SPSS联合分析
利用spss对某个班成绩的多元统计分析.doc
对一所重点学校某个班成绩的综合分析摘要随着社会竞争的越来越激烈,家长和老师对于学生成绩的态度愈加重视,对于学生将来的发展与前途也同样感到一丝忧虑,因此及时公布学生的学习成绩并且能够增其长补其短对于学生将会有很大的帮助。
本文利用某所重点学校某个班的成绩单来分析这个班学生成绩的优劣,以达到取长补短的目的,主要应用了SPSS软件对成绩进行了综合性的分析。
关键词:综合分析;SPSS软件;成绩目录1.对应分析的概述 (1)2.聚类分析的概述 (3)2.1聚类分析的定义 (3)2.2聚类的方法分类 (3)2.3系统聚类法的基本步骤 (3)3.判别分析的概述 (4)3.1判别分析的基本思想 (4)3.2判别分析与聚类分析的关系 (4)4.在SPSS软件上的操作步骤 (5)4.1对应分析的操作步骤 (5)4.2聚类分析与判别分析的操作步骤 (6)5.结果分析 (7)5.1对应表 (7)5.2汇总 (7)5.3概述行点和概述列点 (8)5.6 特征值 (11)5.7 显著性检验 (11)5.8 标准化典型判别式函数系数 (11)5.9 结构矩阵 (12)5.10 群组重心的函数 (12)5.11 分类函数系数 (13)6.结论 (14)7.对创新的认识 (15)参考文献 (16)附录 (17)1.对应分析的概述对应分析(correspondence analysis )又称为相应分析,是一种目的在于揭示变量和样品之间或者定性变量资料中变量与其类别之间的相互关系的多元统计分析方法。
根据分析资料的类型不同,对应分析分为定性资料(分类资料)的对应分析和连续性资料的对应分析(基于均数的对应分析)。
其中,根据分析变量个数的多少,定性资料的对应分析又分为简单对应分析和多重对应分析。
对两个分类变量进行的对应分析称为简单对应分析,对两个以上的分类变量进行的对应分析称为多重对应分析。
对应分析实际是在R 型因子分析和Q 型因子分析的基础上发展起来的一种方法。
毕业论文SPSS联合分析怎么做?案例解析详解
联合分析1、作用联合分析是一种基于调查的统计技术,用于市场研究,有助于确定人们如何评估构成个别产品或服务的不同属性(特征,功能,效益),其目的是确定哪一种属性组合对受访者的选择或决策最有影响力。
2、输入输出描述输入:属性 X 为至少两项或以上的定类变量,属性组合得分 Y 要求为定量变量或有序定类变量。
输出:输出不同属性(特性、功能)相对重要性及最优属性组合。
3、案例示例案例:通过联合分析对几款饮料的属性(口味、价格、容器、品牌)进行评估,并确定哪一种属性组合更受欢迎。
4、案例数据联合分析案例数据联合分析需要数据为属性 X 为至少两项或以上的定类变量,属性组合得分 Y 要求为定量变量或有序定类变量,需要用特殊的问卷来进行问卷调查得到,问卷数据设计示例(单选题)如下:现有以下饮料 1,请对该饮品的喜好程度打分(1-9 分)口味:蓝莓价格:便宜品牌:不是容器:罐装现有以下饮料 2,请对该饮品的喜好程度打分(1-9 分)口味:巧克力价格:便宜品牌:是容器:罐装现有以下饮料 2,请对该饮品的喜好程度打分(1-9 分)......5、案例操作Step1:新建分析;Step2:上传数据;Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;Step4:选择【联合分析】;Step5:查看对应的数据数据格式,【联合分析】要求属性变量 X 为定类变量,且至少有两项;变量 Y 为定量变量,且只有一项;Step6:点击【开始分析】,完成全部操作。
6、输出结果分析输出结果 1:水平效用模型 ols 参数估计结果表图表说明:上表格展示了水平效用模型的最小二乘估计结果,包括模型的系数、标准误差、t值、P、R²、调整R²等,用于模型的检验。
结果分析:从上表分析可以得到,模型的显著性 p 值为 0.000,在α=0.05 的水平上呈现显著性,拒绝了回归系数为 0 的原假设,同时模型的拟合优度 R²为0.446,模型表现一般,因此模型基本满足要求,可以根据回归系数继续求效用值。
联合分析
联合分析及案例应用结合分析联合分析又称结合分析(conjoint analysis)是一种有效的市场研究技术,近年来广泛应用于消费品、工业产品和商业服务等相关领域的市场研究中,尤其是在新产品开发、市场占有率分析、竞争分析、市场细分和价格策略等方面,结合分析在我国也越来越受到市场研究公司和企业的重视,本文试图通过对一个新产品开发案例的分析,来阐述结合分析在产品概念测试中的应用。
一、结合分析的基本概念结合分析适用于测量消费者的心理判断,如理解(perceptions)和偏好(preferences),在结合分析中,产品/服务被描述为“轮廓”(profiles),每一个轮廓是由能描述产品/服务重要特征的属性(attributes)以及赋予每一个属性的不同水平的组合构成的,结合分析的一个重要的基本假定是:消费者是根据构成产品/服务的多个属性来进行理解和做偏好判断;在消费者对轮廓的评价结果的基础上,经过分解的方法去估计其偏好结构,从而推算出消费者对该轮廓的多个属性及各属性水平的偏好得分(preference scores),在结合分析中用分值或效用来描述。
结合分析应用于产品概念测试,能够定量测量消费者对产品/服务的某个属性和某个属性水平的偏好或效用,可以用来寻找消费可接受的某种产品/服务的最佳属性及属性水平组合,这种组合最初可能并没有被消费绪所评价。
为了达到这样的目的,首先要估计不同属性水平的效用或分值,进一步计算出属性的相对重要性(attributes relative importance)和轮廓效用(profile utility),以便定量化地测量消费者的偏好。
二、结合分析的主要步骤1.确定产品或服务的属性与属性水平结合分析首先要对产品或服务的属性和属性水平进行识别,所确定产品或服务的属性和属性水平必须是显著影响消费者购买的因素。
一个典型的结合分析包含6-7个显著因素。
确定了产品属性之后,还应该确定这些属性恰当的水平,例如容量是MP3产品的一个属性,目前市场上的MP3的容量类型主要有:64M、128M和256M等,这些是容量属性的主要属性水平。
运用SPSS及AMOS进行中介效应分析
中介效应重要理论及操作务实一、中介效应概述中介效应是指变量间的影响关系(X→Y)不是直接的因果链关系而是通过一个或一个以上变量(M)的间接影响产生的,此时我们称M为中介变量,而X通过M对Y产生的的间接影响称为中介效应。
中介效应是间接效应的一种,模型中在只有一个中介变量的情况下,中介效应等于间接效应;当中介变量不止一个的情况下,中介效应的不等于间接效应,此时间接效应可以是部分中介效应的和或所有中介效应的总和。
在心理学研究当中,变量间的关系很少是直接的,更常见的是间接影响,许多心理自变量可能要通过中介变量产生对因变量的影响,而这常常被研究者所忽视。
例如,大学生就业压力与择业行为之间的关系往往不是直接的,而更有可能存在如下关系:○1就业压力→个体压力应对→择业行为反应。
此时个体认知评价就成为了这一因果链当中的中介变量。
