2018年河南省中考数学试卷
河南省中考模拟数学考试试卷(三)
![河南省中考模拟数学考试试卷(三)](https://img.taocdn.com/s3/m/8b80b69cf242336c1fb95e9d.png)
河南省中考模拟数学考试试卷(三)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)设a是有理数,则下列各式的值一定为正数的是()A . a2B . |a|C . a+1D . a2+12. (2分)(2017·河北) 把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A . 1B . ﹣2C . 0.813D . 8.133. (2分) (2016七上·仙游期末) 从不同方向观察如图所示的几何体,不可能看到的是()A .B .C .D .4. (2分) (2019八下·孝南月考) 下列计算:①()2=2;② =2;③(–2 )2=12;④( + )(–)=–1.其中正确的有()A . 1个B . 2个C . 3个D . 4个5. (2分)(2017·宜兴模拟) 函数y= 中,自变量x的取值范围是()A . x≥﹣5B . x≤﹣5C . x≥5D . x≤56. (2分) (2016九下·吉安期中) 如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG 的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A . a2B . a2C . a2D . a27. (2分) (2020八下·武城期末) 如果P(2,m),A(1,1),B(4,0)三点在同一直线上,则m的值为()A . 2B .C .D . 18. (2分)在盒子里放有三张分别写有整式a﹣3、a+1、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A .B .C .D .9. (2分) (2021七上·肇源期末) 如图,在边长为a的正方形中挖掉一个边长为b的小正方形,把余下的部分拼成一个长方形(无重叠部分),通过计算两个图形中阴影部分的面积,可以验证的一个等式是()A . a2﹣b2=(a+b)(a﹣b)B . a(a﹣b)=a2﹣abC . (a﹣b)2=a2﹣2ab+b2D . a(a+b)=a2+ab10. (2分)如图,在△ABC中,AC=BC,CD是AB边上的高线,且有2CD=3AB,又E,F为CD的三等分点,则∠ACB和∠AEB之和为()A . 45°B . 90°C . 60°D . 75°11. (2分) (2018九上·秦淮月考) 如图,AC⊥BC,AC=BC=4,以AC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB.过点O作BC的平行线交两弧于点D、E,则阴影部分的面积是()A .B .C .D .12. (2分) (2016九上·端州期末) 关于抛物线y=(x-1)2-2,下列说法中错误的是()A . 顶点坐标为(1,-2)B . 对称轴是直线x=1C . 当x>1时,y随x的增大而减小D . 开口方向向上二、填空题 (共4题;共4分)13. (1分)分解因式:2a2-8b2=________.14. (1分) (2019八上·垣曲期中) 若a,b为两个连续的正整数,且,则 ________.15. (1分)观察下列各等式:1=12 , 1+3=22 , 1+3+5=32 , 1+3+5+7=42 ,则1+3+5+7+…+2017=________.16. (1分) (2016九上·南岗期中) 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200N和0.5m,当撬动石头的动力F至少需要400N时,则动力臂l的最大值为________ m.三、解答题 (共6题;共60分)17. (5分)(2020·陕西模拟) 计算: .18. (5分)不等式组的解集是2<x<m+7,求m的最大负整数解.19. (10分) (2017八上·金堂期末) 2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度. 小军为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.小军发现每月每户的用水量在5m3-35m3之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变. 根据小军绘制的图表和发现的信息,完成下列问题:(1) n =________,小明调查了________户居民,并补全图1________;(2)每月每户用水量的中位数落在________之间,众数落在________之间;(3)如果小明所在的小区有1200户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?20. (10分) (2019九上·偃师期中) 如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角为45°,沿斜坡走3 米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1:2.(1)求小明从点A到点D的过程中,他上升的高度;(2)大树BC的高度约为多少米?(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)21. (10分) (2020八上·红桥期末) 某茶店用4000元购进了A种茶叶若干盒,用8400元购进了B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1) A,B两种茶叶每盒进价分别为多少元?(2)若第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元,两种茶叶各售出一半后,为庆祝元旦,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?22. (20分)(2020·松滋模拟) 如图(1)已知矩形AOCD在平面直角坐标系xOy中,∠CAO=60°,OA=2,B点的坐标为(2,0),动点M以每秒2个单位长度的速度沿A→C→B运动(M点不与点A、点B重合),设运动时间为t秒.(1)求经过B、C、D三点的抛物线解析式;(2)点P在(1)中的抛物线上,当M为AC中点时,若△PAM≌△PDM,求点P的坐标;(3)当点M在CB上运动时,如图(2)过点M作ME⊥AD,MF⊥x轴,垂足分别为E、F,设矩形AEMF与△ABC 重叠部分面积为S,求S与t的函数关系式,并求出S的最大值;(4)如图(3)点P在(1)中的抛物线上,Q是CA延长线上的一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,求点P的坐标.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共6题;共60分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、答案:22-4、考点:解析:。
第29讲 统计训练题2018年中考数学一轮复习资料.docx
![第29讲 统计训练题2018年中考数学一轮复习资料.docx](https://img.taocdn.com/s3/m/990e50dca48da0116c175f0e7cd184254b351b79.png)
一、选择题(每题3分,共30分)1.为了调查了解某县七年级男生的身高,有关部门准备对200名七年级男生的身高作调查,以下调查方案中比较合理的是()A,查阅外地200名七年级男生的身高统计资料B,测量该县县城一所中学200名七年级男生的身高C.测量.该,县两所农村中学各100名七年级男生的身高D.在该县县城任选一所中学,农村任选三所中学,每所中学用抽签的方法分别选择50名七年级男生,然后测量他们的身高2.某省有7万名学生参加初中毕业会考,要想了解这7万名学生的数学成绩,从中抽取了 1 000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1 000名考生是总体的一个样本B.每位考生是个体C.7万名考生是总体D.这种调查是抽样调查3.九年级某班在一次考试中对某道单选题的作答情况如图所示,根据统计图,下列判断中错误的是()A.选A的有8人B.选B的有4人C.选C的有26人D.该班共有50人参加考试4.某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生约为(含非常喜欢和喜欢两种情况)()A. 216B.252C.288D.3245.如图,是某工厂2010-2013年的年产值统计图,则年产值在2500万元以上的年份是(A. 2011 年B. 2012 年C. 2013 年D. 2011 年和 2013 年6.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输人汉字的个数统计结果如下表,某同学分析上表后得出如下结论:(1)甲、乙两班学生成绩平均水平相同,(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入N150个汉字为优秀)⑶甲班成绩的波动比乙班大上述结论正确的是()A. (1)⑵(3)B. (1) (2)C. (1) (3)D. (2) (3)7.下表是四川省11个地市5月份某日最高气温(°C)的统计结果:该日最高气温的极差和平均数分别是( )A. 31 °C,28 °CB.. 26 °C, 28 °CC. 5 °C, 27 °CD. 5 °C, 28 °CC 2 c 28.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为S甲=0. 51, S乙=0. 41, S丙%0. 62, S T22=0. 45,则四人中成绩最稳定的是( )A.甲B.乙C.丙D. T9.某次歌唱比赛,最后三名选手的成绩统计如下:若唱功、音乐常识、综合知识按6 : 3 : 1的加权平均分排出冠军、亚军、季军,则冠军、亚军、季军分别A.王飞、李真、林杨B.王飞、林杨、李真C.李真、王飞、林杨D.李真、林杨、王飞10.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:某同学分析上表后得出如下结论:①甲、乙两班学生汉字输入的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字的个数不少于150为优,秀);③甲班成绩的波动比乙班■大.上述结论正确的是()A.①②③B.①②C.①③D.②③二、填空题(每题3分,共30分)11.五个数1, 2, 4, 5, -2的极差是.12.已知一组数据3, 4, 4, 2, 5,这组数据的中位数为.13.某工厂共有50名员工,他们的月工资方差*=20,现在给每个员工的月工资增加300元,那么他们新工资的方差是.14.数据3, 2, 1, 5, - 1, 1的众数和中位数之和是.15.已知一组数据10, 9, 8, X, 12, y, 10, 7的平均数是10,又知y比x大2,则x+y= .16.某校九年级(2)班(1)组女生的体重(单位:kg)为:38, 40, 35, 36, 65, 42, 42,则这组数据的中位数是17.一个班级有40人,一次数学考试中,优秀的有18人.在扇形图中表示优秀的人数所占百分比的扇形的圆心角的度数是.18.某校男子足球队队员的年龄分布如表所示:年龄(岁)13 14 15 16 17人数 2 6 8 3 3则这些队员年龄的中位数是—岁.19.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是_.20.在某次学校安全知识抢答赛中,九年级参赛的10名学生的成绩统计图如图所示.这10名学生的参赛成绩的中位数是—分.85 90 e三、解答题(共60分)21.(本题6分)甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分)(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3: 3: 2: 2计算,那么甲、乙的数学综合素质成绩分别为多少分?22.(本题7分)在开展“好书伴我成长”的读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数.统计数据如下表所示:册数0 1 2 3 4人数 3 13 16 17 1(1)求这50个样本数据的平均救,众数和中位数.(2)根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数.23.(本题7分)甲、成绩分别被制成下列两个统计图:乙两名队员参加射击训练,根据以上信息,整理分析数据如下:平均成绩/中位数/环众数/环方差环甲 a 7 7 1.2乙7 b 8 c(1)写出表格中a, b, c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?24.(本题8分)某学校九年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰, 设置一、二、三等奖各进步奖共四个奖项,赛后将九年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)九年级(1)班共有—名学生;(2)将条形图补充完整:在扇形统计图中,“二等奖”对应的扇形的圆心角度数是_(3)如果该九年级共有1250名学生,请估计荣获一、二、三等奖的学生共有多少名.25.(本题8分)了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额, 并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:,诙SX额条以(人)数额(元)(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?被调查的学生每人.一周零花钱数的中位数是多少元?(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?26.(本题8分)随着一部在重庆取景拍摄的电影《火锅英雄》在山城的热播,山城人民又掀起了一股去吃洞子老火锅的热潮.某餐饮公司为了大力宣传和推广该公司的企业文化,准备举办一个火锅美食节.为此,公司派出了若干业务员到几个社区作随机调查,了解市民对火锅的喜爱程度.业务员小王将“喜爱程度”按A、B、C、D进行分类,并将自己的调查结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:“喜爱程度”条形统计图“喜爱程度”扇形统计图(说明:A:非常喜欢;B:比较喜欢;C:一般喜欢;D:不喜欢)(1)请把条形统计图补充完整.;(2)扇形统计图中A类所在的扇形的圆心角度数是_;(3)若小王调查的社区大概有5000人,请你用小王的调查结果估计“非常喜欢”和“比较喜欢”的人数之和.27.(本题8分)为了降低塑料袋--“白色污染”对环境污染.学校组织了对使用购物袋的情况的调查, 小明同学5月8日到站前市场对部分购物者进行了调查,据了解该市场按塑料购物袋的承重能力分别提供了 0.1元,0.2元,0.3元三种质量不同的塑料袋,下面两幅图是这次调查得到的不完整的统计图(若每人每次只使用一个购物袋),请你根据图中的信息,回答下列问题:(1)这次调查的购物者总人数是—人;(2)请补全条形统计图,并说明扇形统计图中0.2元部分所对应的圆心角是度,0.3元部分所对应的圆心角是度;(3)若5月8日到该市场购物的人数有3000人次,则该市场应销售塑料购物袋多少个?目备0.1兀28.(本题8分)A, B, C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表和图1:竞选人 A .B C笔试85 95 90口试80 85■笔试□ 口试B C(1)请将表和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图2 (没有弃权票,每名学生只能推荐一个),则B在扇形统计图中所占的圆心角是度.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4: 3: 3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.。
2018年中考数学试卷(有答案)
![2018年中考数学试卷(有答案)](https://img.taocdn.com/s3/m/75832c5a24c52cc58bd63186bceb19e8b9f6ec63.png)
2018年中考数学试卷(有答案)2018年中考数学试卷(有答案)全卷满分120分,考试时间120分钟)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)1.一元二次方程 x^2-4=0 的解是()A。
x=2B。
x=-2C。
x1=2,x2=-2D。
x1=-2,x2=22.二次三项式 x^2-4x+3 配方的结果是()A。
(x-2)^2+7B。
(x-2)^2-1C。
(x+2)^2+7D。
(x+2)^2-13.XXX从上面观察下图所示的两个物体,看到的是(删除该段)4.人离窗子越远,向外眺望时此人的盲区是()A。
变小B。
变大C。
不变D。
以上都有可能5.函数 y=kx 的图象经过 (1,-1),则函数 y=kx-2 的图象是(删除该段)6.在直角三角形 ABC 中,∠C=90°,a=4,b=3,则 sinA 的值是()A。
5/4B。
4/5C。
3/5D。
4/37.下列性质中正方形具有而矩形没有的是()A。
对角线互相平分B。
对角线相等C。
对角线互相垂直D。
四个角都是直角8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是(删除该段)二、填空题(本大题共7个小题,每小题3分,满分21分)9.计算tan60°=√3.10.已知函数 y=(m-1)x^(m-2) 是反比例函数,则 m 的值为3.11.若反比例函数 y=k/x^2 的图象经过点 (3,-4),则此函数在每一个象限内 y 随 x 的增大而减小。
12.命题“直角三角形两条直角边的平方和等于斜边的平方”的逆命题是“如果两条直角边的平方和不等于斜边的平方,则三角形不是直角三角形”。
13.有两组扑克牌各三张,牌面数字分别为 2,3,4,随意从每组中牌中抽取一张,数字和是 6 的概率是 1/9.14.依次连接矩形各边中点所得到的四边形是长方形。
15.如图,在△ABC中,BC=8 cm,AB 的垂直平分线交AB 于点 D,交边 AC 于点 E,△BCE 的周长等于 18 cm,则AC 的长等于 10 cm。
沪科版九年级数学上册解直角三角形的应用中考题汇编(含答案)
![沪科版九年级数学上册解直角三角形的应用中考题汇编(含答案)](https://img.taocdn.com/s3/m/27831969fd0a79563d1e7216.png)
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯沪科版九年级数学上册解直角三角形的应用中考题汇编(含答案)一、选择题1. (2018·宜昌)如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取P A的垂线PB上的一点C,测得PC=100 m,∠PCA=35°,则P,A两点的距离为()A. 100 sin 35° mB. 100 sin 55° mC. 100 tan 35° mD. 100 tan 55° m第1题第2题2. (2018·金华)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD 的长度之比为()A. tan αtan β B.sin βsin α C.sin αsin β D.cos βcos α3. (2018·益阳)如图,小刚从山脚A出发,沿坡角为α的山坡向上走了300 m到达点B,则小刚上升的高度为()A. 300 sin α mB. 300 cos α mC. 300 tan α mD. 300 tan αm第3题第4题4. (2018·长春)如图,某地修建高速公路,要从A地向B地修一条隧道(点A,B在同一水平面上).为了测量A,B两地之间的距离,一架直升飞机从A地出发,垂直上升800 m到达C处,在C处观察B地的俯角为α,则A,B两地之间的距离为()A. 800 sin α mB. 800 tan α mC. 800sin αm D.800tan αm5. (2018·淄博)一辆小车沿着如图所示的斜坡向上行了100米,其铅直高度上升了15米. 在用科学计算器求坡角α的度数时,具体按键顺序是()第5题A. 2ndF sin0.15)=B. sin0.15)2ndF=C. 2ndF cos0.15)=D. tan0.15)2ndF=6. (2018·苏州)如图,某海监船以20海里/时的速度在某海域执行巡航任务.当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A. 40海里B. 60海里C. 203海里D. 403海里第6题 第8题7. (2018·绵阳)一艘在南北航线上的测量船,于点A 处测得海岛B 在点A 的南偏东30°方向,继续向南航行30海里到达点C 时,测得海岛B 在点C 的北偏东15°方向,则海岛B 离此航线的最近距离是(结果精确到0.01海里,参考数据:3≈1.732,2≈1.414)( )A. 4.64海里B. 5.49海里C. 6.12海里D. 6.21海里8. (2018·重庆)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部点E 处测得旗杆顶端的仰角∠AED =58°,升旗台底部到教学楼底部的距离DE =7 m ,升旗台坡面CD 的坡度i =1∶0.75,坡长CD =2 m .若旗杆底部到坡面CD 的水平距离BC =1 m ,则旗杆AB 的高度约为(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.6) ( )A. 12.6 mB. 13.1 mC. 14.7 mD. 16.3 m9. (2018·重庆)如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端B 出发,先沿水平方向向右行走20 m 到达点C ,再经过一段坡度为i =1∶0.75、坡长为10 m 的斜坡CD 到达点D ,然后沿水平方向向右行走40 m 到达点E (点A ,B ,C ,D ,E 在同一平面内).在E 处测得建筑物顶端A 的仰角为24°,则建筑物AB 的高度约为(参考数据:sin 24°≈0.41,cos 24°≈0.91,tan 24°≈0.45)( )A. 21.7 mB. 22.4 mC. 27.4 mD. 28.8 m第9题 第10题10. (2018·威海)如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y =4x -12x 2刻画,斜坡可以用一次函数y =12x 刻画,下列结论错误的是( ) A. 当小球抛出高度达到7.5 m 时,小球距点O 水平距离为3 mB. 小球距点O 水平距离超过4 m 呈下降趋势C. 小球落地点距点O 的水平距离为7 mD. 斜坡的坡度为1∶2二、 填空题11. (2018·广州)如图,旗杆高AB =8 m ,某一时刻,旗杆影子长BC =16 m ,则tan C 的值为________.第11题 第12题12. (2018·枣庄)如图,某商店营业大厅自动扶梯AB 的倾斜角为31°,AB 的长为12 m ,则大厅两层之间的高度BC 为________m .(结果精确到0.1 m ,参考数据:sin 31°≈0.515,cos 31°≈0.857,tan31°≈0.60)13. (2018·阜新)如图,在点B 处测得塔顶A 的仰角为30°,点B 到塔底C 的水平距离BC 是30 m ,那么塔AC 的高度为________m .