所用的时间.(4)用水平恒力F2=8N拉滑块向木板的右端运动,经过3s后撤去,要使滑块不从木板上掉下来,木板至少多长?(5)滑块以某一初速度从木板左端滑上木板,为了保证滑块不从木板的右端滑落,滑块滑上长木板的初速度应为多大?例2:如图所示,光滑水平面上静止放着长L=4 m,质量为M=3 kg的木板,一个质量为m=1 kg的小物体(可视为质点)放在木板的最右端,m和M之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F,(g取10 m/s2)(1)为使两者保持相对静止,F不能超过多少?(2)用水平恒力F1=7N拉木板,此时木板的加速度多大?(3)如果水平恒力F1=7 N,求小物体离开木板时的速度?(4)用水平恒力F1=7N拉木板向右运动,经过4s后撤去,要使滑块不从木板上掉下来,木板至少多长?(5)若木板以速度v0=2m/s向右作匀速直线运动,将滑块轻轻放在木板上的右端,它们相对静止时,滑块与木板左端的相距多远?【课堂活动】1.质量为m的长木板放在光滑的水平面上,质量为0.5m的物块放在长木板上,整个系统处于静止状态.若对物块施加水平拉力(如图甲),使物块能从长木板上滑离,需要的拉力至少为F1;若对长木板施加水平拉力(如图乙),也使物块能从长木板上滑离,需要的拉力至少为F2,则F1:F2为( )A.1:2 B.2:1 C.2:3 D.3:22.如图所示,质量为M=2kg的长木板位于光滑水平面上,质量为m=1kg的物块静止在长木板上,两者之间的滑动摩擦因数为µ=0.5.重力加速度g取10m/s2,物块与长木板之间的最大静摩擦力等于两者之间的滑动摩擦力。
微专题16 牛顿运动定律应用之“滑块—木板模型”问题
微专题16 牛顿运动定律应用之“滑块—木板模型”问题【核心要点提示】1.问题的特点滑块—木板类问题涉及两个物体,并且物体间存在相对滑动.2.常见的两种位移关系(1)滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;(2)若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度.【核心方法点拨】此类问题涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口.求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度.【微专题训练】类型一:滑块-木板间有摩擦,木板与地面间无摩擦【例题1】(多选)如图所示,物体A放在物体B上,物体B放在光滑的水平面上,已知m A =6 kg,m B=2 kg.A、B间动摩擦因数μ=0.2.A物体上系一细线,细线能承受的最大拉力是20 N,水平向右拉细线,下述中正确的是(g取10 m/s2)()A.当拉力0<F<12 N时,A静止不动B.当拉力F>12 N时,A相对B滑动C.当拉力F=16 N时,B受到A的摩擦力等于4 ND.在细线可以承受的范围内,无论拉力F多大,A相对B始终静止【解析】假设细线不断裂,则当细线拉力增大到某一值A物体会相对于B物体开始滑动,此时A、B之间达到最大静摩擦力.以B为研究对象,最大静摩擦力产生加速度,由牛顿第二定律得:μm A g=m B a,解得a=6 m/s2以整体为研究对象,由牛顿第二定律得:F m=(m A+m B)a=48 N即当绳子拉力达到48 N时两物体才开始相对滑动,所以A、B错,D 正确.当拉力F=16 N时,由F=(m A+m B)a解得a=2 m/s2,再由F f=m B a得F f=4 N,故C正确.【答案】CD【变式1-1】如图所示,在光滑水平面上,一个小物块放在静止的小车上,物块和小车间的动摩擦因数μ=0.2,重力加速度g=10 m/s2.现用水平恒力F拉动小车,关于物块的加速度a m和小车的加速度a M的大小,最大静摩擦力等于滑动摩擦力,下列选项可能正确的是()A.a m=2 m/s2,a M=1 m/s2B.a m=1 m/s2,a M=2 m/s2C.a m=2 m/s2,a M=4 m/s2D.a m=3 m/s2,a M=5 m/s2【解析】若物块与小车保持相对静止一起运动,设加速度为a,对系统受力分析,由牛顿第二定律可得:F=(M+m)a,隔离小物块受力分析,二者间的摩擦力F f为静摩擦力,且F f≤μmg,由牛顿第二定律可得:F f=ma,联立可得:a m=a M=a≤μg=2 m/s2.若物块与小车间发生了相对运动,二者间的摩擦力F f为滑动摩擦力,且a m<a M,隔离小物块受力分析,如图所示,由牛顿第二定律可得:F f=μmg=ma m,可得:a m=2 m/s2,选项C正确,选项A、B、D错误.【答案】C【变式1-2】如图甲所示,静止在光滑水平面上的长木板B(长木板足够长)的左端静止放着小物块A.某时刻,A受到水平向右的外力F作用,F随时间t的变化规律如图乙所示,即F =kt,其中k为已知常数.设物体A、B之间的滑动摩擦力大小等于最大静摩擦力F f,且A、B的质量相等,则下列可以定性描述长木板B运动的v-t图象是()【解析】A、B相对滑动之前加速度相同,由整体法可得:F=2ma,当A、B间刚好发生相对滑动时,对木板有F f=ma,故此时F=2F f=kt,t=2F fk,之后木板做匀加速直线运动,故只有B项正确.【答案】B【例题2】如图所示,在光滑的水平面上有一长为0.64 m、质量为4 kg的木板A,在木板的左端有一质量为2 kg的小物体B,A、B之间的动摩擦因数为μ=0.2。
高中物理滑块木板模型(经典)
