三角函数模型的简单应用.
三角函数模型的简单应用
三角函数模型的简单应用
一、引言
三角函数是数学中重要的概念之一,广泛应用于各个领域。
本文将介
绍三角函数模型在实际问题中的简单应用,包括振动、音乐、天文等方面。
二、振动模型
振动是物理学中常见的现象,三角函数模型可以很好地描述振动的特性。
例如,在弹簧振子中,物体在平衡位置附近偏离并摆动,可以用正弦
函数描述振动的过程。
振动的周期、频率和振幅等因素可以通过三角函数
进行计算和预测。
三、音乐模型
音乐是艺术与科学的结合,三角函数模型在音乐中也有着重要的应用。
音乐的基本要素包括音高、音长和音色等。
三角函数可以帮助我们理解和
创建不同音调的声音,例如正弦函数可以生成纯音,而复杂的乐曲可以通
过多个三角函数的叠加来表示。
四、天文模型
三角函数模型在天文学中也扮演着重要的角色。
例如,我们可以使用
正弦函数来描述地球公转和自转的运动规律。
通过对三角函数模型的运用,我们可以计算出日出、日落以及季节变化等现象,并预测天文事件的发生
时间和位置。
五、结论
三角函数模型的简单应用涵盖了振动、音乐和天文等多个领域。
通过
对三角函数的理解和运用,我们可以更好地理解和解释各种现象,并进行
相关问题的计算和预测。
在实际应用中,对三角函数模型的灵活运用将有
助于我们解决各类问题。
1.6三角函数模型的简单应用
y 2 sin(2 x / 3)
例5. 如图,某地一天从6~14时的温度变化曲线近 y y A sin( x ) b 似满足函数 (1)求这一天6~14时的最大温差; 30 (2)写出这段曲线的函数解析式. 20
解:(1)由图可知,这段时间的最大温差是200C. (2)从图中可以看出,从6~14时的图象是 6 0 10 14 x 函数 y A sin( x ) b的半个周期 1 1 的图象, 所以,A 30 10 10, b 30 10 20 2 2 3 1 2 14 6 . 将x 6, y 10代入上式,解得= . 8 4 2
y 2
A
4
T
又T
2
(3) y 2 sin( x ) 2
A点的坐标为(
2sin(2
2
12
O
6
12
x
, 2)
2
12
) 2
sin( ) 1 6 2k , k Z
6 2
一般取:| |≤π 2k , k Z 3 y 2 sin( 2 x 2k )
1. 由图象求振幅A, b
y 2 sinx
y
5 4 向上平移3个单位长度 3 2 sin x 3 2 1
O
5 1 最大值 最小值 A 2 2 2 b 5 1 最大值 最小值 3 y A sinx b 的A, b
y
最 大 值 最 小 值 A 2 4 ( 2) 3 2
10
一般的,所求出的函数模型只能近似刻画 这天某个时刻的温度变化情况,因此应当特 别注意自变量的变化范围.
《三角函数模型的简单应用》教学设计
【师】大家发现,水深变化并不市杂乱无章,而是呈现一种周期性变化规律,为了更加直观明了地观察出这种周期性变化规律,我们需要做什么工作呢?
【】需要画图。
【师】非常好,下面大家拿出一张白纸,以时间为横坐标,以水深为纵坐标建立平面直角坐标系,将上面表格中的数据对应点描在平面直角坐标系中去。
(学生活动,求解解析式
【生】从数据和图像可以得出:7.52.522.5, 5, 12, 02A h T πϕω
-======
【师】这样一来我们就得到了一个近似刻画水深与时间关系的三角函数模型,为了保证所选函数的精确性,通常还需要一个检验过程(因为时间关系,老师事先已经帮大家检验过了,这里就不检验,同学们可以下去检验下有了这个模型,我们要制定一张一天24内整时刻的水深表,就是件非常容易的事情了.
(学生活动:作图
【师】(电脑呈现作图结果大家可以发现如果我们用平滑的曲线将上面所描各点连起来,得到的图象形状,可以用哪个函数来刻画呢?
【生】跟三角函数模型sin( y A wx h ϕ=++很象。(师板书2.5sin 55.50.3(2 6x
x π+≥--
【师】下面你们能把刚才同学所给的这个函数模型给求出来吗?
问题探究1:如图所示,下面是某港口在某季节每天的时间与水深关系表:
时刻水深/米时刻水深/米时刻水深/米
3:00 7.5 12:00 5.0 21:00 2.5
【师】请同学们仔细观察表格中的数据,你能够从中得到一些什么信息?
【生】(思考中发现水深的最大值是7.5米,最小值是2.5米。
【师】水的深度变化有什么特点吗?
三角函数模型的简单应用
三角函数模型的简单应用一周强化一、知识结构二、重难点知识概述1、用三角函数模型解决一些具有周期性变化规律的实际问题,将所发现的规律抽象为恰当的的三角函数模型.2、选择恰当的三角函数模型刻画数据所蕴含的规律,能根据问题的实际意义,利用模型解释有关实际问题,为决策提供依据.3、研究的方法是利用收集到的数据分析分析问题中的数量关系,通过作出散点图,根据散点图进行函数拟合,得到函数模型.4、三角函数模型的应用包括(1)根据图象建立解析式;(2)根据解析式作出图象;(3)根据实际问题处理数据,作出图象进行函数拟合,将实际问题抽象为与三角函数有关的简单函数模型.5、建立数学模型解决实际问题,所得的模型一般是近似的,并且得到的解也是近似的,所以需要根据实际背景及问题的条件,注意考虑实际意义,对问题的解进行具体分析.三、例题讲解例1、如图所示,单摆从某点开始来回摆动,离开平衡位置O的距离S厘米和时间t秒的函数关系式为:,那么单摆从最高点开始来回摆动一次所需的时间为()A.2π秒B.π秒C.0.5秒D.1秒分析:本题已给出了单摆离开平衡位置O的距离S厘米和时间t秒的函数关系式,单摆从最高点开始来回摆动一次所需的时间即为此函数的一个周期.解:∵ω=2π,∴.故选D.说明:客观世界中很多物理现象的数量之间存在着三角函数关系,熟练掌握三角函数的图象与性质及有关结论,有助于解决此类问题.例2、如图,某大风车的半径为2m,每12s旋转一周,它的最低点O离地面0.5m.风车圆周上一点A从最低点O开始,运动t(s)后与地面的距离为h(m).(1)求函数h=f(t)的关系式;(2)画出函数h=f(t)的图象.解析:本小题主要考查三角函数的图象和性质及恒等变换知识,以及由数到形的转化思想和作图技能;考查运算能力和解决实际问题的能力.解:(1)如图,以O为原点,过点O的圆的切线为x轴,建立直角坐标系.设点A的坐标为(x,y),则h=y+0.5.设∠OO1A=θ,则又,即,所以(2)函数的图象如下例3、下表是某地一年中10天测量的白昼时间统计表(时间近似到0.1小时)日期1月1日2月28日3月21日4月27日5月6日6月21日8月13日9月20日10月25日12月21日日期位置序号x1 59 80 117 126 172 225 263 298 356白昼时间y(小时)5.6 10.2 12.4 16.4 17.3 19.4 16.4 12.48.5 5.4(I)以日期在365天中的位置序号x为横坐标,白昼时间y为纵坐标,在给定坐标系中画出这些数据的散点图;(Ⅱ)试选用一个形如y=Asin(ωx+)+t的函数来近似描述一年中白昼时间y与日期位置序号x之间的函数关系.(注:①求出所选用的函数关系式;②一年按365天计算)(Ⅲ)用(Ⅱ)中的函数模型估计该地一年中大约有多少天白昼时间大于15.9小时.解:(I)画散点图见下面.(II)由散点图知白昼时间与日期序号之间的函数关系近似为y=Asin(ωx+)+t,由图形知函数的最大值为19.4,最小值为5.4,即y max=19.4,y min=5.4,由19.4-5.4=14,得A=7;由19.4+5.4=24.8,得t=12.4;又T=365,∴,例4、在长江汽车渡口,马力不足或装货较重的汽车上岸时,采用沿着坡面斜着成S形的方向向上升,这是为什么?解析:在汽车马力恒定的情况下,行驶单位路程内,垂直上升高度愈大,汽车愈费“力”,当“力”所不及时,就会发生危险.日常经验告诉我们,走S形可减少这种危险.从数学的角度看,如图所示,AB表示笔直向上行走的路线,(AB⊥CA),α表示它与水平面所成的夹角,CB表示斜着向上所行走的路线,β表示它与水平面所成的夹角,它们所达到的高度都是BD.现在的问题就是要研究α和β这两个角哪个大.在Rt△BAD中,,①在Rt△BCD中,,②比较①与②,因为AB、CB分别是Rt△ABC的直角边和斜边,也就是说AB<CB,所以,所以sinα>sinβ.又因为α、β都是锐角,所以α>β.因此,汽车沿着CB方向斜着向上开要省力.说明:山区修筑的公路,采取盘山而上的方法,也就是这个道理.另外实际问题中也要碰到利用三角函数来比较大小的问题.。
1616三角函数模型的简单应用2
1.6 三角函数模型的简单应用教材分析本节课是在学习了三角函数图象和性质的前提下单独一节来学习三角函数模型的简单应用,进一步突出函数来源于生活应用于生活的思想,让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的创新精神和实践能力.课时分配本节内容用2课时的时间完成,本教案为第2课时,主要通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解析式的方法,体验实际问题抽象为三角函数模型问题的过程并体会三角函数是描述周期变化现象的重要函数模型.教学目标重点:精确模型的应用——即由图象求解析式,由解析式研究图象及性质.难点:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型,并调动相关学科的知识来解决问题.知识点:通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解析式的方法.能力点:让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的建模、分析问题、数形结合、抽象概括等能力.教育点:让学生切身感受数学建模的过程,体验数学在解决实际问题中的价值和作用,让学生切身感受数学建模的过程,体验数学在解决实际问题中的价值和作用从而激发学生的学习兴趣,培养锲而不舍的钻研精神;培养学生勇于探索、勤于思考的精神.考试点:将实际问题抽象为三角函数模型问题.拓展点:让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的创新精神和实践能力.教具准备多媒体课件和三角板课堂模式学案导学一、引入新课(情景展示,多媒体显示)1.情景展示,新课导入经过前面的学习,大家知道,在客观现实世界中存在着大量的周期性变化现象,而要定量地去刻画这些现象,我们通常需要借助于三角函数这一重要数学模型.这节课我们将来学习三角函数模型的简单应用.在山海关孟姜女庙有一副对联:“海水朝,朝朝朝,朝朝朝落;浮云长,长长长,长长长消.”其中描绘了海潮涨落,浮云长消的自然景象,显示了自然界变幻多姿的景色,这其中对海潮的描述也是感性的.