(结果保留根号)第13题 第14题14. (2018·大连)如图,小明为了测量校园里旗杆AB 的高度,将测角仪CD 竖直放在距旗杆底部B 6 m 的位置,在D处测得旗杆顶端A的仰角为53°.若测角仪的高度是1.5 m,则旗杆AB的高度约为________m.(结果精确到0.1 m,参考数据:sin 53°≈0.80,cos 53°≈0.60,tan 53°≈1.33)15. (2018·广西)如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D 处的俯角是45°.已知甲楼的高AB是120 m,则乙楼的高CD是________m.(结果保留根号)第15题第16题16. (2018·荆州)如图,荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7 m,某校学生测得古塔的整体高度约为40 m.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a m后到达B处,在B处测得塔顶的仰角为45°,那么a的值约为________.(结果精确到0.1,参考数据:3≈1.73)17. (2018·黄石)如图,无人机在空中C处测得地面A,B两点的俯角分别为60°,45°.如果无人机距地面高度CD为100 3 m,点A,D,B在同一水平直线上,那么A,B两点间的距离是________m.(结果保留根号)第17题第18题18. (2018·葫芦岛)如图,某景区的两个景点A,B处于同一水平地面上,一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内.当无人机飞行至C处时,测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100 m,则两景点A,B间的距离为________m.(结果保留根号)19. (2018·咸宁)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110 m,那么该建筑物的高度BC约为________m.(结果保留整数,3≈1.73)第19题第20题20. (2018·宁夏)如图,一艘货轮以18 2 km/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30 min后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B的距离是________km.21. (2018·济宁)如图,在笔直的海岸线l上有相距2 km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是________km.(结果保留根号)第21题第22题第23题22. (2018·天门)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C 恰好位于渔船B的正北方向18(1+3)n mile处,则海岛A,C之间的距离为________n mile.(结果保留根号)23. (2018·潍坊)如图,一艘渔船以60海里/时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/时的速度继续航行________小时即可到达.(结果保留根号)三、解答题24. (2018·遵义)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5 m.(计算结果精确到0.1 m,参考数据:sin 64°≈0.90,cos 64°≈0.44,tan 64°≈2.05)(1) 当吊臂底部A与货物的水平距离AC为5 m时,吊臂AB的长为________m;(2) 如果该吊车吊臂的最大长度AD为20 m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)第24题25.(2018·常州)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A,B和点C,D,先用卷尺量得AB=160 m,CD=40 m,再用测角仪测得∠CAB =30°,∠DBA=60°,求该段运河的河宽(即CH的长).第25题26. (2018·长沙)为加快城乡对接,建设全域美丽乡村,某地区对A,B两地间的公路进行改建.如图,A,B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线A-C-B行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80 km,∠A=45°,∠B=30°.(结果精确到0.1 km,参考数据:2≈1.41,3≈1.73)(1) 开通隧道前,汽车从A地到B地大约要走多少千米?(2) 开通隧道后,汽车从A地到B地大约可以少走多少千米?第26题27.(2018·常德)如图①是一商场的推拉门,已知门的宽度AD=2 m,且两扇门的大小相同(即AB=CD).将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图②,求此时B与C之间的距离.(结果精确到0.1 m,参考数据:sin 37°≈0.6,cos 37°≈0.8,2≈1.4)28. (2018·徐州)如图,1号楼在2号楼的南侧,两楼高度均为90 m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42 m.(参考数据:sin 32.3°≈0.53,cos 32.3°≈0.85,tan 32.3°≈0.63,sin 55.7°≈0.83,cos 55.7°≈0.56,tan 55.7°≈1.47)(1) 求楼间距AB;(2) 若2号楼共30层,层高均为3 m,则点C位于第几层?第28题29. (2018·泸州)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90 m,且乙建筑物的高度是甲建筑物高度的6倍,从点E(点A,E,B在同一水平线上)测得点D的仰角为30°,测得点C的仰角为60°,求这两座建筑物顶端C,D间的距离.第29题30. (2018·郴州)小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控无人机指令测得桥头B,C的俯角分别为∠EAB=60°,∠EAC=30°,且D,B,C在同一水平线上.已知桥BC =30 m,求无人机飞行的高度AD.(精确到0.01 m.参考数据:2≈1.414,3≈1.732)第30题31.(2018·宜宾)某游乐场一转角滑梯如图所示,滑梯立柱AB,CD均垂直于地面,点E在线段BD上,在点C测得点A的仰角为30°,点E的俯角也为30°,测得点B,E间距离为10 m,立柱AB高30 m.求立柱CD的高.(结果保留根号)第31题32. (2018·宿迁)如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为45°,然后他沿着正对树PQ的方向前进10 m到达点B处,此时测得树顶P和树底Q的仰角分别是60°和30°,设PQ垂直于AB,且垂足为C.求:(1) ∠BPQ的度数;(2) 树PQ的高度.(结果精确到0.1 m,3≈1.73)第32题33. (2018·镇江)如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24 m,小明在点E(点B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8 m到达点G处,测得教学楼CD顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6 m,求教学楼AB的高度.(精确到0.1 m,参考数据:2≈1.41,3≈1.73)第33题34. (2018·黄冈)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60 m,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E在同一条直线上.求:(1) 斜坡下的点C处到大楼的距离;(2) 斜坡CD的长度第34题35. (2018·大庆)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:6≈2.449,结果保留整数)第35题36. (2018·桂林)如图,在某海域,一艘指挥船在C处收到渔船在B处发出的求救信号.经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60 n mile;经指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30 n mile/h,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:2≈1.41,3≈1.73,6≈2.45,结果精确到0.1 h)第36题37. (2018·淮安)如图,某数学兴趣小组为了计算湖中小岛上凉亭P到岸边公路l的距离,在公路l上的点A 处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上.求凉亭P到公路l的距离.(结果保留整数,参考数据:2≈1.414,3≈1.732)第37题38. (2018·青岛)如图是某区域平面示意图,点O 在河的一侧,AC 和BC 表示两条互相垂直的公路.甲勘测员在A 处测得点O 位于北偏东45°,乙勘测员在B 处测得点O 位于南偏西73.7°,测得AC =840 m ,BC =500 m .请求出点O 到BC 的距离.(参考数据:sin 73.7°≈2425,cos 73.7°≈725,tan 73.7°≈247)第38题39. (2018·眉山)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C 地表示)开展社会实践活动,车到达A 地后,发现C 地恰好在A 地的正北方向,且距离A 地13 km ,导航显示车辆应沿北偏东60°方向行驶至B 地,再沿北偏西37°方向行驶一段距离才能到达C 地,求B ,C 两地的距离.(结果保留根号,参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43)第39题40. (2018·泰州)日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L ∶(H -H 1),其中L 为楼间水平距离,H 为南侧楼房高度,H 1为北侧楼房底层窗台至地面高度.如图②,山坡EF 朝北,EF 长为15 m ,坡度为i =1∶0.75,山坡顶部平地EM 上有一高为22.5 m 的楼房AB ,底部A 到E 处的距离为4 m.(1) 求山坡EF 的水平宽度FH ;(2) 欲在AB 楼正北侧山脚的平地FN 上建一楼房CD ,已知该楼底层窗台P 处至地面C 处的高度为0.9 m ,要使该楼的日照间距系数不低于1.25,底部C 距F 处至少多远?第40题41. (2018·遂宁)如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角为45°,然后沿着坡度为1∶3的坡面AD走了200 m达到D处,此时在D处测得山顶B的仰角为60°,求山BC的高度.第41题42. (2018·连云港)如图①,水坝的横截面是梯形ABCD(DC∥AB),∠ABC=37°,坝顶DC=3 m,背水坡AD的坡度i为1∶0.5,坝底AB=14 m.(1) 求坝高;(2) 如图②,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底同时拓宽加固,使得AE=2DF,EF⊥BF,求DF的长.(参考数据:sin 37°≈35,cos 37°≈45,tan 37°≈34)第42题参考答案一、1.C 2.B 3.A 4.D 5.A 6.D 7.B 8.B 9.A 10.A二、11.1212.6.2 13.103 14.9.5 15.403 16.24.1 17.100(1+3) 18.100(1+3) 19.300 20.18 21.3 22.182 23.18+635三、24. (1) 11.4 点拨:∵在Rt △ABC 中,∠BAC =64°,AC =5m ,∴AB =AC cos64°≈50.44≈11.4(m). (2) 如图,过点D 作DH ⊥地面于点H ,交水平线AC 于点E ,则EH =1.5m ,DE ⊥AE .∵在Rt △ADE 中,AD =20m ,∠DAE =64°,∴DE =AD ·sin64°≈20×0.90=18.0(m).∴DH =DE +EH =18.0+1.5=19.5(m).答:如果该吊车吊臂的最大长度AD 为20m ,那么从地面上吊起货物的最大高度是19.5m第24题 第25题25.如图,过点D 作DE ⊥AB 于点E ,则易得四边形CHED 为矩形.∴HE =CD =40m .设CH =DE =x m .∵在Rt △BDE 中,∠DBA =60°,∴BE =DE tan60°=33x m .∵在Rt △ACH 中,∠BAC =30°,∴AH =CH tan30°=3x m .又∵AH +HE +EB =AB =160m ,∴3x +40+33x =160,解得x =30 3.∴CH =303m .答:该段运河的河宽为303m 26. (1) 如图,过点C 作CD ⊥AB ,垂足为D.∵在Rt △BDC 中,sin B =CD BC,BC =80km ,∴CD =BC ·sin30°=80×12=40(km).∵在Rt △ADC 中,sin A =CD AC ,∴AC =CD sin45°=40÷22=402(km).此时AC +BC =402+80≈40×1.41+80=136.4(km).答:开通隧道前,汽车从A 地到B 地大约要走136.4km(2) ∵在Rt △BDC 中,cos B =BD BC ,BC =80km ,∴BD =BC ·cos30°=80×32=403(km).∵在Rt △ADC 中,tan A =CD AD ,CD =40km ,∴AD =CD tan45°=401=40(km).∴AB =AD +BD =40+403≈40+40×1.73=109.2(km).∴AC +BC -AB =136.4-109.2=27.2(km).答:汽车从A 地到B 地大约可以少走27.2km第26题第27题 27.如图,过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 于点F ,延长FC 到点M ,使得CM =BE ,连接BC ,EM.∵在题图①中,AB =CD ,AB +CD =AD =2m ,∴AB =CD =1m .在Rt △ABE 中,∵AB =1m ,∠A =37°,∴BE =AB ·sin A ≈0.6m ,AE =AB ·cos A ≈0.8m .在Rt △CDF 中,∵CD =1m ,∠D =45°,∴CF =CD ·sin D ≈0.7m ,DF =CD ·cos D ≈0.7m .∵BE ⊥AD ,CF ⊥AD ,∴BE ∥CM .又∵BE =CM ,∴四边形BEMC 为平行四边形.∴BC =EM .在Rt △MEF 中,∵EF =AD -AE -DF =0.5m ,FM =CF +CM =CF +BE =1.3m ,∴EM =EF 2+FM 2≈1.4m .答:B 与C 之间的距离约为1.4m28. (1) 如图,过点C 作CE ⊥PB ,垂足为E ,过点D 作DF ⊥PB ,垂足为F ,则∠CEP =∠PFD =90°,CE =DF =AB ,CD =EF =42m .设AB =x m .∵在Rt △PCE 中,tan32.3°=PE x,∴PE =x ·tan32.3°m .∵在Rt △PDF 中,tan55.7°=PF x,∴PF =x ·tan55.7°m .由PF -PE =EF ,得x ·tan55.7°-x ·tan32.3°=42,解得x ≈50.答:楼间距AB 为50m (2) 由(1),得PE =50×tan32.3°≈31.5(m),∴CA =EB =90-31.5=58.5(m).由于2号楼层高均为3m ,且3×19<58.5<3×20,∴点C 位于第20层第28题29.由题意,得∠DAB =∠ABC =90°,BC =6AD ,AE +BE =AB =90m .设AD =x m ,则BC =6x m .∵在Rt △ADE 中,tan30°=AD AE ,sin30°=AD DE ,∴AE =3x m ,DE =2x m .∵在Rt △BCE 中,tan60°=BC BE,sin60°=BC CE,∴BE =23x m ,CE =43x m .由AE +BE =90m ,得3x +23x =90,解得x =103,∴DE =203m ,CE =120m .∵∠DEA +∠DEC +∠CEB =180°,∠DEA =30°,∠CEB =60°,∴∠DEC =90°.∴CD =DE 2+CE 2=(203)2+1202=15600=2039(m).答:这两座建筑物顶端C ,D 间的距离为2039m 30.∵∠EAB =60°,∠EAC =30°,∴∠CAD =60°,∠BAD =30°.∴在Rt △ADC 中,CD =AD ·tan ∠CAD =3AD ;在Rt △ADB 中,BD =AD ·tan ∠BAD =33AD .∵BC =CD -BD =30m ,∴3AD -33AD =30m ,解得AD =153≈25.98(m).答:无人机飞行的高度AD 为25.98m31.如图,过点C 作CH ⊥AB 于点H ,易得四边形HBDC 为矩形.∴BH =CD ,BD =CH ,BD ∥CH.∴∠HCE =∠CED.由题意,得∠ACH =30°,∠HCE =30°,∴∠CED =30°.设CD =x m ,则AH =AB -BH =AB -CD=(30-x )m.∵在Rt △AHC 中,tan ∠ACH =AH HC ,∴HC =30-x tan30°=3(30-x )m.∴BD =3(30-x )m.∵在Rt △CDE 中,tan ∠CED =CD DE ,∴DE =x tan30°=3x m .∵BE =BD -DE =10m ,∴3(30-x )-3x =10,解得x =15-53 3.答:立柱CD 的高为(15-533)m 第31题 第33题32. (1) 由题意,得PC ⊥AC ,∠PBC =60°,∴在Rt △PCB 中,∠BPQ =90°-60°=30° (2) 由题意,得∠P AC =45°,∠QBC =30°,AB =10m .设CQ =x m .在Rt △QCB 中,BQ =CQ sin30°=2x m ,BC =CQ tan30°=3x m .∵∠PBQ =∠PBC -∠QBC =30°,∠BPQ =30°,∴∠PBQ =∠BPQ .∴PQ =BQ =2x m .∴PC =PQ +CQ =3x m .在Rt △PCA 中,AC =PC tan45°=PC =3x m .由AC -BC =AB ,得3x -3x =10,解得x =(5+533)m ,∴PQ =2x =10+1033≈15.8(m).答:树PQ 的高度约为15.8m 33.如图,延长HF 交CD 于点N ,延长FH 交AB 于点M.由题意,得MB =HG =FE =ND =1.6m ,HF =GE=8m ,MF =BE ,HN =GD ,MN =BD =24m .设AM =x m ,则CN =x m .在Rt △AMF 中,MF =AM tan45°=x m ,在Rt △CNH 中,HN =CN tan30°=3x m .由HF =MF +HN -MN ,得8=x +3x -24,解得x =163-16,∴AB =AM +BM =163-16+1.6≈13.3(m).答:教学楼AB 的高度为13.3m34. (1) ∵在Rt △ABC 中,∠BAC =90°,∠BCA =60°,AB =60m ,∴AC =AB tan60°=603=203(m).答:斜坡下的点C 处到大楼的距离是203m (2) 如图,过点D 作DF ⊥AB 于点F ,易得四边形AEDF 为矩形.∴DF=AE ,DE =AF .设CD =2x m.∵在Rt △CED 中,∠DCE =30°,∴DE =12CD =x m ,CE =CD ·cos30°=3x m .∴BF =AB -AF =AB -DE =(60-x )m.∵在Rt △BFD 中,∠FDB =45°,∴DF =BF tan45°=(60-x )m.由DF =AE ,得60-x =203+3x ,解得x =403-60,∴CD =(803-120)m.答:斜坡CD 的长度为(803-120)m第34题第35题 35.由题意,得PA =80海里.如图,过点P 作PC ⊥AB 于点C ,则∠APC =90°-60°=30°,∠BPC =90°-45°=45°.∵在Rt △ACP 中,cos ∠APC =PC P A,∴PC =P A ·cos ∠APC =80×cos30°=403(海里).∵在Rt △PCB 中,cos ∠BPC =PC PB ,∴PB =PC cos ∠BPC =403cos45°=406≈98(海里).答:此时轮船所在的B 处与灯塔P 的距离是98海里36.由题意,得点A 在点B 的正西方,∴如图,延长AB 交南北轴于点D ,则AB ⊥CD.∵∠BCD =45°,∴∠CBD=45°=∠BCD .∴BD =CD .在Rt △BDC 中,由sin ∠BCD =BD BC,BC =60nmile ,得BD =60×sin45°=302(nmile),CD =BD =302nmile.在Rt △ADC 中,由tan ∠ACD =AD CD,得AD =302×tan60°=306(nmile).∴AB =AD -BD =(306-302)nmile.∵海监船A 的航行速度为30nmile/h ,∴渔船在B 处需要等待的时间为AB 30=6-2≈2.45-1.41≈1.0(h).答:渔船在B 处需要等待1.0h 才能得到海监船A 的救援 第36题第38题 37.过点P 作PD ⊥l ,垂足为D.设BD =x 米,则AD =(x +200)米.由题意,得∠PAB =90°-60°=30°,∠PBD=90°-45°=45°.在Rt △ADP 中,tan30°=PD AD ,∴PD =AD ·tan30°=33(x +200)米.在Rt △PDB 中,tan45°=PD BD ,∴PD =BD ·tan45°=x 米.∴33(200+x )=x ,解得x =2003-1≈273.∴PD =273米.答:凉亭P 到公路l 的距离为273米38.如图,过点O 分别作OM ⊥BC 于点M ,ON ⊥AC 于点N ,易得四边形ONCM 为矩形.∴ON =MC ,OM =NC.设OM =xm ,则NC =x m ,AN =(840-x )m.在Rt △ANO 中,∵∠OAN =45°,∴易得ON =AN =(840-x )m.∴MC =ON =(840-x )m.在Rt △BOM 中,BM =OM tan ∠OBM ≈x 247=724x (m),由BM +MC =BC =500m ,得724x +840-x =500,解得x =480.答:点O 到BC 的距离为480m 39.如图,过点B 作BD ⊥AC 于点D ,则∠BAD =60°,∠DBC =90°-37°=53°.设AD =x km.在Rt △ADB中,BD =AD ·tan60°=3x km ,在Rt △BDC 中,CD =BD ·tan53°≈3x ·43=433x (km).由AC =AD +CD ,可得x +433x =13,解得x =43-3,此时BD =3x =(12-33)km.∴在Rt △BDC 中,BC =BD cos53°≈(12-33)×53=(20-53)km.答:B ,C 两地的距离为(20-53)km 第39题第41题40. (1) ∵在Rt △EFH 中,∠H =90°,∴tan ∠EFH =i =1∶0.75=43=EH FH.∴设EH =4x (x >0)m.则FH =3x m ,EF =EH 2+FH 2=5x m .∵EF =15m ,∴5x =15,解得x =3.∴FH =9m .答:山坡EF 的水平宽度FH 为9m (2) 由(1),得EH =12m .设CF =y m .∵L =CF +FH +EA =y +9+4=(y +13)m ,H =AB +EH =22.5+12=34.5(m),H 1=0.9m ,∴日照间距系数=L ∶(H -H 1)=y +1334.5-0.9=y +1333.6.∵该楼的日照间距系数不低于1.25,∴y +1333.6≥1.25,∴y ≥29,即CF ≥29m .答:要使该楼的日照间距系数不低于1.25,底部C 距F 处至少29m 远41.根据题意,得AC ⊥BC ,DE ⊥BC ,∠BAC =45°,AD =200m ,∠BDE =60°.如图,过点D 作DF ⊥AC ,垂足为F .∵i AD =1∶3,∴在Rt △ADF 中DF ∶AF =1∶3,即tan ∠DAF =33.∴∠DAF =30°.∴∠BAD =∠BAC -∠DAF =45°-30°=15°.∵在Rt △AFD 中,AD =200m ,∴DF =12AD =100m .∵AC ⊥BC ,DE ⊥BC ,DF ⊥AC ,∴∠DEC =∠BCA =∠DFC =90°,∴四边形DECF 是矩形.∴EC =DF =100m .∵在Rt △DEB 中,∠DBE =90°-∠BDE =30°,在Rt △ACB 中,∠ABC =90°-∠BAC =45°,∴∠ABD =∠ABC -∠DBE=45°-30°=15°.∴∠ABD =∠BAD .∴AD =BD =200m .∵在Rt △BDE 中,sin ∠BDE =BE BD,∴BE =BD ·sin60°=200×32=1003(m).∴BC =BE +EC =(100+1003)m.答:山BC 的高度为(100+1003)m 42. (1) 如图①,分别过点D ,C 作DM ⊥AB ,CN ⊥AB ,垂足分别为M ,N.∵背水坡AD 的坡度i 为1∶0.5,∴在Rt △ADM 中,tan ∠DAB =DM AM=2.∴设AM =x (x >0)m ,则DM =2x m .根据题意,易得四边形DMNC 是矩形,∴DC =MN =3m ,DM =CN =2x m .∵在Rt △BNC 中,tan ∠ABC =CN BN ,即tan37°=2x BN ≈34,∴BN ≈2x ·43=83x m .由x +3+83x =14,得x =3,∴DM =6m .答:坝高为6m (2) 如图②,过点F 作FH ⊥AB ,垂足为H ,DM ⊥AB ,垂足为M .由(1),得FH =DM =6m ,FD =HM .设FD =y m ,则AE =2y m .∵AM =3m ,∴EH =3+2y -y =(3+y )m ,BH =14+2y -(3+y )=(11+y )m.由EF ⊥BF ,FH ⊥AB ,得∠EHF =∠FHB =90°,∴∠E +∠EFH =∠EFH +∠HFB =90°.∴∠E =∠HFB .∴△EFH ∽△FBH .∴FH BH =EH FH,即FH 2=BH ·EH .∴62=(11+y )(3+y ),即y 2+14y -3=0.解得y 1=-7+213,y 2=-7-213(不合题意,舍去).∴DF =(213-7)m.答:DF 的长为(213-7)m第42题 一天,毕达哥拉斯应邀到朋友家做客。