高中物理“滑块—木板”模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动.2.位移关系:如图所示,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δx=x1-x2=L(板长);滑块和木板反向运动时,位移大小之和x2+x1=L.3.解题关键点(1)由滑块与木板的相对运动来判断“板块”间的摩擦力方向.(2)当滑块与木板速度相同时,“板块”间的摩擦力可能由滑动摩擦力转变为静摩擦力或者两者间不再有摩擦力(水平面上共同匀速运动).4.处理“板块”模型中动力学问题的流程1.如图所示,在光滑的水平面上有一足够长的质量为M=4 kg的长木板,在长木板右端有一质量为m=1 kg的小物块,长木板与小物块间的动摩擦因数为μ=0.2,长木板与小物块均静止,现用F =14 N 的水平恒力向右拉长木板,经时间t =1 s 撤去水平恒力F ,g 取10 m/s 2,则:(1)在F 的作用下,长木板的加速度为多大? (2)刚撤去F 时,小物块离长木板右端多远? (3)最终长木板与小物块一起以多大的速度匀速运动? (4)最终小物块离长木板右端多远?答案 (1)3 m/s 2 (2)0.5 m (3)2.8 m/s (4)0.7 m2.(多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为2140.小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑,小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.4,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.8 m/s 2C .经过1 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为0.8 m/s 答案 BC3. (多选)(2021·全国乙卷·21)水平地面上有一质量为m 1的长木板,木板的左边上有一质量为m 2的物块,如图(a)所示.用水平向右的拉力F 作用在物块上,F 随时间t 的变化关系如图(b)所示,其中F 1、F 2分别为t 1、t 2时刻F 的大小.木板的加速度a 1随时间t 的变化关系如图(c)所示.已知木板与地面间的动摩擦因数为μ1,物块与木板间的动摩擦因数为μ2,假设最大静摩擦力均与相应的滑动摩擦力相等,重力加速度大小为g .则( )A .F 1=μ1m 1gB .F 2=m 2(m 1+m 2)m 1(μ2-μ1)gC .μ2>m 1+m 2m 2μ1D .在0~t 2时间段物块与木板加速度相等 答案 BCD4.(多选)如图甲所示,水平地面上静止放置一质量为M 的木板,木板的左端有一个可视为质点的、质量m =1 kg 的滑块.现给滑块一向右的初速度v 0=10 m/s ,此后滑块和木板在水平地面上运动的速度图像如图乙所示,滑块最终刚好停在木板的右端,取g =10 m/s 2.下列说法正确的是( )A .滑块与木板间的动摩擦因数μ1=0.4B .木板与地面间的动摩擦因数μ2=0.1C .木板的长度L =4 mD .木板的质量M =1.5 kg 答案 ABD5.(多选)如图甲所示,一滑块置于足够长的长木板左端,木板放置在水平地面上.已知滑块和木板的质量均为2 kg ,现在滑块上施加一个F =0.5t (N)的变力作用,从t =0时刻开始计时,滑块所受摩擦力随时间变化的关系如图乙所示.设最大静摩擦力与滑动摩擦力相等,重力加速度g 取10 m/s 2,则下列说法正确的是( )A .滑块与木板间的动摩擦因数为0.4B .木板与水平地面间的动摩擦因数为0.2C .图乙中t 2=24 sD .木板的最大加速度为2 m/s 2 答案 ACD6.(多选)如图甲所示,一长木板静止在水平地面上,在t =0时刻,一小物块以一定速度从左端滑上长木板,之后长木板运动的v -t 图像如图乙所示,已知小物块与长木板的质量均为m =1 kg ,已知木板足够长,g 取10 m/s 2,则( )A.小物块与长木板间动摩擦因数μ=0.5B.在整个运动过程中,物块与木板构成的系统所产生的热量70 JC.小物块的初速度为v0=12 m/sD.0~2 s与2~3 s物块和木板构成的系统机械能减少量之比为17∶1答案ACD7.(2022·山东邹城市模拟)质量为M=1.0 kg的长木板A在光滑水平面上以v1=0.5 m/s的速度向左运动,某时刻质量为m=0.5 kg的小木块B以v2=4 m/s的速度从左端向右滑上长木板,经过时间t=0.6 s小木块B相对A静止,求:(1)两者相对静止时的运动速度v;(2)从木块滑上木板到相对木板静止的过程中,木板A的动量变化量的大小;(3)小木块与长木板间的动摩擦因数μ.答案(1)1 m/s,方向水平向右(2)1.5 kg·m/s(3)0.58.(2021·湖北省1月选考模拟·15)如图a,在光滑水平面上放置一木板A,在A上放置物块B,A和B的质量均为m=1 kg.A与B之间的动摩擦因数μ=0.2.t=0时刻起,对A施加沿水平方向的力,A和B由静止开始运动.取水平向右为正方向,B相对于A的速度用v BA=v B-v A 表示,其中v A和v B分别为A和B相对水平面的速度.在0~2 s时间内,相对速度v BA随时间t变化的关系如图b所示.运动过程中B始终未脱离A,重力加速度取g=10 m/s2.求:(1)0~2 s时间内,B相对水平面的位移大小;(2)t=2 s时刻,A相对水平面的速度.答案(1)3.5 m(2)09.质量M=3kg的长木板放在水平光滑的平面上,在水平恒力F=11N作用下由静止开始向右运动,如图所示,当速度达到1m/s时,将质量m=4kg的物体轻轻放到木板的右端,已知物块与木板间摩擦因数μ=0.2,(g=10m/s2)求:(1)物体经多长时间才与木板保持相对静止;(2)物块与木板相对静止后, 物块受到的摩擦力多大?答案:1s 6.28NF。
专题08 滑块—木板模型和传送带模型
专题08 滑块—木板模型和传送带模型一、夯实基础(一)、“滑块—木板”模型1.模型特点滑块(视为质点)置于长木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生_相对滑动__.2.两种位移关系滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的_位移之差__等于木板的长度;若滑块和木板向相反方向运动,则滑块的位移和木板的_位移之和_等于木板的长度.(二)、“传送带”模型1.水平传送带模型①可能一直加速②可能先①②③匀速①传送带较短时,滑块一直减速到达左端②传送带较长时,滑块还要被传送带传回右端.其中若回时速度为2.倾斜传送带模型①可能一直加速②可能先①可能一直加速②可能先③可能先以二、重、难、热点阐释主题一“滑块—木板”模型1.如图所示,解决此模型的基本思路如下:运动状态板块速度不相等板块速度相等瞬间板块共速运动2.求解“滑块—木板”类问题的方法技巧1.