今天我们将从数学的视角理性地研究有关潮水涨落的一些实际问题.2.问题提出,探究解决情景设置:若干年后,如果在座的各位有机会当上船长的话,当你的船只要到某个港口去,你作为船长,你希望知道关于该港口的一些什么情况?问题探究1:阅读课本P62:例4给出某港口在某年某个季节每天的时间与水深的关系表,思考并回答:①你能够从表格中的数据中得到一些什么信息?②水的深度变化有什么特点吗?③为了更直观明了地观察出水的深度变化规律,我们可以怎么做?具体操作是:④若用平滑的曲线将所描各点连起来,所得图象形状跟我们前面所学过哪个函数类型非常相似?并尝试求出该函数模型.⑤有了这个模型,我们要制定一张一天24内整时刻的水深表,就是件非常容易的事情了.如何计算在4时的水深?在任一时刻的水深怎么计算?问题探究2:针对课本P62:例4(2)问,思考:①货船能够进入港口所需要满足的条件是什么?②怎样用数学语言描述这一条件呢?③在[0,24]的范围内,该怎么求解?④你能说清楚解的实际意义吗?问题探究3:货船在进港,在港口停留,到后来离开港口,货船的吃深深度一直没有改变,也就是说货船的安全深度一直没有改变,但是实际情况往往是货船载满货物进港,在港口卸货,在卸货的过程中,由物理学的知识我们知道,随着船身自身重量的减小,船身会上浮,换句话说,随着货物的卸载,货船的安全深度不再向开始那样一直是一个常数,现在它也是一个关于时间的变量,而实际水深也一直在变化,这样一来当两者都在改变的时候,我们又改如何选择进出港时间呢?针对课本P62:例4(3)问,思考:①“必须停止卸货”,是在货船即将面临什么危险的时候?②反过来,“货船安全”需要满足的条件是用数学式子表示为③对于上式,如何求解呢?④尝试说说解的实际意义.二、典例剖析研究典型例题,总结解题规律例4根据相关数据进行三角函数拟合【背景材料】 海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:思考1:观察表格中的数据,每天水深的变化具有什么规律性?思考2:设想水深y 是时间x 的函数,作出表中的数据对应的散点图,你认为可以用哪个类型的函数来拟合这些数据?思考3: 用一条光滑曲线连结这些点,得到一个函数图象,该图象对应的函数解析式可以是哪种形式?思考4:用函数sin()y A x h ωϕ=++ 来刻画水深和时间之间的对应关系,如何确定解析式中的参数值?思考5:这个港口的水深与时间的关系可用函数________________________________________近似描述,你能根据这个函数模型,求出各整点时水深的近似值吗?(精确到0.001)思考6:一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久?思考7:若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?思考8:右图中,设点00(,)p x y 有人认为,由于P 点是两个图象的交点,说明在0x 时,货船的安全水深正好与港口水深相等,因此在这时停止卸货将船驶向较深水域就可以了,你认为对吗 [设计意图]使学生体将实际问题抽象为与三角函数有关的简单函数模型.练习1:如图所示,是一个缆车示意图,缆车半径为4.8m,圆上最低点与地面的距离为0.8m,60秒转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB,设B 点与地面距离是h. (1) 求h 与θ间的函数关系;(2) 设从OA 开始转动,经过t 秒后到达OB , 求h 与t 之间的函数解析式,并求缆车第一次 到达最高点时用的最少的时间是多少?2.已知某帆船中心比赛场馆内的海面上每天海浪高y (米)可看作是时间t(024t ≤≤,单位:时)的函数,记作()y f t =,经长期观测,()y f t =的曲线可近似的看成是cos y A x B ω=+曲线,下表示某日各时的浪高数据:求能近似的表示表中数据间对应关系的函数解析式.[设计意图] 培养学生发散思维的能力及良好的解题习惯,巩固所学知识.例2、:一根为Lcm 的线,一端固定,另一端悬挂一个小球,组成一个单摆,小球摆动时,离开平衡位置 的位移s(单位:cm)与时间t(单位:s)的函数关系是),0[,6sin 3+∞∈⎪⎪⎭⎫ ⎝⎛+=t t l g s π.(1)求小球摆动的周期和频率;(2)已知g=980cm/s 2,要使小球摆动的周期恰好是1秒,线的长度l 应当是多少?[设计意图] 让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的创新精神和实践能力.三、课堂小结(1)三角函数应用题通常涉及生产、生活、军事、天文、地理和物理等实际问题,其解答流程大致是:审读题意,设角建立三角函数,分析三角函数性质解决实际问题. 其中根据实际问题的背景材料,建立三角函数关系,是解决问题的关键.(2)在解决实际问题时,要学会具体问题具体分析,充分运用数形结合的思想,灵活的运用三角函数的图象和性质进行解答.(3)根据三角函数图象建立函数解析式,就是要抓住图象的数字特征确定相关的参数值,同时要注意函数的定义域.(4)对于现实世界中具有周期现象的实际问题,可以利用三角函数模型描述其变化规律.先根据相关数据作出散点图,再进行函数拟合,就可获得具体的函数模型,有了这个函数模型就可以解决相应的实际问题.四、布置作业1.阅读教材2.书面作业必做题:已知某帆船中心比赛场馆内的海面上每天海浪高y (米)可看作是时间t(024t ≤≤,单位:时)的函数,记作()y f t =,经长期观测,()y f t =的曲线可近似的看成是cos y A x B ω=+曲线,下表示某日各时的浪高数据:求能近似的表示表中数据间对应关系的函数解析式. 选做题: 一、选择题1. 初速度v 0,发射角为θ,则炮弹上升的高度y 与v 0之间的关系式为( )A.t v y 0=B.2021sin t g t v y ⋅-⋅⋅=θ C.t v y ⋅⋅=θsin 0 D.t v y ⋅⋅=θcos 02. 当两人提重为G 的书包时,夹角为θ,用力为F ,则θ为____时,F 最小( )A .2πB.0C.πD.π323.某人向正东方向走x 千米后向右转150,然后朝新的方向走3千米,结果他离出发点恰好3千米,那么x 的值为 ( )A .3 B.32 C.332或 D.3二、填空题4. 甲、乙两楼相距60米,从乙楼底望甲楼顶仰角为045,从甲楼顶望乙楼顶俯角为30,则甲、乙两楼的高度分别为_______5.一树干被台风吹断折成60角,树干底部与树尖着地处相距20米,树干原来的高度是_____. 三、解答题6、有一长为α的斜坡,它的倾斜角为θ,现在要倾斜角改为2θ,则坡底要伸长多少?[设计意图]设计作业1、2,是引导学生先复习,再作业,培养学生良好的学习习惯,书面作业的布置,是为了让学生能够巩固课堂上所学的知识和方法,培养学生用整体的观点看问题,起到承上启下的作用.七、教后反思1.本教案的亮点是例题及变式训练的编排,既注重了与本堂课内容的联系,又在不知不觉中提高了难度, 提 高了学生的解题能力.2.由于各校的情况不同,建议教师在使用本教案时灵活掌握,但必须在根据实际问题的背景材料,建立三 角函数关系,解决实际问题上下功夫.3.本节课的弱项是由于整堂课课堂容量较大,在课堂上没有充分暴露学生的思维过程,并给予针对性地诊 断与分析.八、板书设计本节课的板书主要采取了提纲式、对称型,以讲写结合、主辅相随、语言准确、内容完整为原则,将复习内容及新课引入、概念写在黑板左侧,整齐、准确,将例题、习题及解答过程写在黑板右侧,随意中不失规范.。
三角函数模型的简单应用(水车问题)
三⾓函数模型的简单应⽤(⽔车问题)§9 三⾓函数模型的简单应⽤第⼀课时⼀、教学⽬的1、对⼀些简单的周期现象,能够选择适当的三⾓函数模型,刻画和解决实际问题。
2、通过本节学习,培养学⽣的数学应⽤意识。
⼆、教学重点:体会三⾓函数模型在实际问题中的应⽤。
三、教学难点:⽤三⾓函数描述周期现象的实际问题。
四、教学过程:例:⽔车问题如图,⽔车的直径为3m,其中⼼(即圆⼼O)距⽔⾯1.2m,如果⽔车每4min 逆时针旋转3圈.在⽔车轮边缘上取⼀点P,点P 距⽔⾯的⾼度h(m)与时间(t)有怎样的关系?分析:设⽔车的半径为R ,R=1.5m ;⽔车中⼼到⽔⾯的距离为b ,b=1.2m ;∠QOP=α⽔车旋转⼀圈所需的时间为T ;单位时间(s)旋转的⾓度(rad)为ω过P 点向⽔⾯作垂线,交⽔⾯于M 点,PM 的长度为P 点的⾼度h ;∠QOP=φ;则:h=PM=PN+NM=Rsin(α-φ)+b根据问题的条件确定这个模型中的变量和参数: α,φ,R 和b.⽤ω表⽰单位时间(s)内⽔车转动的⾓度(rad),这样,在时刻t ⽔车转动的⾓度为α= ωt ⽔车旋转⼀圈所需的时间T=ωπ2 ⼜由于⽔车每4min 转3圈,旋转⼀圈所需的时间T=80s所以ω=40πrad/sSin φ=5.12.1⾬季河⽔上涨时,函数解析式中的b 减⼩,旱季河⽔流量减少时,参数b 增⼤. 如果⽔车转速加快,将使周期T 减⼩,如果⽔车转速减慢,将使周期T 增⼤.五、课堂⼩结六、课后作业rad , 295.01.53≈?≈φ所以)(2.1)295.040sin(5.1m t ,h +-=ππ所以。
1.6三角函数模型的简单应用
作业
课本65页练习
例2、画出函数 | sinx | 的图象, y 并观察周 期性和奇偶性.
G S P
变式1、画出函数 sin | x | 的图象, y 并观察 周期性和奇偶性.
G S P
例3、设地球表面某地 正午太阳高度角为 , 为此时 θ δ 太阳直射纬度, 为该地的纬度值, 则这三个量之间 的关系是θ 90 0 | δ | .当地夏半年 取正值, δ 冬半
0 年取负值.若在北京地 区(纬度约为北纬40)的一幢
高为h0的楼房北面盖一新楼, 要使新楼一层正午的 太阳全年不被前面的楼 房遮挡, 两楼的距离应不小 于多少.
h0Байду номын сангаас
230 26'
00
230 26' 400 A
B
C
小结
本 节 课 我 们 学 习 了 正、 负 角 角 和 零 角 的 概 念 , 要 注如 果 角 的 终 意 边 在 坐 标 轴 上 , 就 认这 个 角 不 属 为 于 任 何 象 限 , 本 节 课重 点 是 学 习 的 终 边 相 同 的 角 的 表 示。 法 判断一个角是第几象限角的方法。 数 形 结 合 思 想 、 运 动化 观 点 的 应 用 变
§ 1.6 三角函数模型的 简单应用
引入
如果某种变化着的现象 具有周 期性, 那么它就可以借助三角 函数来 描述.
新课
例1、某地一天从 ~ 14时的温度变化曲线 6 近似满足如图函数 Asin(ωs ) b. y
(1)求这一天 ~ 14时的最大温差; 6
(2)求这段曲线的函 数解析式.