2018年河南省郑州市中考数学二模试卷
![2018年河南省郑州市中考数学二模试卷](https://img.taocdn.com/s3/m/0346e2b6294ac850ad02de80d4d8d15abe2300c8.png)
第1页(共19页)2018年河南省郑州市中考数学二模试卷一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。
)1、下列各数中最小的数是……………………()A .2p- B B..2- C C..0 D 0 D..12、2015年河南省参加高考的考生数量为772325人,比2014年增加了4.8万人。
将数据772325精确到千位用科学记数法表示为……………()A .41023.77´B B..51072.7´C C..5107.7´D D..4102.77´3、将一个螺栓按如右下图放置,则螺栓的左视图可能是………………()4、某小组5名同学一周内参加家务劳动的时间如下表所示,关于劳动时间这组数据,下列说法正确的是……………………………………()劳动时间(小时) 1 2 3 4人数 1 1 2 1 A .众数是2,平均数是,平均数是 2.6 2.6 2.6;;B .中位数是3,平均数是2;C .众数和中位数都是3; D D.众数是.众数是2,中位数是3.5、不等式组的解集在数轴上表示正确的是……()6、如图,已知0361=Ð,0362=Ð,01403=Ð,则4Ð的度数等于……()A.040. B.036. C . C..044. D.0100.7、已知关于x 的一元二次方程0142=+-x ax 有两个不相等的实数根,则a 的非负整数值的个数是……………………………………()(A )5;(B )4;(C )3; (D) 2 (D) 2..8、如图,四边形ABCD 是⊙是⊙O O 的内接四边形,AC 是⊙O 直径直径,,点P 在AC 的延长线上,延长线上,PD PD 是⊙是⊙O O 的切线,延长BC 交PD 于点E .则下列说法不正确的是……………………………………………………()A .PDO ADC Ð=Ð;B B..DAB DCE Ð=Ð;2-2x ≥6,2x -1≤5DCB A NMPQ43211EO PDCBAC .B Ð=Ð1;D D.. PDA PCD Ð=Ð.二、填空题(每小题3分,共21分)9. =______.10.如图,已知直线AB ∥CD ,直线EG 垂直于AB ,垂足为G ,直线EF 交CD 于点F ,∠1=50°,则∠2=______.11.微信根据移动ID 所带来的数据,发布了“微信用户春节迁徙数据报告”.该报告显示,2016年1月24日春运首日至2月4日期间,人口流入最多的省份是河南,作为劳务输出大省,河南约有313万微信用户在春节期间返乡,313万用科学记数法可表示为______. 12.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为______.13.反比例函数y=经过点A (﹣3,1),设B (x 1,y 1),C (x 2,y 2)是该函数图象上的两点,且x 1<x 2<0,那么y 1与y 2的大小关系是______(填“y 1>y 2”,“y 1=y 2”或“y 1<y 2”). 14.如图,在△ABC 中,∠C=90°,AC=BC ,斜边AB=4,O 是AB 的中点,以O 为圆心,线段OC 的长为半径画圆心角为90°的扇形OEF ,弧EF 经过点C ,则图中阴影部分的面积为______平方单位.15.已知一个矩形纸片OACB ,OB=6,OA=11,点P 为BC 边上的动点(点P 不与点B ,C 重合),经过点O 折叠该纸片,得折痕OP 和点B ʹ,经过点P 再次折叠纸片,使点C 落在直线PB ʹ上,得折痕PQ 和点C ʹ,当点C ʹ恰好落在边OA 上时BP 的长为 ______.三、解答题(共75分)16.先化简(+),再求值.a为整数且﹣2≤a≤2,请你从中选取一个合适的数代入求值.17.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有______ 人;)请将该条形统计图补充完整;(2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树______棵.(保留整数)18.如图,已知⊙A的半径为4,EC是圆的直径,点B是⊙A的切线CB上的一个动点,连接AB交⊙A于点D,弦EF平行于AB,连接DF,AF.(1)求证:△ABC≌△ABF;(2)当∠CAB=______时,四边形ADFE为菱形;为正方形.(3)当AB=______时,四边形ACBF为正方形.19.已知:关于x的一元二次方程x2+2x+k=0有两个不相等的实数根.有两个不相等的实数根.(1)求k的取值范围;取最大整数值时,用合适的方法求该方程的解.(2)当k取最大整数值时,用合适的方法求该方程的解.20.图1是小明在健身器材上进行仰卧起坐锻炼时情景.图2是小明锻炼时上半身由EM位置运动到与地面垂直的EN位置时的示意图.已知BC=0.64米,AD=0.24米,α=18°.(sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)(1)求AB的长(精确到0.01米);(2)若测得EN=0.8米,试计算小明头顶由M点运动到N点的路径弧MN的长度(结果保留π)21.某公司推销一种产品,公司付给推销员的月报酬有两种方案如图所示:其中方案一所示图形是顶点在原点的抛物线的一部分,方案二所示的图形是射线.设推销员销售产品的数量为x(件),付给推销员的月报酬为y(元).的函数关系式;(1)分别求两种方案中y关于x的函数关系式;(2)当销售量达到多少件时,两种方案的月报酬差额将达到3 800元?(3)若公司决定改进“方案二”:基本工资1 200元,每销售一件产品再增加报酬m元,当推销员销售量达到40件时,方案二的月报酬不低于方案一的月报酬.求m至少增加多少元?22.如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB的中点,∠EDF=90°,DE 交AC于点G,DF经过点C.(1)求∠ADE的度数;(2)如图2,将图1中的∠EDF绕点D顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E1DF1,∠E2DF2,DE1交直线AC于点P,DF1交直线BC于点Q,DE2交直线AC于点M,DF2交直线BC于点N,求的值;(3)若图1中∠B=β(60°<β<90°),(2)中的其余条件不变,判断的值是否为定值?;如果不是,请说明理由.如果是,请直接写出这个值(用含β的式子表示);如果不是,请说明理由.23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、三点.点C三点.(1)试求抛物线的解析式;)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△BʹOʹCʹ.在平移过程中,△BʹOʹCʹ与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?之间的函数关系式?2018年河南省郑州市中考数学二模试卷参考答案与试题解析一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。
中考数学试题分项版解析汇编第02期专题2.2不等式24142
![中考数学试题分项版解析汇编第02期专题2.2不等式24142](https://img.taocdn.com/s3/m/28cdc629f7ec4afe04a1df6a.png)
专题2.2 不等式一、单选题1.【山东省聊城市2018年中考数学试卷】已知不等式,其解集在数轴上表示正确的是()A. B.C. D.【答案】A点睛:此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.2.【四川省眉山市2018年中考数学试题】已知关于x的不等式组仅有三个整数解,则a 的取值范围是().A.≤a<1 B.≤a≤1 C.<a≤1 D. a<1【答案】A【解析】分析:根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案.详解:由x>2a-3,由2x>3(x-2)+5,解得:2a-3<x≤1,由关于x的不等式组仅有三个整数:解得-2≤2a-3<-1,解得≤a<1,故选:A.点睛:本题考查了一元一次不等式组,利用不等式的解得出关于a的不等式是解题关键.3.【湖北省恩施州2018年中考数学试题】关于x的不等式的解集为x>3,那么a的取值范围为()A. a>3 B. a<3 C.a≥3 D.a≤3【答案】D点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4.【台湾省2018年中考数学试卷】如图的宣传单为莱克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A. 112 B. 121 C. 134 D. 143【答案】C点睛:本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.5.【湖北省襄阳市2018年中考数学试卷】不等式组的解集为()A. x> B. x>1 C.<x<1 D.空集【答案】B【解析】【分析】先分别求出不等式组中每一个不等式的解集,然后再取两个不等式的解集的公共部分即可得不等式组的解集.【详解】解不等式2x>1-x,得:x>,解不等式x+2<4x-1,得:x>1,则不等式组的解集为x>1,故选B.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.【湖北省孝感市2018年中考数学试题】下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A. B. C. D.【答案】B点睛:本题考查的是在数轴上表示不等式的解集,解答此类题目时一定要注意实心与空心圆点的区别,即一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.7.【湖北省荆门市2018年中考数学试卷】已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B. 4<m<7 C.4≤m≤7 D. 4<m≤7【答案】A【解析】【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【详解】解不等式3x﹣m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故选A.【点睛】本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.8.【广西钦州市2018年中考数学试卷】若m>n,则下列不等式正确的是()A. m﹣2<n﹣2 B. C. 6m<6n D.﹣8m>﹣8n【答案】B【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.9.【湖南省湘西州2018年中考数学试卷】不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】C【解析】【分析】将每一个不等式的解集在数轴上表示出来,然后逐项进行对比即可得答案,方法是先定界点,再定方向.【详解】不等式组的解集在数轴上表示如下:故选C.【点睛】本题考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.10.【湖南省长沙市2018年中考数学试题】不等式组的解集在数轴上表示正确的是()A. B.C. D.【答案】C点睛:本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【吉林省长春市2018年中考数学试卷】不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【答案】B【解析】【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】3x﹣6≥0,3x≥6,x≥2,在数轴上表示为:,故选B.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,正确求出不等式的解集是解此题的关键.12.【广西壮族自治区贵港市2018年中考数学试卷】若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B. a<﹣3 C. a>3 D.a≥3【答案】A【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.二、填空题13.【贵州省铜仁市2018年中考数学试题】一元一次不等式组的解集为_____.【答案】x>﹣1【解析】分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.详解:,由①得:x>-1,由②得:x>-2,所以不等式组的解集为:x>-1.故答案为x>-1.点睛:主要考查了解一元一次不等式组,解题的关键是熟练掌握解不等式的一般步骤和确定不等式组解集的公共部分.14.【湖南省湘西州2018年中考数学试卷】对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.【答案】1【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.15.【黑龙江省哈尔滨市2018年中考数学试题】不等式组的解集为_____.【答案】3≤x<4.【解析】分析:先求出每个不等式的解集,再求出不等式组的解集即可.详解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.点睛:本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.16.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】不等式组的解集是_____.【答案】x<3.【解析】分析:首先把两个不等式的解集分别解出来,再根据“大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解”的原则,把不等式的解集求解出来.详解:由(1)得,x<4,由(2)得,x<3,所以不等式组的解集为:x<3.故答案为:x<3.点睛:本题考查不等式组的解法,一定要把每个不等式的解集正确解出来.17.【北京市2018年中考数学试卷】用一组,,的值说明命题“若,则”是错误的,这组值可以是_____,______,_______.【答案】 2 3 -1点睛:考查不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.18.【山东省聊城市2018年中考数学试卷】若为实数,则表示不大于的最大整数,例如,,等. 是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.【答案】或1.【解析】分析: 根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.详解: ∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x-1,∴2x-1≤x<2x-1+1,解得,0<x≤1,∵2x-1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.点睛:本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.19.【山东省菏泽市2018年中考数学试题】不等式组的最小整数解是__________.【答案】0【解析】分析:分别解不等式,找出解集的公共部分,找出嘴角整数解即可.详解:解不等式①,得解不等式②,得原不等式组的解集为原不等式组的最小整数解为0.故答案为:0.点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.【贵州省贵阳市2018年中考数学试卷】已知关于x的不等式组无解,则a的取值范围是_____.20.【答案】a≥2【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.21.【黑龙江省龙东地区2018年中考数学试卷】若关于x的一元一次不等式组有2个负整数解,则a的取值范围是_____.【答案】﹣3≤a<﹣2【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集和已知得出a的范围即可.【详解】,∵解不等式①得:x>a,解不等式②得:x<2,又∵关于x的一元一次不等式组有2个负整数解,∴﹣3≤a<﹣2,故答案为:﹣3≤a<﹣2.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集和已知得出关于a的不等式是解此题的关键.22.【河南省2018年中考数学试卷】不等式组的最小整数解是_____.【答案】-2点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.三、解答题23.【湖南省怀化市2018年中考数学试题】解不等式组,并把它的解集在数轴上表示出来.【答案】不等式组的解为:2<x≤4,在数轴上表示见解析.【解析】分析:分别解两不等式,进而得出公共解集.详解:解①得:x≤4,解②得:x>2,故不等式组的解为:2<x≤4,其解集在数轴上表示为:点睛:此题主要考查了解一元一次不等式组的解法,正确掌握基本解题思路是解题关键.24.【上海市2018年中考数学试卷】解不等式组:,并把解集在数轴上表示出来.【答案】则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.不等式组的解集在数轴上表示为:.【点睛】本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.25.【黑龙江省大庆市2018年中考数学试卷】某学校计划购买排球、篮球,已知购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元.(1)求购买1个排球、1个篮球的费用分别是多少元?(2)若该学校计划购买此类排球和篮球共60个,并且篮球的数量不超过排球数量的2倍.求至少需要购买多少个排球?并求出购买排球、篮球总费用的最大值?【答案】(1)每个排球的价格是60元,每个篮球的价格是120元;(2)m=20时,购买排球、篮球总费用的最大,购买排球、篮球总费用的最大值为6000元.【解析】【分析】(1)根据购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元列出方程组,解方程组即可;(2)根据购买排球和篮球共60个,篮球的数量不超过排球数量的2倍列出不等式,解不等式即可.【详解】(1)设每个排球的价格是x元,每个篮球的价格是y元,根据题意得:,解得:,所以每个排球的价格是60元,每个篮球的价格是120元;【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,弄清题意,找准备等量关系列出方程组、找准不等关系列出不等式是解题的关键.26.【湖南省湘西州2018年中考数学试卷】某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.【答案】(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.27.【湖南省郴州市2018年中考数学试卷】郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A 种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【答案】(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.【解析】【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.28.【湖南省郴州市2018年中考数学试卷】解不等式组:,并把解集在数轴上表示出来.【答案】﹣4<x≤0,在数轴上表示见解析.【解析】【分析】先分别求出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【详解】解不等式①,得:x>﹣4,解不等式②,得:x≤0,则不等式组的解集为﹣4<x≤0,将解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.29.