搞清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.2.正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.【例1】如图所示,厚度不计的薄板A长l=5 m,质量M=5 kg,放在水平地面上.在A上距右端x=3 m处放一物体B(大小不计),其质量m=2 kg,已知A、B间的动摩擦因数μ1=0.1,A与地面间的动摩擦因数μ2=0.2,原来系统静止.现在板的右端施加一大小恒定的水平力F=26 N,持续作用在A上,将A从B下抽出.g=10 m/s2,求:(1)A从B下抽出前A、B的加速度各是多大;(2)B运动多长时间离开A.【答案】(1)2 m/s2 1 m/s2(2)2 s【解析】(1)对于B:μ1mg=ma B解得a B=1 m/s2对于A:F-μ1mg-μ2(m+M)g=Ma A解得a A=2 m/s2(2)设经时间t抽出,则x A=12a A t2x B =12a B t 2Δx =x A -x B =l -x 解得t =2 s.【例2】(2019·黑龙江省哈尔滨市模拟)如图甲所示,滑块与长木板叠放在光滑水平面上,开始时均处于静止状态.作用于滑块的水平力F 随时间t 的变化图象如图乙所示.已知滑块质量m =2 kg ,木板质量M =1 kg ,滑块与木板间的动摩擦因数μ=0.2,g 取10 m/s 2.(已知滑块在2.5 s 内没有滑离木板)(1)在0~0.5 s 内,滑块和长木板之间的摩擦力大小是多少? (2)在2.5 s 时,滑块和长木板的速度分别是多少? 【答案】 (1)2 N (2)13 m/s 9 m/s【解析】 (1)在0~0.5 s 过程中,假设M 、m 具有共同加速度a 1,则:F 1=(M +m )a 1 a 1=2 m/s 2木板能达到的最大加速度a 2=μmgMa 2=4 m/s 2>a 1所以M 、m 相对静止,M 、m 之间为静摩擦力F f =Ma 1 解得:F f =2 N(2)木板和滑块在0.5 s 时的速度v 1=a 1t 1 解得:v 1=1 m/s在0.5~2.5 s 过程中,假设M 、m 具有共同加速度a 3 ,则:F 2=(M +m )a 3 a 3≈5.3 m/s 2>a 2,则M 、m 相对滑动 长木板在2.5 s 时的速度v 2=v 1+a 2t 2 解得:v 2=9 m/s以滑块为研究对象:F 2-μmg =ma 4 解得:a 4=6 m/s 2滑块在2.5 s 时的速度v 3=v 1+a 4t 2 解得:v 3=13 m/s.主题二 “传送带”模型1.水平传送带水平传送带又分为两种情况:物体的初速度与传送带速度同向(含物体初速度为0)或反向.在匀速运动的水平传送带上,只要物体和传送带不共速,物体就会在滑动摩擦力的作用下,朝着和传送带共速的方向变速(若v 物<v 传,则物体加速;若v 物>v 传,则物体减速),直到共速,滑动摩擦力消失,与传送带一起匀速运动,或由于传送带不是足够长,在匀加速或匀减速过程中始终没达到共速.计算物体与传送带间的相对路程要分两种情况:①若二者同向,则Δs =|s 传-s 物|;②若二者反向,则Δs =|s 传|+|s 物|.2.倾斜传送带物体沿倾角为θ的传送带传送时,可以分为两类:物体由底端向上运动,或者由顶端向下运动.解决倾斜传送带问题时要特别注意mg sin θ与μmg cos θ的大小和方向的关系,进一步判断物体所受合力与速度方向的关系,确定物体运动情况.【例3】如图所示,水平传送带正在以v =4 m/s 的速度匀速顺时针转动,质量为m =1 kg 的某物块(可视为质点)与传送带之间的动摩擦因数μ=0.1,将该物块从传送带左端无初速度地轻放在传送带上(g 取10 m/s 2).(1)如果传送带长度L =4.5 m ,求经过多长时间物块将到达传送带的右端; (2)如果传送带长度L =20 m ,求经过多长时间物块将到达传送带的右端. 【答案】 (1)3 s (2)7 s【解析】 物块放到传送带上后,在滑动摩擦力的作用下先向右做匀加速运动.由μmg =ma 得a =μg , 若传送带足够长,匀加速运动到与传送带同速后再与传送带一同向右做匀速运动. 物块匀加速运动的时间t 1=v a =vμg =4 s物块匀加速运动的位移x 1=12at 12=12μgt 12=8 m(1)因为4.5 m<8 m ,所以物块一直加速,由L =12at 2得t =3 s(2)因为20 m>8 m ,所以物块速度达到传送带的速度后,摩擦力变为0,此后物块与传送带一起做匀速运动, 物块匀速运动的时间t 2=L -x 1v =20-84 s =3 s故物块到达传送带右端的时间t ′=t 1+t 2=7 s. 【小结】分析水平传送带问题的注意事项当传送带水平运动时,应特别注意摩擦力的突变和物体运动状态的变化.摩擦力的突变,常常导致物体的受力情况和运动性质的突变.静摩擦力达到最大值,是物体和传送带恰好保持相对静止的临界状态;滑动摩擦力存在于发生相对运动的物体之间,因此两物体的速度达到相同时,滑动摩擦力要发生突变(滑动摩擦力为0或变为静摩擦力). 【举一反三】(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李(可视为质点)无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离为2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( ) A.乘客与行李同时到达B 处 B.乘客提前0.5 s 到达B 处C.行李提前0.5 s 到达B 处D.若传送带速度足够大,行李最快也要2 s 才能到达B 处【答案】 BD【解析】 行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.加速度为a =μg =1 m/s 2,历时t 1=v a =1 s 达到共同速度,位移x 1=v2t 1=0.5 m ,此后行李匀速运动t 2=2 m -x 1v =1.5 s ,到达B 共用2.5 s.乘客到达B ,历时t =2 mv=2 s ,故B 正确.若传送带速度足够大,行李一直加速运动,最短运动时间t min =2x a =2×21 s =2 s ,D 正确.