T/度 30
20
10
o
6
三角函数三角函数模型的简单应用
反三角函数的图象与公式
图象
反三角函数的图象是连续的,具有明显的波动形状。 它们的形状和大小取决于其参数的取值范围。
公式
反三角函数有多种计算公式,如反正弦公式、反正切 公式和反余弦公式等。这些公式可以用于求解三角函 数的反函数。
反三角函数的应用场景
01
三角函数方程的求 解
当需要求解三角函数方程时,可 以使用反三角函数来找到方程的 解。
余弦函数的应用场景
三角测量
在地理学和工程学中,余弦函数被广泛应用于三角测量。通过测量两个物体之间的角度, 可以确定它们之间的距离或位置。余弦函数在这一过程中扮演了关键角色。
振动分析
在物理学和工程学中,余弦函数也被用来描述振动。例如,弹簧振子的位移可以表示为时 间的余弦函数。通过分析位移随时间的变化,可以得出振动的频率、幅度等参数。
物理学的应用
01
正弦函数在物理学中有广泛的应用,如振动、波动、交流电等
。
工程学中的应用
02
在工程学中,正弦函数被广泛应用于信号处理、图像处理等领
域。
经济学中的应用
03
在经济学中,正弦函数被用于分析周期性现象,如商业周期、
市场波动等。
03
CATALOGUE
余弦函数及其应用
余弦函数的定义与性质
余弦函数的定义
02
CATALOGUE
正弦函数及其应用
正弦函数的定义与性质
正弦函数的定义
正弦函数是三角函数的一种,定义为直角三角形中一个角的对边与斜边的比值,即 $sin(x) = \frac{y}{r}$。
正弦函数的性质
正弦函数具有周期性、单调性、有界性等性质。其最小正周期为 $2\pi$,在区间 $[0,2\pi]$ 上,$sin(x)$ 的值 域为 $[0,1]$。
三角函数模型的简单应用
三角函数模型的简单应用[学习目标] 1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.2.实际问题抽象为三角函数模型.知识点一利用三角函数模型解释自然现象在客观世界中,周期现象广泛存在,潮起潮落、星月运转、昼夜更替、四季轮换,甚至连人的情绪、体力、智力等心理、生理状况都呈现周期性变化,而三角函数模型是刻画周期性问题的最优秀的数学模型.利用三角函数模型解决实际问题的具体步骤如下:(1)收集数据,画出“散点图”;(2)观察“散点图”,进行函数拟合,当散点图具有波浪形的特征时,便可考虑应用正弦函数和余弦函数模型来解决;(3)注意由第二步建立的数学模型得到的解都是近似的,需要具体情况具体分析.思考1三角函数的周期性y=A sin(ωx+φ) (ω≠0)的周期是T=2π|ω|;y=A cos(ωx+φ) (ω≠0)的周期是T=2π|ω|;y=A tan(ωx+φ) (ω≠0)的周期是T=π|ω|.思考2如图,某地一天从6~14时的温度变化曲线近似满足函数y =A sin(ωx+φ)+b.根据图象可知,一天中的温差是;这段曲线的函数解析式是y=答案 20℃ 10sin(π8x +3π4)+20,x ∈[6,14]知识点二 三角函数模型在物理学中的应用在物理学中,当物体做简谐运动时,可以用正弦型函数y =A sin(ωx +φ)来表示运动的位移y 随时间x 的变化规律,其中:(1)A 称为简谐运动的振幅,它表示物体运动时离开平衡位置的最大位移; (2)T =2πω称为简谐运动的周期,它表示物体往复运动一次所需的时间;(3)f =1T =ω2π称为简谐运动的频率,它表示单位时间内物体往复运动的次数.题型一 三角函数模型在物理中的应用例1 已知电流I 与时间t 的关系为I =A sin(ωt +φ).(1)如图所示的是I =A sin(ωt +φ)(ω>0,|φ|<π2)在一个周期内的图象,根据图中数据求I =A sin(ωt +φ)的解析式;(2)如果t 在任意一段1150秒的时间内,电流I =A sin(ωt +φ)都能取得最大值和最小值,那么ω的最小正整数值是多少?解 (1)由图知A =300,设t 1=-1900,t 2=1180,则周期T =2(t 2-t 1)=2⎝⎛⎭⎫1180+1900=175. ∴ω=2πT=150π.又当t =1180时,I =0,即sin ⎝⎛⎭⎫150π·1180+φ=0, 而|φ|<π2,∴φ=π6.故所求的解析式为I =300sin ⎝⎛⎭⎫150πt +π6. (2)依题意,周期T ≤1150,即2πω≤1150(ω>0),∴ω≥300π>942,又ω∈N *, 故所求最小正整数ω=943.跟踪训练1 一根细线的一端固定,另一端悬挂一个小球,小球来回摆动时,离开平衡位置的位移S (单位:cm)与时间t (单位:s)的函数关系是:S =6sin(2πt +π6).(1)画出它的图象; (2)回答以下问题:①小球开始摆动(即t =0),离开平衡位置是多少? ②小球摆动时,离开平衡位置的最大距离是多少? ③小球来回摆动一次需要多少时间? 解 (1)周期T =2π2π=1(s).列表:(2)①小球开始摆动(t =0),离开平衡位置为3 cm. ②小球摆动时离开平衡位置的最大距离是6 cm. ③小球来回摆动一次需要1 s(即周期). 题型二 三角函数模型在生活中的应用例2 某港口水深y (米)是时间t (0≤t ≤24,单位:小时)的函数,下面是水深数据:+B 的图象.(1)试根据数据表和曲线,求出y =A sin ωt +B 的解析式;(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间?(忽略离港所用的时间)解 (1)从拟合的曲线可知,函数y =A sin ωt +B 的一个周期为12小时,因此ω=2πT =π6.又y min =7,y max =13, ∴A =12(y max -y min )=3,B =12(y max +y min )=10.∴函数的解析式为y =3sin π6t +10 (0≤t ≤24).(2)由题意,得水深y ≥4.5+7, 即y =3sin π6t +10≥11.5,t ∈[0,24],∴sin π6t ≥12,π6t ∈⎣⎡⎦⎤2k π+π6,2k π+5π6,k =0,1, ∴t ∈[1,5]或t ∈[13,17],所以,该船在1∶00至5∶00或13∶00至17∶00能安全进港. 若欲于当天安全离港,它在港内停留的时间最多不能超过16小时.跟踪训练2 如图为一个缆车示意图,该缆车半径为4.8 m ,圆上最低点与地面距离为0.8 m,60秒转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB ,设B 点与地面距离为h . (1)求h 与θ之间的函数关系式;(2)设从OA 开始转动,经过t 秒后到达OB ,求h 与t 之间的函数解析式,并求缆车第一次到达最高点时用的最少时间是多少?解 (1)以圆心O 为原点,建立如图所示的坐标系,则以Ox 为始边,OB 为终边的角为θ-π2.故B 点坐标为(4.8cos(θ-π2),4.8sin(θ-π2)).∴h =5.6+4.8sin(θ-π2),θ∈[0,+∞).(2)点A 在圆上转动的角速度是π30,故t 秒转过的弧度数为π30t ,∴h =5.6+4.8sin(π30t -π2),t ∈[0,+∞).到达最高点时,h =10.4 m. 由sin(π30t -π2)=1.得π30t -π2=π2,∴t =30. ∴缆车到达最高点时,用的时间最少为30秒.利用三角函数线证明三角不等式例3 心脏跳动时,血压在增加或减少,血压的最大值、最小值分别称为收缩压、舒张压,血压计上的读数就是收缩压、舒张压,读数120/80 mmHg 为标准值,设某人的血压满足方程式P (t )=115+25sin(160πt ),其中P (t )为血压(mmHg),t 为时间(min),试回答下列问题: (1)求函数P (t )的周期; (2)求此人每分钟心跳的次数; (3)画出函数P (t )的草图;(4)求出此人的血压在血压计上的读数,并与标准值进行比较分析 (1)利用周期公式可以求出函数P (t )的周期;(2)每分钟心跳的次数即频率;(3)用“五点法”作出函数的简图;(4)此人的收缩压、舒张分别是函数P (t )的最大值和最小值,故可求出此人的血压在血压计上的计数.解 (1)由于ω=160π,代入周期公式T =2πω,可得T =2π160π=180(min),所以函数P (t )的周期为180min.(2)函数P (t )的频率f =1T =80(次/分),即此人每分钟心跳的次数为80.(3)列表:(4)此人的收缩压为115+25=140(mmHg),舒张压为115-25=90(mmHg),与标准值120/80 mmHg 相比较,此人血压偏高.1.函数y =|sin 12x +13|的最小正周期为( )A .2πB .πC .4π D.π22.一根长l cm 的线,一端固定,另一端悬挂一个小球,小球摆动时离开平衡位置的位移s (cm)与时间t (s)的函数关系式为s =3cos ⎝⎛⎭⎫g l t +π3,其中g 是重力加速度,当小球摆动的周期是1 s 时,线长l = cm.3.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6) (x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值为 ℃.4.如图所示,一个摩天轮半径为10 m ,轮子的底部在地面上2 m 处,如果此摩天轮按逆时针转动,每30 s 转一圈,且当摩天轮上某人经过点P 处(点P 与摩天轮中心高度相同)时开始计时.(1)求此人相对于地面的高度关于时间的关系式;(2)在摩天轮转动的一圈内,约有多长时间此人相对于地面的高度不小于17 m.一、选择题1.如图所示,单摆从某点开始来回摆动,离开平衡位置O 的距离s cm 和时间t s 的函数关系式为s =6sin(100πt +π6),那么单摆来回摆一次所需的时间为( )A.150 sB.1100s C .50 s D .100 s 2.电流强度I (A)随时间t (s)变化的关系式是I =5sin(100πt +π3),则当t =1200 s 时,电流强度I 为( )A .5 AB .2.5 AC .2 AD .-5 A3.如图所示,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致是( )4.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如图所示,则当t =1100秒时,电流强度是( )A .-5安B .5安C .5 3 安D .10安5.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )二、填空题6.函数y =2sin ⎝⎛⎭⎫m 3x +π3的最小正周期在⎝⎛⎭⎫23,34内,则正整数m 的值是 .7.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为 .8.某时钟的秒针端点A 到中心点O 的距离为5 cm ,秒针均匀地绕点O 旋转,当时间t =0时,点A 与钟面上标12的点B 重合,将A 、B 两点的距离d (cm)表示成t (s)的函数,则d = ,其中t ∈[0,60].9.已知f (x )=sin(ωx +π3)(ω>0),f (π6)=f (π3),且f (x )在区间(π6,π3)上有最小值,无最大值,则ω= . 三、解答题10.如图所示,某地夏天从8~14时的用电量变化曲线近似满足函数y =A sin(ωx +φ)+b (0<φ<π2).(1)求这一天的最大用电量及最小用电量; (2)写出这段曲线的函数解析式.11.如图,一个水轮的半径为4 m ,水轮圆心O 距离水面2 m ,已知水轮每分钟转动5圈,如果当水轮上点P 从水中浮现时(图中点P 0)开始计算时间.(1)将点P 距离水面的高度z (m)表示为时间t (s)的函数; (2)点P 第一次到达最高点大约需要多少时间?12.已知某海滨浴场海浪的高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记作:y=f(t),下表是某日各时的浪高数据:(1)根据以上数据,求函数y=A cos ωt+b的最小正周期T,振幅A及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00时至晚上20∶00时之间,有多少时间可供冲浪者进行运动?