【云南省昆明市2018年中考数学试题】(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【答案】(1)每立方米的基本水价是2.45元,每立方米的污水处理费是1元;(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米【解析】分析:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米.点睛:本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式.30.【黑龙江省哈尔滨市2018年中考数学试题】春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【答案】(1)每个A型放大镜和每个B型放大镜分别为20元,12元;(2)最多可以购买35个A型放大镜.【解析】分析:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.点睛:本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.31.【浙江省台州市2018年中考数学试题】解不等式组:【答案】原不等式组的解集为3<x<4.【解析】分析:根据不等式组的解集的表示方法:大小小大中间找,可得答案.详解:解不等式①,得x<4,解不等式②,得x>3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为3<x<4.点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.32.【江苏省徐州巿2018年中考数学试卷】解不等式组,并写出它的所有整数解.【答案】不等式组的整数解哟﹣1、0、1、2.【点睛】本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.33.【浙江省宁波市2018年中考数学试卷】某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【答案】甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件.【解析】【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,根据题意得,,解得,经检验,是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.34.【湖北省孝感市2018年中考数学试题】“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.(1)求每台型、型净水器的进价各是多少元;(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.【答案】(1)型净水器每台进价2000元,型净水器每台进价1800元.(2)的最大值是元. 【解析】分析:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据数量=总价÷单价结合用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等,即可得出关于m的分式方程,解之经检验后即可得出结论;(2)根据购买资金=A型净水器的进价×购进数量+B型净水器的进价×购进数量结合购买资金不超过9.8万元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,由总利润=每台A型净水器的利润×购进数量+每台B型净水器的利润×购进数量-a×购进A型净水器的数量,即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.详解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,∴m-200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.点睛:本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W关于x的函数关系式.35.【四川省达州市2018年中考数学试题】化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.【答案】0【解析】分析:直接将所给式子进行去括号,利用分式混合运算法则化简,再解不等式组,进而得出x的值,即可计算得出答案.详解:==3(x+1)-(x-1)=2x+4,,解①得:x≤1,解②得:x>-3,故不等式组的解集为:-3<x≤1,把x=-2代入得:原式=0.点睛:此题主要考查了分式的化简求值以及不等式组解法,正确掌握分式的混合运算法则是解题关键.36.【湖南省邵阳市2018年中考数学试卷】某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?【答案】(1)A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.【详解】(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据题意,得,解得x=120,经检验,x=120是所列方程的解,当x=120时,x+30=150,答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台,根据题意,得150a+120(20﹣a)≥2800,解得a≥,∵a是整数,∴a≥14,答:至少购进A型机器人14台.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,读懂题意,找到关键描述语句,找准等量关系以及不等关系是解题的关键.37.【山东省烟台市2018年中考数学试卷】为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?。
专题概率 2018年中考数学试题分项版解析汇编(解析版)
![专题概率 2018年中考数学试题分项版解析汇编(解析版)](https://img.taocdn.com/s3/m/b765cda0551810a6f52486b3.png)
专题6.3 概率一、单选题1.在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.9【来源】2018年海南省中考数学试卷【答案】A【解析】【分析】此题涉及的知识点是概率,根据概率公式=,利用比例性质得到n的值.【详解】根据题意得: =,所以n=6.故选A.【点睛】本题重点考查学生对于概率公式的理解,熟练掌握这一规律是解题的关键.2.下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1[【来源】四川省南充市2018届中考数学试卷【答案】A【解析】【分析】利用调查的方式,概率的意义以及实际生活常识分析得出即可.【详解】A、调查某班学生的身高情况,适宜采用全面调查,此选项正确;B、篮球队员在罚球线上投篮两次都未投中,这是随机事件,此选项错误;C、天气预报说明天的降水概率为,意味着明天下雨可能性较大,此选项错误;D、小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1,此选项错误;故选:A.【点睛】此题主要考查了调查的方式,随机事件的定义和概率的意义,正确把握相关定义是解题关键.3.下列成语中,表示不可能事件的是( )A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地【来源】2018年黑龙江省齐齐哈尔市中考数学试卷【答案】A【解析】【分析】不可能事件,就是一定不会发生的事件,必然事件是一定会发生的事件.【详解】缘木求鱼,是不可能事件,符合题意;杀鸡取卵,是必然事件,不符合题意;探囊取物,是必然事件,不符合题意;日月经天,江河行地,是必然事件,不符合题意.故答案为:A.【点睛】本题考查的知识点是可能事件与不可能事件的判断,解题关键是熟记可能时间和不可能事件的定义.4.已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【来源】【市级联考】湖南省衡阳市2019届中考数学试卷【答案】A【解析】【分析】根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【详解】A.连续抛一均匀硬币2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故此选项错误;B.连续抛一均匀硬币10次都可能正面朝上,是一个有机事件,有可能发生,故此选项正确;C.大量反复抛一均匀硬币,平均100次出现正面朝上50次,也有可能发生,故此选项正确;D.通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为,故此选项正确.故选A.【点睛】本题考查了概率的意义,解题的关键是弄清随机事件和必然事件的概念的区别.5.甲袋中装有2个相同的小球,分别写有数字1和2;乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.B.C.D.【来源】2018年广东省广州市中考数学试卷【答案】C【解析】【分析】用画树状图法求出所有情况,再计算概率.【详解】如图所示:,一共有4种可能,取出的两个小球上都写有数字2的有1种情况,故取出的两个小球上都写有数字2的概率是:.故选:C【点睛】本题考核知识点:概率. 解题关键点:用画树状图法得到所有情况.6.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0 B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540°D.长分别为3,4,6的三条线段能围成一个三角形【来源】2018年内蒙古包头市中考数学试题【答案】C【解析】【分析】直接利用随机事件以及确定事件的定义分析得出答案.【详解】A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故答案选C.【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定事件.7.有A,B两只不透明口袋,每只品袋里装有两只相同的球,A袋中的两只球上分别写了“细”、“致”的字样,B袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A.B.C.D.【来源】2010年高级中等学校招生全国统一考试数学卷(河北)【答案】B【解析】共有4种情况,刚好能组成“细心”字样的情况有一种,所以概率是,故选B.8.为备战中考,同学们积极投入复习,李红书包里装有语文试卷3张、数学试卷2张、英语试卷1张、其它学科试卷3张,从中任意抽出一张试卷,恰好是数学试卷的概率是()A.B.C.D.【答案】D【解析】:由李红书包里装有语文试卷3张、数学试卷2张、英语试卷1张、其它学科试卷3张,可得一共有9种等可能的结果,又由数学试卷2张,根据概率公式即可求得答案.9.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12【来源】福建省2018年中考数学试题(b卷)【答案】D【解析】【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【详解】A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选D.【点睛】此题主要考查了随机事件,关键是掌握随机事件定义.10.下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.—组数据的方差越大,则这组数据的波动也越大【来源】【全国市级联考】四川省德阳市2018届中考数学试卷【答案】D【解析】【分析】根据概率的意义,事件发生可能性的大小,可得答案.【详解】A、明天降雨的概率是50%表示明天有可能降雨,此选项错误;B、了解全国快递包裹产生的包装垃圾数量适合采用抽样调查方式,此选项错误;C、掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是随机事件,此选项错误;D、一组数据的方差越大,则这组数据的波动也越大,此选项正确;故选:D.【点睛】本题考查了概率的意义、随机事件,利用概率的意义,事件发生可能性的大小是解题关键.11.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.【来源】四川省泸州市2016年中考数学试题【答案】C【解析】【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小【详解】根据题意可得:口袋里共有12只球,其中白球2只,红球6只,黑球4只,故从袋中取出一个球是黑球的概率:P(黑球)==,故选:C.12.“若是实数,则≥0”这一事件是()A.必然事件B.不可能事件C.不确定事件D.随机事件【来源】四川省广元市2018年中考数学【答案】A【解析】【分析】根据必然事件、不可能事件、随机事件的概念和绝对值的定义进行解答即可.【详解】因为数轴上表示数a的点与原点的距离叫做数a的绝对值,因为a是实数,所以|a|≥0,故选A.【点睛】本题主要考查了必然事件概念以及绝对值的性质,用到的知识点为:必然事件指在一定条件下一定发生的事件.13.用扇形统计图反映地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是,当宇宙中一块陨石落在地球上,则落在陆地上的概率是A.B.C.D.【来源】青海省2018年中考数学试卷【答案】D【解析】【分析】根据扇形统计图可以得出“陆地”部分占地球总面积的比例,根据这个比例即可求出落在陆地的概率.【详解】“陆地”部分对应的圆心角是,“陆地”部分占地球总面积的比例为:,宇宙中一块陨石落在地球上,落在陆地的概率是,故选D.【点睛】本题考查了简单的概率计算以及扇形统计图.用到的知识点为:概率=相应的面积与总面积之比.二、填空题14.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.【来源】四川省甘孜州2018年中考数学试题【答案】20【解析】【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有=,解得,x=20,经检验x=20是原方程的根.故答案为:20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.15.现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能够构成三角形的概率是_____.【来源】2018年四川省绵阳市中考数学试卷【答案】【解析】【分析】先列举出从1,2,3,4,5的木条中任取3根的所有等可能结果,再根据三角形三边间的关系从中找到能组成三角形的结果数,利用概率公式计算可得.【详解】从1,2,3,4,5的木条中任取3根有如下10种等可能结果:3、4、5;2、4、5;2、3、5;2、3、4;1、4、5;1、3、5;1、3、4;1、2、5;1、2、4;1、2、3;其中能构成三角形的有3、4、5;2、4、5;2、3、4这三种结果,所以从这5根木条中任取3根,能构成三角形的概率是,故答案是:.【点睛】考查列表法与树状图法,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.16.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是______.【来源】2018年宁夏中考数学试卷【答案】【解析】【分析】由在不透明的袋中装有1个黄球、4个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率【详解】∵在不透明的袋中装有1个黄球、4个红球、5个白球,共10个球且它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是=.故答案为:.【点睛】本题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.17.在﹣2,1,4,﹣3,0这5个数字中,任取一个数是负数的概率是______.【来源】湖南省岳阳市2018年中考数学试卷【答案】.【解析】【分析】一共有5个数,其中负数有2个,根据概率公式计算即可得.【详解】在﹣2,1,4,﹣3,0这5个数字中,负数有-2、-3共2个,所以任取一个数是负数的概率是,故答案为:.【点睛】本题考查了简单的概率计算,熟练掌握概率的计算公式是解题的关键.18.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_____.【来源】湖南省永州市2018年中考数学试卷【答案】100.【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,=0.03,解得,n=100,故估计n大约是100,故答案为:100.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题19.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.【来源】2018年山东省青岛市中考数学试卷【答案】这个游戏不公平.理由见解析.【解析】【分析】首先根据题意列表,然后根据表求得所有等可能的结果与和为奇数、偶数的情况,再利用概率公式求解即可.【详解】不公平,列表如下:4 5 64 8 9 105 9 10 116 10 11 12由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,由≠知这个游戏不公平.【点睛】此题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.20.一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.【来源】2018年吉林省中考数学试卷【答案】.【解析】依据题意画树状图(或列表)法分析所有可能的出现结果即可解答.【详解】解:列表得:A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种,所以该同学两次摸出的小球所标字母相同的概率==.故答案为:.【点睛】本题主要考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.21.“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:成绩/分78910人数/人2544(1)这组数据的众数是多少,中位数是多少.(2)已知获得2018年四川省南充市的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率.【来源】四川省南充市2018届中考数学试卷【答案】(1)众数为2018年四川省南充市,中位数为2018年四川省南充市;(2)恰好抽到八年级两名领操员的概率为.【分析】(1)根据众数和中位数的定义求解可得;(2)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.【详解】(1)由于2018年四川省南充市出现次数最多,所以众数为2018年四川省南充市,中位数为第8个数,即中位数为2018年四川省南充市,故答案为:2018年四川省南充市、2018年四川省南充市;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中恰好抽到八年级两名领操员的有2种结果,所以恰好抽到八年级两名领操员的概率为=.【点睛】本题主要考查众数、中位数及列表法与树状图法,解题的关键是掌握众数和中位数的定义,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.22.将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).【来源】2018年江苏省常州市中考数学试卷【答案】(1);(2).【解析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【详解】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是型矩形纸片的概率为;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为.【点睛】考查了列表法或树状图法求概率.用到的知识点为:概率所求情况数与总情况数之比.23.密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××小张同学要破解其密码:(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是.(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.【来源】广西百色市2018年中考数学试卷【答案】(1)1或2(2)(3)30种【解析】【分析】(1)根据每个月分为上旬、中旬、下旬,分别是:上旬:1日﹣10日中旬:11日﹣20日下旬:21日到月底,由此即可解决问题;(2)利用列举法即可解决问题;(3)小张同学是6月份出生,6月份只有30天,推出第一个转轮设置的数字是6,第三个转轮设置的数字可能是0,1,2,3;第二个转轮设置的数字可能,0,1,2,…9;由此即可解决问题;【详解】(1)∵小黄同学是9月份中旬出生,∴第一个转轮设置的数字是9,第二个转轮设置的数字可能是1,2.故答案为:1或2;(2)所有可能的密码是:911,912,913,914,915,916,917,918,919,920;能被3整除的有912,915,918;密码数能被3整除的概率.(3)小张同学是6月份出生,6月份只有30天,∴第一个转轮设置的数字是6,第二个转轮设置的数字可能是0,1,2,3;第三个转轮设置的数字可能,0,1,2,…9(第二个转轮设置的数字是0时,第三个转轮的数字不能是0;第二个转轮设置的数字是3时,第三个转轮的数字只能是0),∴一共有9+10+10+1=30,∴小张生日设置的密码的所有可能个数为30种.【点睛】本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.24.三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是5的概率为;(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.【来源】期末检测卷2018-2019学年九年级上学期数学教材【答案】(1)(2)详见解析【解析】【分析】(1)根据三张卡片的正面分别写有数字2,5,5,再根据概率公式即可求出答案。
2020中考数学试题分项版解析汇编(第02期)专题2.2 不等式(含解析)
![2020中考数学试题分项版解析汇编(第02期)专题2.2 不等式(含解析)](https://img.taocdn.com/s3/m/69f9e1636294dd88d0d26bb7.png)