在实际研究当中,中介变量的提出需要理论依据或经验支持,以上述因果链为例,也完全有可能存在另外一些中介因果链如下:○2就业压力→个体择业期望→择业行为反应;○3就业压力→个体生涯规划→择业行为反应;因此,研究者可以更具自己的研究需要研究不同的中介关系。
当然在复杂中介模型中,中介变量往往不止一个,而且中介变量和调节变量也都有可能同时存在,导致同一个模型中即有中介效应又有调节效应,而此时对模型的检验也更复杂。
以最简单的三变量为例,假设所有的变量都已经中心化,则中介关系可以用回归方程表示如下:Y=cx+e11)M=ax+e22)Y=c’x+bM+e33)上述3个方程模型图及对应方程如下:二、中介效应检验方法中介效应的检验传统上有三种方法,分别是依次检验法、系数乘积项检验法和差异检验法,下面简要介绍下这三种方法:1.依次检验法(causual steps)。
依次检验法分别检验上述1)2)3)三个方程中的回归系数,程序如下:1.1首先检验方程1)y=cx+ e1,如果c显著(H:c=0被拒绝),则继续检验方程2),如果c不显著(说明X对Y无影响),则停止中介效应检验;1.2在c显著性检验通过后,继续检验方程2)M=ax+e2,如果a显著(H:a=0被拒绝),则继续检验方程3);如果a不显著,则停止检验;1.3在方程1)和2)都通过显著性检验后,检验方程3)即y=c’x + bM + e3,检验b的显著性,若b显著(H0:b=0被拒绝),则说明中介效应显著。
利用SPSS分析调查问卷数据
断其填写肯定有误 逻辑检查法 例 如:某消费者在前面说不知道某调味品后面却
说每天都在使用显然前后矛盾 计算审核法 例如:在家庭收支结构中家庭总收入远小于总支
出和储蓄之和那肯定有错
案例 错误的数据不如没有数据
国内一家知名的电视机生产企业2004年初设立了20多人的市 场研究部门开展了同样的调研问卷完全相同结构的抽样两 组数据结论却差异巨大正是因为这次调查部门被注销、人 员被全部裁减
其他功能
1、纵向追加记录/横向合并功能 2、数据一致性检验:双录入时
Epdidata教程
第三节 问卷资料的分析
一基础数据分析
• 通过频数分布、表列、图表对整理后的调查资料 进行一些基本的数据分析使之能清晰明了地反映 调查总体属性的分布态势和相互关系有助于后续 分析和预测
• 1. 频数分布
✓调查有关单个变量的信息 ✓了解对一个变量选择不同取值的调查对象的数量 ✓不同取值的出现频率以百分比形式展现
组的性质界限和数量界限也就确定了
2、组数和组距的确定
1组数和组距如何确定当全距确定时组距大则组数小组距小则组 数多如果分组过多组距必小则不易观察数列分布的规律性如果分 组过少组距必大会使组中值缺乏代表性各组组中值应对本组有良 好的代表性组距的确定一般可以请专家或以经验法确定组数一般 常分为10~15组
2答非所问的答案一旦发现应通过电话询问进行纠正 或按不详值对待;
3乏兴回答的错误如所有问题都选择同一固定编号答 案或者一笔带过若干个问题如这种乏兴回答仅属个别问卷 应彻底抛弃如这类回答的问卷有一定的数目且集中出现在 同一类问题群上应把这些问卷作为一个独立的子样本看待 在资料分析时给予适当的注意
数据分析方法大全SPSS数据分析方法详解
数据分析方法大全SPSS数据分析方法详解查看全部影响,利用历史数据进行统计分析,并对数据进行适当处理,进行趋势预测。
据报道,三个英国情报部门与亚马逊云科技签约,将其机密资料交由AWS托管。
ABC分析模型,不光可以用来划分产品和销售额,还可以划分客户及客户交易额等。
比如给企业贡献80%利润的客户是哪些,占比多少。
整体漏斗模型的核心思想其实可以归为分解和量化。
这是产品运营中比较常见的一个模型,结合产品本身的特点以及产品的生命周期位置,来关注不同的数据指标,最终制定不同的运营策略。
通过路径识别用户行为特征。
与其他分析模型配合进行深入分析后,能为找到快速用户动机,从而引领用户走向最优路径或者期望中的路径。
第三种月留存,以月度为单位的留存率,指的是每个月相对于第一个周的新增用户中,仍然还有登录的用户数。
留存率是针对新用户的,其结果是一个矩阵式半面报告,每个数据记录行是日期、列为对应的不同时间周期下的留存率。
正常情况下,留存率会随着时间周期的推移而逐渐降低。
通常,我们利用聚类分析将看似无序的对象进行分组、归类,以达到更好地理解研究对象的目的。
聚类结果要求组内对象相似性较高,组间对象相似影响 ,利用历史数据进行统计分析,并对数据进行适当处理,进行趋势预测。
数据分析的基本方法有哪些企服解答数据分析的基本方法有5种: 1、因素分析法:即对其中一指标的相关影响因素进行统计与分析。
2、比率分析法:即用相对数来表示不同项目的数据比率。
3、对比分析法:将其中一指标与选定的比较标准进行比较。
4、趋势分析法:对其中一指标进行连续多个周期的数据进行统计和分析(常用折线图)。
5、结构分析法:指对其中一项目的子项目占比进行统计和分析(常用饼图)。
相关信息谷歌拟26亿美元收购商业智能和数据分析公司Looker 36氪讯,2023年06月07日。
Alphabet旗下谷歌公司周四宣布,该公司计划以26亿美元的价格收购商业智能和数据分析公司Looker,支付方式为现金。
SPSS软件功能简介
SPSS 软件功能简介 2010年,业界领先的预测分析软件S PSS推出其旗舰统计分析软件S PSS S tatis tics的最新版本S PSS S tatis tics19.0。
新版本在原软件的基础上,融合了多项业界领先的统计分析技术,增加了新的功能模块,大大提高了简便性和个性化,进一步贴近用户需求。
SPS S统计分析软件是一款按照功能模块进行配置的软件产品,主要包括SPSSStati stics Base模块和其它一系列扩充功能模块,每个独立扩充功能模块均可在SP SS St atist ics B ase模块基础上,为其增加某方面的分析功能。
SP SS St atist ics 19.0全模块软件包括如下主要16个功能模块:SPS S Sta tisti cs Ba seS PSS A dvanc ed St atist icsS PSS B ootst rappi ngS PSS C atego riesSPSSCompl ex Sa mplesSPS S Con jointSPSS Cust om Ta blesSPSS Data Prep arati onSP SS De cisio n Tre esS PSS D irect Mark etingSPSS Exac t Tes tsS PSS F oreca stingSPSS Miss ing V aluesSPS S Neu ral N etwor ksSP SS Re gress ionSPSSProgr ammab ility Exte nsionSPSSStati stics 19.0全模块软件的16个功能模块的功能描述:SPSS Stat istic s Bas e必需的基础模块,管理整个软件平台,管理数据访问、数据处理和输出,并能进行很多种常见基本统计分析。
SPSS 软件功能简介
SPSS Data Preparation
