中考数学基础知识测试
九年级数学中考一轮复习知识点基础达标测评:相交线与平行线(附答案)
2021年九年级数学中考一轮复习知识点基础达标测评:相交线与平行线(附答案)1.下列说法正确的是()A.直线AB和直线BA是同一条直线B.直线是射线的2倍C.射线AB与射线BA是同一条射线D.三条直线两两相交,有三个交点2.如图,直线AB,CD交于点O,射线OM平分∠AOC,如果∠AOD=104°,那么∠BOM 等于()A.38°B.104°C.140°D.142°3.如图,OA⊥OB,若∠1=55°16′,则∠2的度数是()A.35°44′B.34°84′C.34°74′D.34°44′4.如图,AC⊥BC于点C,点D是线段BC上任意一点,若AC=6,则AD的长不可能是()A.5.5B.6C.7D.85.已知点P在直线MN外,点A、B、C均在直线MN上,P A=2.5cm,PB=3cm,PC=2.2cm,则点P到直线MN的距离()A.等于3cm B.等于2.5cmC.不小于2.2cm D.不大于2.2cm6.下列说法错误的是()A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.不相交的两条直线叫做平行线7.下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;其中正确的有()个.A.0B.1C.2D.38.如图,直线a、b都与直线c相交,有下列条件:①∠1=∠2;②∠4=∠5;③∠8=∠1;④∠6+∠7=180°.其中,能够判断a∥b的是()A.①②③④B.①③C.②③④D.①②9.如图,直线AB∥CD∥EF,点O在直线EF上,下列结论正确的是()A.∠α+∠β﹣∠γ=90°B.∠α+∠γ﹣∠β=180°C.∠γ+∠β﹣∠α=180°D.∠α+∠β+∠γ=180°10.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠BCD+∠ABC=180°(两直线平行,同旁内角互补)C.∵AD∥BC,∴∠BAD+∠D=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行)11.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,…,像这样,10条直线相交最多有个交点.12.如图,直线a,b相交于点O,若∠1+∠2=220°,则∠3=.13.如图,已知AO⊥BC于O,∠BOD=120°,那么∠AOD=°.14.如图,为了把河中的水引到C处,可过点C作CD⊥AB于D,然后沿CD开渠,这样做可使所开的渠道最短,这种设计的依据是.15.如图,AB⊥l1,AC⊥l2,已知AB=4,BC=3,AC=5,则点A到直线l1的距离是.16.如图,∠B的内错角是.17.在同一平面内,不重合的两条直线的位置关系是.18.若直线a∥b,a∥c,则直线b与c的位置关系是.19.如图是利用直尺和三角板过直线l外一点P作直线l的平行线的方法,这样做的依据是.20.如图,AB∥CD,点M为CD上一点,MF平分∠CME.若∠1=57°,则∠EMD的大小为度.21.为了解决“经过平面上的100个点中的任意两点最多能画出多少条直线”这个问题,数学课外兴趣小组的同学们讨论得出如下方法:当n=2,3,4时,画出最多直线的条数分别是:过两点画一条直线,三点在原来的基础上增加一个点,它与原来两点分别画一条直线,即增加两条直线,以此类推,平面上的10个点最多能画出1+2+3+…+9=45条直线.请你比照上述方法,解决下列问题:(要求作图分析)(1)平面上的20条直线最多有多少个交点?(2)平面上的100条直线最多可以把平面分成多少个部分?平面上n条直线最多可以把平面分成多少个部分?22.如图,直线AB,CD相交于点O,∠AOC=120°,OE平分∠BOC.(1)求∠BOE的度数;(2)若OF把∠AOE分成两个角,且∠AOF:∠EOF=2:3,判断OA是否平分∠DOF?并说明理由.23.如图,直线AB与直线MN相交,交点为O,OC⊥AB,OA平分∠MOD,若∠BON=20°,求∠COD的度数.24.如图,点P,点Q分别代表两个村庄,直线l代表两个村庄中间的一条公路.根据居民出行的需要,计划在公路l上的某处设置一个公交站.(1)若考虑到村庄P居住的老年人较多,计划建一个离村庄P最近的车站,请在公路l 上画出车站的位置(用点M表示),依据是;(2)若考虑到修路的费用问题,希望车站的位置到村庄P和村庄Q的距离之和最小,请在公路l上画出车站的位置(用点N表示),依据是.25.已知点A,B,C如图所示,根据要求完成下列各题.(1)画直线BC,线段AB和射线CA.(以(2)过点A画BC的垂线段AD,垂足为D,并量出点A到直线BC的距离为cm.答题纸为测量依据,结果精确到0.1cm).26.如图,已知AB∥CD,直线MN与AB,CD分别交于点E、F,EG平分∠MEB,FH平分∠MFD.∵AB∥CD,根据可知∠MEB=∠MFD.又∵EG平分∠MEB,FH平分∠MFD,于是可得∠MEG和∠MFH的大小关系是∠MEG ∠MFH.而∠MEG和∠MFH是EG、FH被直线MN所截得的角,根据,可判断角平分线EG、FH的位置关系是.27.(1)补全下面的图形,使之成为长方体ABCD﹣EFGH的直观图,并标出顶点的字母;(2)图中与棱AB平行的棱有;(3)图中棱CG和面ABFE的位置关系是.28.如图,AB∥CD,AB∥GE,∠B=110°,∠C=100°.∠BFC等于多少度?为什么?29.如图,已知:∠DGA=∠FHC,∠A=∠F.求证:DF∥AC.(注:证明时要求写出每一步的依据)30.如图,AO∥CD,OB∥DE,∠O=40°,求∠D的度数.