专题2.2 不等式一、单选题1.【山东省聊城市2018年中考数学试卷】已知不等式,其解集在数轴上表示正确的是()A. B.C. D.【答案】A点睛:此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键. 2.【四川省眉山市2018年中考数学试题】已知关于x的不等式组仅有三个整数解,则a的取值范围是().A.≤a<1 B.≤a≤1 C.<a≤1 D. a<1【答案】A【解析】分析:根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案.详解:由x>2a-3,由2x>3(x-2)+5,解得:2a-3<x≤1,由关于x的不等式组仅有三个整数:解得-2≤2a-3<-1,解得≤a<1,故选:A.点睛:本题考查了一元一次不等式组,利用不等式的解得出关于a的不等式是解题关键.【湖北省恩施州2018年中考数学试题】关于x的不等式的解集为x>3,那么a的取值范围为()3.A. a>3 B. a<3 C.a≥3 D.a≤3【答案】D点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4.【台湾省2018年中考数学试卷】如图的宣传单为莱克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A. 112 B. 121 C. 134 D. 143【答案】C点睛:本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.5.【湖北省襄阳市2018年中考数学试卷】不等式组的解集为()A. x> B. x>1 C.<x<1 D.空集【答案】B【解析】【分析】先分别求出不等式组中每一个不等式的解集,然后再取两个不等式的解集的公共部分即可得不等式组的解集.【详解】解不等式2x>1-x,得:x>,解不等式x+2<4x-1,得:x>1,则不等式组的解集为x>1,故选B.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.【湖北省孝感市2018年中考数学试题】下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A. B. C. D.【答案】B点睛:本题考查的是在数轴上表示不等式的解集,解答此类题目时一定要注意实心与空心圆点的区别,即一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.7.【湖北省荆门市2018年中考数学试卷】已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B. 4<m<7 C.4≤m≤7 D. 4<m≤7【答案】A【解析】【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【详解】解不等式3x﹣m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故选A.【点睛】本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.8.【广西钦州市2018年中考数学试卷】若m>n,则下列不等式正确的是()A. m﹣2<n﹣2 B. C. 6m<6n D.﹣8m>﹣8n【答案】B【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.9.【湖南省湘西州2018年中考数学试卷】不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】C【解析】【分析】将每一个不等式的解集在数轴上表示出来,然后逐项进行对比即可得答案,方法是先定界点,再定方向.【详解】不等式组的解集在数轴上表示如下:故选C.【点睛】本题考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.10.【湖南省长沙市2018年中考数学试题】不等式组的解集在数轴上表示正确的是()A. B.C. D.【答案】C点睛:本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【吉林省长春市2018年中考数学试卷】不等式3x﹣6≥0的解集在数轴上表示正确的是()A. B. C. D.【答案】B【解析】【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】3x﹣6≥0,3x≥6,x≥2,在数轴上表示为:,故选B.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,正确求出不等式的解集是解此题的关键.12.【广西壮族自治区贵港市2018年中考数学试卷】若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B. a<﹣3 C. a>3 D.a≥3【答案】A【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.二、填空题13.【贵州省铜仁市2018年中考数学试题】一元一次不等式组的解集为_____.【答案】x>﹣1【解析】分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.详解:,由①得:x>-1,由②得:x>-2,所以不等式组的解集为:x>-1.故答案为x>-1.点睛:主要考查了解一元一次不等式组,解题的关键是熟练掌握解不等式的一般步骤和确定不等式组解集的公共部分.14.【湖南省湘西州2018年中考数学试卷】对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.【答案】1【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.15.【黑龙江省哈尔滨市2018年中考数学试题】不等式组的解集为_____.【答案】3≤x<4.【解析】分析:先求出每个不等式的解集,再求出不等式组的解集即可.详解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.点睛:本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.16.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】不等式组的解集是_____.【答案】x<3.【解析】分析:首先把两个不等式的解集分别解出来,再根据“大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解”的原则,把不等式的解集求解出来.详解:由(1)得,x<4,由(2)得,x<3,所以不等式组的解集为:x<3.故答案为:x<3.点睛:本题考查不等式组的解法,一定要把每个不等式的解集正确解出来.17.【北京市2018年中考数学试卷】用一组,,的值说明命题“若,则”是错误的,这组值可以是_____,______,_______.【答案】 2 3 -1点睛:考查不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.18.【山东省聊城市2018年中考数学试卷】若为实数,则表示不大于的最大整数,例如,,等. 是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.【答案】或1.【解析】分析: 根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.详解: ∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x-1,∴2x-1≤x<2x-1+1,解得,0<x≤1,∵2x-1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.点睛:本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.19.【山东省菏泽市2018年中考数学试题】不等式组的最小整数解是__________.【答案】0【解析】分析:分别解不等式,找出解集的公共部分,找出嘴角整数解即可.详解:解不等式①,得解不等式②,得原不等式组的解集为原不等式组的最小整数解为0.故答案为:0.点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.20.【贵州省贵阳市2018年中考数学试卷】已知关于x的不等式组无解,则a的取值范围是_____.【答案】a≥2【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.21.【黑龙江省龙东地区2018年中考数学试卷】若关于x的一元一次不等式组有2个负整数解,则a 的取值范围是_____.【答案】﹣3≤a<﹣2【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集和已知得出a的范围即可.【详解】,∵解不等式①得:x>a,解不等式②得:x<2,又∵关于x的一元一次不等式组有2个负整数解,∴﹣3≤a<﹣2,故答案为:﹣3≤a<﹣2.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集和已知得出关于a的不等式是解此题的关键.22.【河南省2018年中考数学试卷】不等式组的最小整数解是_____.【答案】-2点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.三、解答题23.【湖南省怀化市2018年中考数学试题】解不等式组,并把它的解集在数轴上表示出来.【答案】不等式组的解为:2<x≤4,在数轴上表示见解析.【解析】分析:分别解两不等式,进而得出公共解集.详解:解①得:x≤4,解②得:x>2,故不等式组的解为:2<x≤4,其解集在数轴上表示为:点睛:此题主要考查了解一元一次不等式组的解法,正确掌握基本解题思路是解题关键.24.【上海市2018年中考数学试卷】解不等式组:,并把解集在数轴上表示出来.【答案】则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.不等式组的解集在数轴上表示为:.【点睛】本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.25.【黑龙江省大庆市2018年中考数学试卷】某学校计划购买排球、篮球,已知购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元.(1)求购买1个排球、1个篮球的费用分别是多少元?(2)若该学校计划购买此类排球和篮球共60个,并且篮球的数量不超过排球数量的2倍.求至少需要购买多少个排球?并求出购买排球、篮球总费用的最大值?【答案】(1)每个排球的价格是60元,每个篮球的价格是120元;(2)m=20时,购买排球、篮球总费用的最大,购买排球、篮球总费用的最大值为6000元.【解析】【分析】(1)根据购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元列出方程组,解方程组即可;(2)根据购买排球和篮球共60个,篮球的数量不超过排球数量的2倍列出不等式,解不等式即可.【详解】(1)设每个排球的价格是x元,每个篮球的价格是y元,根据题意得:,解得:,所以每个排球的价格是60元,每个篮球的价格是120元;【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,弄清题意,找准备等量关系列出方程组、找准不等关系列出不等式是解题的关键.26.【湖南省湘西州2018年中考数学试卷】某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.【答案】(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.27.【湖南省郴州市2018年中考数学试卷】郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【答案】(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.【解析】【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.28.【湖南省郴州市2018年中考数学试卷】解不等式组:,并把解集在数轴上表示出来.【答案】﹣4<x≤0,在数轴上表示见解析.【解析】【分析】先分别求出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【详解】解不等式①,得:x>﹣4,解不等式②,得:x≤0,则不等式组的解集为﹣4<x≤0,将解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.29.【云南省昆明市2018年中考数学试题】(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【答案】(1)每立方米的基本水价是2.45元,每立方米的污水处理费是1元;(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米【解析】分析:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米.点睛:本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式.30.【黑龙江省哈尔滨市2018年中考数学试题】春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B 型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A 型放大镜?【答案】(1)每个A型放大镜和每个B型放大镜分别为20元,12元;(2)最多可以购买35个A型放大镜.【解析】分析:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.点睛:本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.31.【浙江省台州市2018年中考数学试题】解不等式组:【答案】原不等式组的解集为3<x<4.【解析】分析:根据不等式组的解集的表示方法:大小小大中间找,可得答案.详解:解不等式①,得x<4,解不等式②,得x>3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为3<x<4.点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.32.【江苏省徐州巿2018年中考数学试卷】解不等式组,并写出它的所有整数解.【答案】不等式组的整数解哟﹣1、0、1、2.【点睛】本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.33.【浙江省宁波市2018年中考数学试卷】某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【答案】甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件.【解析】【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,根据题意得,,解得,经检验,是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.34.【湖北省孝感市2018年中考数学试题】“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.(1)求每台型、型净水器的进价各是多少元;(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.【答案】(1)型净水器每台进价2000元,型净水器每台进价1800元.(2)的最大值是元. 【解析】分析:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据数量=总价÷单价结合用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等,即可得出关于m的分式方程,解之经检验后即可得出结论;(2)根据购买资金=A型净水器的进价×购进数量+B型净水器的进价×购进数量结合购买资金不超过9.8万元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,由总利润=每台A型净水器的利润×购进数量+每台B型净水器的利润×购进数量-a×购进A型净水器的数量,即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.详解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,∴m-200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.点睛:本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W关于x的函数关系式.35.【四川省达州市2018年中考数学试题】化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.【答案】0【解析】分析:直接将所给式子进行去括号,利用分式混合运算法则化简,再解不等式组,进而得出x的值,即可计算得出答案.详解:==3(x+1)-(x-1)=2x+4,,解①得:x≤1,解②得:x>-3,故不等式组的解集为:-3<x≤1,把x=-2代入得:原式=0.点睛:此题主要考查了分式的化简求值以及不等式组解法,正确掌握分式的混合运算法则是解题关键.36.【湖南省邵阳市2018年中考数学试卷】某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?【答案】(1)A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)至少购进A型机器人14台.【详解】(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据题意,得,解得x=120,经检验,x=120是所列方程的解,当x=120时,x+30=150,答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台,根据题意,得150a+120(20﹣a)≥2800,解得a≥,∵a是整数,∴a≥14,答:至少购进A型机器人14台.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,读懂题意,找到关键描述语句,找准等量关系以及不等关系是解题的关键.37.【山东省烟台市2018年中考数学试卷】为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?【答案】(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆。
河南省商丘市中考数学试卷
![河南省商丘市中考数学试卷](https://img.taocdn.com/s3/m/57045e2cfab069dc51220145.png)
河南省商丘市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列说法中①-a一定是负数;②|-a|一定是正数;③倒数等它本身的数是±1;④绝对值等于它本身的数是0、1.其中正确的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分)(2016·福田模拟) 周星驰的新春大片《美人鱼》创造了无数票房记录,从开始上映到3月6日9时止,票房累计达33亿元,33亿元用科学记数法表示为()A . 33×108元B . 3.3×109元C . 3.3×1010元D . 0.33×1010元3. (2分) (2020八下·大化期末) 下列计算错误的是()A .B .C .D .4. (2分) (2019八下·重庆期中) 如图,平面直角坐标系中,已知点B ,若将△ABO绕点O沿顺时针方向旋转90°后得到△A1B1O,则点B的对应点B1的坐标是()A . (3,1)B . (3,2)C . (1,3)D . (2,3)5. (2分)(2017·临高模拟) 如图,从①∠1=∠2 ②∠C=∠D ③∠A=∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A . 0B . 1C . 2D . 36. (2分)(2020·雄县模拟) 小明同学对数据26,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则分析结果与被涂污数字无关的是()A . 平均数B . 方C . 中位数D . 众数7. (2分) (2019八下·溧阳期中) 下列判断中正确的是()A . 对角线互相垂直的四边形是菱形B . 三个角相等的四边形是矩形C . 对角线相等的平行四边形是正方形D . 对角线互相垂直的矩形是正方形8. (2分) (2019七上·昌图月考) 如图所示是某几何体从三个方向看到的图形,则这个几何体是()A . 三棱锥B . 圆柱C . 球D . 圆锥9. (2分) (2019九上·邯郸开学考) 为增强身体素质,小明每天早上坚持沿着小区附近的矩形公园ABCD练习跑步,爸爸站在的某一个固定点处负责进行计时指导。
2018年中考数学《几何图形的动点问题》同步提分训练含答案解析
![2018年中考数学《几何图形的动点问题》同步提分训练含答案解析](https://img.taocdn.com/s3/m/59e11b714b35eefdc8d33381.png)
2018年中考数学提分训练: 几何图形的动点问题一、选择题1.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B,C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x 的大致图象是()A. B. C. D.2.如图1,在矩形ABCD中,动点E从A出发,沿方向运动,当点E到达点C时停止运动,过点E做,交CD于F点,设点E运动路程为x, ,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是( )A. B. C. 6 D. 53.如图甲,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么如图乙图象中可能表示y与x的函数关系的是()A. ①B. ④C. ①或③D. ②或④4.如图,平行四边形ABCD中,AB= cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s的速度沿折线BC→CD→DA运动,到达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是()A. B. C. D.5.如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E,F分别为AM,MR的中点,则EF的长随M点的运动( )A. 变短B. 变长C. 不变D. 无法确定二、填空题6.在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为________.(结果不取近似值)7.如图,在平面直角坐标系中,A(4,0)、B(0,-3),以点B为圆心、2 为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为________.8.如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC 在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=________;(2)当△ABC的边与坐标轴平行时,t=________。
2021年河南省中考数学试卷含答案解析
![2021年河南省中考数学试卷含答案解析](https://img.taocdn.com/s3/m/182ec73581c758f5f71f67de.png)