利用SPSS Statistics Data Preparation,您可以获得多个简化数据准备过程的程序。这个附加模块使您能够在预处理数据时轻易地识别虚假的和无效观测、变量、和数据值;确认可疑的或者残缺的案例;查看数据缺失模式;描述变量分布以备分析;更准确地应用针对于分类变量的算法;还可以用为分类变量而设计的运算法则来做更多精确的工作。使用Data Preparation,可以迅速找到多元的极端值,执行数据检验,为建模预处理数据。
SPSS直观的图形化界面使您在制表的时候不需凭猜测进行操作,使用鼠标拖放的方式和预览的功能,使您能够在点击"OK"之前,对于将制成的表格结构了然于胸。使用交互界面制表非常简单容易。首先,你可以预览,并进行修改;其次,您能够分辨分类变量和连续变量,并立刻得到关于数据结构的信息;您甚至只需轻点鼠标即可更改变量类型。制表时,只需将您需要的变量拖放入表格预览窗口(Table preview builder),您不需要写复杂的语法,也不再需要与难用的对话框打交道。并且您可以轻松地将变量从行拖到列,以实现变量的精确定位。只要您做出改动,表格的结构立刻发生变化,呈现于您的面前,您能够立刻看到改动的效果。您可以直接在表格预览窗口对变量进行添加、交换或嵌套的操作,也可一隐藏统计量标签。您也可以在看到所有变量的前提下,将结构庞杂的表格变得更简练。
SPSS Categories
Categories是优秀的对应分析程序,用启发性的二维图和感知图让您清晰地看到数据中的关系,使您可以更完整和方便地分析数据。Categories提供非线性主成分分析来描述数据,并用图标清楚地展示数据中的关系,展示并分享动态、交互的分析结果,让您从分类数据中得到更丰富的信息。使用Categories,您可以从大量变量或二维及多维表格中了解重要讯息。通过类似传统的回归分析、主成份分析及典型相关分析,帮您处理和了解顺序及名义数据可视化地探索您的多变量分类数据。
用SPSS进行列联表分析(Crosstabs)实例
用SPSS进行列联表分析(Crosstabs)实例列联表分析(Crosstabs)列联表是指两个或多个分类变量各水平的频数分布表,又称频数交叉表。
SPSS的Crosstabs过程,为二维或高维列联表分析提供了22种检验和相关性度量方法。
其中卡方检验是分析列联表资料常用的假设检验方法。
例子:山东烟台地区病虫测报站预测一代玉米螟卵高峰期。
预报发生期y为3级(1级为6月20日前,2级为6月21-25日,3级为6月25日后);预报因子5月份平均气温x1(℃)分为3级(1级为16.5℃以下,2级为16.6-17.8℃,3级为17.8℃以上),6月上旬平均气温x2(℃)分为3级(1级为20℃以下,2级为20.1-21.5℃,3级为21.5℃以上),6月上旬降雨量x3(mm)分为3级(1级为15mm以下,2级为15.1-30mm,3级为30mm以上),6月中旬降雨量x4(mm)分为3级(1级为29mm以下,2级为29.1-36mm,3级为36mm以上)。
数据如下表。
注:摘自《农业病虫统计测报》131页。
1) 输入分析数据在数据编辑器窗口打开“data1-3.sav”数据文件。
数据文件中变量格式如下:2)调用分析过程在菜单选中“Analyze-Descriptive- Crosstabs”命令,弹出列联表分析对话框,如下图3)设置分析变量选择行变量:将“五月气温[x1],六月上气温[x2],六月上降雨[x3],六月中降雨[x4]”变量选入“Rows:”行变量框中。
选择列变量:将“玉米螟卵高峰发生期[y]”变量选入“Columns:”列变量框中。
4)输出条形图和频数分布表Display clustered bar charts: 选中显示复式条形图。
Suppress table: 选中则不输出多维频数分布表。
5)统计量输出点击“Statistics”按钮,弹出统计分析对话框(如下图)。
Chi-Square: 卡方检验。
SPSS名词解释
SPSS(统计)名词解释2007-11-13 16:29:16| 分类:学习| 标签:|举报|字号大中小订阅Absolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA (analysis of variance), 方差分析ANOVA Models, 方差分析模型Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical computer programs), BMDP 统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Column, 列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table, 组合表Common factor, 共性因子Common regression coefficient, 公共回归系数Common value, 共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability, 可比性Comparison of bathes, 批比较Comparison value, 比较值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association, 完全正相关Complete dissociation, 完全不相关Complete statistics, 完备统计量Completely randomized design, 完全随机化设计Composite event, 联合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 联合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table, 列联表Contour, 边界线Contribution rate, 贡献率Control, 对照Controlled experiments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation index, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 交叉表Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反应曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribution, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan新法Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式距离Event, 事件Event, 事件Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析Explore Summarize, 