(1)请完成下列书写过程.∵AO∥CD(已知)∴∠O==40°()又∵OB∥DE(已知)∴=∠1=°()(2)若在平面内取一点M,作射线MP∥OA,MQ∥OB,则∠PMQ=°.参考答案1.解:A、直线AB和直线BA是同一条直线,故本选项说法正确.B、直线和射线不能度量,故本选项说法不正确.C、射线AB与射线BA方向相反,不是同一条射线,故本选项说法不正确.D、三条直线两两相交有三个或一个交点,故本选项说法不正确.故选:A.2.解:∵∠AOD=104°,∴∠AOC=76°,∵射线OM平分∠AOC,∴∠AOM=∠AOC=×76°=38°,∴∠BOM=180°﹣∠AOM=180°﹣38°=142°.故选:D.3.解:∵OA⊥OB,∴∠AOB=90°,∵∠1=55°16′,∴∠2=90°﹣55°16′=34°44′.故选:D.4.解:∵AC⊥BC于点C,点D是线段BC上任意一点,AC=6,∴AD≥6,故选:A.5.解:当PC⊥MN时,PC的长是点P到直线MN的距离,即点P到直线MN的距离等于2.2cm,当PC不垂直于MN时,点P到直线MN的距离小于PC的长,即点P到直线MN的距离小于2.2cm,综上所述:点P到直线MN的距离不大于2.2cm,故选:D.6.解:A、对顶角相等,正确;B、两点之间所有连线中,线段最短,正确;C、等角的补角相等,正确;D、在同一平面内,不相交的两条直线叫做平行线,故本选项错误;故选:D.7.解:①相等的角不一定是对顶角,故说法错误;②同位角不一定相等,故说法错误;③过直线外一点有且只有一条直线与已知直线平行,故说法错误;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故说法正确;故选:B.8.解:①∵∠1=∠2,∴a∥b,故本小题正确;②∵4=∠5,∴a∥b,故本小题正确;③∵∠8=∠1,∠8=∠2,∴∠1=∠2,∴a∥b,故本小题正确;④∵∠6+∠7=180°,∠6+∠2=180°,∴∠7=∠2,∴a∥b,故本小题正确.故选:A.9.解:∵AB∥EF,∴∠α=∠BOF,∵CD∥EF,∴∠γ+∠COF=180°,∵∠BOF=∠COF+∠β,∴∠γ+∠α﹣∠β=180°,故选:B.10.解:A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行),正确;B.∵AB∥CD,∴∠BCD+∠ABC=180°(两直线平行,同旁内角互补),正确;C.∵AD∥BC,∴∠BCD+∠D=180°(两直线平行,同旁内角互补),故C选项错误;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),正确;故选:C.11.解:两条直线相交最多有1个交点,三条直线相交最多有1+2=3个交点,四条直线相交最多有1+2+3=6个交点,五条直线相交最多有1+2+3+4=10个交点,……十条直线相交最多有1+2+3+4+5+6+7+8+9=45个交点;故答案为:45.12.解:∵∠1=∠2,∠1+∠2=220°,∴∠1=∠2=110°,∴∠3=180°﹣110°=70°,故答案为:70°.13.解:∵AO⊥BC,∴∠AOB=90°,∵∠BOD=120°,∴∠AOD=∠BOD﹣∠AOB=120°﹣90°=30°,故答案是:30.14.解:过D点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,这种设计的依据是垂线段最短.故答案为:垂线段最短.15.解:∵AB⊥l1,则点A到直线l1的距离是AB的长=4;故答案为:4.16.解:∠B的内错角是∠BAD;故答案为:∠BAD.17.解:在同一平面内,不重合的两条直线的位置关系是平行和相交,故答案为:平行和相交.18.解:若直线a∥b,a∥c,则直线b与c的位置关系是平行,故答案为:平行.19.解:由图形得,有两个相等的同位角存在,这样做的依据是:同位角相等,两直线平行.故答案为:同位角相等,两直线平行.20.解:∵AB∥CD,∴∠CMF=∠1=57°,∵MF平分∠CME,∴∠CME=2∠CMF=114°.又∵∠CME+∠EMD=180°,∴∠EMD=180°﹣∠CME=180°﹣114°=66°.故答案为:66.21.解:(1)当有2,3,4条直线时最多交点的个数分别是:∴20条直线最多有1+2+3+…+19=190个交点;(2)当有1,2,3条直线时最多可把平面分成的部分分别是:∴100条直线最多可把平面分成1+(1+2+3+…+100)=5051个部分,同理n条直线最多可把平面分成1+(1+2+3+…+n)=1+=.22.解:(1)∵∠AOC=120°,∴∠BOC=180°﹣120°=60°,∵OE平分∠BOC,∴∠BOE=∠BOC=×60°=30°;(2)OA平分∠DOF,理由如下:∵∠BOE=30°,∴∠AOE=180°﹣30°=150°,∵∠AOF:∠EOF=2:3,∴∠AOF=60°,∠EOF=90°,∵∠AOD=∠BOC=60°,∴∠AOD=∠AOF,∴OA平分∠DOF.23.解:∵∠BON=20°,∴∠AOM=20°,∵OA平分∠MOD,∴∠AOD=∠MOA=20°,∵OC⊥AB,∴∠AOC=90°,∴∠COD=90°﹣20°=70°.24.解:(1)如图,点M即为所示.依据是直线外一点与直线上各点连接的所有线段中垂线段最短(2)如图,点N即为所示.依据是两点之间线段最短;故答案为:直线外一点与直线上各点连接的所有线段中垂线段最短;两点之间线段最短.25.解:(1)如图所示:(2)经测量AD=1.8cm,故答案为:1.8.26.解:如图,已知AB∥CD,直线MN与AB,CD分别交于点E、F,EG平分∠MEB,FH平分∠MFD.∵AB∥CD,根据两直线平行,同位角相等可知∠MEB=∠MFD.