河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103 C.2.147×1010D.0.2147×10113.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.(2018.河南.10)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s 的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣=.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D 逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF 为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.2018年河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(2018.河南.1)﹣的相反数是()A.﹣ B.C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103 C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a ≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣=2.【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D 逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【分析】利用弧长公式L=,计算即可;【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,∴S==π.阴【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4.【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式的运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF 为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DBF=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80元,当销售单价x=100元时,日销售利润w最大,最大值是2000元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的。
2018年河北省中考数学试卷(含答案)
![2018年河北省中考数学试卷(含答案)](https://img.taocdn.com/s3/m/8859da3211a6f524ccbff121dd36a32d7375c78f.png)
2018年河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5 D.2a2•a﹣1=2a3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+513.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是______.18.若mn=m+3,则2mn+3m﹣5mn+10=______.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=______°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=______°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D 开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6 x3=72 x4…x n调整后的单价y(元)y1y2=4 y3=59 y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为______,此时半圆M的弧与AB所围成的封闭图形面积为______;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.2018年河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
专题08 中考19题 三角函数的应用—2023年中考数学必考特色题型讲练(河南专用)(原卷版)
![专题08 中考19题 三角函数的应用—2023年中考数学必考特色题型讲练(河南专用)(原卷版)](https://img.taocdn.com/s3/m/361b0196fc0a79563c1ec5da50e2524de418d057.png)
专题08三角函数的应用选题介绍本题型属于河南省中招考试的必考题型,每年解答题中均有体现。
本专题整理的三角函数的应用主要是解答题型,所考知识点主要是锐角三角函数在直角三角形中的应用,本题型首先会引入一个环境,然后让学生通过利用解直角三角型的思想求长度。
该题一般为解答题,分值9分,难度系数中等,得分率偏高。
利用三角函数解直角三角形的解题思路:①找直角三角形(注意找哪些角所在的直角三角形);②构造直角三角形(题目中涉及的角如果在直角三角形中不需构造,直接解直角三角形,如果不再则需作垂线构造);③解直角三角形;④设直角边为x;(直角三角形中有边长时直接求其它边,没有边长时需要设x);⑤利用三角函数构造关于x的方程。
真题展现2022年河南中招填空题第19题19.开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑。
某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得浮云阁顶端D的仰角儿为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°。
已知测角仪的高度为1.5m,测量点A、B与拂云阁DC的底部C在同一水平线上,求浮云阁DC的高度。
(结果精确到1m,参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).2021年河南中招填空题第19题19.(9分)开凿于北魏孝文帝年间的龙门石窟是中国石刻艺术瑰宝,卢舍那佛像是石窟中最大的佛像.某数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,他们选取的测量点A与佛像BD的底部D在同一水平线上.已知佛像头部BC为4m,在A处测得佛像头顶部B的仰角为45°,头底部C的仰角为37.5°,求佛像BD的高度(结果精确到0.1m.参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77).2020年河南中招填空题第18题18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,≈1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.2019年河南中招填空题第19题19.(9分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE 在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.(精确到1m.参考数据:sin34°≈0.56,cos34°=0.83,tan34°≈0.67,≈1.73)2018年河南中招填空题第20题20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE(结为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)模拟演练字母型1.黄河全长约5464千米,是中国第二长河.位于郑州市黄河文化公园东部的黄河滩地公园,集休闲观光、农业采摘、林间漫步、亲子研学等多项功能,成为省会郑州的“大氧吧”“后花园”和网红打卡地.周末,小明一家来到黄河滩地公园游玩,小明想测量某段黄河的宽度.如图,小明利用自制测角仪,在河岸A处测得对岸C处在南偏东40°方向,沿岸边向东走100步到达B处,并测得对岸C处在南偏东30°方向,请根据以≈︒≈︒≈,上信息,估算此段黄河的宽度.(结果精确到0.1m.参考数据:一步0.8m,sin400.64,cos400.77︒≈≈tan40 1.73)2.无塔位于河南汝南城南,俗传冬至正午无塔影,故称无影塔.某数学活动小组到汝南测无影塔的高度.如图,他们在点D处测得塔顶A的仰角为30°,沿直线前行23米至点C,在点C处测得塔顶4的仰角为50︒.已如点B,C,D在同一直线上,请依据相关数据求无影塔的商度(结果精确到0.1m.参考数据:sin500.77,cos500.64,tan50 1.117︒≈︒≈︒≈≈9.3).背靠背型3.如图,小明在某森林公园的一处观景台观赏垂直而下的瀑布,从D点看到瀑布顶端B的仰角为45︒,看到瀑布底端E的俯角为30︒,若瀑布底有一水潭,D点到水潭水平面的距离DA为4m,求瀑布顶端到水潭水平面的距离BE的长.(结果保留整数.参考数据:2 1.414≈≈,3 1.732)4.被誉为“天下第一塔”的开封铁塔,八角十三层,其设计精巧,单是塔砖就有数十种图案.铁塔位于铁塔公园的东半部,是园内重要的文物,也是主要的景点,始建于公元1049年(北宋皇祐元年),是1961年我国首批公布的国家重点保护文物之一,素有“天下第一塔”之称.某数学兴趣小组开展了“测量开封铁塔的高度”的实践活动,具体过程如下:工具准备:皮尺,测角仪.方案设计:如图2,开封铁塔AB 垂直于地面,在地面上选取C ,D 两处分别测得ACB ∠和ADB ∠的度数(,,C B D 在同一条直线上)数据收集:通过实地测量:地面上C ,D 120m ,45ACB ∠=︒,42ADB ∠=︒.问题解决:(1)求开封铁塔AB 的高度(精确到0.1m).景点介绍开封铁塔的高度为55.88米,则计算结果的误差为多少?并说出一条导致计算结果产生误差的原因可能是什么?(参考数据:sin420.67︒≈,cos420.74︒≈,tan420.9︒≈ 1.41≈)(2)根据上述方案及数据,请你完成求解过程.活动阅读型5.嵩岳寺塔位于登封市区西北6千米嵩山南麓嵩岳寺院内,为北魏时期佛塔.该塔是我国现存最早的砖塔,反映了中外建筑文化交流融合创新的历程,在结构、造型等方面具有很大价值,对后世砖塔建筑有着巨大影响.某数学兴趣小组通过调查研究把“如何测量嵩岳寺塔的高度”作为一项课题活动,他们制订了测量方案,并利用课余时间实地测量.请你根据表中信息结合示意图帮助该数学兴趣小组求嵩岳寺塔AB 的高度.(精确到0.1米,参考数据:sin 320.52︒≈,cos320.84︒≈,tan 320.62︒≈)6.手机测距APP 可以测量物体高度、宽度等,这些测距软件是基于几何学原理设计的.测量时只需要输入身高,再用手机拍摄功能将准星对准物体顶端和底部拍摄图片,程序就会计算出物体的高度.某款测距APP 提供的测高模式如下:点,,,A B C D 都在同一平面内,手机位置为A 点,待测物体为CD ,且AB 和CD 均与地面BD 垂直.从点A 处测得顶端C 的仰角为α,底部D 的俯角为β.奋进小组的同学想用上述方式手动计算某景区宣传广告牌的高度.如图2,经过测量得到 1.65m AB =,仰角35α=︒,俯角28β=︒,求出广告牌CD 的高度(参考数据:sin 350.57,cos350.82,tan 350.70,sin 280.47,cos 280.88,tan 280.53︒≈︒≈︒≈︒≈︒≈︒≈,结果精确到0.1).垂直构造型7.宝轮寺塔-中国四大回音建筑之一,位于三门峡市陕州风景区,始建于隋唐时期,因能发出“呱-呱”的声音而俗称“蛤蟆塔”.当地某校数学实践活动小组的同学们一起对该塔的高度()AB进行测量.因塔底部B无法直接到达,制定了如下的测量方案:先在该塔正前方广场地面C处测得塔尖A的仰角()∠为45︒,因ACB广场面积有限,无法再向C点的正后方移动,故操控无人机飞到C点正上方10米的D处测得塔尖A的仰角为32︒,A,B,C,D四点在同一个平面内,求塔高()AB为多少米.(结果精确到0.1米,参考数据:︒≈︒≈,tan320.62)sin320.53︒≈,cos320.858.如图,活动课上,小玥想要利用所学的数学知识测量某个建筑地所在山坡AE的高度,她先在山脚下的点E处测得山顶A的仰角是30°,然后,她沿着坡度i=1:1的斜坡按速度20米/分步行15分钟到达C处,此时,测得点A的俯角是15°.图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上,求出建筑地所在山坡AE的高度AB.(精确到0.1米,参考数据:2≈1.41).不规则图形构造直角三角形9.郑州外国语中学数学兴趣小组借助无人机测量一条河流的宽度CD .如图所示,一架水平飞行的无人机在A 处测得正前方河流的左岸C 处的俯角为α,无人机沿水平线AF 方向继续飞行60米至B 处,测得正前方河流右岸D 处的俯角为30°.线段AM 的长为无人机距地面的铅直高度,点M 、C 、D 在同一条直线上.其中tan 2α=,MC =米.(1)求无人机的飞行高度AM ;(结果保留根号)(2)求河流的宽度CD .(结果精确到1 1.41≈, 1.73≈)10.如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA 的位置时俯角∠EOA=30°,在OB 的位置时俯角∠FOB=60°,若OC ⊥EF ,点A 比点B 高7cm ,求单摆的长度(结果精确到0.1,1.73).。
2018届中考数学二模试卷(带答案) (18)
![2018届中考数学二模试卷(带答案) (18)](https://img.taocdn.com/s3/m/08ab753f5f0e7cd1842536e7.png)
2018年中考数学二模试卷一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b62.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=33.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.20157.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.49.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c11.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B. C. D.712.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为.16.方程x2﹣2x﹣1=0的解是.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2007•台州)如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B处测得海丰塔最高点P的仰角为45°,又前进了18米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.参考答案与试题解析一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【考点】幂的乘方与积的乘方.【分析】根据积的乘方的性质进行计算,然后直接选取答案即可.【解答】解:(ab2)3=a3•(b2)3=a3b6.故选D.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.2.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=3【考点】绝对值.【分析】根据绝对值的意义选择.【解答】解:A中|﹣3|=3,正确;B中﹣|3|=﹣3,正确;C中|﹣3|=|3|=3,正确;D中﹣|﹣3|=﹣3,不成立.故选D.【点评】本题考查绝对值的化简:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的三种形式求解.【解答】解:=3,=﹣2,无理数有:,,共2个.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°【考点】圆周角定理.【专题】压轴题.【分析】先根据邻补角的定义求出∠BOC,再利用圆周角定理求解.【解答】解:∵∠AOC=130°,∴∠BOC=180°﹣∠AOC=180°﹣130°=50°,∴∠D=×50°=25°.故选B.【点评】本题利用了圆周角定理和邻补角的概念求解.5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有1个正方形.故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.2015【考点】抛物线与x轴的交点.【分析】把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.【点评】本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.7.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.【考点】三角形的内切圆与内心;切线长定理.【专题】压轴题.【分析】首先根据切线的性质和切线长定理证得四边形OECD是正方形,那么AC+BC﹣AB即为2R(⊙O 的半径R)的值,由此可得到OD、CD的值,进而可在Rt△OBD中求出∠OBD的正切值.【解答】解:∵BC、AC、AB都是⊙O的切线,∴CD=CE、AE=AF、BF=BD,且OD⊥BC、OE⊥AC;易证得四边形OECD是矩形,由OE=OD可证得四边形OECD是正方形;设OD=OE=CD=R,则:AC+BC﹣AB=AE+R+BD+R﹣AF﹣BF=2R,即R=(AC+BC﹣AB)=1,∴BD=BC﹣CD=3﹣1=2;在Rt△OBD中,tan∠OBD==.故选C.【点评】此题考查的是三角形的外切圆,切线长定理以及锐角三角形函数的定义,难度适中.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.4【考点】平行四边形的性质;三角形中位线定理.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OC=OA,又由点E 是BC边的中点,根据三角形中位线的性质,即可求得AB的长.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA,∵点E是BC边的中点,即BE=CE,∴OE=AB,∵OE=1,∴AB=2.故选B.【点评】此题考查了平行四边形的性质与三角形中位线的性质.注意平行四边形的对角线互相平分,三角形的中位线平行于三角形的第三边且等于第三边的一半.9.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.【考点】概率公式.【分析】让不含辣椒的盒饭数除以总盒饭数即为从中任选一盒,不含辣椒的概率.【解答】解:配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒,全部是80盒,不含辣椒的有70盒,所以从中任选一盒,不含辣椒的概率是=.故选A .【点评】本题比较容易,考查等可能条件下的概率.用到的知识点为:概率=所求情况数与总情况数之比.10.定义:如果一元二次方程ax 2+bx+c=0(a ≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax 2+bx+c=0(a ≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ) A .a=c B .a=b C .b=c D .a=b=c 【考点】根的判别式. 【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b 2﹣4ac=0,又a+b+c=0,即b=﹣a ﹣c ,代入b 2﹣4ac=0得(﹣a ﹣c )2﹣4ac=0,化简即可得到a 与c 的关系.【解答】解:∵一元二次方程ax 2+bx+c=0(a ≠0)有两个相等的实数根, ∴△=b 2﹣4ac=0,又a+b+c=0,即b=﹣a ﹣c ,代入b 2﹣4ac=0得(﹣a ﹣c )2﹣4ac=0,即(a+c )2﹣4ac=a 2+2ac+c 2﹣4ac=a 2﹣2ac+c 2=(a ﹣c )2=0, ∴a=c . 故选A【点评】一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根.11.如图,已知△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( )A.B. C. D.7【考点】勾股定理;全等三角形的性质;全等三角形的判定.【专题】计算题;压轴题.【分析】过A、C点作l3的垂线构造出直角三角形,根据三角形全等和勾股定理求出BC的长,再利用勾股定理即可求出.【解答】解:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得BC==,在Rt△ABC中,根据勾股定理,得AC=×=2;故选A.【点评】此题要作出平行线间的距离,构造直角三角形.运用全等三角形的判定和性质以及勾股定理进行计算.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【考点】二次函数图象与系数的关系.【专题】计算题;压轴题.【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=(x﹣y)2.【考点】因式分解-运用公式法.【专题】计算题.【分析】根据完全平方公式直接解答即可.【解答】解:原式=(x﹣y)2.故答案为(x﹣y)2.【点评】本题考查了因式分解﹣﹣运用公式法,熟悉因式分解是解题的关键.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.【考点】特殊角的三角函数值;平行线的性质.【专题】探究型.【分析】先根据平行线的性质及直角三角板的特点求出∠2的度数,再根据特殊角的三角函数值进行解答即可.【解答】解:由三角板的特点可知,∠D=60°,∵AB∥CD,∴∠D=∠2=60°,∴cos∠2=cos60°=.故答案为:.【点评】本题考查的是直角三角板的特点及平行线的性质、特殊角的三角函数值,熟记特殊角的三角函数值是解答此题的关键.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为45°.【考点】线段垂直平分线的性质.【专题】计算题.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°(已知)∴∠ABC=∠ACB==75°∵DE垂直平分AC,∴AD=CD;∴∠A=∠ACD=30°,∴∠BCD=∠ACB﹣∠ACD,∴∠BCD=45°;故答案为:45°.【点评】本题主要考查了线段垂直平分线的性质以及等腰三角形的性质,难度一般.16.方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.【考点】解一元二次方程-配方法.【分析】首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.【点评】此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是76.【考点】勾股定理;正方形的性质.【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:AB==10,∴正方形的面积是10×10=100,∵△AEB的面积是AE×BE=×6×8=24,∴阴影部分的面积是100﹣24=76,故答案是:76.【点评】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.