探索-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩充拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 通用线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function, 分布函数Joint probability, 联合概率Joint probability distribution, 联合概率分布K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显著差法Least square method, 最小二乘法Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level, 水平Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group, 组内均方Means (Compare means), 均值-均值比较Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量Minimum distance estimation, 最小距离估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration, 最有利构形Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual exclusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal ranges, 正常范围Normal value, 正常值Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance, 单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Partial correlation, 偏相关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 模式Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的计划卡Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk, 人群归因危险度Positive correlation, 正相关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in stratified random sampling, 按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-expression, 重新表达Reference set, 标准组Region of acceptance, 接受域Regression coefficient, 回归系数Regression sum of square, 回归平方和Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R估计量Retrospective study, 回顾性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素RXC table, RXC表Sample, 样本Sample regression coefficient, 样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis system ), SAS统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 结构化方程模型Semi-logarithmic graph, 半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significance test, 显著性检验Significant figure, 有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression, 简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差别的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法Tuning constant, 细调常数Two sided test, 双向检验Two-stage least squares, 二阶最小平方Two-stage sampling, 二阶段抽样Two-tailed test, 双侧检验Two-way analysis of variance, 双因素方差分析Two-way table, 双向表Type I error, 一类错误/α错误Type II error, 二类错误/β错误UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计Unit, 单元Unordered categories, 无序分类Upper limit, 上限Upward rank, 升秩Vague concept, 模糊概念Validity, 有效性VARCOMP (Variance component estimation), 方差元素估计Variability, 变异性Variable, 变量Variance, 方差Variation, 变异Varimax orthogonal rotation, 方差最大正交旋转Volume of distribution, 容积W test, W检验Weibull distribution, 威布尔分布Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran检验Weighted linear regression method, 加权直线回归Weighted mean, 加权平均数Weighted mean square, 加权平均方差Weighted sum of square, 加权平方和Weighting coefficient, 权重系数标准Weighting method, 加权法W-estimation, W估计量W-estimation of location, 位置W估计量Width, 宽度Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验Wild point, 野点/狂点Wild value, 野值/狂值Winsorized mean, 缩尾均值Withdraw, 失访Youden's index, 尤登指数Z test, Z检验Zero correlation, 零相关Z-transformation, Z变换文案。
如何用SPSS做联合分析