当堂检测答案1.答案 A 2.答案g 4π2解析 T =2πg l=1,∴ g l =2π,∴l =g 4π2. 3.答案 20.5解析 由题意得⎩⎪⎨⎪⎧ a +A =28,a -A =18, ∴⎩⎪⎨⎪⎧a =23,A =5,∴y =23+5cos ⎣⎡⎦⎤π6(x -6), 当x =10时,y =23+5×⎝⎛⎭⎫-12=20.5. 4.解 (1)设在t s 时,摩天轮上某人在高h m 处.这时此人所转过的角为2π30 t =π15 t ,故在t s 时,此人相对于地面的高度为h =10sinπ15t +12(t ≥0). (2)由10sin π15t +12≥17,得sin π15t ≥12,则52≤t ≤252.故此人有10 s 相对于地面的高度不小于17 m.课时精练答案一、选择题2.答案 B解析 当t =1200时,I =5sin(π2+π3)=5cos π3=2.5.3.答案 C解析 d =f (l )=2sin l2.4.答案 A解析 由图象知A =10,T 2=4300-1300=1100,∴ω=2πT =100π,∴I =10sin(100πt +φ).(1300,10)为五点中的第二个点, ∴100π×1300+φ=π2.∴φ=π6,∴I =10sin(100πt +π6),当t =1100秒时,I =-5安.5.答案 C解析 ∵P 0(2,-2),∴∠P 0Ox =π4,按逆时针转时间t 后得∠POP 0=t ,∠POx =t -π4,此时P 点纵坐标为2sin(t -π4),∴d =2|sin(t -π4)|.当t =0时,d =2,排除A 、D ;当t =π4时,d =0,排除B.6.答案 26,27,28解析 ∵T =6πm ,又∵23<6πm <34,∴8π<m <9π,且m ∈Z , ∴m =26,27,28.7.答案34解析 取K ,L 中点N ,则MN =12,因此A =12.由T =2得ω=π.∵函数为偶函数,0<φ<π,∴φ=π2,∴f (x )=12cos πx ,∴f (16)=12cos π6=34.8.答案 10sinπt60解析 将解析式可写为d =A sin(ωt +φ)的形式,由题意易知A =10,当t =0时,d =0,得φ=0;当t =30时,d =10, 可得ω=π60,所以d =10sin πt60.9.答案143解析 依题意,x =π6+π32=π4时,y 有最小值,∴sin(π4·ω+π3)=-1,∴π4ω+π3=2k π+3π2(k ∈Z ).∴ω=8k +143(k ∈Z ),因为f (x )在区间(π6,π3)上有最小值,无最大值,所以π3-π4<πω,即ω<12,令k =0,得ω=143.三、解答题10.解 (1)最大用电量为50万kW·h , 最小用电量为30万kW·h.(2)观察图象可知从8~14时的图象是y =A sin(ωx +φ)+b 的半个周期的图象,∴A =12×(50-30)=10,b =12×(50+30)=40.∵12×2πω=14-8, ∴ω=π6.∴y =10sin ⎝⎛⎭⎫π6x +φ+40. 将x =8,y =30代入上式, 又∵0<φ<π2,∴解得φ=π6.∴所求解析式为y =10sin ⎝⎛⎭⎫π6x +π6+40,x ∈[8,14].11.解 (1)如图所示建立直角坐标系,设角φ⎝⎛⎭⎫-π2<φ<0是以Ox 为始边,OP 0为终边的角. OP 每秒钟内所转过的角为 5×2π60=π6. 则OP 在时间t (s)内所转过的角为π6t .由题意可知水轮逆时针转动,得z =4sin ⎝⎛⎭⎫π6t +φ+2. 当t =0时,z =0,得sin φ=-12,即φ=-π6.故所求的函数关系式为z =4sin ⎝⎛⎭⎫π6t -π6+2. (2)令z =4sin ⎝⎛⎭⎫π6t -π6+2=6, 得sin ⎝⎛⎭⎫π6t -π6=1, 令π6t -π6=π2,得t =4, 故点P 第一次到达最高点大约需要4 s. 12.解 (1)由表中数据知周期T =12, ∴ω=2πT =2π12=π6,由t =0,y =1.5,得A +b =1.5. 由t =3,y =1.0,得b =1.0. ∴A =0.5,b =1,∴y =12cos π6t +1.(2)由题意知,当y >1时才可对冲浪者开放, ∴12cos π6t +1>1, ∴cos π6t >0,∴2k π-π2<π6t <2k π+π2,k ∈Z ,即12k -3<t <12k +3,k ∈Z .①∵0≤t ≤24,故可令①中k 分别为0,1,2, 得0≤t <3或9<t <15或21<t ≤24.∴在规定时间上午8∶00至晚上20∶00之间,有6个小时时间可供冲浪者运动,即上午9∶00至下午3∶00.。
三角函数模型的简单应用(第1课时)
下面是瓯江在某季节每天的时间与水深 关系表:
时刻
0.00 1.00 3.00 6.00 8.00 9.00 12.00 15.00 18.00 水深 5.0 (米)
6.25 7.5
24.00
5.0 2.84
2.5
5.0
ห้องสมุดไป่ตู้
7.5
5.0
时刻
21.00
水深 2.5 (米)
5.0
问1:上述的变化过程中,哪些量在发生变化? 哪个是自变量?哪个是因变量?
2.建立三角函数模型的一般步聚:
利用计算机 作出相应的 散点图 进行函 数拟合 得出函 数模型 利用函 数模型 解决实 际问题
搜集数据
作业: P73 P74 3 B组
1、2
感谢大家!
问7:若某船的吃水深度为4m,安全间隙为 1.5m,该船在2:00开始卸货,吃水深度以 每小时0.3m的速度减少,那么该船在什么 时间必须停止卸货,将船驶向较深的水域?
问8:若某船的吃水深度为4m,安全间隙为 1.5m,该船在2:00开始卸货,货物卸空后吃 水深度为2m,为了保证进入瓯江后一次性卸 空货物,又能安全驶离瓯江,那么每小时吃 水深度至少以多少速度减少?
5.0
问3:在什么时间范围内,瓯江的水深增长? 在什么时间范围内,瓯江的水深减少? 问4:试着用图形描述瓯江从0时到24时水深 的变化情况。
问5:选用一个适当的函数来近似描述这个瓯江的 水深与时间的函数关系,给出整点时间的水深近 似值。
问6:一条货船的吃水深度(船底与水面的距 离)为4m,安全条例规定至少要有1.5m的安 全间隙(船底与江底的距离),该船何时能 进入瓯江?在瓯江能呆多久?
问2:大约什么时间瓯江的水最深?深度约是多少? 大约什么时间瓯江的水最浅?深度约是多少?
三角函数模型的简单应用
1.6.1 三角函数模型的简单应用【学习目标】1.通过实例明白应用三角函数模型所解决的实际问题的基本特征——周期性;2.通过教材几个实例的分析概括三角函数模型应用基本步骤,并能迁移运用;3.利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型,提高学生数据收集和处理能力;4.通过三角函数模型的应用分析,理解数学解决实际问题的基本思想——数学建模,领会数学的作用. 【学习重点】运用三角函数相关知识解决实际问题,掌握三角函数模型应用基本步骤及迁移运用.【难点提示】灵活运用三角函数相关知识解决实际问题,知识与方法的迁移能力. 【学法提示】1.请同学们课前将学案与教材6071P -结合进行自主学习(对教材中的文字、图象、表格、符号、观察、思考、说明与注释、例题及解答、阅读与思考、小结等都要仔细阅读)、小组讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备;2.在学习过程中用好“十二字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“听”、“问”、“通”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达. 【学习过程】 一.学习准备前面我们学习了三角函数等相关知识,请同学们感悟下面的知识网络,你还有更好的构 建方法吗?同时,将不很熟悉的各知识内容填写在横线上或空白处:在生活中有哪些三角函数模型的问题,如何运用三角函数相关知识来解决这些问题呢?这就是本节课我们要研究的问题!二、典例赏析例1.(教材60页例1,请同学们先做在看教材的解答) 解:正余弦型函数图象变换正切函数图象、性质正弦函数图象、性质余弦函数图象、性质正余弦函数图象的“五点法”周期函数 概念三角函数线六组诱导公式口诀三角函数的基本关系式三角函数值所在象限的符号角α的三角函数定义任意角三角函数解后反思 该题的题型怎样?你的解法与教材的解法相同吗?有哪些区别?教材是怎么书写表达的?变式练习 如图表示电流 I 与时间t 的函数关系式:sin()I A t ωϕ=+(ω>0,||2πϕ<)在同一周期内的图象. (1)根据图象写出I =Asin(t )ω+ϕ的解析式; (2)为了使I =Asin(t )ω+ϕ中t 在任意-段1100秒的时间内电流I 能同时取得最大值和最小值,那么正整数ω的最小值是多少?解:例2(教材P61页例3,请同学们先做在看教材的解答)思路启迪 仔细审题,弄清题意,哪些是已知,需要求什么量?用实物摆放或作图分 析,建立怎样三角函数模型求解!(链接1) 解:解后反思 该题的题型怎样?求解的关键点在哪里?你的解法与教材的解法相同吗?有哪些区别?教材是怎么书写表达的?求解该题用到了哪些知识?(链接2)变式练习 一半径为3m 的水轮如右图所示,水轮圆心O 距离水面2m,已知水轮每分钟转动4圈,如果当水轮上P 点从水中浮现时(图中P 0)(1)求P 点相对于水面的高度h(m)与时间t(s)(2)P 点第一次达到最高点约要多长时间? 解:例3(教材62页例4,请同学们先做在看教材的解答) 思路启迪 要仔细审题,如何处理这些数据,并从中发现 规律,找准入手点,理清求解问题的步骤:(1)数据的初步处理:作出统计图象(散点图)(2)散点图的观察分析:;(3)选定拟合函数模型: ;(4)函数模型求解:实际问题分析1:给出整点时的水深的近似数值(精确到0.001).时刻0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:0 11:0 水深时刻12:013:014:015:016:017:018:019:020:021:022:023:0水深实际问题分析2:一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离) ,该船何时能进入港口?在港口能呆多久?实际问题分析3:若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?解:●解后反思该题的题型怎样?你的解法与教材的解法相同吗?有哪些区别?教材是怎么书写表达的?求解的步骤是怎样的?应注意什么问题?(链接3)变式练习(教材P65页练习第3题,可做在书上)解:三、学习反思1.本节课我们学习了哪些数学知识、数学思想方法,你的任务完成了吗?你讲的怎样?你提问了吗?我们的学习目标达到了吗?如:本节课有哪些题型?运用了哪些数学思想方法求解的?求解应用问题的基本步骤怎样?有哪些需要我们注意的?2.通过本节课的学习与课前的预习比较有哪些收获?有哪些要改进和加强的呢?3.对本节课你还有独特的见解吗?本节课的数学知识与生活有怎样的联系?感受到本节课数学知识与方法的美在哪里?四、学习评价1.(09年莱阳一中学段检测)车流量被定义为单位时间内通过十字路口的车辆数,单位为辆/分,上班高峰期某十字路口的车流量由函数F(t)=50+4sin (其中0≤t≤20)给出,F(t)的单位是辆/分,t的单位是分,则在下列哪个时间段内车流量是增加的A[0,5] B[5,10] C[10,15] D[15,20]2 设()y f t =是某港口水的深度关于时间t(时)的函数,其中024t ≤≤,下表是该港口某一经长期观察,函数()y f t =的图象可以近似地看成函数sin()y k A t ωϕ=++的图象. 根据上述数据,函数()y f t =的解析式为( ) A.123sin,[0,24]6ty t π=+∈ ; B.123sin(),[0,24]6ty t ππ=++∈C.123sin ,[0,24]12t y t π=+∈ ;D.123sin(),[0,24]122t y t ππ=++∈ 2.