又∵EG平分∠MEB,FH平分∠MFD,于是可得∠MEG和∠MFH的大小关系是∠MEG =∠MFH.而∠MEG和∠MFH是EG、FH被直线MN所截得的同位角,根据同位角相等,两直线平行,可判断角平分线EG、FH的位置关系是平行.故答案为:两直线平行,同位角相等;=;同位、同位角相等,两直线平行、平行.27.解:(1)如图即为补全的图形;(2)图中与棱AB平行的棱有CD、EF、GH;故答案为:CD、EF、GH;(3)图中棱CG和面ABFE的位置关系是:平行.故答案为:平行.28.解:∠BFC等于30度,理由如下:∵AB∥GE,∴∠B+∠BFG=180°,∵∠B=110°,∴∠BFG=180°﹣110°=70°,∵AB∥CD,AB∥GE,∴CD∥GE,∴∠C+∠CFE=180°,∵∠C=100°.∴∠CFE=180°﹣100°=80°,∴∠BFC=180°﹣∠BFG﹣∠CFE=180°﹣70°﹣80°=30°.29.证明:∵∠DGA=∠FHC=∠DHB,∴AE∥BF,(同位角相等,两直线平行)∴∠A=∠FBC,(两直线平行,同位角相等)又∵∠A=∠F,∴∠F=∠FBC,(等量代换)∴DF∥AC.(内错角相等,两直线平行)30.解:(1)∵AO∥CD(已知),∴∠O=∠1=40°(两直线平行,同位角相等),又∵OB∥DE(已知),∴∠D=∠1=40°(两直线平行,同位角相等).故答案为:∠1,两直线平行,同位角相等,∠D,40°,两直线平行,同位角相等;(2)若在平面内取一点M,作射线MP∥OA,MQ∥OB,则∠PMQ=(40或140)°.故答案为:(40或140)。
中考数学第一轮复习基础知识训练(一)(附答案)
中考数学第一轮复习基础知识训练(一)时间:30分钟你实际使用分钟班级姓名学号成绩一、精心选一选1.图(1)所示几何体的左视图...是()2.一对酷爱运动的夫妇,让他们刚满周岁的孩子拼排3块分别写有“20”、“08”、“北京”的字块.假如小孩将字块横着正排,则该小孩能够排成“2008北京”或“北京2008”的概率是()A.16B.14C.13D.123.一名宇航员向地球总站发回两组数据:甲、乙两颗行星的直径分别为46.110⨯千米和46.1010⨯千米,这两组数据之间()A.有差别B.无差别C.差别是40.00110⨯千米D.差别是100千米4.如图,把直线l向上平移2个单位得到直线l′,则l′的表达式为()A.112y x=+B.112y x=-C.112y x=--D.112y x=-+5.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.24204340x+⨯=⨯B.24724340x-⨯=⨯C.24724340x+⨯=⨯D.24204340x-⨯=⨯6.某公园计划砌一个形状如图(1)所示的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,喷水池边沿的宽度、高度不变,你认为砌喷水池的边沿()A.图(1)需要的材料多B.图(2)需要的材料多C.图(1)、图(2)需要的材料一样多 D.无法确定7.如图,等腰梯形ABCD 下底与上底的差恰好等于腰长,DE AB ∥.则DEC ∠等于( )A.75° B.60° C.45° D.30°8.如图是一台54英寸的大背投彩电放置在墙角的俯视图.设DAO α=∠,彩电后背AD 平行于前沿BC ,且与BC 的距离为60cm ,若100cm AO =,则墙角O 到前沿BC 的距离OE 是( )A.()60100sin cm α+ B.()60100cos cm α+ C.()60100tan cm α+ D.以上答案都不对二、细心填一填9.某农场购置了甲、乙、丙三台打包机,同时分装质量相同的棉花,从它们各自分装的棉花包中随机抽取了10包,测得它们实际质量的方差分别为222S 11.05S 7.96S 16.32===乙甲丙,,.可以确定 打包机的质量最稳定.10.如图,照相时为了把近处的较高物体照下来,常常保持镜头中心不动,使相机旋转一定的角度,若A 点从水平位置顺时针旋转了30︒,那么B 点从水平位置顺时针旋转了__ ____度.图(1) 图(2)第6题第8题ABA D CE B 第7题11.林业工人为调查树木的生长情况,常用一种角卡为工具,可以很快测出大树的直径,其工作原理如图所示.现已知5380.5BAC AB =︒=∠′,米,则这棵大树的直径约为 _____ ____米.12.如图,一次函数11y x =--与反比例函数22y x =-的图象交于点(21)(12)A B --,,,,则使12y y >的x 的取值范围是三、开心用一用13.(6分)解不等式组3181(5)32x x -->⎧⎪⎨+⎪⎩≤并把解集在数轴上表示出来.14.如图,数轴上点AA 关于原点的对称点为B ,设点B 所表示的数为x ,求(x 的值.第12题答案参考一、精心选一选 BCAD ACBA二、细心填一填9. 乙 10. __30___ 11. _ 0.5__12. 2x <-或01x <<. 三、开心用一用13.(6分)解不等式组3181(5)32x x -->⎧⎪⎨+⎪⎩≤并把解集在数轴上表示出来.解:解不等式318x -->,得3x <-.解不等式1(5)32x +≤,得x ≤1.原不等式组的解集为3x <-.14.如图,数轴上点AA 关于原点的对称点为B ,设点B 所表示的数为x ,求(0x的值.解: 点AB 与点A 关于原点对称,∴点B 表示的数是,即x =3分00(((121x ==-=-. 6分第12题3- 2- 1- 0 1。
中考数学《函数基础知识》专项练习题(带答案)