如何⽤SPSS做联合分析如果产品的描述是由⼏个属性特征决定的,⽐如说mp3的⾳质、外形、容量、价格等等,商家为了确定哪个属性对消费者的影响最⼤,以及预测什么样的属性组合最受消费者的欢迎,选择的办法应该就是联合分析了。
事实上从抽样调查的⾓度来看,⾼质量和低价格的组合是消费者的最爱,但是这对商家⽽⾔,这没有任何意义。
在中分成三个阶段,转载⼀个例⼦,帮助⾃⼰学习。
(1)ORTHOPLAN(正交设计),属性特征的所有组合产品是⾮常多的,所以应该通过正交设计进⾏筛选。
以下是使⽤SPSS进⾏正交设计的程序及得出的⼀个正交设计⽅案:*正交设计.ORTHOPLAN/FACTORS=price '价格'( 1 '1000元' 2 '1500元' 3 '2000元') capacity '容量' ( 1 '64M' 2 '128M' 3 '256M') tonality '⾳质' ( 1 '差' 2 '⼀般' 3 '好') fashion '外形' ( 1 '守旧' 2 '⼀般' 3 '时尚')/OUTFILE='D:tempmp3plan.sav'.以上程序在SPSS中也可通过窗⼝实现,执⾏该SPSS程序,data->orthogonal design->generate得出正交设计的结果,如下表:MP3产品价格容量⾳质外形A 2000 128M 好守旧B 2000 256M 差⼀般C 1500 64M 好⼀般D 1500 256M ⼀般守旧E 1500 128M 差时尚F 1000 256M 好时尚G 1000 64M 差守旧H 2000 64M ⼀般时尚I 1000 128M ⼀般⼀般(2)PLANCARD(⽣成模拟产品的卡⽚)对于上⾯正交设计产⽣的9个种模拟产品,被调查者需要对每⼀个模拟产品的偏好进⾏评价,在实际调查过程中是将每个模拟产品的属性特征打印在⼀张卡⽚上,使⽤语句可以⼀次性⽣成所有模拟产品的卡⽚,提⾼了制作卡⽚的效率。
第七章 SPSS的相关分析
单因素方差分析
当一个变量为定类变量,另一变量为定距 变量时,两变量间是否有关,通常以分组 平均数比较的方法来考察。即按照定类变 量的不同取值来分组,看每个分组的定距 变量的平均数是否有差异。不同组间的平 均数差异越小,两个变量间的关系越弱; 相反,平均数差异越大,变量间关系越强。
单因素方差分析的基本步骤
最后,对不同看法进行分析。如果显著性 水平设为0.05,则概率值小于0.05,拒绝原 假设,认为本市户口和外地户口对未来三 年是否打算买房的看法是不一致的。
在列联表中,这一定理就具体转化为:若 两变量无关,则两变量中条件概率应等于 各自边缘的概率乘积。反之,则两变量有 关,或称两变量不独立。
由此可见,期望值(独立模型)与观察值 的差距越大,说明两变量越不独立,也就 越有相关。因此,卡方的表达式如下:
X
2
j i
( O ij E ij ) 2 E ij
第七章
相关分析与检验
主要内容
方差分析回顾 相关分析的概念
列联分析
简单相关分析
偏相关分析
方差分析回顾
概念:方差分析是从因变量的方差入手,研究诸 多自变量中哪些变量是对因变量有显著影响的变 量,对因变量有显著影响的各个自变量其不同水 平以及各水平的交互搭配是如何影响因变量的。 方差分析认为因变量的变化受两类因素的影响: 第一,自变量不同水平所产生的影响; 第二,随机变量所产生的影响。这里的随机变量指 那些人为很难控制的因素,主要指试验过程中的 抽样误差。
卡方的取值在0~∞之间。卡方值越大,关 联性越强。在SPSS中,有Pearson X2和 相似比卡方(Likelihood Ratio X2 )两种。
联合分析原理实例市场研究工具之联合分析原理及实例说明
市场研究工具之联合分析原理及实例说明市场研究中一个经常遇到的问题是:在研究的产品或服务中,具有哪些特征的产品最能得到消费者的欢迎。
一件产品通常拥有许多特征如价格、颜色、款式以及产品的特有功能等,那么在这些特性之中,每个特性对消费者的重要程度如何?在同样的(机会)成本下,产品具有哪些特性最能赢得消费者的满意?要解决这类问题,传统的市场研究方法往往只能作定性研究,而难以作出定量的回答。
联合分析(Conjoint Analysis,也译为交互分析)就是针对这些需要而产生的一种市场分析方法。
一、联合分析的基本原理与步骤联合分析是通过假定产品具有某些特征,对现实产品进行模拟,然后让消费者根据自己的喜好对这些虚拟产品进行评价,并采用数理统计方法将这些特性与特征水平的效用分离,从而对每一特征以及特征水平的重要程度作出量化评价的方法。
联合分析的基本假定联合分析假定分析的对象如品牌、产品、商店等,是由一系列的基本特征(如:质量、方便程度、价格)以及产品的专有特征(如电脑的CPU速度、硬盘容量等)所组成的;消费者的抉择过程是理性地考虑这些特征而进行的。
联合分析的主要步骤联合分析通常由以下几部分组成:1.确定产品特征与特征水平:联合分析首先要对产品或服务的特征进行识别。
这些特征与特征水平必须是显著影响消费者购买的因素。
一个典型的联合分析包含6-7个显著因素。
确定了特征之后,还应该确定这些特征恰当的水平,例如CPU类型是电脑产品的一个特征,而目前市场上电脑的CPU类型主要有:奔腾II 450,奔腾II350,赛扬300等,这些是CPU特征的主要特征水平。
特征与特征水平的个数决定了分析过程中要进行估计的参数的个数。
2.产品模拟:联合分析将产品的所有特征与特征水平通盘考虑,并采用正交设计的方法将这些特征与特征水平进行组合,生成一系列虚拟产品。
在实际应用中,通常每一种虚拟产品被分别描述在一卡片上。
3.数据收集:请受访者对虚拟产品进行评价,通过打分、排序等方法调查受访者对虚拟产品的喜好、购买的可能性等。
联合分析
市场研究的利器-联合分析向采发市场研究中一个经常遇到的问题是:在研究的产品或服务中,具有哪些特征的产品最能得到消费者的欢迎。
一件产品通常拥有许多特征如价格、颜色、款式以及产品的特有功能等,那么在这些特性之中,每个特性对消费者的重要程度如何?在同样的(机会)成本下,产品具有哪些特性最能赢得消费者的满意?要解决这类问题,传统的市场研究方法往往只能作定性研究,而难以作出定量的回答。
联合分析(Conjoint Analysis,也译为交互分析)就是针对这些需要而产生的一种市场分析方法。
一、联合分析的基本原理与步骤联合分析是通过假定产品具有某些特征,对现实产品进行模拟,然后让消费者根据自己的喜好对这些虚拟产品进行评价,并采用数理统计方法将这些特性与特征水平的效用分离,从而对每一特征以及特征水平的重要程度作出量化评价的方法。
联合分析的基本假定联合分析假定分析的对象如品牌、产品、商店等,是由一系列的基本特征(如:质量、方便程度、价格)以及产品的专有特征(如电脑的CPU速度、硬盘容量等)所组成的;消费者的抉择过程是理性地考虑这些特征而进行的。
联合分析的主要步骤联合分析通常由以下几部分组成:确定产品特征与特征水平:联合分析首先要对产品或服务的特征进行识别。
这些特征与特征水平必须是显著影响消费者购买的因素。
一个典型的联合分析包含6-7个显著因素。
确定了特征之后,还应该确定这些特征恰当的水平,例如CPU类型是电脑产品的一个特征,而目前市场上电脑的CPU 类型主要有:奔腾II 450,奔腾II350,赛扬300等,这些是CPU特征的主要特征水平。