如图所示,为了测量该工件上面凹槽的圆弧半 径R ,由于没有直接的测量工具,工人用三个 半径均为r (r 相对R 较小)的圆柱棒123,,O O O 放在如图与工件圆弧相切的位置上,通过深度卡 尺测出卡尺水平面到中间量棒2O 顶侧面的垂直深度h ,若10,4r mm h mm ==时,则R 的值为( )A.25mm ;B.50mm ;C.60mm ;D.15mm.3.从高出海面hm 的小岛A 处看正东方向有一只船B ,俯角为30看正南方向的一船C 的俯角为45,则此时两船间的距离为( ).A.2hm ; ; ; D. .4.一根为Lcm 的线,一端固定,另一端悬挂一个小球,组成一个单摆,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是),0[,6sin 3+∞∈⎪⎪⎭⎫ ⎝⎛+=t t l g s π,(1)求小球摆动的周期和频率;(2)已知g=980cm/s 2,要使小球摆动的周期恰好是1秒,线的长度L 应当是多少? 解:5.已知定义域为实数集R 的奇函数f (x )在R 上是减函数,且2(sin 2)(42cos )(0)f f m m f θθ--+-<,(1)求证:f (0)=0; (2)当m=12时,求cos θ的取值范围;(3)是否存在这样的实数m 使2(sin 2)(42cos )(0)f f m m f θθ--+-<对所有的0,2πθ⎡⎤∈⎢⎥⎣⎦均成立?若存在,则求出所有适合条件的实数m ,若不存在,说明理由.解:6.在生活中有很多现象具有周期性,大家学过的三角函数就是描述周期现象的一种重要的数学模型,假设游乐场中的摩天轮匀速旋转,其中心O 距离地面30.5m ,半径30m .若从最低点P 处登上摩天轮,从你登上摩天轮开始计时,那么你与地面的距离h 将随时间t 变化,并且经过6min 到达最高点,请完成下列问题:(1)填写表格:()min t 0 3 6 9 12()h m(2)求h 与t 之间的函数关系式()h h t =;(3)当你在摩天轮上转第一圈,并且距离地面15.5m 时,所用时间是多少?当你在摩天轮上转第()*n n N ∈圈,并且距离地面15.5m ,所用时间是多少?解:7.已知函数()()sin 0,0,||2f x A x A πωθωθ⎛⎫=+>><⎪⎝⎭的图象与y 轴交于点 30,2⎛⎫⎪⎝⎭,它在y 轴右侧的第一个最大值点和最小值点分别为()0,3x ,()02,3x π+-, (1)求函数()y f x =的解析式;(2)说明)(x f 的图象依次经过哪些变换而得到函数)42sin(21)(π-+=x x g 的图象. (3)在给出的直角坐标系中,画出函数)(x g y =在区间]2,2[ππ-上的图象.解:8.教材P66习题1.6A 组第3题(作在书上); 解:(选做题)如果前面的楼房距你家要买的楼房15m ,两幢楼的高都是21m ,每层楼高3m ,为了使正午的太阳全年不被遮挡,你应该挑选哪几层的房子?(你自己拟定一个纬度数和太阳的直射纬度求解)解:【学习链接】链接1.例1补充图,帮助同学们分析问 题;链接2.该题的题型是跨学科三角函数实际 运用题;求解的关键点弄清题意,该题本质上是求高楼在地面的射影;用到三角函数与地理相关知识,运用了数形结合的思想.;链接3.该题是一道开放性问题,该题是一种重要的函数应用模型的题型,求解该题的基本步骤:(1)根据图象建立解析式; (2)根据解析式作出图象; (3)将实际问题抽象为与三角函数有关的简单函数模型;求解的关键点是:利用收集到的数据作出散点图,并根据散点图进行大胆猜想函数拟合,从而得到函数模型(有时拟合的函数模型不止一种,但应选择最适合的、最佳的那个);同时,我们在实际问题解决中,还要注意考虑实际意义.如:关于课本第64页的 “思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨.【补充典例】1.sincos tan 256575πππ,,从小到大的顺序是___________. 解:2.已知函数f x x x a ()sin sin =-++2,当f x ()=0有实数解时,求a 的取值范围. 解:3.已知:cos sin sin x x x=+--112,求tan x 的值.解:4.已知π<α<3π2,求1+sin α1+cos α-1-cos α+1-sin α1+cos α+1-cos α的值.解:5.(2006年安徽卷)如果111A BC ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则( ) A .111A B C ∆和222A B C ∆都是锐角三角形; B .111A B C ∆和222A B C ∆都是钝角三角形;C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形;D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形. 解:6.(2005辽宁)ω是正实数,设{|()cos(())S f x x ωθωθ==+是奇函数},若对每一个实数,(,1)a S a a ω+的元素不超过2个,且有a 使(,1)S a a ω+含有2个元素,则ω的取值范围是 ;解:7.(2006四川文、理)下列函数中,图像的一部分如右图所示的是( )(A )sin()6y x π=+ (B )cos(2)6y x π=- (C )cos(4)3y x π=- (D )sin(2)6y x π=-解:8.把函数y=cos(x+34π)的图象向右平移φ个单位,所得的图象正好关于y 轴对称,则φ的最小正值为 ;解:9.关于函数f(x)=4sin(2x+π3) (x ∈R),有下列命题:(1)y=f(x )的表达式可改写为y=4cos(2x-π6 );(2)y=f(x )是以2π为最小正周期的周期函数;(3)y=f(x ) 的图象关于点(-π6 ,0)对称;(4)y=f(x ) 的图象关于直线x=-π6 对称; 其中正确的命题序号是___________.解:10.已知函数f(x)=1-2a-2acosx –2sin 2x 的最小值为g(a),a R ∈,(1)求g(a ); (2)若g(a)=21,求此时f(x)的最大值. 解:11.已知)sin()(ϕω+=x x f ⎪⎭⎫⎝⎛<∈2||,πϕωR ,满足)2()(π+-=x f x f ,21)0(=f ,则)cos(2)(ϕω+=x xg 在区间⎥⎦⎤⎢⎣⎡2,0π上的最大值与最小值之和为 . 解:12.函数())(0)f x x ωϕω=+>的部分图象如图所示,若23ABC π∠=,则 ω等于( )A .6π B .4πC .3π D . 12π 解:13.设函数()()sin cos sin cos 2x x x xf x x R +--=∈,若在区间[]0,m 上方程()2f x =-恰有4个解,则实数m 的取值范围是 . 解:。
1.6三角函数模型的简单应用---潮汐问题
1.6 三角函数模型的简单应用—潮汐问题引言三角函数是高中数学中的一个重要概念,其模型在实际问题中有广泛的应用。
本文将以潮汐问题为例,介绍三角函数模型的简单应用。
1. 潮汐问题简介潮汐是指海水在地球上周期性的升高和降低的现象。
潮汐问题涉及到潮汐的周期性变化以及潮汐的高度等问题。
2. 三角函数模型的应用在潮汐问题中,可以使用三角函数模型来描述潮汐的周期性变化。
常用的三角函数模型有正弦函数和余弦函数。
下面将分别介绍它们在潮汐问题中的应用。
2.1 正弦函数正弦函数是三角函数中的一种常见函数,可用来描述周期性变化。
在潮汐问题中,我们可以使用正弦函数来描述潮汐的高度变化。
例如,可以使用如下的正弦函数来表示潮汐的高度变化:h(t) = A * sin(ωt + φ)其中,h(t)表示时刻t的潮汐高度,A表示潮汐的振幅,ω表示潮汐的角频率,φ表示相位。
通过调整参数A、ω、φ,可以根据实际情况对潮汐进行建模。
例如,可以通过观测数据确定潮汐的振幅和周期,从而得到合适的参数值。
2.2 余弦函数余弦函数是另一种常见的三角函数,也可用来描述周期性变化。
在潮汐问题中,我们也可以使用余弦函数来描述潮汐的高度变化。
例如,可以使用如下的余弦函数来表示潮汐的高度变化:h(t) = A * cos(ωt + φ)同样地,通过调整参数A、ω、φ,可以对潮汐进行建模。
3. 实际应用案例现实生活中,三角函数模型的应用不仅局限于潮汐问题,还涉及到其他领域。
以下是一个实际应用案例:在航海中,潮汐对船只的航行起着重要的影响。
航海员需要根据潮汐的变化来调整航线,以确保船只的顺利行驶。
三角函数模型可以用来预测未来一段时间内潮汐的变化,从而帮助航海员制定合理的航行计划。
4. 总结三角函数模型是数学中一个重要的工具,广泛应用于实际问题中。
在潮汐问题中,我们可以使用正弦函数和余弦函数来描述潮汐的周期性变化。
通过调整参数,可以根据实际情况对潮汐进行建模。
《三角函数模型的简单应用》教学设计交流
苏教版 (必修4)1.3.2 三角函数模型的简单应用(第一课时)连云港市白塔高级中学马彦红教材分析三角函数是中学数学的重要内容之一,它的基础主要是几何中的相似形和圆,研究方法主要是代数变形和图象分析,因此三角函数的研究已经初步把几何与代数联系起来了,本章所介绍的知识,既是解决生产实际问题的工具,又是学习中学后继内容的基础。
本节选择了2个例题和2 个探究案例,循序渐进地从四个层次来介绍三角函数模型的应用,素材的选择上注意了广泛性,新颖性,同时又关注到三角函数的性质的应用。
教学目标1、体验实际问题抽象为三角函数模型问题的过程;体会三角函数是描述周期变化现象的重要函数模型.2、让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的建模、分析问题、数形结合、抽象概括等能力.3、通过切身感受数学建模的过程,体验数学在解决实际问题中的价值和作用,从而激发学生的学习兴趣;培养学生勇于探索、勤于思考的精神。
教学重难点教学重点:用三角函数模型解决一些具有周期变化规律的实际问题。
教学难点:分析、整理、利用信息,从实际问题中抽取基本的三角函数关系来建立数学模型,并运用相关学科的知识来解决问题.教法分析1、数学是一门培养人的思维、发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,所以要充分呈现获取知识和方法的思维过程。
本节课的特点是三角函数的应用,所以应让学生多参与,让其自主探究分析问题,然后老师启发、总结、提炼、升华为分析解决问题的能力。
2、多媒体辅助教学:通过几何画板、动画等技术制作多媒体课件,直观反映生活中的三角函数例子,并用多媒体反映图形的变化过程。
预习发现、合作交流、讲解点拨、演练提升相结合.教学设计思路:我们已经学习了三角函数的概念,图象以及性质,研究了三角函数的周期性,在现实生活中如果某种变化着的现象具有周期性,那么是否可以借助三角函数来描述呢?对于一个实际问题,如何恰当选择一个数学模型来刻画它呢?由数学理论巧妙引入到生活中实际问题更易理解接受。
《三角函数模型的简单应用》的教学设计
1.6 三角函数模型的简单应用教学设计一、教学分析三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.三角函数模型的简单应用的设置目的,在于加强用三角函数模型刻画周期变化现象的学习.本节教材通过4个例题,循序渐进地从四个层次来介绍三角函数模型的应用,在素材的选择上注意了广泛性、真实性和新颖性,同时又关注到三角函数性质(特别是周期性)的应用.通过引导学生解决有一定综合性和思考水平的问题,培养他们综合应用数学和其他学科的知识解决问题的能力.培养学生的建模、分析问题、数形结合、抽象概括等能力.由于实际问题常常涉及一些复杂数据,因此要鼓励学生利用计算机或计算器处理数据,包括建立有关数据的散点图,根据散点图进行函数拟合等.二、教学目标1、知识与技能:掌握三角函数模型应用基本步骤:(1)根据图象建立解析式; (2)根据解析式作出图象; (3)将实际问题抽象为与三角函数有关的简单函数模型.2、过程与方法:选择合理三角函数模型解决实际问题,注意在复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助理解问题。