中考数学《函数基础知识》专项练习题(带答案)一、单选题1.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5 y/cm1010.51111.51212.5A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm2.若矩形的面积为125,则矩形的长y 关于宽x(x >0)的函数关系式为( )A .y =125xB .y =512xC .y =12x 5D .y =5x 123.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度 ℎ 与时间 t 之间的关系的图象是( )A .B .C .D .4.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(m)与时间t(min)之间函数关系的图象大致是( )A .B .C.D.5.若代数式√x−1x−2有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠26.等腰三角形ABC中,AB=CB=5,AC=8,P为AC边上一动点,PQ⊥AC,PQ与△ABC的腰交于点Q,连结CQ,设AP为x,△CPQ的面积为y,则y关于x的函数关系的图象大致是()A.B.C.D.7.若直线y=kx上每一点都能在直线y=−6x上找到关于x轴对称的点,则它的解析式是()A.y=6x B.y=16x C.y=−6x D.y=−1 6x8.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.9.函数y=√2−x+1x+1中,自变量x的取值范围是()A.x⩽2B.x⩽2且x≠−1 C.x⩾2D.x⩾2且x≠−110.在下列四个图形中,能作为y是x的函数的图象的是()A.B.C.D.11.如图,小磊老师从甲地去往10千米的乙地,开始以一定的速度行驶,之后由于道路维修,速度变为原来的四分之一,过了维修道路后又变为原来的速度到达乙地.设小磊老师行驶的时间为x(分钟),行驶的路程为y(千米),图中的折线表示y与x之间的函数关系,则小磊老师从甲地到达乙地所用的时间是()A.15分钟B.20分钟C.25分钟D.30分钟12.下列图象中,y是x的函数的是()A.B.C.D.二、填空题13.如图1,在平面直角坐标系中,将▱ABCD(AB>AD)放置在第一象限,且AB∥x轴,直线y=−x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为.14.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地. 如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系式;折线B−C−D表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.下几种说法:①货车的速度为60千米/小时;②轿车与货车相遇时,货车恰好从甲地出发了3. 9小时;③若轿车到达乙地后,马上沿原路以CD段速度返回,则轿车从乙地出发317小时再次与货车相遇;其中正确的个数是. (填写序号)15.某商城为促进同一款衣服的销量,当同一个人购买件数达到一定数目的时候,超过的件数,每件打8折,现任意挑选5个顾客的消费情况制定表格,其中x表示购买件数,y表示消费金额,根据表格数据请写出一个y关于x的函数解析式是:.x(件)23456y(元)10015020024028016.函数y=2√x−1的自变量x的取值范围是.17.甲、乙两个车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天.其间,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙两个车间各自加工零件总数y(单位:件)与加时间x(单位:天)的对应关系如图1所示,由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(单位:件)与加时间x(单位:天)的对应关系如图2所示,请根据图象提供的信息回答:(1)图中m的值是;(2)第天时,甲、乙两个车间加工零件总数相同.18.如图,△O的半径为5,点P在△O上,点A在△O内,且PA=3,过点A作AP的垂线交△O于点B,C.设PB= x ,PC=y,则y与x之间的函数解析式为三、综合题19.某旅客携带xkg的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李重量xkg的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李重量xkg的对应关系.行李的重量xkg快递费不超过1kg10元超过1kg但不超过5kg的部分3元/kg超过5kg但不超过15kg的部分5元/kg(1)如果旅客选择单托运,求可携带的免费行李的最大重量为多少kg?(2)如果旅客选择快递,当1<x≤15时,直接写出快递费y2(元)与行李的重量xkg之间的函数关系式;(3)某旅客携带25kg的行李,设托运mkg行李(10≤m<24,m为正整数),剩下的行李选择快递,当m为何值时,总费用y的值最小?并求出其最小值是多少元?20.小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶,若干小时后,途中在加油站加油若干升,油箱中余油量Q(L)与行驶时间t(h)之间的关系,如图所示,根据图象回答下列问题;(1)小汽车行驶小时后加油,中途加油升;(2)求加油前邮箱余油量Q与行驶时间t的函数关系式;(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点300km,车速为80km/h,要到达目的地,油箱中的油是否够用请说明理由.21.