【例4】如图所示,传送带与水平地面的夹角为θ=37°,AB 的长度为64 m ,传送带以20 m/s 的速度沿逆时针方向转动,在传送带上端A 点无初速度地放上一个质量为8 kg 的物体(可视为质点),它与传送带之间的动摩擦因数为0.5,求物体从A 点运动到B 点所用的时间.(sin 37°=0.6,cos 37°=0.8,g =10 m/s 2)【答案】 4 s【解析】 开始时物体下滑的加速度:a 1=g (sin 37°+μcos 37°)=10 m/s 2,运动到与传送带共速的时间为:t 1=v a 1=2010s =2 s ,下滑的距离:x 1=12a 1t 12=20 m ;由于tan 37°=0.75>0.5,故物体2 s 后继续加速下滑,且此时:a 2=g (sin 37°-μcos 37°)=2 m/s 2,根据x 2=vt 2+12a 2t 22,解得:t 2=2 s ,故共用时间t =4 s.【小结】物体沿着倾斜的传送带向下加速运动到与传送带速度相等时,若μ≥tan θ,物体随传送带一起匀速运动;若μ<tan θ,物体将以较小的加速度a =g sin θ-μg cos θ继续加速运动.【举一反三】如图甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现将小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:(1)小物块与传送带间的动摩擦因数为多大; (2)0~8 s 内小物块与传送带之间的划痕为多长. 【答案】 (1)78(2)18 m【解析】 (1)根据v -t 图象的斜率表示加速度,a =Δv Δt =22m/s 2=1 m/s 2由牛顿第二定律得μmg cos 37°-mg sin 37°=ma 解得μ=78(2)0~8 s 内只有前6 s 内物块与传送带发生相对滑动0~6 s 内传送带匀速运动距离为:x 带=4×6 m =24 m .速度图象的“面积”大小等于位移, 则0~2 s 内物块位移为:x 1=12×2×2 m =2 m ,方向沿斜面向下,2~6 s 内物块位移为:x 2=12×4×4 m =8 m ,方向沿斜面向上所以划痕的长度为:Δx =x 带+x 1-x 2=(24+2-8) m =18 m .三、模拟预测训练1.物块M 在静止的传送带上匀速下滑时,传送带突然顺时针转动,传送带转动的方向如图中箭头所示,则传送带转动后( )A .物块将减速下滑B .物块仍匀速下滑C .物块受到的摩擦力变小D .物块受到的摩擦力变大 【答案】:B【解析】:当传送带静止时,物块匀速下滑,由物块受力平衡可得:mg sin θ=μmg cos θ;当传送带转动起来时,由于物块与传送带之间运动方向相反,可判断物块所受的滑动摩擦力方向并没有发生变化,仍然沿斜面向上,大小仍为μmg cos θ,选项C 、D 错误;物块受力仍然是平衡的,所以物块仍匀速下滑,选项A 错误,B 正确.2.如图所示,质量为m 1的足够长木板静止在水平面上,其上放一质量为m 2的物块.物块与木板的接触面是光滑的.从t =0时刻起,给物块施加一水平恒力F .分别用a 1、a 2和v 1、v 2表示木板、物块的加速度和速度大小,下列图象符合运动情况的是( )【答案】 D【解析】 木板一定保持静止,加速度为0,选项A 、B 错误;物块的加速度a =Fm 2,即物块做匀加速直线运动,物块运动的v -t 图象为倾斜的直线,而木板保持静止,速度一直为0,选项C 错误,D 正确.3.(2019·广东湛江一中等“四校”联考)如图甲所示,质量为M 的木板静止在光滑水平面上,一个质量为m 的小滑块以初速度v 0从木板的左端向右滑上木板.滑块和木板的水平速度随时间变化的图象如图乙所示.某同学根据图象作出如下一些判断,正确的是( )A .滑块和木板始终存在相对运动B .滑块始终未离开木板C .滑块的质量小于木板的质量D .木板的长度为v 0t 12【答案】:B【解析】:由题意知,滑块在木板的摩擦力作用下做匀减速直线运动,木板在滑块的摩擦力作用下做初速度为0的匀加速直线运动,最终两者相对静止,一起运动,故A 错误;由图乙可知,最终滑块与木板速度相等,它们相对静止,滑块没有滑离木板,故B 正确;由于滑块、木板间相互作用的摩擦力分别使滑块、木板产生加速度,所以满足ma m =Ma M ,由图象知,在t 1时间内匀减速运动的加速度小于匀加速运动的加速度,即a m <a M ,所以可知m >M ,即滑块的质量大于木板的质量,故C 错误;两物块相对静止时,两者的位移差x =v 0+v 2t 1-v 2t 1=v 0t 12,则木板长度大于或等于v 0t 12,故D 错误.4.(多选)如图所示,一足够长的水平传送带以恒定的速度向右传动.将一物体轻轻放在传送带的左端,以v 、a 、x 、F 表示物体速度大小、加速度大小、位移大小和所受摩擦力的大小.下列选项正确的是( )【答案】 AB【解析】 物体在传送带上先做匀加速运动,当达到共同速度后再做匀速运动,A 、B 正确.5.(2019·湖北省黄冈市高一模拟)机场使用的货物安检装置如图所示,绷紧的传送带始终保持v =1 m/s 的恒定速率运动,AB 为传送带水平部分且长度L =2 m ,现有一质量为m =1 kg 的背包(可视为质点)无初速度的放在水平传送带的A 端,可从B 端沿斜面滑到地面.已知背包与传送带间的动摩擦因数μ=0.5,g =10 m/s 2,下列说法正确的是( )A .背包从A 运动到B 所用的时间为2.1 s B .背包从A 运动到B 所用的时间为2.3 sC .背包与传送带之间的相对位移为0.3 mD .背包与传送带之间的相对位移为0.1 m 【答案】 AD【解析】 背包在水平传送带上由滑动摩擦力产生加速度,μmg =ma ,得a =5 m/s 2,背包达到传送带的速度v =1 m/s所用时间t 1=v a =0.2 s ,此过程背包对地面位移x 1=v 2t 1=12×0.2 m =0.1 m<L =2 m ,共速后背包与传送带相对静止,没有相对位移,所以背包与传送带的相对位移为Δx =vt 1-x 1=1×0.2 m -0.1 m =0.1 m ,背包匀速运动的时间t 2=L -x 1v=2-0.11 s =1.9 s ,所以背包从A 运动到B 所用的时间为:t =t 1+t 2=2.1 s ,故A 、D 正确. 6.