切身感受数学建模的全过程,体验数学在解决实际问题中的价值和作用及数学和日常生活和其它学科的联系。
3、情态与价值:培养学生数学应用意识;提高学生利用信息技术处理一些实际计算的能力。
三、教学重点与难点教学重点:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立三角函数模型,用三角函数模型解决一些具有周期变化规律的实际问题.教学难点:将某些实际问题抽象为三角函数的模型,并调动相关学科的知识来解决问题.四、教学过程:三角函数模型的简单应用一、导入新课思路1.(问题导入)既然大到宇宙天体的运动,小到质点的运动以及现实世界中具有周期性变化的现象无处不在,那么究竟怎样用三角函数解决这些具有周期性变化的问题?它到底能发挥哪些作用呢?由此展开新课.思路2.我们已经学习了三角函数的概念、图象与性质,特别研究了三角函数的周期性.在现实生活中,如果某种变化着的现象具有周期性,那么是否可以借助三角函数来描述呢?回忆必修1第三章第二节“函数模型及其应用”,面临一个实际问题,应当如何选择恰当的函数模型来刻画它呢?以下通过几个具体例子,来研究这种三角函数模型的简单应用.二、推进新课、新知探究、提出问题①回忆从前所学,指数函数、对数函数以及幂函数的模型都是常用来描述现实世界中的哪些规律的?②数学模型是什么,建立数学模型的方法是什么?③上述的数学模型是怎样建立的?④怎样处理搜集到的数据?活动:师生互动,唤起回忆,充分复习前面学习过的建立数学模型的方法与过程.对课前已经做好复习的学生给予表扬,并鼓励他们类比以前所学知识方法,继续探究新的数学模型.对还没有进入状态的学生,教师要帮助回忆并快速激起相应的知识方法.在教师的引导下,学生能够较好地回忆起解决实际问题的基本过程是:收集数据→画散点图→选择函数模型→求解函数模型→检验→用函数模型解释实际问题.这点很重要,学生只要有了这个认知基础,本节的简单应用便可迎刃而解.新课标下的教学要求,不是教师给学生解决问题或带领学生解决问题,而是教师引领学生逐步登高,在合作探究中自己解决问题,探求新知.讨论结果:①描述现实世界中不同增长规律的函数模型.②简单地说,数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的数学描述.数学模型的方法,是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法.③解决问题的一般程序是:1°审题:逐字逐句的阅读题意,审清楚题目条件、要求、理解数学关系;2°建模:分析题目变化趋势,选择适当函数模型;3°求解:对所建立的数学模型进行分析研究得到数学结论;4°还原:把数学结论还原为实际问题的解答.④画出散点图,分析它的变化趋势,确定合适的函数模型.三、应用示例例1 如图1, 某地一天从6—14时的温度变化曲线近似满足函数y=sin(ωx+φ)+b.图1(1)求这一天的最大温差;(2)写出这段曲线的函数解析式.活动:这道例题是2002年全国卷的一道高考题,探究时教师与学生一起讨论.本例是研究温度随时间呈周期性变化的问题.教师可引导学生思考,本例给出模型了吗?给出的模型函数是什么?要解决的问题是什么?怎样解决?然后完全放给学生自己讨论解决.题目给出了某个时间段的温度变化曲线这个模型.其中第(1)小题实际上就是求函数图象的解析式,然后再求函数的最值差.教师应引导学生观察思考:“求这一天的最大温差”实际指的是“求6是到14时这段时间的最大温差”,可根据前面所学的三角函数图象直接写出而不必再求解析式.让学生体会不同的函数模型在解决具体问题时的不同作用.第(2)小题只要用待定系数法求出解析式中的未知参数,即可确定其解析式.其中求ω是利用半周期(14-6),通过建立方程得解.解:(1)由图可知,这段时间的最大温差是20 ℃.(2)从图中可以看出,从6—14时的图象是函数y=Asin(ωx+φ)+b的半个周期的图象,∴A=(30-10)=10,b=(30+10)=20.∵·=14-6,∴ω=.将x=6,y=10代入上式,解得φ=.综上,所求解析式为y=10sin(x+)+20,x∈[6,14].点评:本例中所给出的一段图象实际上只取6—14即可,这恰好是半个周期,提醒学生注意抓关键.本例所求出的函数模型只能近似刻画这天某个时段的温度变化情况,因此应当特别注意自变量的变化范围,这点往往被学生忽略掉.(互动探究)图5表示的是电流I与时间t的函数关系图5I=Asin(ωx+φ)(ω>0,|φ|<)在一个周期内的图象.(1)根据图象写出I=Asin(ωx+φ)的解析式;(2)为了使I=Asin(ωx+φ)中的t在任意一段s的时间内电流I能同时取得最大值和最小值,那么正整数ω的最小值为多少?解:(1)由图知A=300,第一个零点为(-,0),第二个零点为(,0),∴ω·(-)+φ=0,ω·+φ=π.解得ω=100π,φ=,∴I=300sin(100πt+).(2)依题意有T≤,即≤,∴ω≥200π.故ωmin=629.例2 做出函数y=|sinx|的图象并观察其周期例3 如图2,设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度,φ为该地的纬度值,那么这三个量之间的关系是θ=90°-|φ-δ|.当地夏半年δ取正值,冬半年δ取负值.如果在北京地区(纬度数约为北纬40°)的一幢高为h0的楼房北面盖一新楼,要使新楼一层正午的太阳全年不被前面的楼房遮挡,两楼的距离不应小于多少?活动: 如图2本例所用地理知识、物理知识较多,综合性比较强,需调动相关学科的知识来帮助理解问题,这是本节的一个难点.在探讨时要让学生充分熟悉实际背景,理解各个量的含义以及它们之间的数量关系.首先由题意要知道太阳高度角的定义:设地球表面某地纬度值为φ,正午太阳高度角为θ,此时太阳直射纬度为δ,那么这三个量之间的关系是θ=90°-|φ-δ|.当地夏半年δ取正值,冬半年δ取负值.根据地理知识,能够被太阳直射到的地区为南、北回归线之间的地带,图形如图3,由画图易知太阳高度角θ、楼高h0与此时楼房在地面的投影长h之间有如下关系:h0=htanθ.由地理知识知,在北京地区,太阳直射北回归线时物体的影子最短,直射南回归线时物体的影子最长.因此,为了使新楼一层正午的太阳全年不被遮挡,应当考虑太阳直射南回归线时的情况.图3解:如图3,A、B、C分别为太阳直射北回归线、赤道、南回归线时楼顶在地面上的投影点.要使新楼一层正午的太阳全年不被前面的楼房遮挡,应取太阳直射南回归线的情况考虑,此时的太阳直射纬度-23°26′.依题意两楼的间距应不小于MC.根据太阳高度角的定义,有∠C=90°-|40°-(-23°26′)|=26°34′,所以MC==≈2.000h0,即在盖楼时,为使后楼不被前楼遮挡,要留出相当于楼高两倍的间距.点评:本例是研究楼高与楼在地面的投影长的关系问题,是将实际问题直接抽象为与三角函数有关的简单函数模型,然后根据所得的函数模型解决问题.要直接根据图2来建立函数模型,学生会有一定困难,而解决这一困难的关键是联系相关知识,画出图3,然后由图形建立函数模型,问题得以求解.这道题的结论有一定的实际应用价值.教学中,教师可以在这道题的基础上再提出一些问题,如下例的变式训练,激发学生进一步探究.变式训练某市的纬度是北纬23°,小王想在某住宅小区买房,该小区的楼高7层,每层3米,楼与楼之间相距15米.要使所买楼层在一年四季正午太阳不被前面的楼房遮挡,他应选择哪几层的房?图4解:如图4,由例3知,北楼被南楼遮挡的高度为h=15tan[90°-(23°+23°26′)]=15tan43°34′≈14.26,由于每层楼高为3米,根据以上数据,所以他应选3层以上.例4货船进出港时间问题:海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,给出整点时的水深的近似数值(精确到0.001).(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久?(3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?。
三角函数模型的简单应用
解:(1)以圆心O为原点,建立如图所示的平面直角坐标系,
π 则以 Ox 为始边, OB 为终边的角为 θ- ,故点 B 的坐标为 2 π π (4.8cos(θ- ), 4.8sin(θ- )), 2 2 π ∴ h=5.6+ 4.8sin(θ- ). 2
π (2)点 A 在圆上转动的角速度是 , 30 π 故 t 秒转过的弧度数为 t, 30 π π ∴ h=5.6+ 4.8sin( t- ), t∈ [0,+∞ ). 30 2 到达最高点时, h= 10.4 m. π π π π π 由 sin( t- )= 1 得 t- = ,∴ t= 30. 30 2 30 2 2 ∴缆车 A 点到达最高点时,用的时间最少为 30 秒.
卸货后,在落潮时返回海洋,下面是某港口在某 季节每天的时间与水深的关系表:
时刻 水深(米) 时刻 水深(米) 时刻 水深(米)
0:00 3:00 6:00
5.0 7.5 5.0
5
18:00 21:00 24:00
5.0 2.5 5.0
(1)选用一个函数来近似描述这个港口的水深 与时间的函数关系,并给出整点时的水深的近似 数值(精确到0.001)。
跟踪训练 2.
如图为一个缆车示意图,该缆车的半径为4.8 m,圆上最低点
与地面的距离为0.8 m,60秒转动一圈,图中OA与地面垂直,
以OA为始边,逆时针转动θ角到OB,设B点与地面距离是h. (1)求h与θ间的函数关系式; (2)设从OA开始转动,经过t秒后到达 OB,求h与t之间的函数 关系式,并求缆车A点到达最高点时用的最少时间是多少?
压为 110 3伏. 2π 1 (2)T= = 秒, 即电压重复出现一次的时间间隔为 0.02 秒. 100π 50
高中数学必修4《三角函数模型的简单应用》教案
高中数学必修4《三角函数模型的简单应用》教案【教学内容】三角函数模型的简单应用【教学目标】1. 了解正弦函数、余弦函数、正切函数的定义和图象;2. 掌握解决几何问题时应用三角函数模型的方法;3. 培养学生从实际问题中抽象出三角函数模型的能力;4. 培养学生的逻辑思维能力和解决问题的能力。
【教学重点】1. 正弦函数、余弦函数、正切函数的定义和图象;2. 解决几何问题时应用三角函数模型的方法。
【教学难点】学生解决实际问题时抽象出三角函数模型的能力。
【教学方法】1. 讲授法:通过讲解三角函数模型的定义和性质,让学生理解三角函数模型的概念和基本思想;2. 举例法:通过讲解几个综合实例,让学生理解应用三角函数模型解决问题的基本方法;3. 练习法:通过练习题,让学生巩固所学知识。
【教学过程】一、引入让学生观察、思考以下两个图象,引出三角函数模型的概念及相关性质。
例1 例2二、讲解1. 什么是三角函数模型三角函数模型是指用正弦函数、余弦函数、正切函数等描述几何问题及物理问题的模型。
正弦函数、余弦函数、正切函数是一种列函数,用于描述三角形的内角与长度之间的关系。
2. 正弦函数、余弦函数、正切函数的图象(1)正弦函数的图象正弦函数是一个以原点 O 为中心,以 y 轴为对称轴,振幅为 1,周期为2π 的奇函数。
(2)余弦函数的图象余弦函数是一个以原点 O 为中心,以 y 轴为对称轴,振幅为 1,周期为2π 的偶函数。
(3)正切函数的图象正切函数的图象是一个无量纲的周期函数,周期为π,无定义域上的最大值和最小值,其图象相对于 y 轴是奇函数。
三、练习例1 解:构造如下图形,已知 $BC=6$ cm,$m\angleB=30^\circ$,求 $AC$ 和 $AB$ 的长度。
(1)分析题意,选用何种三角函数模型。
设 $\angle ABC=\theta$,则有 $\angle BAC=150^\circ -\theta$,观察正弦函数的定义式,选用正弦函数。
三角函数模型的简单应用
三角函数模型的简单应用
第二课时
探究一:建立三角函数模型求临界值
【背景材料】如图,设地球表面某地正午太 阳高度角为θ ,δ 为此时太阳直射纬度,φ 为该地的纬度值.当地夏半年δ 取正值,冬半 年δ 取负值. 如果在北京地区(纬度数约为 北纬40°)的一幢高为h0的楼房北 φ -δ 面盖一新楼,要使新 楼一层正午的太阳全 θ φ 太阳光 年不被前面的楼房遮 δ 挡,两楼的距离不应 小于多少?