一农民带了若干千克自产的萝卜进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出萝卜千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)降价前他每千克萝卜出售的价格是多少?(2)降价后他按每千克0.4元将剩余萝卜售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克萝卜?22.某景区今年对门票价格进行动态管理.节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打折;非节假日期间全部打折.设游客为x人,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)求不打折的门票价格;(2)求y1、y2与x之间的函数关系式;(3)导游小王5月2日(五一假日)带A旅游团,5月8日(非节假日)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?(温馨提示:节假日的折扣与非节假日的折扣不同)23.在“世界读书日”这周的周末,小张同学上午8时从家里出发,步行到公园锻炼了一段时间后以相同的速度步行到图书馆看书,看完书后直接回到了家里,如图是他离家的距离s(米)与时间t(时)的函数关系,根据图象回答下列问题:(1)小张同学家离公园的距离是多少米?锻炼身体用了多少分钟?在图书馆看了多少分钟的书?从图书馆回到家里用了多少分钟?(2)图书馆离小张同学的家多少米?(3)小张同学从图书馆回到家里的速度是多少千米/时?24.甲、乙两车早上从A城车站出发匀速前往B城车站,在整个行程中,两车离开A城的距离s与时间t的对应关系如图所示.(1)A,B两城之间距离是多少?(2)求甲、乙两车的速度分别是多少?(3)乙车出发多长时间追上甲车?(4)从乙车出发后到甲车到达B城车站这一时间段,在何时间点两车相距40km?参考答案1.【答案】B 2.【答案】A 3.【答案】C 4.【答案】B 5.【答案】D 6.【答案】D 7.【答案】A 8.【答案】B 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】B 13.【答案】8 14.【答案】①②③15.【答案】{y =50x(0≤x ≤4)y =40x +40(x >4)16.【答案】x >1 17.【答案】(1)770(2)818.【答案】y =30x19.【答案】(1)解:设托运费y 1(元)与行李重量xkg 的函数关系式为y 1=kx+b将(30,300)、(50,900)代入y 1=kx+b , {30k +b =30050k +b =900 ,解得: {k =30b =−600 ∴托运费y 1(元)与行李质量xkg 的函数关系式为y 1=30x ﹣600. 当y 1=30x ﹣600=0时,x =20.答:可携带的免费行李的最大重量为20kg . (2)解:根据题意得:当0<x≤1时,y 2=10; 当1<x≤5时,y 2=10+3(x ﹣1)=3x+7;当5<x≤15时,y 2=10+3×(5﹣1)+5(x ﹣5)=5x ﹣3.综上所述:快递费y 2(元)与行李重量xkg 的函数关系式为y 2= {10(0<x ≤1)3x +7(1<x ≤5)5x −3(5<x ≤15) .(3)解:当10≤m <20时,5<25﹣m≤15∴y =y 1+y 2=0+5×(25﹣m)﹣3=﹣5m+122. ∵10≤m <20 ∴22<y≤72;当20≤m <24时,1<25﹣m≤5∴y =y 1+y 2=30m ﹣600+3×(25﹣m)+7=27m ﹣518. ∵20≤m <24 ∴22≤y <130.综上可知:当m =20时,总费用y 的值最小,最小值为22.答:当托运20kg 、快递5kg 行李时,总费用最少,最少费用为22元.20.【答案】(1)3;24(2)解:设直线解析式为Q=kt+b ,把(0,36)和(3,6)代入得: {3k +b =6b =36解得 {k =−10b =36 ∴Q=-10t+36,(0≤t≤3);(3)解:根据题意,每小时耗油量为10升 ∵加油站到景点用时间为:300÷80=3.75(小时) ∴需要的油量为:3.75×10=37.5升>30升 故不够用.21.【答案】(1)解:设降价前每千克萝卜价格为k 元则农民手中钱y 与所售萝卜千克数x 之间的函数关系式为:y=kx+5 ∵当x=30时,y=20 ∴20=30k+5 解得k=0.5.答:降价前每千克萝卜价格为0.5元. (2)解:(26-20)÷0.4=15 15+30=45kg.所以一共带了45kg 萝卜.22.【答案】(1)解: 800÷10=80 (元 / 人)答:不打折的门票价格是80元 / 人; (2)解:设 y 1=10k 解得: k =48 ∴y 1=48x当0⩽x⩽10时,设y2=80x 当x>10时,设y2=mx+b则{10m+b=80020m+b=1440解得:m=64∴y2=64x+160∴y2={80x(0⩽x⩽10)64x+160(x>10);(3)解:设A旅游团x人,则B旅游团(50−x)人若0⩽x⩽10,则80x+48(50−x)=3040解得:x=20,与x⩽10不相符若x>10,则64x+160+48(50−x)=3040解得:x=30,与x>10相符,50−30=20(人)答:A旅游团30人,B旅游团20人.23.