如图所示,长度l =2 m ,质量M =23kg 的木板置于光滑的水平地面上,质量m =2 kg 的小物块(可视为质点)位于木板的左端,木板和小物块间的动摩擦因数μ=0.1,现对小物块施加一水平向右的恒力F=10 N,取g=10 m/s2.求:(1)将木板M固定,小物块离开木板时的速度大小;(2)若木板M不固定:①m和M的加速度a1、a2的大小;②小物块从开始运动到离开木板所用的时间.【答案】(1)4 m/s(2)①4 m/s2 3 m/s2②2 s【解析】(1)对小物块进行受力分析,由牛顿第二定律得F-μmg=ma解得a=4 m/s2小物块离开木板时,有v2=2al解得v=4 m/s.(2)①对m,由牛顿第二定律:F-μmg=ma1解得a1=4 m/s2对M,由牛顿第二定律:μmg=Ma2解得a2=3 m/s2.②由位移公式知x1=12a1t2,x2=12a2t2小物块从开始运动到离开木板,有x1-x2=l联立解得t=2 s.7.如图所示,质量为M=1 kg的长木板静止在光滑水平面上,现有一质量为m=0.5 kg的小滑块(可视为质点)以v0=3 m/s的初速度从左端沿木板上表面冲上木板,带动木板向前滑动.已知滑块与木板上表面间的动摩擦因数μ=0.1,重力加速度g取10 m/s2,木板足够长.求:(1)滑块在木板上滑动过程中,长木板受到的摩擦力大小和方向;(2)滑块在木板上滑动过程中,滑块相对于水平面的加速度a的大小;(3)滑块与木板达到的共同速度v的大小.【答案】(1)0.5 N向右(2)1 m/s2(3)1 m/s【解析】(1)滑块所受摩擦力为滑动摩擦力F1=μmg=0.5 N,方向向左根据牛顿第三定律,滑块对木板的摩擦力方向向右,大小为0.5 N.(2)根据牛顿第二定律得:μmg =ma 得a =μg =1 m/s 2(3)木板的加速度a ′=mMμg =0.5 m/s 2设经过时间t ,滑块和长木板达到共同速度v ,则满足: 对滑块:v =v 0-at 对长木板:v =a ′t由以上两式得:滑块和长木板达到的共同速度v =1 m/s.8.如图所示为一水平传送带装置示意图,绷紧的传送带AB 始终保持v =1 m/s 的恒定速率运行,一质量为m =4 kg 的行李(可视为质点)无初速度地放在A 处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带间的动摩擦因数μ=0.1,A 、B 间的距离l =2 m ,g 取10 m/s 2.求:(1)行李刚开始运动时所受的滑动摩擦力大小与加速度大小; (2)行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B 处.求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率.【答案】 (1)4 N 1 m/s 2 (2)1 s (3)2 s 2 m/s【解析】 (1)行李刚开始运动时所受的滑动摩擦力F =μmg 将题给数据代入,得F =4 N 由牛顿第二定律,得F =ma 代入数值,得a =1 m/s 2(2)设行李做匀加速直线运动的时间为t ,行李加速运动的末速度为v =1 m/s ,则v =at 代入数据,得t =1 s.(3)行李从A 处匀加速运动到B 处时,传送时间最短,则l =12at 2min,代入数据得t min =2 s.传送带对应的最小运行速率v min =at min ,代入数据得v min =2 m/s.9.如图所示,有一条沿顺时针方向匀速运转的传送带,恒定速度v =4 m/s ,传送带与水平面的夹角θ=37°,现将质量m =1 kg 的小物块轻放在其底端(小物块可视为质点),与此同时,给小物块沿传送带方向向上的恒力F =8 N ,经过一段时间,物块运动到了离地面高为h =2.4 m 的平台上.已知物块与传送带之间的动摩擦因数μ=0.5(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8).求:(1)物块从传送带底端运动到平台上所用的时间;(2)若在物块与传送带达到相同速度时,立即撤去恒力F ,物块还需经过多少时间离开传送带以及离开时的速度大小. 【答案】:(1)1.33 s (2)0.85 s 2.31 m/s【解析】:(1)对物块受力分析可知,物块先是在恒力作用下沿传送带方向向上做初速度为零的匀加速运动,直至速度达到传送带的速度,由牛顿第二定律有F +μmg cos θ-mg sin θ=ma 1 解得a 1=6 m/s 2 则t 1=v a 1=23 sx 1=v 22a 1=43m物块达到与传送带同速后,对物块受力分析可知,物块受的摩擦力的方向改变,因为F =8 N ,而重力沿传送带向下的分力和最大静摩擦力之和为10 N ,故物块只能相对传送带静止. 由几何关系可得物块总的位移x =hsin θ=4 m , t 2=x -x 1v =23s 则t =t 1+t 2=43s≈1.33 s.(2)若达到同速后撤去恒力F ,对物块受力分析, 因为mg sin θ>μmg cos θ,故物块减速上行,由牛顿第二定律有 mg sin θ-μmg cos θ=ma 2,得a 2=2 m/s 2物块还需时间t ′离开传送带,离开时的速度为v t ,则 v 2-v t 2=2a 2(x -x 1),v t =433 m/s≈2.31 m/st ′=v -v ta 2≈0.85 s. 10.一大小不计的木块通过长度忽略不计的绳固定在小车的前壁上,小车表面光滑。
专题滑块与木板模型