特征与特征水平的个数决定了分析过程中要进行估计的参数的个数。
产品模拟:联合分析将产品的所有特征与特征水平通盘考虑,并采用正交设计的方法将这些特征与特征水平进行组合,生成一系列虚拟产品。
在实际应用中,通常每一种虚拟产品被分别描述在一卡片上。
数据收集:请受访者对虚拟产品进行评价,通过打分、排序等方法调查受访者对虚拟产品的喜好、购买的可能性等。
spss的数据分析案例
精心整理关于某公司474名职工综合状况的统计分析报告一、数据介绍:本次分析的数据为某公司474名职工状况统计表,其中共包含^一变量,分别是:id (职工编号),gender(性别),bdate(出生日期),edcu (受教育水平程度),jobcat (职务等级),salbegin (起始工资),salary (现工资),jobtime(本单位工作经历<月>),prevexp(以前工作经历<月>),minority(民族类型),age(年龄)<通过运用spss统计软件,对变量进行频数分析、描述性统计、方差分析、相关分析、I ■以了解该公司职工上述方面的综合状况,并分析个变量的分布特点及相互间的关系。
二、数据分析■■ ] I ■.1、频数分析。
基本的统计分析往往从频数分析开始。
通过频数分析能够了解变量的取值状况,对把握数据的分布特征非常有用。
此次分析利用了某公司474名职工基本状况的统计数据表,在gender(性别)、edcu (受教育水平程度)、不同的状况下的频数分析,从而了解该公司职工的男女职工数量、受教育状况的基本分布。
精心整理上表说明,在该公司的474名职工中,有216名女性,258名男性,男女比例分别为45.6%和54.4%,该公司职工男女数量差距不大,男性略多于女性。
/ 「’--了/其次对原有数据中的受教育程度进行频数分析,结果如下表:Educati on alLevel(years).4 .4 99.8 20 2上表及其直方图说I I明,被调查的474名职工中,受过12年教育的职工是该组频数最高的,为190人,占 总人数的40.1%,其次为15年,共有116人,占中人数的24.5%。
且接受过高于20年的 教育的人数只有1人,比例很低。
2、描述统计分析。
再通过简单的频数统计分析了解了职工在性别和受教育水平• J ' P t ,- J上的总体分布状况后,我们还需要对数据中的其他变量特征有更为精确的认识, 这就需要通过计算基本描述统计的方法来实现。
SPSS教程CH15 联合分析
例如對受詴者甲而言,價格層級$0.55及濕的形式 所產生的效用,應大於這些屬性層級的任何組合所 產生的效用。
取捨矩陣法曾風光一時,受到許多研究者的喜 愛,但是近年來在應用研究上漸漸式微。在於 設計的簡便(相對於完全輪廓法而言)。研究 者只要準備好各種屬性的配對就可以了。
消費者在做品牌選擇,很少會歷經這麼結構化 的、抽象的過程。相反的,他(她)會同時考 慮能夠看到的所有屬性,並從這些可能的組合 中做選擇。這種方法就是完全輪廓法的特色。
在進行聯合分析時,最基本的問題是決 定要選用哪一種方法 取捨矩陣法(tradeoff matrix)、 完全輪廓法(full profile)、 適應式程序法(adaptive procedure) 來蒐集資料。
取捨矩陣法(tradeoff matrix)
取捨矩陣法是向受詴者呈現代表著各種可能的屬性 配對的矩陣;X軸代表著某一屬性的各種層級,Y軸 代表著另一個屬性的各種層級。 這種組合共有 n(n-1) 種 ,其中一種如下:
重複以上的程序,將其他的因素(品牌 、價格、認可、退錢)陸續鍵入, 如圖15-4所示。
圖15-4 定義形式、品牌、價格、認可、退錢的
我們定義的 因素名稱、因素註解、資料值、資料註解如下:
設計完成,按〔OK〕,就會產生圖15-5的結 果說明。在圖15-5中, 「A plan wassuccessfully generated with 16 cards」就是說「成功的建立了具有16張卡片 的方案」。這裡的方案就是輪廓,而每一張卡 片就是每一個情境。總共有16種情境。
因此所建立的模式及變數名稱如下表所示:
圖15-8顯示了SPSS建檔格式(變數名稱)
spss的数据分析报告范文 (2)优选全文
下载温馨提示:该文档是学者精心编制而成,希望能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,我们为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!spss的数据分析报告范文二、数据分析1、频数分析。
基本的统计分析往往从频数分析开始。
通过频数分析能够了解变量的取值状况,对把握数据的分布特征非常有用。
此次分析利用了某公司474名职工基本状况的统计数据表,在gender(性别)、edcu(受教育水平程度)、不同的状况下的频数分析,从而了解该公司职工的男女职工数量、受教育状况的基本分布。
StatiticGenderEducationalLevel(year)NValid474474Miing00首先,对该公司的男女性别分布进行频数分析,结果如下:GenderFrequencyPercentValidPercentCumulativePercentValidFe male21645.645.645.6Male25854.454.4100.0Total474100.0100.0上表,在该公司的474名职工中,有216名女性,258名男性,男女比例分别为45.6%和54.4%,该公司职工男女数量差距不大,男性略多于女性。
其次对原有数据中的受教育程度进行频数分析,结果如下表:EducationalLevel(year)FrequencyPercentValidPercentCumulati vePercentValid85311.211.211.21219040.140.151.31461.31.352.515116 24.524.577.0165912.412.489.517112.32.391.81891.91.993.719275.75. 799.4202.4.499.8211.2.2100.0Total474100.0100.0上表及其直方图说明,被调查的474名职工中,受过12年教育的职工是该组频数最高的,为190人,占总人数的40.1%,其次为15年,共有116人,占中人数的24.5%。
SPSS数据统计与分析标准教程对数线性分析
第10章对数线性分析对数线性分析是一种分析多品质型变量之间关系的一种统计分析方法,一般适用于离散数据或整理成列联表形式的数据分析。
此时,它是以多维交叉列联表中的对数频数作为因变量进行研究,并运用卡方检验、多元素检验和多元线性回归等检验方法,对频数的变化成因和拟合变化规律等进行分析。
在本章中,将以SPSS分析软件为基本思路,详细介绍对数线性的基础原理和分析操作方法。
本章学习目标:常规模型Logit模型模型选择对数线性是将频数作为对数后分解成主效应和因素之间的交互效应,以用来反映各变量之间的关联性。
在使用SPSS 软件分析之前,还需要先了解一下对数线性分析的基本原理。