【答案】(1)解:观察图象得:小张同学8时离开家,8:10到达公园,小张同学家离公园的距离是500米∵小张同学8:10到达公园,9:10离开公园∴小张同学锻炼身体用了60分钟∵小张同学9:30到达图书馆,11:40离开图书馆∴小张同学在图书馆看了130分钟的书∵小张同学11:40离开图书馆,12时回到家∴小张同学从图书馆回到家里用了20分钟∴小张同学家离公园的距离是500米,锻炼身体用了60分钟,在图书馆看了130分钟的书,从图书馆回到家里用了20分钟;(2)解:∵小张同学8时离开家,8:10到达公园,距离500米,用时10分钟∴小张同学从家到公园的速度为500÷10=50(米/分)∵步行到公园锻炼了一段时间后以相同的速度步行到图书馆着书∴小张同学从公园到图书馆的速度为50米/分∵小张同学9:10离开公园,9:30到达图书馆∴公园离图书馆的距离为:50×20=1000(米)∴图书馆离小张同学的家的距离为:1000+500=1500(米)∴图书馆离小张同学的家1500米;(3)解:∵小张同学从图书馆到家的距离为1500米,即1.5千米,从图书馆回到家里用了20分钟,即时13小时 ∴小张同学从图书馆回到家里的速度是:1.5÷13=4.5千米/时 ∴小张同学从图书馆回到家里的速度是4.5千米/时.24.【答案】(1)解:由图象可知A 、B 两城之间距离是300千米;(2)解:由图象可知,甲的速度= 3005=60(千米/小时) 乙的速度= 3003=100(千米/小时) ∴甲、乙两车的速度分别是60千米/小时和100千米/小时;(3)解:设乙车出发x 小时追上甲车由题意:60(x+1)=100x解得:x =1.5∴乙车出发1.5小时追上甲车;(4)解:设乙车出发后到甲车到达B 城车站这一段时间内,甲车与乙车相距40千米时甲车行驶了m 小时①当甲车在乙车前时得:60m ﹣100(m ﹣1)=40解得:m =1.5此时是上午6:30;②当甲车在乙车后面时100(m ﹣1)﹣60m =40解得:m =3.5此时是上午8:30;③当乙车到达B 城后300﹣60m =40解得:m = 133此时是上午9:20.∴分别在上午6:30,8:30,9:20这三个时间点两车相距40千米.。
2021年九年级数学中考一轮复习知识点基础达标测评:直角三角形1(附答案)
2021年九年级数学中考一轮复习知识点基础达标测评:直角三角形1(附答案)1.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A.1B.2C.5D.无法确定2.如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于O,AO的延长线交BC于F,则图中全等的三角形有()A.3对B.4对C.5对D.7对3.如图,在△ABC中,∠ACB=90°,过点C作CD∥AB交∠ABC的平分线于点D,若∠ABD=20°,则∠ACD的度数为()A.20°B.30°C.40°D.50°4.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C;②∠AEF=∠AFE;③∠EBC=∠C;④AG ⊥EF.正确结论有()A.1个B.2个C.3个D.4个5.有一直角三角板,30°角所对直角边长是6cm,则斜边的长是()A.3cm B.6cm C.10cm D.12cm6.如图,在△ABC中,AB=AC,∠B=30°,AD⊥AB,交BC于点D,AD=4,则BC的长为()A.8B.4C.12D.67.如图,一根竹竿AB,斜靠在竖直的墙上,P是AB中点,A′B′表示竹竿AB端沿墙上、下滑动过程中的某个位置,则在竹竿AB滑动过程中OP()A.下滑时,OP增大B.上升时,OP减小C.无论怎样滑动,OP不变D.只要滑动,OP就变化8.如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°9.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4B.8C.16D.6410.如图,以Rt△ABC的三边为边长向外作正方形,三个正方形的面积分别为S1、S2、S3,若S1=13,S2=12,则S3的值为()A.1B.5C.25D.14411.我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.12.下列结论中,错误的有()①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A.0个B.1个C.2个D.3个13.如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是.14.如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=°.15.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PD=4,则PC的长为.16.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=3cm,则AB=.17.已知直角三角形的两边x,y的长满足|x﹣4|+=0,则第三边的长为.18.如图,“赵爽弦图”由4个全等的直角三角形所围成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若图中大正方形的面积为42,小正方形的面积为5,则(a+b)2的值为.19.三角形的三边长为a、b、c,且满足等式(a+b)2﹣c2=2ab,则此三角形是三角形(直角、锐角、钝角).20.若8,a,17是一组勾股数,则a=.21.如图,要使宽为2米的矩形平板车ABCD通过宽为2米的等宽的直角通道,平板车的长不能超过米.22.