专题常见滑块—木板模型分析类型一地面光滑,木板受外力1.如图,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值;2.如图所示,光滑水平面上静止放着长L=1 m,质量为M=3 kg的木板厚度不计,一个质量为m=1 kg的小物体放在木板的最右端,m和M之间的动摩擦因数μ=,今对木板施加一水平向右的拉力F;g取10 m/s21为使小物体与木板恰好不相对滑动,F不能超过多少2如果拉力F=10 N恒定不变,求小物体所能获得的最大速率;类型二地面光滑,滑块受外力3.如图所示,木块A的质量为m,木块B的质量为M,叠放在光滑的水平面上,A、B 之间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g;现用水平力F 作用于A,则保持A、B相对静止的条件是F不超过A. μmgB. μMgC. μmg1+错误!D. μMg1+错误!4.如图所示,质量M=1 kg的木块A静止在水平地面上,在木块的左端放置一个质量m=1 kg的铁块B大小可忽略,铁块与木块间的动摩擦因数μ1=,木块长L=1 m,用F=5 N的水平恒力作用在铁块上,g取10 m/s2;1若水平地面光滑,计算说明两物块间是否发生相对滑动;2若木块与水平地面间的动摩擦因数μ2=,求铁块运动到木块右端的时间;类型三地面粗糙,木板受外力5.如图,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间动摩擦因数为μ,B与水平面间的动摩擦因数为认为最大静摩擦力等于滑动摩擦力,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值;6.如图所示,小木块质量m=1kg,长木桉质量M =10kg,木板与地面以及木块间的动摩擦因数均为μ=4 m/s向=.当木板从静止开始受水平向右的恒力F=90 N作用时,木块以初速v左滑上木板的右端.则为使木块不滑离木板,木板的长度l至少要多长类型四地面粗糙,滑块受外力7.如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上;A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为2μ;最大静摩擦力等于滑动摩擦力,重力加速度为g ;现对A 施加一水平拉力F ,则A .当F <2μmg 时,A 、B 都相对地面静止B .当F =mg μ25时,A 的加速度为g μ31 C .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过g μ21 类型五 地面粗糙,滑块与木板具有初速度8. 一长木板在水平地面上运动,在t=0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度-时间图像如图所示;己知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦.物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上;取重力加速度的大小g =10m /S 2求:1物块与木板间;木板与地面间的动摩擦因数:2从t=0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小.知识要求:运动学公式、相对位移的计算、牛顿运动定律、摩擦力的特点、动能定理、能量守恒定律方法要求:一、动力学的观点:运动学公式、牛顿第二定律运动分析、受力分析 整体法、隔离法 图像法二、能量的观点:动能定理、能量守恒定律不需分析具体的过程,只需抓住初、末状态注意两点:1、滑块与木板发生相对滑动的条件:二者加速度不相等;2、滑块与木板发生分离的条件: 滑块由木板一端运动到另一端过程中若1滑块与木板同向运动,二者对地位移之差等于板长;2滑块与木板反向运动,二者对地位移之和等于板长;。
动力学中的“滑块—木板”模型-高考物理复习
图4
A的下面抽出,重力加速度为g。则拉力F应大于( C )
A.mgsin θ+μmgcos θ
B.mgsin θ+2μmgcos θ
C.4μmgcos θ
D.2mgsin θ
解析 设拉力为F0时,B刚要从A下面被抽出,对整体,根据牛顿第二定律有 F0-2mgsin θ-2μmgcos θ=2ma,对物块A,根据牛顿第二定律有μmgcos θ -mgsin θ=ma,联立可得F0=4μmgcos θ,故A、B、D错误,C正确。
01 02 03 04 05 06 07
目录
提升素养能力
3.(多选)如图3甲所示,一滑块置于足够长的长木板左端,木板放置在水平地面上。
已知滑块和木板的质量均为2 kg,现在滑块上施加一个F=0.5t(N)的变力作用,
从t=0时刻开始计时,滑块所受摩擦力随时间变化的关系如图乙所示。设最大
静摩擦力与滑动摩擦力相等,重力加速度g取10 m/s2,则下列说法正确的是
目录
提升素养能力
解析 要使木板沿斜面加速运动,对物块与木板整体有
F>(M+m)gsin α,解得 F>20 N,故 A 错误;对物块与 木板整体,由牛顿第二定律可得 F-(M+m)gsin α= (M+m)a,对物块有 f-mgsin α=ma,为使物块不滑 离木板,则 f≤μmgcos α,解得 F≤30 N,综上可得, 当 F≤30 N 时物块不滑离木板,当 F>30 N 时物块与木板发生相对滑动,故 B 错误,C 正确;若 F=37.5 N>30 N,物块能滑离木板,对木板有 F-Mgsin α-
( ACD )
A.滑块与木板间的动摩擦因数为0.4
B.木板与水平地面间的动摩擦因数为0.2
专题 滑块—木板模型(板块模型)(附精品解析)
专题 滑块—木板模型(板块模型) 专题训练一、单选题1.(2021·湖南·长郡中学高一期中)木板B 静止在水平面上,其左端放有物体A 。
现对A 施加水平恒力F 的作用,使两物体均从静止开始向右做匀加速直线运动,直至A 、B 分离,已知各接触面均粗糙,则( )A .A 和地面对B 的摩擦力是一对相互作用力B .A 和地面对B 的摩擦力是一对平衡力C .A 对B 的摩擦力水平向右D .B 对A 的摩擦力水平向右2.(2021·黑龙江·农垦佳木斯学校高三月考)如图所示,质量为M 的木板放在水平桌面上,一个质量为m 的物块置于木板上。
木板与物块间、木板与桌面间的动摩擦因数均为μ。
现用一水平恒力F 向右拉木板,使木板和物块共同向右做匀加速直线运动,物块与木板保持相对静止。
已知重力加速度为g 。
下列说法正确的是( )A .木板与物块间的摩擦力大小等于0B .木板对物块的摩擦力水平向左C .木板与桌面间的摩擦力大小等于μMgD .当拉力2()F M m g μ>+时,m 与M 发生相对滑动 3.(2021·山东师范大学附中高三月考)如图所示,质量为3kg 的长木板B 静置于光滑水平面上,其上放置质量为1kg 的物块A ,A 与B 之间的动摩擦因数为0.5设最大静摩擦力等于滑动摩擦力,且当地的重力加速度为210m/s 。