【考点】规律型:数字的变化类.【分析】根据分数的分子是2n,分母是2n+3,进而得出答案即可.【解答】解:∵分数的分子分别是:2 2=4,23=8,24=16,…分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…∴第n个数是.故答案为:.【点评】此题主要考查了数字变化规律,根据已知得出分子与分母的变化规律是解题关键.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】(1)方程组利用加减消元法求出解即可;(2)求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)①+②得:4x=20,即x=5,把x=5代入①得:y=1,则方程组的解为;(2),由①得:x<﹣1,由②得:x≤2,则不等式组的解集为x<﹣1.【点评】此题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用二次根式性质化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣1﹣2×﹣+1=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2)易知选择音乐类的有4人,选择美术类的有3人.记选择音乐类的4人分别是A1,A2,A,小丁;选择美术类的3人分别是B1,B2,小李.可画出树状图如下:由树状图可知共有12种选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是或列表:由表可知共有12中选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是;(3)由(1)可知问卷中最喜欢体育运动的学生占40%,由样本估计总体得得500×40%=200名.所以该年级中最喜欢体育运动的学生约有200名.【点评】本题考查的是条形统计图和扇形统计图及用样本估计总体等知识的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)【考点】切线的判定;扇形面积的计算.【专题】几何综合题.【分析】(1)由已知可证得OC⊥CD,OC为圆的半径所以直线CD与⊙O相切;(2)根据已知可求得OC,CD的长,则利用S阴影=S△COD﹣S扇形OCB求得阴影部分的面积.【解答】解:(1)直线CD 与⊙O 相切, ∵在⊙O 中,∠COB=2∠CAB=2×30°=60°, 又∵OB=OC , ∴△OBC 是正三角形, ∴∠OCB=60°, 又∵∠BCD=30°, ∴∠OCD=60°+30°=90°, ∴OC ⊥CD , 又∵OC 是半径, ∴直线CD 与⊙O 相切.(2)由(1)得△OCD 是Rt △,∠COB=60°, ∵OC=1, ∴CD=,∴S △COD =OC •CD=,又∵S 扇形OCB =,∴S 阴影=S △COD ﹣S 扇形OCB =.【点评】此题主要考查学生对切线的性质及扇形的面积公式的理解及运用.23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B 处测得海丰塔最高点P 的仰角为45°,又前进了18米到达A 处,在A 处测得P 的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).【考点】解直角三角形的应用-仰角俯角问题.【分析】设海丰塔的高OP=x,在Rt△POB中表示出OB,在Rt△POA中表示出OA,再由AB=18米,可得出方程,解出即可得出答案.【解答】解:设海丰塔的高OP=x,在Rt△POB中,∠OBP=45°,则OB=OP=x,在Rt△POA中,∠OAP=60°,则OA==x,由题意得,AB=OB﹣OA=18m,即x﹣x=18,解得:x=27+9,故海丰塔的高度OP=27+9≈42米.答:海丰塔的高度约为42米.【点评】本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质;相似三角形的判定与性质.【专题】证明题.【分析】(1)利用两角对应相等可证出△ABE∽△ADF;(2)利用(1)的结论,先证出△ABG≌△ADH,得到AB=AD,那么平行四边形ABCD是菱形.【解答】证明:(1)∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90度.∵四边形ABCD是平行四边形,∴∠ABE=∠ADF.∴△ABE∽△ADF.(2)∵△ABE∽△ADF,∴∠BAG=∠DAH.∵AG=AH,∴∠AGH=∠AHG,从而∠AGB=∠AHD,∴△ABG≌△ADH,∴AB=AD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.【点评】本题利用了相似三角形的判定和性质,全等三角形的判定和性质以及菱形的判定.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.【考点】二次函数综合题.【分析】(1)易得点A、B的坐标,用交点式设出二次函数解析式,把D坐标代入即可.自变量的取值范围是点A、B之间的数.(2)先设出切线与x轴交于点E.利用直角三角形相应的三角函数求得EM的长,进而求得点E坐标,把C、E坐标代入一次函数解析式即可求得所求的解析式.(3)设出所求函数解析式,让它与二次函数组成方程组,消除y,让跟的判别式为0,即可求得一次函数的比例系数k.【解答】解:(1)如图,设经过点C“蛋圆”的切线CE交x轴于点E,连结CM,∴CM⊥CE,又∵A点坐标为(﹣2,0),B点坐标为(4,0),AB为半圆的直径,点M为圆心,∴M点的坐标为(1,0),∴AO=2,BO=4,OM=1.又因为CO⊥x轴,所以CO2=AO•OB,解得:CO=2,又∵CM⊥CE,CO⊥x轴,∴CO2=EO•OM,解之得:EO=8,∴E点的坐标是(﹣8,0),∴切线CE的解析式为:y=x+2;(2)根据题意可得:A(﹣2,0),B(4,0);则设抛物线的解析式为y=a(x+2)(x﹣4)(a≠0),又∵点D(0,﹣4)在抛物线上,∴a=;∴y=x2﹣x﹣4自变量取值范围:﹣2≤x≤4;(3)设过点D(0,﹣4),“蛋圆”切线的解析式为:y=kx﹣4(k≠0),由题意可知方程组只有一组解.即kx﹣4=x2﹣x﹣4有两个相等实根,∴k=﹣1,∴过点D“蛋圆”切线的解析式y=﹣x﹣4;【点评】本题以半圆与抛物线合成的封闭图形“蛋圆”为背景,考查一次函数、二次函数有关性质,解题过程中涉及解一元一次方程、一元二次方程、方程组相关知识与技能,是一道综合性很强的试题.。
2018年中考数学专题训练反比例函数与一次函数的综合
![2018年中考数学专题训练反比例函数与一次函数的综合](https://img.taocdn.com/s3/m/9ddab301a5e9856a57126009.png)
2018级中考数学专题复习—反比例函数与一次函数的综合1.在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.2.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.3.如图,直线y=x+2与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.4.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?5.如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.6.如图,已知反比例函数y1=的图象与一次函数y2=kx+b的图象交于两点A(﹣2,1)、B(a,﹣2).(1)求反比例函数和一次函数的解析式;(2)若一次函数y2=kx+b的图象交y轴于点C,求△AOC的面积(O为坐标原点);(3)求使y1>y2时x的取值范围.7.已知:如图,反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.8.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及三角形AOB的面积.9.如图,已知点A(﹣4,2)、B( n,﹣4)是一次函数y=kx+b的图象与反比例函数图象的两个交点:(1)求点B的坐标和一次函数的解析式;(2)求△AOB的面积;(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.10.如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA=,tan∠AOC=,点B的坐标为(,m).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.11.如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.12.已知:如图所示,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x交于点C,与y轴交于点D,OC=1,BC=5,.(1)求该反比例函数和一次函数的解析式;(2)连接BO,AO,求△AOB的面积.(3)观察图象,直接写出不等式的解集.13.如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣2.(1)求一次函数的解析式;(3)观察图象,直接写出y1>y2时x的取值范围.14.如图,一次函数y=kx+b与反比例函数的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式kx+b>的解集.(3)连接OA、OB,求S△ABO.15.如图,已知一次函数y=ax+b的图象与反比例函数y=的图象相交于点A(﹣2,m)和点B(4,﹣2),与x轴交于点C(1)求一次函数与反比例函数的解析式;16.如图,一次函数y=mx+n(m≠0)与反比例函数y=(k≠0)的图象相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积.17.如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k≠0)的图象交于A、B两点,与x轴、y轴分别交于C、D两点.已知:OA=,tanAOC=,点B的坐标为(,m)(1)求该反比例函数的解析式和点D的坐标;(2)点M在射线CA上,且MA=2AC,求△MOB的面积.18.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=:(1)求反比例函数和直线的函数表达式;(2)求△OPQ的面积.19.如图,已知一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与x轴、y轴交于点C、D两点,点B的横坐标为1,OC=OD,点P在反比例函数图象上且到x轴、y轴距离相等.(1)求一次函数的解析式;(2)求△APB的面积.20.如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于B、A两点,与反比例函数的图象交于点C,连接CO,过C作CD⊥x轴于D,已知tan∠ABO=,OB=4,OD=2.(1)求直线AB和反比例函数的解析式;(2)在x轴上有一点E,使△CDE与△COB的面积相等,求点E的坐标.21.如图,在平面直角坐标系中,点A是反比例函数y=(k≠0)图象上一点,AB⊥x轴于B点,一次函数y=ax+b(a≠0)的图象交y轴于D(0,﹣2),交x轴于C点,并与反比例函数的图象交于A,E两点,连接OA,若△AOD的面积为4,且点C为OB中点.(1)分别求双曲线及直线AE的解析式;(2)若点Q在双曲线上,且S△QAB=4S△BAC,求点Q的坐标.22.如图,已知一次函数y=k1x+b的图象分别x轴,y轴交于A、B两点,且与反比例函数y=交于C、E 两点,点C在第二象限,过点C作CD⊥x轴于点D,OD=1,OE=,cos∠AOE=(1)求反比例函数与一次函数的解析式;(2)求△OCE的面积.23.如图,一次函数y=x+2的图象与x轴交于点B,与反比例函数y=(k≠0)的图象的一个交点为A(2,m).(1)求反比例函数的表达式;(2)过点A作AC⊥x轴,垂足为点C,设点D在反比例函数图象上,且△DBC的面积等于6,请求出点D的坐标;(3)请直接写出不等式x+2<成立的x取值范围.24.如图,已知反比例函数y1=的图象与一次函数y2=k2x+b的图象交于A、B两点,A(2,n),B(﹣1,﹣4).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式y1>y2的解集.25.如图,已知反比例函数y=(k<0)的图象经过点A(﹣2,m),过点A作AB⊥x轴于点B,且△AOB的面积为2.(1)求k和m的值;(2)若一次函数y=ax+1的图象经过点A,并且与x轴的交点为点C,试求出△ABC的面积.26.如图,已知一次函数y=k1x+b的图象分别与x轴、y轴的正半轴交于A、B两点,且与反比例函数y=交于C、E两点,点C在第二象限,过点C作CD⊥x轴于点D,OA=OB=2,OD=1.(1)求反比例函数与一次函数的解析式;(2)求△OCE的面积.27.如图,已知直线y=mx+b(m≠0)与双曲线y=(k≠0)交于A(﹣3,﹣1)与B(n,6)两点,连接OA、OB.(1)求直线与双曲线的表达式;(2)求△AOB的面积.28.如图,直线y=﹣2和双曲线y=相交于A(b,1),点P在直线y=x﹣2上,且P点的纵坐标为﹣1,过P作PQ∥y轴交双曲线于点Q.(1)求Q点的坐标;(2)求△APQ的面积.29.如图,在一次函数y=ax+b的图象与反比例函数y=的图象相交于A(﹣4,﹣2),B(m,4),与y轴相交于点C.(1)求反比例函数与一次函数的表达式;(2)求△AOB的面积.30.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数y=交于一象限内的P(,n),Q (4,m)两点,且tan∠BOP=.(1)求双曲线和直线AB的函数表达式;(2)求△OPQ的面积;(3)当kx+b>时,请根据图象直接写出x的取值范围.2018级中考数学专题复习-反比例函数与一次函数的交点参考答案与试题解析一.解答题(共30小题)1.(2016•重庆)在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.【分析】(1)根据正切函数,可得AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案;(2)根据待定系数法,可得函数解析式.【解答】解:(1)由OH=3,tan∠AOH=,得AH=4.即A(﹣4,3).由勾股定理,得AO==5,△AHO的周长=AO+AH+OH=3+4+5=12;(2)将A点坐标代入y=(k≠0),得k=﹣4×3=﹣12,反比例函数的解析式为y=;当y=﹣2时,﹣2=,解得x=6,即B(6,﹣2).将A、B点坐标代入y=ax+b,得,解得,一次函数的解析式为y=﹣x+1.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法是解题关键.2.(2016•重庆)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.【分析】(1)过点A作AE⊥x轴于点E,设反比例函数解析式为y=.通过解直角三角形求出线段AE、OE的长度,即求出点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式即可;(2)由点B在反比例函数图象上可求出点B的坐标,设直线AB的解析式为y=ax+b,由点A、B的坐标利用待定系数法求出直线AB的解析式,令该解析式中y=0即可求出点C的坐标,再利用三角形的面积公式即可得出结论.【解答】解:(1)过点A作AE⊥x轴于点E,如图所示.设反比例函数解析式为y=.∵AE⊥x轴,∴∠AEO=90°.在Rt△AEO中,AO=5,sin∠AOC=,∠AEO=90°,∴AE=AO•sin∠AOC=3,OE==4,∴点A的坐标为(﹣4,3).∵点A(﹣4,3)在反比例函数y=的图象上,∴3=,解得:k=﹣12.∴反比例函数解析式为y=﹣.(2)∵点B(m,﹣4)在反比例函数y=﹣的图象上,∴﹣4=﹣,解得:m=3,∴点B的坐标为(3,﹣4).设直线AB的解析式为y=ax+b,将点A(﹣4,3)、点B(3,﹣4)代入y=ax+b中得:,解得:,∴一次函数解析式为y=﹣x﹣1.令一次函数y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣1,即点C的坐标为(﹣1,0).S△AOB=OC•(y A﹣y B)=×1×[3﹣(﹣4)]=.【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及三角形的面积公式,解题的关键是:(1)求出点A的坐标;(2)求出直线AB的解析式.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.3.(2016•南充)如图,直线y=x+2与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.【分析】(1)把A坐标代入直线解析式求出m的值,确定出A坐标,即可确定出双曲线解析式;(2)设P(x,0),表示出PC的长,高为A纵坐标,根据三角形ACP面积求出x的值,确定出P坐标即可.【解答】解:(1)把A(m,3)代入直线解析式得:3=m+2,即m=2,∴A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=;(2)对于直线y=x+2,令y=0,得到x=﹣4,即C(﹣4,0),设P(x,0),可得PC=|x+4|,∵△ACP面积为3,∴|x+4|•3=3,即|x+4|=2,解得:x=﹣2或x=﹣6,则P坐标为(﹣2,0)或(﹣6,0).【点评】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,以及三角形面积求法,熟练掌握待定系数法是解本题的关键.4.(2014•资阳)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?【分析】(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.【解答】解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.5.(2010•成都)如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.【分析】(1)把A(1,﹣k+4)代入解析式y=,即可求出k的值;把求出的A点坐标代入一次函数y=x+b的解析式,即可求出b的值;从而求出这两个函数的表达式;(2)将两个函数的解析式组成方程组,其解即为另一点的坐标.当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围.【解答】解:(1)∵已知反比例函数经过点A(1,﹣k+4),∴,即﹣k+4=k,∴k=2,∴A(1,2),∵一次函数y=x+b的图象经过点A(1,2),∴2=1+b,∴b=1,∴反比例函数的表达式为.一次函数的表达式为y=x+1.(2)由,消去y,得x2+x﹣2=0.即(x+2)(x﹣1)=0,∴x=﹣2或x=1.∴y=﹣1或y=2.∴或.∵点B在第三象限,∴点B的坐标为(﹣2,﹣1),由图象可知,当反比例函数的值大于一次函数的值时,x的取值范围是x<﹣2或0<x<1.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.6.(2010•泸州)如图,已知反比例函数y1=的图象与一次函数y2=kx+b的图象交于两点A(﹣2,1)、B(a,﹣2).(1)求反比例函数和一次函数的解析式;(2)若一次函数y2=kx+b的图象交y轴于点C,求△AOC的面积(O为坐标原点);(3)求使y1>y2时x的取值范围.【分析】(1)先根据点A的坐标求出反比例函数的解析式为y1=﹣,再求出B的坐标是(1,﹣2),利用待定系数法求一次函数的解析式;(2)在一次函数的解析式中,令x=0,得出对应的y2的值,即得出直线y2=﹣x﹣1与y轴交点C的坐标,从而求出△AOC的面积;(3)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围﹣2<x<0或x>1.【解答】解:(1)∵函数y1=的图象过点A(﹣2,1),即1=;∴m=﹣2,即y1=﹣,又∵点B(a,﹣2)在y1=﹣上,∴a=1,∴B(1,﹣2).又∵一次函数y2=kx+b过A、B两点,即.解之得.∴y2=﹣x﹣1.(2)∵x=0,∴y2=﹣x﹣1=﹣1,即y2=﹣x﹣1与y轴交点C(0,﹣1).设点A的横坐标为x A,∴△AOC的面积S△OAC==×1×2=1.(3)要使y1>y2,即函数y1的图象总在函数y2的图象上方.∴﹣2<x<0,或x>1.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式.这里体现了数形结合的思想.7.(2008•甘南州)已知:如图,反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.【分析】(1)反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点,把A点坐标代入反比例函数解析式,即可求出k,得到反比例函数的解析式.将B(n,﹣1)代入反比例函数的解析式求得B点坐标,然后再把A、B点的坐标代入一次函数的解析式,利用待定系数法求出一次函数的解析式;(2)根据图象,分别在第一、三象限求出反比例函数的值大于一次函数的值时x的取值范围.【解答】解:(1)∵A(1,3)在y=的图象上,∴k=3,∴y=.又∵B(n,﹣1)在y=的图象上,∴n=﹣3,即B(﹣3,﹣1)∴解得:m=1,b=2,∴反比例函数的解析式为y=,一次函数的解析式为y=x+2.(2)从图象上可知,当x<﹣3或0<x<1时,反比例函数的值大于一次函数的值.【点评】本类题目的解决需把点的坐标代入函数解析式,灵活利用方程组求出所需字母的值,从而求出函数解析式,另外要学会利用图象,确定x的取值范围.8.(2008•南充)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及三角形AOB的面积.【分析】(1)把A(﹣4,n),B(2,﹣4)分别代入一次函数y=kx+b和反比例函数y=,运用待定系数法分别求其解析式;(2)把三角形AOB的面积看成是三角形AOC和三角形OCB的面积之和进行计算.【解答】解:(1)∵B(2,﹣4)在y=上,∴m=﹣8.∴反比例函数的解析式为y=﹣.∵点A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b经过A(﹣4,2),B(2,﹣4),∴.解之得.∴一次函数的解析式为y=﹣x﹣2.(2)∵C是直线AB与x轴的交点,∴当y=0时,x=﹣2.∴点C(﹣2,0).∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=6.【点评】本题考查了用待定系数法确定反比例函数的比例系数k,求出函数解析式;要能够熟练借助直线和y轴的交点运用分割法求得不规则图形的面积.9.(2007•资阳)如图,已知点A(﹣4,2)、B( n,﹣4)是一次函数y=kx+b的图象与反比例函数图象的两个交点:(1)求点B的坐标和一次函数的解析式;(2)求△AOB的面积;(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.