已知△ABC中,∠ABC=45°,AB=7,BC=17,以AC为斜边在△ABC外作等腰Rt△ACD,连接BD,则BD的长为.23.如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE.求证:BC=BE.24.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.25.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC的长.26.如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD.27.如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1)试说明△ABC是等腰三角形;(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.28.图①是用硬纸板做成的两个全等的直角三角形,两条直角边的长分别为a和b,斜边为c.图②是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个直角梯形.(1)画出拼成的这个图形的示意图,并标注相关数据;(2)利用(1)中画出的图形证明勾股定理.29.在△ABC中,D是BC上一点,AB=10,BD=6,AD=8,AC=17,求△ABC的面积.30.我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:;(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为和,请用所学知识说明它们是一组勾股数.31.如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB =AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,测得CB=1.5千米,CH=1.2千米,HB=0.9千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)求新路CH比原路CA少多少千米?32.如图,已知在等腰直角三角形△DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,(1)试说明:△FBD≌△ACD;(2)延长BF交AC于E,且BE⊥AC,试说明:;(3)在(2)的条件下,若H是BC边的中点,连接DH与BE相交于点G.试探索CE,GE,BG之间的数量关系,并说明理由.参考答案1.解:过D作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,∵∠EDF+∠FDC=90°,∠GDC+∠FDC=90°,∴∠EDF=∠GDC,于是在Rt△EDF和Rt△CDG中,,∴△DEF≌△DCG,∴EF=CG=BC﹣BG=BC﹣AD=3﹣2=1,所以,S△ADE=(AD×EF)÷2=(2×1)÷2=1.故选:A.2.解:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°,∵AC=AB,∵∠CAE=∠BAD,∴△AEC≌△ADB;∴CE=BD,∵AC=AB,∴∠CBE=∠BCD,∵∠BEC=∠CDB=90°,∴△BCE≌△CBD;∴BE=CD,∴AD=AE,∵AO=AO,∴△AOD≌△AOE;∵∠DOC=∠EOB,∴△COD≌△BOE;∴OB=OC,∵AB=AC,∴CF=BF,AF⊥BC,∴△ACF≌△ABF,△COF≌△BOF.∵∠ABO=∠ACO,AB=AC,∠AOB=∠AOC,∴△AOB≌△AOC,共7对,故选:D.3.解:∵BD平分∠ABC,∴∠ABD=∠DBC=20°,∴∠ABC=40°,∵∠ACB=90°,∴∠A=90°﹣∠ABC=90°﹣40°=50°,∵CD∥AB,∴∠ACD=∠A=50°,故选:D.4.解:∵∠BAC=90°,AD⊥BC,∴∠C+∠ABC=90°,∠BAD+∠ABC=90°,∴∠BAD=∠C,故①正确;∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∵∠ABE+∠AEF=90°,∠CBE+∠BFD=90°,∴∠AEF=∠BFD,又∵∠AFE=∠BFD(对顶角相等),∴∠AEF=∠AFE,故②正确;∵∠ABE=∠CBE,∴只有∠C=30°时∠EBC=∠C,故③错误;∵∠AEF=∠AFE,∴AE=AF,∵AG平分∠DAC,∴AG⊥EF,故④正确.综上所述,正确的结论是①②④.故选:C.5.解:∵直角三角形中30°角所对的直角边为4cm,∴斜边长为12cm.故选:D.6.解:∵AB=AC,∴∠B=∠C=30°,∵AB⊥AD,∴BD=2AD=2×4=8,∠B+∠ADB=90°,∴∠ADB=60°,∵∠ADB=∠DAC+∠C=60°,∴∠DAC=30°,∴∠DAC=∠C,∴DC=AD=4∴BC=BD+DC=8+4=12,故选:C.7.解:∵AO⊥BO,点P是AB的中点,∴OP=AB,∴在滑动的过程中OP的长度不变.故选:C.8.解:∵CD⊥AB,F为边AC的中点,∴DF=AC=CF,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60°,∵∠B=50°,∴∠BCD+∠BDC=130°,∵∠BCD和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65°,∴∠CED=115°,∴∠ACD+∠CED=60°+115°=175°,故选:C.9.