在实际分析过程中,经常会使用列联表来反映变量之间的联合分布。
当列联表中只存在两个变量时,被称为二维列联表;而当列联表中存在3个或多个变量时,被称为多维列联表。
列联表中的频数分布会受到主效应和交互效应的影响,其中:“ 主效应 用于反映因素自身效应的一种效应,在二维列联表中存在两个主效应。
“ 交互效应 用于反映各因素之间的关联性,在二维列联表中存在一个主效应。
在一般的二维列联表中进行分析时,系统会自动分析两个变量之间的关系,并直接显示相应的主效应和交互效应。
而当列联表中存在多个变量时,上述分析方法则无法明确地显示多个变量之间的关系,就算每次分析两个变量之间的关系,并经过多次两两交互的分析方法获得拼接后的多变量间复杂的分析关系,也无法显示联合交互效应。
此时,可以通过Logit 模型,解决二维列联表无法分析多维列联表变量的问题,从而可以有效地显示多维列联表中的变量关系。
在对数线性的饱和模型中,主效应的大小表示变量对期望频数的贡献,分析其主效应的大小无法反映变量之间的关系,只能通过分析交互效应才可以反映变量之间的关系。
假设分析数据中存在A 、B 、C 变量,基于这3个变量的饱和对数线性模型的表现公式为:ln AB CABBC ABCijk i j k ij jk ijkm λλλλλλλ=++++++公式中的m 表示期望频数;A i λ、B j λ和C k λ表示主效应;AB ij λ和BC jk λ表示二维交互效应;ABCijk λ表示三维交互效应。
联合分析法下患者就医偏好研究以及对分级诊疗制度的启示
联合分析法下患者就医偏好研究以及对分级诊疗制度的启示目的研究患者的就医偏好,为合理引导患者就医,完善分级诊疗制度提供建议。
方法运用联合分析法设计问卷,于2017年2月13日~3月3日随机对郑州市第一人民医院、河南省人民医院等6家医疗机构194例门诊患者进行问卷调查,运用SPSS 19.0对数据进行联合分析。
结果联合分析结果显示,患者对医疗服务质量最敏感,其次为医疗机构水平。
患者对综合医院、等候30 min、服务质量好、费用120元、报销比例85%的模拟组合效用值最高。
结论患者对于社区卫生机构的信任度较低,就医盲目性仍然存在,差异化的医保政策对患者激励作用不大;建议从社区卫生机构建设、宣传教育、医保机制等方面完善分级诊疗制度。
[Abstract] Objective To study the patients′ preferences,provide suggestions on guiding patients for medical treatment reasonably and perfecting graded medical treatment. Methods From February 13th to March 3rd,2017,a questionnaire was designed by conjoint analysis,in order to conduct the questionnaire survey on 194 patients totally,who were from the First People′s Hospital of Zhengzhou,He′nan Provincial People′s Hospital and others total of 6 medical institutions. Conjoint analysis of data was conducted by SPSS 19.0. Results The results of conjoint analysis showed the patients were sensitive to the quality of care mostly,followed by the level of medical institutions. The patients got the highest utility value based on the analog combination,which included general hospital,just waiting for 30 min,good service quality,cost of 120 RMB and 85% reimbursement rate. Conclusion At present,patients have lower confidence in community health institutions. Patients need to improve blindness in medical treatment. Differentiated health care policy has little incentive for patients. As a result,it is suggested that graded medical treatment should be improved from the aspects of the community hospital development,health education and medical institutions,etc..[Key words] Conjoint analysis;Medical preference;Graded medical treatment;Community health institution總量不足、结构不合理、分布不均衡、医疗资源的配置不合理导致基层人民群众就医难现象长期存在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均排序 與整體排序差额
3.5
-1.0
5.5
+1.0
2.5
-2.0
6.5
+2.0
4.0
-0.5
5.0
+0.5
5. 数据转换。考察喜好程度排序数与实际喜好 程度的对应关系,当序数越小,喜好程度越高 时,将上述计算出来的与整体排序差额数的符 号反转过来。譬如:在这个案例当中,愈小的 数字代表愈高的排序,所以要将正负符号反转, 让偏好程度愈高之属性水平其与整体排序差额 为正,而偏好程度愈低的属性水平其与整体排 序差额为负。
3.同样的方法计算所有属性水平的排序 平均数与整体排序平均数的差额
4. 将上述计算结果列表(原始排序 差额表)
因素 品牌 外送 得來速水準源自麦当劳 肯德基有 无 有 无
排序 1, 2, 5, 6 3, 4, 7, 8 1, 2, 3, 4 5, 6, 7, 8 1, 3, 5, 7 2, 4, 6, 8
8标准後 差额
+0.571 -0.571 +2.284 -2.284 +0.143 -0.143
9估計成 分效用值
+0.756 -0.756 +1.511 -1.511 +0.378 -0.378
效用值 全距 1.512
3.022
0.756 5.290
特性 重要性 28.6%
57.1%
14.3% 100%
b1=24.03 b4=29.60 a11+a12=0 a21+a22=0 a31+a32=0 a41+a42=0