【分析】(1)由A和B都在反比例函数图象上,故把两点坐标代入到反比例解析式中,列出关于m与n的方程组,求出方程组的解得到m与n的值,确定出A的坐标及反比例函数解析式,把确定出的A坐标及B的坐标代入到一次函数解析式中,得到关于k与b的方程组,求出方程组的解得到k与b的值,确定出一次函数解析式;(2)令一次函数解析式中x为0,求出此时y的值,即可得到一次函数与y轴交点C的坐标,得到OC的长,三角形AOB的面积分为三角形AOC及三角形BOC面积之和,且这两三角形底都为OC,高分别为A和B的横坐标的绝对值,利用三角形的面积公式即可求出三角形ABC的面积;(3)根据图象和交点坐标即可得出结果.【解答】解:(1)∵m=﹣8,∴n=2,则y=kx+b过A(﹣4,2),B(n,﹣4)两点,∴解得k=﹣1,b=﹣2.故B(2,﹣4),一次函数的解析式为y=﹣x﹣2;(2)由(1)得一次函数y=﹣x﹣2,令x=0,解得y=﹣2,∴一次函数与y轴交点为C(0,﹣2),∴OC=2,∴S△AOB=S△AOC+S△BOC=OC•|y点A横坐标|+OC•|y点B横坐标|=×2×4+×2×2=6.S△AOB=6;(3)一次函数的值小于反比例函数值的x的取值范围:﹣4<x<0或x>2.【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有利用待定系数法求函数解析式,两函数交点坐标的意义,一次函数与坐标轴交点的求法,以及三角形的面积公式,利用了数形结合的思想.第一问利用的方法为待定系数法,即根据题意把两交点坐标分别代入两函数解析式中,得到方程组,求出方程组的解确定出函数解析式中的字母常数,从而确定出函数解析式,第二问要求学生借助图形,找出点坐标与三角形边长及边上高的关系,进而把所求三角形分为两三角形来求面积.10.(2005•四川)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA=,tan∠AOC=,点B的坐标为(,m).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.【分析】(1)根据tan∠AOC=,且OA=,结合勾股定理可以求得点A的坐标,进一步代入y=中,得到反比例函数的解析式;然后根据反比例函数的解析式得到点B的坐标,再根据待定系数法求一次函数解析式;(2)三角形AOB的面积可利用,求和的方法即等于S△AOC+S△COB来求.【解答】解:(1)过点A作AH⊥x于点H.在RT△AHO中,tan∠AOH==,所以OH=2AH.又AH2+HO2=OA2,且OA=,所以AH=1,OH=2,即点A(﹣2,1).代入y=得k=﹣2.∴反比例函数的解析式为y=﹣.又因为点B的坐标为(,m),代入解得m=﹣4.∴B(,﹣4).把A(﹣2,1)B(,﹣4)代入y=ax+b,得,∴a=﹣2,b=﹣3.∴一次函数的解析式为y=﹣2x﹣3.(2)在y=﹣2x﹣3中,当y=0时,x=﹣.即C(,0).∴S△AOB=S△AOC+S△COB=(1+4)×=.【点评】此题综合考查了解直角三角形、待定系数法、和函数的基本知识,难易程度适中.11.(2016•乐至县一模)如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.【分析】(1)把点A(﹣2,4),B(4,﹣2)代入一次函数y=kx+b即可求出k及b的值;(2)先求出C点的坐标,根据S△AOB=S△AOC+S△BOC即可求解;(3)由图象即可得出答案;【解答】解:(1)由题意A(﹣2,4),B(4,﹣2),∵一次函数过A、B两点,∴,解得,∴一次函数的解析式为y=﹣x+2;(2)设直线AB与y轴交于C,则C(0,2),∵S△AOC=×OC×|A x|,S△BOC=×OC×|B x|∴S△AOB=S△AOC+S△BOC=•OC•|A x|+•OC•|B x|==6;(3)由图象可知:一次函数的函数值大于反比例函数的函数值时x的取值范围是x<﹣2或0<x<4.【点评】本题考查了反比例函数与一次函数的交点问题,属于基础题,关键是掌握用待定系数法求解函数解析式.12.(2016•重庆校级模拟)已知:如图所示,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x交于点C,与y轴交于点D,OC=1,BC=5,.(1)求该反比例函数和一次函数的解析式;(2)连接BO,AO,求△AOB的面积.(3)观察图象,直接写出不等式的解集.【分析】(1)先根据解直角三角形求得点D和点B的坐标,再利用C、D两点的坐标求得一次函数解析式,利用点B的坐标求得反比例函数解析式;(2)先根据解方程组求得两个函数图象的交点A的坐标,再将x轴作为分割线,求得△AOB的面积;(3)根据函数图象进行观察,写出一次函数图象在反比例函数图象下方时所有点的横坐标的集合即可.【解答】解:(1)∵∴直角三角形OCD中,=,即CD=OD又∵OC=1∴12+OD2=(OD)2解得OD=,即D(0,﹣)将C(1,0)和D(0,﹣)代入一次函数y=ax+b,可得,解得∴一次函数的解析式为y=x﹣过B作BE⊥x轴,垂足为E∵直角三角形BCE中,BC=5,∴BE=3,CE==4∴OE=4﹣1=3,即B(﹣3,﹣3)将B(﹣3,﹣3)代入反比例函数,可得k=9∴反比例函数的解析式为y=;(2)解方程组,可得,∴A(4,)∴S△AOB=S△AOC+S△COB=×1×+×1×3=+=;(3)根据图象可得,不等式的解集为:x<﹣3或0<x<4.【点评】本题主要考查了反比例函数与一次函数的交点问题,需要掌握待定系数法求函数解析式的方法,以及根据两个函数图象的交点坐标求有关不等式解集的方法.解答此类试题的依据是:①函数图象上点的坐标满足函数解析式;②不等式的解集就是其所对应的函数图象上满足条件的所有点的横坐标的集合.13.(2016•重庆校级一模)如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣2.(1)求一次函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出y1>y2时x的取值范围.【分析】(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(2)将两条坐标轴作为△AOB的分割线,求得△AOB的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.【解答】解:(1)设点A坐标为(﹣2,m),点B坐标为(n,﹣2)∵一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点∴将A(﹣2,m)B(n,﹣2)代入反比例函数y2=﹣可得,m=4,n=4∴将A(﹣2,4)、B(4,﹣2)代入一次函数y1=kx+b,可得,解得∴一次函数的解析式为y1=﹣x+2;(2)在一次函数y1=﹣x+2中,当x=0时,y=2,即N(0,2);当y=0时,x=2,即M(2,0)∴S△AOB=S△AON+S△MON+S△MOB=×2×2+×2×2+×2×2=2+2+2=6;(3)根据图象可得,当y1>y2时,x的取值范围为:x<﹣2或0<x<4【点评】本题主要考查了反比例函数与一次函数的交点问题,解决问题的关键是掌握根据函数图象的交点坐标求一次函数解析式和有关不等式解集的方法.解答此类试题的依据是:①函数图象的交点坐标满足两个函数解析式;②不等式的解集就是其所对应的函数图象上满足条件的所有点的横坐标的集合.14.(2016•重庆校级模拟)如图,一次函数y=kx+b与反比例函数的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式kx+b>的解集.(3)连接OA、OB,求S△ABO.【分析】(1)根据反比例函数图象上点的坐标特征求出m和n,利用待定系数法求出一次函数的解析式;(2)根据函数图象得到答案;(3)求出直线与x轴的交点坐标,根据三角形的面积公式计算即可.【解答】解:(1)∵反比例函数的图象经过A(2,3),∴m=2×3=6,∴反比例函数的解析式为:y=,∵反比例函数的图象经过于B(﹣3,n),∴n==﹣2,∴点B的坐标(﹣3,﹣2),由题意得,,解得,,∴一次函数的解析式为:y=x+1;(2)由图象可知,不等式kx+b>的解集为:﹣3<x<0或x>2;(3)直线y=x+1与x轴的交点C的坐标为(﹣1,0),则OC=1,则S△ABO=S△OBC+S△ACO=×1×2+×1×3=.【点评】本题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤是解题的关键,注意数形结合思想的运用.15.(2016•成华区模拟)如图,已知一次函数y=ax+b的图象与反比例函数y=的图象相交于点A(﹣2,m)和点B(4,﹣2),与x轴交于点C(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.【分析】(1)由B点的坐标根据待定系数法即可求得在反比例函数的解析式,代入A(﹣2,m)即可求得m,再由待定系数法求出一次函数解析式;(2)由直线解析式求得C点的坐标,从而求出△AOB的面积.【解答】解:(1)∵B(4,﹣2)在反比例函数y=的图象上,∴k=4×(﹣2)=﹣8,又∵A(﹣2,M)在反比例函数y=的图象上,∴﹣2m=﹣8,∴m=4,∴A(﹣2,4),又∵AB是一次函数y=ax+b的上的点,∴解得,a=﹣1,b=2,∴一次函数的解析式为y=﹣x+2,反比例函数的解析式y=﹣;(2)由直线y=﹣x+2可知C(2,0),所以△AOB的面积=×2×4+×2×2=6.【点评】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.16.(2016•重庆校级一模)如图,一次函数y=mx+n(m≠0)与反比例函数y=(k≠0)的图象相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积.【分析】(1)把A点坐标代入反比例函数解析式可求得k,再把B点坐标代入可求得b,再利用待定系数法可求得一次函数解析式;(2)可先求得D点坐标,再利用三角形的面积计算即可.【解答】解:(1)∵反比例函数y=(k≠0)的图象过A(﹣1,2),∴k=﹣1×2=﹣2,∴反比例函数解析式为y=﹣,当x=2时,y=﹣1,即B点坐标为(2,﹣1),∵一次函数y=mx+n(m≠0)过A、B两点,∴把A、B两点坐标代入可得,解得,∴一次函数解析式为y=﹣x+1;(2)在y=﹣x+1中,当x=0时,y=1,∴C点坐标为(0,1),∵点D与点C关于x轴对称,∴D点坐标为(0,﹣1),∴CD=2,∴S△ABD=S△ACD+S△BCD=×2×1+×2×2=3.【点评】本题主要考查一次函数和反比例函数的交点,掌握两函数图象的交点坐标满足每一个函数解析式是解题的关键.。
2018年中考数学真题知识分类练习试卷:方程(含答案)
![2018年中考数学真题知识分类练习试卷:方程(含答案)](https://img.taocdn.com/s3/m/010e1440a45177232f60a24b.png)
方程一、单选题1.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有个,小房间有个.下列方程正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】A2.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A. B. C. D.【来源】浙江省温州市2018年中考数学试卷【答案】A3.方程组的解是()A. B. C. D.【来源】天津市2018年中考数学试题【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.4.夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【来源】山东省泰安市2018年中考数学试题5.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A. -2B. 2C. -4D. 4【来源】江苏省盐城市2018年中考数学试题【答案】B【解析】分析:根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选:B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.已知关于的一元二次方程有两个不相等的实数根,若,则的值是( )A. 2B. -1C. 2或-1D. 不存在【来源】山东省潍坊市2018年中考数学试题【答案】A7.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A. 2%B. 4.4%C. 20%D. 44%【来源】四川省宜宾市2018年中考数学试题【答案】C8.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A. ﹣2B. 1C. 2D. 0【来源】四川省宜宾市2018年中考数学试题【答案】D【解析】分析:根据根与系数的关系可得出x1x2=0,此题得解.详解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,故选D.点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键.学科#网9.关于的一元二次方程的根的情况是()A. 有两不相等实数根B. 有两相等实数根C. 无实数根D. 不能确定【来源】湖南省娄底市2018年中考数学试题【答案】A【解析】【分析】根据一元二次方程的根的判别式进行判断即可.【详解】,△=[-(k+3)]2-4k=k2+6k+9-4k=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,∴方程有两个不相等实数根,故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.10.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】C11.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是()A. 的长B. 的长C. 的长D. 的长【来源】2018年浙江省舟山市中考数学试题12.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【来源】安徽省2018年中考数学试题【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a 的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【来源】山东省泰安市2018年中考数学试题【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.14.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.【来源】山东省淄博市2018年中考数学试题15.分式方程的解是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】A【解析】分析:观察可得最简公分母是x(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.详解:,去分母,方程两边同时乘以x(x-2)得:(x+1)(x-2)+x=x(x-2),x2-x-2+x=x2-2x,x=1,经检验,x=1是原分式方程的解,故选A.点睛:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.学科#网16.分式方程的解为()A. B. C. D. 无解【来源】山东省德州市2018年中考数学试题【答案】D17.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C二、填空题18.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.19.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年河南省中考数学试卷(满分120分,考试时间100分钟)一、选择题(每小题3分,共30分)1.25-的相反数是( ) A .25-B .25C .52-D .52 2. 今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元.数据“214.7亿”用科学记数法表示为( ) A .2.147×102 B .0.2147×103 C .2.147×1010 D .0.2147×10113. 某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( ) A .厉 B .害 C .了 D .我4. 下列运算正确的是( )A .235()x x -=-B .235x x x +=C .347x x x ⋅=D .3321x x -= 5. 河南省游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( ) A .中位数是12.7% B .众数是15.3% C .平均数是15.98% D .方差是06. 《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为( )A .54573y x y x =+⎧⎨=+⎩B .54573y x y x =-⎧⎨=+⎩C .54573y x y x =+⎧⎨=-⎩D .54573y x y x =-⎧⎨=-⎩7. 下列一元二次方程中,有两个不相等实数根的是( )国我的了害厉A .2690x x ++=B .2x x =C .232x x +=D .2(1)10x -+= 8. 现有4张卡片,其中3张卡片正面上的图案是“♢”,1张卡片正面上的图案是“♣”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是( )A .916B .34C .38D .129. 如图,已知□AOBC 的顶点O (0,0),A (-1,2),点B 在x 轴正半轴上.按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在 ∠AOB 内交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为( )A.12),B .2)C .(32)D .22)-,10. 如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A B .2 C .52D .图1 图2二、填空题(每小题3分,共15分) 11. 计算:|5|-=__________.C12. 如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD =50°,则∠BOC 的度数为____________.13. 不等式组5243x x +>⎧⎨-⎩≥的最小整数解是___________. 14. 如图,在△ABC 中,∠ACB =90°,AC =BC =2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△A′B′C′,其中点B 的运动路径为BB'︵,则图中阴影部分的面积为____________.15. 如图,∠MAN =90°,点C 在边AM 上,AC =4,点B 为边AN 上一动点,连接BC ,△A′BC 与△ABC 关于BC 所在直线对称.D ,E 分别为AC ,BC 的中点,连接DE 并延长交A′B 所在直线于点F ,连接A′E .当△A′EF 为直角三角形时,AB 的长为____________.ABCD EO三、解答题(本大题共8个小题,满分75分)16. (8分)共化简,再求值:21111x x x ⎛⎫-÷ ⎪+-⎝⎭,其中1x =.17. (9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病,呼吸道疾病等,给人们造成困扰.为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如图所示),并根据调查结果绘制了如下尚不完整的统计图. 治理杨絮——您选哪一项?(单选)A .减少杨树新面积,控制杨树每年的栽种量B .调整树种结构,逐渐更换现有杨树C .选育无絮杨品种,并推广种植D .对雌性杨树注射生物干扰素,避免产生飞絮E .其他NM F EA A′BC D NM F EAA′BC D根据以上统计图,解答下列问题:(1)本次接受调查的市民共有__________人;(2)扇形统计图中,扇形E 的圆心角度数是__________; (3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18. (9分)如图,反比例函数0ky x x =>()的图象过格点(网格线的交点)P .(1)求反比例函数的解析式;(2)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O ,点P ;②矩形的面积等于k 的值.C D B A 调查结果扇形统计图E 25%40%12%15%调查结果条形统计图选项19. (9分)如图,AB 是⊙O 的直径,DO ⊥AB 于点O ,连接DA 交⊙O 于点C ,过点C 作⊙O 的切线交DO 于点E ,连接BC 交DO 于点F . (1)求证:CE =EF ;(2)连接AF 并延长,交⊙O 于点G .填空:①当∠D 的度数为_________时,四边形ECFG 为菱形; ②当∠D 的度数为_________时,四边形ECOG 为正方形.20. (9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自已的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A ,B 两点间的距离为90 cm .低杠上点C 到直线AB 的距离CE 的长为155 cm ,高杠上点D 到直线AB 的距离DF 的长为234 cm ,已知低杠的支架AC 与直线AB 的夹角∠BBACAE 为82.4°,高杠的支架BD 与直线AB 的夹角∠DBF 为80.3°.求高、低杠间的水平距离CH 的长. (结果精确到1cm .参考数据:sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21. (10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之间满足一次函数关系.关于销售单价、日销售量、日销售利润的几组对应值如下表:注:日销售利润=日销售量×(销售单价-成本单价)A B CEFDH(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是_______元.当销售单价x=_______元时,日销售利润w 最大,最大值是_________元;(3)公司计划开展科技创新,以降低该产品的成本.预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①ACBD的值为_____________;②∠AMB的度数为_____________.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD =30°,连接AC 交BD 的延长线于点M .请判断AC BD的值及∠AMB 的度数,并说明理由. (3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M .若OD =1,OBC 与点M 重合时AC 的长.图1 图2 备用图23. (11分)如图,抛物线y =ax 2+6x +c 交x 轴于A ,B 两点,交y 轴于点C .直线y =x -5经过点B ,C .(1)求抛物线的解析式.(2)过点A 的直线交直线BC 于点M . ①当AM ⊥BC 时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标; ②连接AC ,当直线AM 与直线BC 的夹角等于∠ACB 的2倍时,请直接写出点M 的坐标.MOD CBAM DCO BAOA B备用图备用图。