当木板A 和B 刚好要发生相对滑动时,拉力F 的大小为( )A .20NB .15NC .5ND .25N4.(2021·安徽·定远县民族中学高三月考)如图甲所示,足够长的木板B 静置于光滑水平面上,其上放置小滑块A 。
木板B 受到随时间t 变化的水平拉力F 作用时,木板B 的加速度a 与拉力F 的关系图象如图乙所示,则小滑块A 的质量为( )A .4kgB .3kgC .2kgD .1kg二、多选题5.(2021·四川·眉山市彭山区第一中学高三月考)物体A 和物体B 叠放在光滑水平面上静止,如图所示。
滑块—木板模型专题(附详细参考答案)
精心整理牛顿定律——滑块和木板模型专题一.“滑块—木板模型”问题的分析思路1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.建模指导解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.例1、m A=1kg,m B=2kg,A、B间动摩擦因数是0.5,水平面光滑.用10N水平力F拉B时,A、B间的摩擦力是用20N水平力F拉B时,A、B间的摩擦力是例2、如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6kg,m B =2kg,A、B之间的动摩擦因数μ=0.2,开始时F=10N,此后逐渐增加,若使AB不发生相对运动,则F的最大值为针对练习1、如图5所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6kg,m B=2kg,A、B之间的动摩擦因数μ=0.2,开始时F=10N,此后逐渐增加,在增大到45N 的过程中,则()A.当拉力F<12N时,物体均保持静止状态B.两物体开始没有相对运动,当拉力超过12N时,开始相对运动C.两物体从受力开始就有相对运动D.两物体始终没有相对运动精心整理例3、如图所示,质量M =8kg 的小车放在光滑的水平面上,在小车左端加一水平推力F =8N ,当小车向右运动的速度达到1.5m/s 时,在小车前端轻轻地放上一个大小不计,质量为m =2kg 的小物块,小物块与小车间的动摩擦因数μ=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端.取g =10m/s 2.则:(1)小物块放上后,小物块及小车的加速度各为多大? (2)小车的长度L 是多少?针对练习2、如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg ,木板的质量M=4kg ,长L=2.5m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N 拉木板,g 取10m/s 2,求: (1)木板的加速度;(2)要使木块能滑离木板,水平恒力F 作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因素为3.01=μ,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力.(4)若木板的长度、木块的质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30N ,则木块滑离木板需要多长时间?牛顿定律——滑块和木板模型专题答案例1、3.3N5N 例2、48N针对练习1、答案 D解析 当A 、B 间的静摩擦力达到最大静摩擦力,即滑动摩擦力时,A 、B 才会发生相对运动.此时对B 有:F fmax =μm A g =12N ,而F fmax =m B a ,a =6m/s 2,即二者开始相对运动时的加速度为6m/s 2,此时对A 、B 整体:F =(m A +m B )a =48N ,即F >48N 时,A 、B 才会开始相对运动,故选项A 、B 、C 错误,D 正确.例3、答案 (1)2m/s 2 0.5m/s 2 (2)0.75m解析 (1)以小物块为研究对象,由牛顿第二定律,得 μmg =ma 1解得a 1=μg =2m/s 2以小车为研究对象,由牛顿第二定律,得F -μmg =Ma 2 解得a 2==0.5m/s 2(2)由题意及运动学公式:a 1t =v 0+a 2t 解得:t ==1s则物块运动的位移x 1=a 1t 2=1m..'. 小车运动的位移x2=v0t+a2t2=1.75m L=x2-x1=0.75m针对练习2、解析(1)木板受到的摩擦力F f=μ(M+m)g=10N木板的加速度a==2.5m/s2. (2分)(2)设拉力F作用时间t后撤去F撤去后,木板的加速度为a′=-=-2.5m/s2 (2分)木板先做匀加速运动,后做匀减速运动,且a=-a′,故at2=L解得t=1s,即F作用的最短时间为1s.(2分) (3)设木块的最大加速度为a木块,木板的最大加速度为a木板,则μ1mg=ma木块(2分) 得a木块=μ1g=3m/s2对木板:F1-μ1mg-μ(M+m)g=Ma木板(2分)木板能从木块的下方抽出的条件为a木板>a木块解得F1>25N.(2分) (4)木块的加速度a木块′=μ1g=3m/s2 (1分) 木板的加速度a木板′==4.25m/s2 (1分)木块滑离木板时,两者的位移关系为x木板-x木块=L,即a木板′t2-a木块′t2=L (2分)代入数据解得t=2s.(2分)答案(1)2.5m/s2(2)1s(3)大于25N(4)2s分析滑块—木板模型问题时应掌握的技巧1.分析题中滑块、木板的受力情况,求出各自的加速度.2.画好运动草图,找出位移、速度、时间等物理量间的关系.3.知道每一过程的末速度是下一过程的初速度.4.两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力.(2)二者加速度不相等.。
专题:滑块—木板模型
专题:滑块—木板模型1.建模指导 解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程。
特别注意滑块和木板的位移都是相对地面的位移。
2.模型特征上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动。
3.思维模板4.分析滑块—木板模型问题时应掌握的技巧(1)分析题中滑块、木板的受力情况,求出各自的加速度。