思考1:图中θ 、 δ 、φ 这三个角 之间的关系是什 么?
θ=90°-∣φ-δ∣.
φ -δ
φ δ
θ
太阳光
思考2:当太阳高度角为θ 时,设高为 h0的楼房在地面上的投影长为h,那么 θ 、h0、h三者满足什么关系?
h=h0 tanθ.
思考3:根据地理知识,北京地区一年 中,正午太阳直射什么纬度位置时,物体 的影子最短或影子最长?
2.在解决实际问题时,要学会具体问题 具体分析,充分运用数形结合的思想, 灵活的运用三角函数的图象和性质进行 解答.
作业: P65习题1.6A组:1,2,3.
太阳直射北回归线时物体的影子最 短,直射南回归线时物体的影子最 长.
思考4:如图,A、B、C分别为太阳直射 北回归线、赤道、南回归线时楼顶在地 面上的投影点.要 使新楼一层正午 的太阳全年不被 前面的楼房遮挡, 两楼的临界距离 h 应是图中哪两点 M A B C -23°26´ 0 ° 23 ° 26 ´ 之间的距离? 40°
15 6
乙船在 北偏东60°的B处,并以每小时10海里的 速度向正北方向行使,若甲船沿北偏东 θ 角方向直线航行,并与乙船在C处相遇, 求甲船的航速. C
北
5 3 p v= , q ( 0 , ) p 3 sin( - q) A 3
必修四三角函数模型的简单应用(附答案)
必修四三角函数模型的简单应用(附答案)三角函数模型的简单应用[学习目标] 1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.2.实际问题抽象为三角函数模型.知识点一利用三角函数模型解释自然现象在客观世界中,周期现象广泛存在,潮起潮落、星月运转、昼夜更替、四季轮换,甚至连人的情绪、体力、智力等心理、生理状况都呈现周期性变化,而三角函数模型是刻画周期性问题的最优秀的数学模型.利用三角函数模型解决实际问题的具体步骤如下:(1)收集数据,画出“散点图”;(2)观察“散点图”,进行函数拟合,当散点图具有波浪形的特征时,便可考虑应用正弦函数和余弦函数模型来解决;(3)注意由第二步建立的数学模型得到的解都是近似的,需要具体情况具体分析.思考1三角函数的周期性y=A sin(ωx+φ) (ω≠0)的周期是T=2π|ω|;y=A cos(ωx+φ) (ω≠0)的周期是T=2π|ω|;y=A tan(ωx+φ) (ω≠0)的周期是T=π|ω|.思考2如图,某地一天从6~14时的温度变化曲线近似满足函数y=A sin(ωx+φ)+b.根据图象可知,一天中的温差是;这段曲线的函数解析式是y=答案 20℃ 10sin(π8x +3π4)+20,x ∈[6,14] 知识点二 三角函数模型在物理学中的应用 在物理学中,当物体做简谐运动时,可以用正弦型函数y =A sin(ωx +φ)来表示运动的位移y 随时间x 的变化规律,其中:(1)A 称为简谐运动的振幅,它表示物体运动时离开平衡位置的最大位移;(2)T =2πω称为简谐运动的周期,它表示物体往复运动一次所需的时间;(3)f =1T =ω2π称为简谐运动的频率,它表示单位时间内物体往复运动的次数.题型一 三角函数模型在物理中的应用例1 已知电流I 与时间t 的关系为I =A sin(ωt+φ).(1)如图所示的是I =A sin(ωt +φ)(ω>0,|φ|<π2)在一个周期内的图象,根据图中数据求I =A sin(ωt +φ)的解析式;(2)如果t 在任意一段1150秒的时间内,电流I =A sin(ωt +φ)都能取得最大值和最小值,那么ω的最小正整数值是多少?解 (1)由图知A =300,设t 1=-1900,t 2=1180, 则周期T =2(t 2-t 1)=2⎝⎛⎭⎪⎪⎫1180+1900=175. ∴ω=2πT =150π.又当t =1180时,I =0,即sin ⎝ ⎛⎭⎪⎪⎫150π·1180+φ=0,而|φ|<π2,∴φ=π6. 故所求的解析式为I =300sin ⎝⎛⎭⎪⎪⎫150πt +π6. (2)依题意,周期T ≤1150,即2πω≤1150(ω>0), ∴ω≥300π>942,又ω∈N *,故所求最小正整数ω=943.跟踪训练1 一根细线的一端固定,另一端悬挂一个小球,小球来回摆动时,离开平衡位置的位移S (单位:cm)与时间t (单位:s)的函数关系是:S =6sin(2πt +π6). (1)画出它的图象;(2)回答以下问题:①小球开始摆动(即t =0),离开平衡位置是多少?少?③小球来回摆动一次需要多少时间?解(1)周期T=2π2π=1(s).列表:t 01651223111212πt+π6π6π2π3π22π2π+π66sin(2πt+π6)360-60 3描点画图:(2)①小球开始摆动(t=0),离开平衡位置为3 cm.③小球来回摆动一次需要1 s(即周期).题型二三角函数模型在生活中的应用例2某港口水深y(米)是时间t (0≤t≤24,单位:小时)的函数,下面是水深数据:t(小时)03691215182124y(米)10.13.9.97.10.13.10.17.10.据上述数据描成的曲线如图所示,经拟合,该曲线可近似的看成正弦函数模型y=A sin ωt+B的图象.(1)试根据数据表和曲线,求出y=A sin ωt+B的解析式;(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间?(忽略离港所用的时间)解 (1)从拟合的曲线可知,函数y =A sin ωt +B的一个周期为12小时,因此ω=2πT =π6.又y min =7,y max =13,∴A =12(y max -y min )=3, B =12(y max +y min )=10. ∴函数的解析式为y =3sin π6t +10 (0≤t ≤24). (2)由题意,得水深y ≥4.5+7,即y =3sin π6t +10≥11.5,t ∈[0,24],∴sin π6t ≥12,π6t ∈⎣⎢⎢⎡⎦⎥⎥⎤2k π+π6,2k π+5π6,k =0,1, ∴t ∈[1,5]或t ∈[13,17],所以,该船在1∶00至5∶00或13∶00至17∶00能安全进港.若欲于当天安全离港,它在港内停留的时间最多不能超过16小时.跟踪训练2 如图为一个缆车示意图,该缆车半径为4.8 m ,圆上最低点与地面距离为0.8 m,60秒转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB ,设B 点与地面距离为h .(1)求h 与θ之间的函数关系式;(2)设从OA 开始转动,经过t 秒后到达OB ,求h 与t 之间的函数解析式,并求缆车第一次到达最高点时用的最少时间是多少?解 (1)以圆心O 为原点,建立如图所示的坐标系,则以Ox 为始边,OB 为终边的角为θ-π2.故B 点坐标为(4.8cos(θ-π2),4.8sin(θ-π2)).∴h =5.6+4.8sin(θ-π2),θ∈[0,+∞).(2)点A 在圆上转动的角速度是π30,故t 秒转过的弧度数为π30t ,∴h =5.6+4.8sin(π30t -π2),t ∈[0,+∞).到达最高点时,h =10.4 m. 由sin(π30t -π2)=1.得π30t -π2=π2,∴t =30.∴缆车到达最高点时,用的时间最少为30秒.利用三角函数线证明三角不等式例3心脏跳动时,血压在增加或减少,血压的最大值、最小值分别称为收缩压、舒张压,血压计上的读数就是收缩压、舒张压,读数120/80 mmHg为标准值,设某人的血压满足方程式P(t)=115+25sin(160πt),其中P(t)为血压(mmHg),t为时间(min),试回答下列问题:(1)求函数P(t)的周期;(2)求此人每分钟心跳的次数;(3)画出函数P(t)的草图;(4)求出此人的血压在血压计上的读数,并与标准值进行比较分析(1)利用周期公式可以求出函数P(t)的周期;(2)每分钟心跳的次数即频率;(3)用“五点法”作出函数的简图;(4)此人的收缩压、舒张分别是函数P(t)的最大值和最小值,故可求出此人的血压在血压计上的计数.解(1)由于ω=160π,代入周期公式T=2πω,可得T=2π160π=180(min),所以函数P(t)的周期为180min.(2)函数P(t)的频率f=1T=80(次/分),即此人每分钟心跳的次数为80.(3)列表:t/min0132011603320180P(t)/mmHg 11514011590115描点、连线并左右扩展得到函数P(t)的简图如图所示.(4)此人的收缩压为115+25=140(mmHg),舒张压为115-25=90(mmHg),与标准值120/80 mmHg 相比较,此人血压偏高.1.函数y =|sin 12x +13|的最小正周期为( )A .2πB .πC .4π D.π22.一根长l cm 的线,一端固定,另一端悬挂一个小球,小球摆动时离开平衡位置的位移s (cm)与时间t (s)的函数关系式为s =3cos ⎝⎛⎭⎪⎫g l t +π3,其中g 是重力加速度,当小球摆动的周期是1 s 时,线长l = cm.3.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎢⎢⎡⎦⎥⎥⎤π6(x -6) (x=1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值为 ℃.4.如图所示,一个摩天轮半径为10 m ,轮子的底部在地面上2 m 处,如果此摩天轮按逆时针转动,每30 s 转一圈,且当摩天轮上某人经过点P 处(点P 与摩天轮中心高度相同)时开始计时.(1)求此人相对于地面的高度关于时间的关系式; (2)在摩天轮转动的一圈内,约有多长时间此人相对于地面的高度不小于17 m.一、选择题1.如图所示,单摆从某点开始来回摆动,离开平衡位置O 的距离s cm 和时间t s 的函数关系式为s =6sin(100πt +π6),那么单摆来回摆一次所需的时间为( )A.150 sB.1100 s C .50 s D .100 s2.电流强度I (A)随时间t (s)变化的关系式是I =5sin(100πt +π3),则当t =1200 s 时,电流强度I为( )A .5 AB .2.5 AC .2 AD .-5 A3.如图所示,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致是( )4.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如图所示,则当t =1100秒时,电流强度是( )A .-5安B .5安C .5 3 安D .10安5.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )二、填空题6.函数y =2sin ⎝⎛⎭⎪⎪⎫m 3x +π3的最小正周期在⎝ ⎛⎭⎪⎪⎫23,34内,则正整数m 的值是 . 7.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为 .8.某时钟的秒针端点A 到中心点O 的距离为5 cm ,秒针均匀地绕点O 旋转,当时间t =0时,点A 与钟面上标12的点B 重合,将A 、B 两点的距离d (cm)表示成t (s)的函数,则d = ,其中t ∈[0,60].9.已知f (x )=sin(ωx +π3)(ω>0),f (π6)=f (π3),且f (x )在区间(π6,π3)上有最小值,无最大值,则ω= . 三、解答题10.如图所示,某地夏天从8~14时的用电量变化曲线近似满足函数y =A sin(ωx +φ)+b (0<φ<π2).(1)求这一天的最大用电量及最小用电量; (2)写出这段曲线的函数解析式.11.