b2=37.61 b5=0.97 a11=-a12=b1/2=12.015 a21=-a22=b2/2=18.905 a31=-a32=b3/2=10.765 a41=-a42=b4/2=14.80
• 调查方案二:不告知产品价格,请被调 查者从一系列价格中为每一种产品(卡 片)选择一个可接受价格。(此时属性 的效用等于价值贡献)
• 方案一,可考察网上每个属性的偏好贡 献是否有变化,以及变化程度。
• 方案二,可考察网上每个属性的价值贡 献是否有变化,以及变化程度。
• 为了排除网上网下两次调查的相互影响, 调查的时间间隔适当拉长。也可考虑, 对照组先进行网下调查,隔一段时间以 后再对其作网上调查。
对应的调查记录文件
ID相同的统一认定 为同一顾客群体, 进入同一模型。
/subject=ID /score=r1 to r15
评分从1-15,由调查者设计
四、结果解释
只加入了3个模拟卡片, 市场份额基本评分。
第三号被调查对象就 属性“warranty”的效 用变化。
总体而言,消费者最关注的是warranty和 seats,其次是speed,price的重要性最低。
6. 计算序列的方差。转换化后的差额平方和。求得10.5 7.计算差额数据标准化系数值。(序列方差除以总方差。)
用产品特性水平总数除以转换化后的差额平方加总。本 例中,10.5 ÷6 (3×2)求得0.571 8. 计算序列的标准化差额值。将差额平方乘以标准化系数。 本例中以0.571的所得数额 9.计算成分效用价值。直接用标准化序列差额值开平方根 即可求得估计成分效用值。
以布艺沙发为例,属性水平如下: 颜色:咖啡色、白色带隐条纹,…,5个 扶手式样:竖立短扶手,斜坡满扶手 坐垫式样:厚、中厚、薄 布面质感:平板布、平绒布、毛线编织、 亚麻编织 尺寸:长X宽X高=XXXXX,……,
被调查对象先接受在线 调查,然后被邀请到店 铺门面实地考察后调查。
• 调查方案一:告知本系列产品价格一致, 以排除价格因素影响。 请按照偏好程度 排列卡片。(此时,属性的效用等于偏 好贡献)
SPSS下的Conjoint 分析
一、属性重要性计算
(一)metric直接评分制
1,求解带虚拟变量的回归方程
Y = 116 + 24*X1 + 38*X2 + 22*X3 + 30*X4 - 0.97*X5
2,计算每个属性贡献的效用
b0=116.42 b3=21.53 a11-a12=b1 a21-a22=b2 a31-a32=b3 a41-a42=b4
有
有
1
1
2
麦当劳
有
无
2
2
3
麦当劳
无
有
5
3
4
麦当劳
无
无
6
4
5
肯德基
有
有
3
7
6
肯德基
有
无
4
5
7
肯德基
无
有
7
8
8
肯德基
无
无
8
6
求解”提供外送服务”的属性重要 性
1.首先我们必须求得”提供外送服务” 的排序加总平均数 (1+2+3+4)/ 4 = 2.5,
2. 计算该属性水平的排序平均数与整体 排序平均数 (1+2+3+4+5+6+7+8) / 8=4.5的差额 -2(2.5-4.5)
more)seats(discrete)price(linear)speed(discrete) /subject=ID /score=r1 to r15 /print all /plot all .
执行按run〉〉all
对应的卡片设计文件
0代表设计卡片,1代表检查卡 片(不参与分析,仅用于检查模 型质量 ),2代表模拟卡片,用 来了解市场份额分配的所有卡片 均应体现出来。
所有变量均可以由程序 员自己命名。但status_ 和card_除外
程序范例1:
conjoint plan='F:\My Documents\联合分析\carselect.sav' /data='F:\My Documents\联合分析\carselectrecord.sav' /factors=warranty(discrete
• 10. 计算效用函数全距 • 11. 计算属性的相对重要性
以 1 号填答者的答題分数求得成分效用值及特性重要性
特性 水準
品牌
麦当劳 肯德基
有 外送
无
有 得來速
无
合计
6(总水 平数)
5转换后 排序差额
+1.0 -1.0 +2.0 -2.0 +0.5 -0.5
6差额平方
1 1 4 4 0.25 0.25 10.5
二、市场份额计算
以一个被调查顾客,多个产 品选择(即多张模拟卡片) 为例,先用模型预测他就每 个模拟卡片i的得分。
1. 最大效用法:比较他在所有模拟卡片上的得分,按 照他将选择得分最高的卡片购买产品的原则,求出该
卡片i被购买的概率。根据每个卡片被选择的人数与
总调查人数的比例求出该卡片的市场份额
2. BTL法:某卡片产品被该顾客购买的 概率等于该顾客在本卡片的得分估计除 以他在所有卡片得分估计的总和。卡片 对所有被调查顾客的平均被购买概率即 为该产品的市场份额。
3. Logit法:某卡片产品被该顾客购买的 概率等于该顾客在本卡片得分估计的自 然幂函数除以他在所有卡片得分估计的 自然幂函数之和。卡片对所有被调查顾 客的平均被购买概率即为该产品的市场 份额。
三、编程与数据文件准备
• Spss〉〉file〉〉new〉〉syntax • 编写conjoint分析程序 • New〉〉data设计卡片文件和调查结果
价格
警铃
车门锁
遥控
12.9%
行李箱 开关
属性相对重要性图
(二) Metric排序名次制
等候時間 产品价格
五分钟以內 五至十分钟 十分钟以上
NT 50
1
3
7
NT 60
2
4
8
NT 70
5
6
9
产品特性組合及填答者排序結果
产品特性組合
填答者偏好排序
产品品牌
外送
得來速
1 号填答者 2号号填答 者
1
麦当劳
• 如果有一个家具店打算开设一家网上店, 希望以沙发为例了解消费者是否存在网上 网下就选择沙发问题是否行为一致,从而 进一步论证开设网上店的可行性方案。他 们的基本假设是:如果消费者网上网下行 为一致,那么对每个属性的偏好程度、以 及这种偏好程度所反映的效用是一致的, 同时,偏好得分是反映可接受价格水平的 指标。
– 对于连续变量而言,要注意与其他属性的量纲的统一
I5=0.97*(max(X5,obs)min(X5,obs))=0.97*75=72.75
• 4,计算属性的相对重要性
Wi=100% * Ii/(I1+I2+I3+I4+I5) i=1,2,3,4,5
– W1=24.03/185.51= 12.94%
116.42 24.03 37.61 21.53 29.60 -0.97
• 3,计算效用函数的全局部
Ii =abs(max(aij)-min(aij)) I1=a11-a12=12.015-(-12.015)=b1
I2=a21-a22=b2
I3=a31-a32=b3 b4
I4=abs(a41-a42)=-
文件 • 程序结构如下:
卡片文件(可以 不通过正交产生)
调查结果文件
Sequence表示调查数据系按照被调查者排序后的 卡片编号从小到大依次排列编号。Rank 表示数据 按照卡片设计顺序记录被调查者给定秩次。 Score表示数据顺序记录被访者对卡片的评分。
More代表值越大越受消费者喜欢, less代表值越小越受消费者喜欢。