(2)画好运动草图,找出位移、速度、时间等物理量间的关系。
(3)知道每一过程的末速度是下一过程的初速度。
(4)两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力。
(2)二者加速度不相等。
5. 滑块—木板模型临界问题的求解思路【典例精析1】如图甲所示,光滑的水平地面上放有一质量为M 、长为 4.0m L =的木板。
从0t =时刻开始,质量为 1.0kg m =的物块以初速度06m/s v =从左侧滑上木板,同时在木板上施一水平向右的恒力7.0N F =,已知开始运动后1s 内两物体的v t -图线如图乙所示,物块可视为质点,2s 10m/g =,下列说法正确的是A .木板的质量 1.5M kg =B .物块与木板间的动摩擦因数为0.1C . 1.5s t =时,木板的加速度为273m/s D .2s t =时,木板的速度为7.2m/s【典例精析2】如图所示,质量M =8.0 kg 、长L =2.0 m 的薄木板静置在光滑水平地面上,且木板不固定。
质量m =0.40kg 的小滑块(可视为质点)以速度v 0从木板的左端冲上木板。
已知滑块与木板间的动摩擦因数μ=0.20,(假定滑块与木板之间最大静摩擦力与滑动摩擦力相等,重力加速度g 取10 m/s 2。
)(1)若v 0=2.1 m/s ,从小滑块滑上长木板,到小滑块与长木板相对静止,小滑块的位移是多少?(2)若v 0=3.0 m/s ,在小滑块冲上木板的同时,对木板施加一个水平向右的恒力F ,如果要使滑块不从木板上掉下,力F 应满足什么条件?【典例精析3】如图1所示,光滑水平面上放置质量分别为m 、2m 的物块A 和木板B ,A 、B 间的最大静摩擦力为μmg ,现用水平拉力F 拉B ,使A 、B 以同一加速度运动,求拉力F 的最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题常见滑块—木板模型分析
类型一地面光滑,木板受外力
1.如图,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求
拉力F的最大值。
2.如图所示,光滑水平面上静止放着长L=1 m,质量为M=3kg的木板(厚度不计),一个质量为m=1 kg的小物体放在木板的最右端,m和M之间
的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F。
(g取10 m/s2)(1)为使小物体与木板恰好不相对滑动,F不能超过多少?
(2)如果拉力F=10 N恒定不变,求小物体所能获得的最大速率。
类型二地面光滑,滑块受外力
3.如图所示,木块A的质量为m,木块B的质量为M,叠放在光滑的水平面上,A、B之间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速
度为g。
现用水平力F作用于A,则保持A、B相对静止的条件是F不超过( )
A. μmg
B. μMg
C. μmg(1+\f(m,M) )
D. μM
g(1+\f(M,m) )
4.如图所示,质量M=1 kg的木块A静止在水平地面上,在木块的左端放
置一个质量m=1kg的铁块B(大小可忽略),铁块与木块间的动摩擦因数
μ
=0.3,木块长L=1 m,用F=5 N的水平恒力作用在铁块上,g取10 m/s2。
1
(1)若水平地面光滑,计算说明两物块间是否发生相对滑动;
(2)若木块与水平地面间的动摩擦因数μ2=0.1,求铁块运动到木块右端的时间。
类型三地面粗糙,木板受外力
5.如图,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B 间动摩擦因数为μ,B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑动摩擦力),现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。
6.如图所示,小木块质量m=1kg,长木桉质量M=10kg,木板与地面以及木块间的动摩擦因数均为μ=0.5.当木板从静止开始受水平向右的恒力F=
=4 m/s向左滑上木板的右端.则为使木块不滑离90 N作用时,木块以初速v
木板,木板的长度l至少要多长?
类型四 地面粗糙,滑块受外力
7.如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。
A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为2μ。
最大静摩擦力等于滑动摩擦力,重力加速度为g 。
现对A 施加一水平拉力F ,则( )
A .当F<2μmg 时,A 、B都相对地面静止
B .当F =mg μ25时,A 的加速度为g μ3
1 C.当F >3μmg 时,A 相对B 滑动
D.无论F 为何值,B 的加速度不会超过g μ2
1 类型五 地面粗糙,滑块与木板具有初速度
8. 一长木板在水平地面上运动,在t=0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度-时间图像如图所示。
己知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦.物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。
取重力加速度的大小g=10m /S2求:
(1)物块与木板间;木板与地面间的动摩擦因数:
(2)从t=0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小.
知识要求:运动学公式、相对位移的计算、牛顿运动定律、摩擦力的特点、动能定理、能量守恒定律
方法要求:一、动力学的观点:运动学公式、牛顿第二定律(运动分析、受力分析)
整体法、隔离法图像法
二、能量的观点:动能定理、能量守恒定律(不需分析具体的过
程,只需抓住初、末状态)
注意两点:1、滑块与木板发生相对滑动的条件:二者加速度不相等。
2、滑块与木板发生分离的条件:滑块由木板一端运动到另一端
过程中若(1)滑块与木板同向运动,二者对地位移之差等于板
长;
(2)滑块与木板反向运动,二者对地位移之和等于板长。