如图,一个水轮的半径为4 m,水轮圆心O距离水面2 m,已知水轮每分钟转动5圈,如果当水轮上点P从水中浮现时(图中点P0)开始计算时间.(1)将点P距离水面的高度z(m)表示为时间t(s)的函数;(2)点P第一次到达最高点大约需要多少时间?12.已知某海滨浴场海浪的高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记作:y=f(t),下表是某日各时的浪高数据:t(时)03691215182124y(米)1.51.0.51.1.51.0.50.991.5经长期观测,y=f(t)的曲线可近似地看成是函数y=A cos ωt+b.(1)根据以上数据,求函数y=A cos ωt+b的最小正周期T,振幅A及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00时至晚上20∶00时之间,有多少时间可供冲浪者进行运动?当堂检测答案1.答案 A 2.答案 g4π2 解析 T =2πg l =1,∴g l =2π,∴l =g 4π2. 3.答案 20.5解析 由题意得⎩⎨⎧ a +A =28,a -A =18, ∴⎩⎨⎧a =23,A =5,∴y =23+5cos ⎣⎢⎢⎡⎦⎥⎥⎤π6(x -6),当x =10时,y =23+5×⎝⎛⎭⎪⎪⎫-12=20.5.4.解 (1)设在t s 时,摩天轮上某人在高h m处.这时此人所转过的角为2π30 t =π15 t ,故在t s时,此人相对于地面的高度为h =10sin π15 t +12(t ≥0).(2)由10sin π15t +12≥17,得sin π15t ≥12,则52≤t ≤252.故此人有10 s 相对于地面的高度不小于17 m.课时精练答案一、选择题 1.答案 A 2.答案 B解析当t=1200时,I=5sin(π2+π3)=5cosπ3=2.5.3.答案 C解析d=f(l)=2sin l 2.4.答案 A解析由图象知A=10,T2=4300-1300=1100,∴ω=2πT=100π,∴I=10sin(100πt+φ).(1300,10)为五点中的第二个点,∴100π×1300+φ=π2.∴φ=π6,∴I=10sin(100πt+π6),当t=1100秒时,I=-5安.5.答案 C解析∵P0(2,-2),∴∠P0Ox=π4,按逆时针转时间t后得∠POP0=t,∠POx=t-π4,此时P点纵坐标为2sin(t-π4),∴d=2|sin(t-π4)|.当t=0时,d=2,排除A、D;当t=π4时,d=0,排除B.二、填空题6.答案26,27,28解析∵T=6πm,又∵23<6πm<34,∴8π<m<9π,且m∈Z,∴m=26,27,28.7.答案3 4解析取K,L中点N,则MN=1 2,因此A=12.由T=2得ω=π.∵函数为偶函数,0<φ<π,∴φ=π2,∴f(x)=12cos πx,∴f(16)=12cosπ6=34.8.答案10sin πt 60解析将解析式可写为d=A sin(ωt+φ)的形式,由题意易知A=10,当t=0时,d=0,得φ=0;当t=30时,d=10,可得ω=π60,所以d=10sin πt 60.9.答案14 3解析 依题意,x =π6+π32=π4时,y 有最小值,∴sin(π4·ω+π3)=-1,∴π4ω+π3=2k π+3π2(k ∈Z). ∴ω=8k +143(k ∈Z),因为f (x )在区间(π6,π3)上有最小值,无最大值,所以π3-π4<πω,即ω<12,令k =0,得ω=143.三、解答题10.解 (1)最大用电量为50万kW·h , 最小用电量为30万kW·h.(2)观察图象可知从8~14时的图象是y =A sin(ωx +φ)+b 的半个周期的图象,∴A =12×(50-30)=10,b =12×(50+30)=40. ∵12×2πω=14-8, ∴ω=π6.∴y =10sin ⎝ ⎛⎭⎪⎪⎫π6x +φ+40. 将x =8,y =30代入上式,又∵0<φ<π2,∴解得φ=π6. ∴所求解析式为y =10sin ⎝⎛⎭⎪⎪⎫π6x +π6+40,x ∈[8,14].11.解 (1)如图所示建立直角坐标系,设角φ⎝⎛⎭⎪⎪⎫-π2<φ<0是以Ox 为始边,OP 0为终边的角.OP 每秒钟内所转过的角为5×2π60=π6.则OP 在时间t (s)内所转过的角为π6t . 由题意可知水轮逆时针转动,得z =4sin ⎝⎛⎭⎪⎪⎫π6t +φ+2. 当t =0时,z =0,得sin φ=-12,即φ=-π6. 故所求的函数关系式为z =4sin ⎝⎛⎭⎪⎪⎫π6t -π6+2. (2)令z =4sin ⎝⎛⎭⎪⎪⎫π6t -π6+2=6, 得sin ⎝⎛⎭⎪⎪⎫π6t -π6=1, 令π6t -π6=π2,得t =4, 故点P 第一次到达最高点大约需要4 s.12.解 (1)由表中数据知周期T =12,∴ω=2πT =2π12=π6,由t =0,y =1.5,得A +b =1.5.由t =3,y =1.0,得b =1.0.∴A =0.5,b =1,∴y =12cos π6t +1. (2)由题意知,当y >1时才可对冲浪者开放, ∴12cos π6t +1>1, ∴cos π6t >0,∴2k π-π2<π6t <2k π+π2,k ∈Z , 即12k -3<t <12k +3,k ∈Z.①∵0≤t ≤24,故可令①中k 分别为0,1,2, 得0≤t <3或9<t <15或21<t ≤24.∴在规定时间上午8∶00至晚上20∶00之间,有6个小时时间可供冲浪者运动,即上午9∶00至下午3∶00.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考7:若某船的吃水深度为4米,安全
间隙为1.5米,该船在2:00开始卸货,
吃水深度以每小时0.3米的速度减少,那
么该船在什么时间必须停止卸货,将船
驶向较深的水域?
y
8
y 2.5 sin x
6
6
货船最好在 5 6.5时之前停
止卸货,将
4
船驶向较深
2
y=-0.3x+6.1 的水域.
o 2 4 6 8 10 12
时刻 0 3
6
9
12 15 18 21 24
水深/米 5.0 7.5 5.0 2.5 5.0 7.5 5.0 2.5 5.0
时刻 0 3
6
9
12 15 18 21 24
水深/米 5.0 7.5 5.0 2.5 5.0 7.5 5.0 2.5 5.0
思考1:观察表格中的数据,每天水深 的变化具有什么规律性?
1.6 三角函数模型的简单应用 第一课时
探究一:根据图象建立三角函数关系
【背景材料】如图,某地一天从6~14时 的温度变化曲线近似满足函数:
y Asin(x ) b T/℃
思考1:这一天6~14
30
时的最大温差是多少? 20
30°-10°=20°
10
思考2:函数式中A、b
o 6 10 14 t/h
的值分别是多少? A=10,b=20.
y Asin(x ) b T/℃ 30
思考3:如何确定函数 20
式中 和 的值?
10
, 3
8
4
o 6 10 14 t/h
思考4:这段曲线对应的函数是什么?
y 10sin( x 3 ) 20, x [6,14].
84
思考5:这一天12时的温度大概是多少 (℃)? 27.07℃.
思考3: 用一条光滑曲线连结这些点, 得到一个函数图象,该图象对应的函数 解析式可以是哪种形式?
y 8
6
4
2
o
6 12 18 24 x
y A sin(x 3 ) h
y 8 6 4 2
o
6 12 18 24 x
思考4:用函数 y A sin(x ) h 来
刻画水深和时间之间的对应关系,如何
呈周期性变化规律.
时刻 0 3
6
9
12 15 18 21 24
水深/米 5.0 7.5 5.0 2.5 5.0 7.5 5.0 2.5 5.0
思考2:设想水深y y 是时间x的函数, 8 作出表中的数据对 6 应的散点图,你认 4 为可以用哪个类型 2 的函数来拟合这些 o 6 12 18 24 x 数据?
太阳直射北回归线时物体的影子最 短,直射南回归线时物体的影子最 长.
思考4:如图,A、B、C分别为太阳直射
北回归线、赤道、南回归线时楼顶在地
面上的投影点.要
使新楼一层正午
的太阳全年不被
前面的楼房遮挡,
两楼的临界距离
应是图中哪两点
h0
之间的距离?
-23°26´
0°
23°26´
M 40°
A
B
C
思考5:右图中∠C
读书破万卷,下笔如有神--杜甫
的度数是多少?MC
的长度如何计算?
h0
MC
h0 ´
tan
h0 26034
'
2h0
M 40°
A
B
C
思考6:综上分析,要使新楼一层正午 的太阳全年不被前面的楼房遮挡,两楼 的距离不应小于多少?
探究二:根据相关数据进行三角函数拟合
【背景材料】 海水受日月的引力,在一 定的时候发生涨落的现象叫潮.一般地, 早潮叫潮,晚潮叫汐.在通常情况下,船 在涨潮时驶进航道,靠近码头;卸货后, 在落潮时返回海洋.下面是某港口在某季 节每天的时间与水深关系表:
确定解析式中的参数值?
A 2.5, h 5, T 12, 0,
6
思考5:这个港口的水深与时间的关系可
用函数 y 2.5sin x 5 近似描述,你能
6
根据这个函数模型,求出各整点时水深 的近似值吗?(精确到0.001)
时刻 水深 时刻 水深 时刻 水深 时刻 水深
0:00 1:00 2:00 3:00 4:00 5:00 5.000 6.250 7.165 7.500 7.165 6.250 6:00 7:00 8:00 9:00 10:00 11:00 5.000 3.754 2.835 2.500 2.835 3.754 12:00 13:00 14:00 15:00 16:00 17:00 5.000 6.250 7.165 7.500 7.165 6.250 18:00 19:00 20:00 21:00 22:00 23:00 5.000 3.754 2.835 2.500 2.835 3.754
探究一:建立三角函数模型求临界值
【背景材料】如图,设地球表面某地正午太
阳高度角为θ,δ为此时太阳直射纬度,φ
为该地的纬度值.当地夏半年δ取正值,冬半
年δ取负值. 如果在北京地区(纬度数约为
北纬40°)的一幢高为h0的楼房北 面盖一新楼,要使新
φ-δ
楼一层正午的太阳全 年不被前面的楼房遮 挡,两楼的距离不应
思考6:一条货船的吃水深度(船底与
水面的距离)为4米,安全条例规定至
少要有1.5米的安全间隙(船底与洋底
的距离),该船何时能进入港口?在
港口能呆多久?
y
8
6
B
A
4
CD
2
o
5
10 15
x
y 8
6
B
4A
CD
2
o
5
10 15
x
货船可以在0时30分左右进港,早晨5 时30分左右出港;或在中午12时30分左 右进港,下午17时30分左右出港.每次可 以在港口停留5小时左右.
θ
φδ 太阳光
小于多少?
思考1:图中θ、 δ、φ这三个角 之间的关系是什 么?
φ-δ
φδ θ 太阳光
θ=90°-∣φ-δ∣.
思考2:当太阳高度角为θ时,设高为
h0的楼房在地面上的投影长为h,那么 θ、h0、h三者满足什么关系?
h=h0 tanθ.
思考3:根据地理知识,北京地区一年 中,正午太阳直射什么纬度位置时,物体 的影子最短或影子最长?
x
思考8:右图中,
设点P(x0,y0), 有人认为,由于
P点是两个图象的
交点,说明在x0
y
8
y 2.5 sin x 5
6 4
.P
6
2
y=-0.3x+6.1
o 2 4 6 8 10 12
x
时,货船的安全水深正好与港口水深相
等,因此在这时停止卸货将船驶向较深
水域就可以了,你认为对吗?
精品文档 欢迎下载