解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.10.解:由勾股定理得:AC2+BC2=AB2,∵S1=S2+S3,∴S3=S1﹣S2=13﹣12=1.故选:A.11.解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.12.解:①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5或,错误;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠C=90°,错误;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,正确;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形,正确;故选:C.13.解:∵斜边与直角边对应相等的两个直角三角形全等,∴在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,使Rt△ABC≌Rt△DCB,添加的条件是:AB=DC.故答案为:AB=DC.14.解:当AP⊥ON时,∠APO=90°,则∠A=50°,当P A⊥OA时,∠A=90°,即当△AOP为直角三角形时,∠A=50或90°.故答案为:50或90.15.解:过P作PE⊥OB,交OB与点E,如图所示:∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PE=PD=4,∵PC∥OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO=30°,在直角三角形CEP中,∠ECP=30°,∴PC=2PE=8.故答案为:8.16.解:∵∠ACB=90°,D是AB的中点,CD=3cm,∴AB=2CD=6cm.故答案为:6cm.17.解:∵≥0,≥0,∴=0,=0,即x=4,y=3,在直角三角形中,(1)边长为4的边是斜边,则第三边的长为=;(2)边长为4的边是直角边,则第三边即斜边的长为=5,故答案为5或.18.解:由图可知,(b﹣a)2=5,4×ab=42﹣5=37,∴2ab=37,(a+b)2=(b﹣a)2+4ab=5+2×37=79.故答案为79.19.解:∵(a+b)2﹣c2=2ab,∴a2+2ab+b2﹣c2=2ab,∴a2+b2=c2,∴三角形是直角三角形.故答案为直角.20.解:①a为最长边,a=,不是正整数,不符合题意;②17为最长边,a==15,三边是整数,能构成勾股数,符合题意.故答案为:15.21.解:设平板手推车的长度不能超过x米则x为最大值,且此时平板手推车所形成的三角形CBP为等腰直角三角形,BP=CP,BC最大.连接PO,与BC交于点N.∵直角走廊的宽为2m,∴PO=4m,∴NP=PO﹣ON=4﹣2=2(m).又∵△CBP为等腰直角三角形,∴AD=BC=2CN=2NP=4(m).故答案为:422.解:以AB为腰作等腰Rt△ABE,连接EC,∵△ADC为等腰Rt△,∴,∠EAB=∠DAC=45°,∴∠EAB+∠BAC=∠BAC+∠DAC,∴∠EAC=∠DAB,∴△EAC∽△BAD,∴,作EF⊥BC交BC延长线于F,∵∠ABC=45°,∠EBA=90°,∴∠EBF=45°,∴△EFB为等腰Rt△,∴EF=FB===7,∴EC==25,∴BD==.23.证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC=AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴BD=BF.∴BD﹣CD=BF﹣EF.即BC=BE.24.解:在Rt△ABF中,∠A=70°,CE,BF是两条高,∴∠EBF=20°,∠ECA=20°,又∵∠BCE=30°,∴∠ACB=50°,∴在Rt△BCF中∠FBC=40°.25.解:∵∠C=90°,∠A=30°,∴∠ABC=60°,∵BD是∠ABC的平分线,∴∠CBD=∠ABD=30°,∴∠ABD=∠A,∴AD=BD=20,∴CD=BD=10,∴BC===10.26.证明:∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=AC,DM=AC,∴BM=DM,∵N是BD的中点,∴MN⊥BD(等腰三角形三线合一).27.(1)证明:设BD=2x,AD=3x,CD=4x,则AB=5x,在Rt△ACD中,AC==5x,∴AB=AC,∴△ABC是等腰三角形;(2)解:S△ABC=×5x×4x=40cm2,而x>0,∴x=2cm,则BD=4cm,AD=6cm,CD=8cm,AC=10cm.①当MN∥BC时,AM=AN,即10﹣t=t,∴t=5;当DN∥BC时,AD=AN,得:t=6;∴若△DMN的边与BC平行时,t值为5或6.②∵点E是边AC的中点,CD⊥AB,∴DE=AC=5,当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE;当t=4时,点M运动到点D,不构成三角形当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.如果DE=DM,则t﹣4=5,∴t=9;如果ED=EM,则点M运动到点A,∴t=10;如果MD=ME=t﹣4,过点E作EF⊥AB于F,如图3所示:∵ED=EA,∴DF=AF=AD=3,在Rt△AEF中,EF=4;∵BM=t,BF=7,∴FM=t﹣7则在Rt△EFM中,(t﹣4)2﹣(t﹣7)2=42,∴t=.综上所述,符合要求的t值为9或10或.28.解:(1)如图所示,是梯形;(2)由上图我们根据梯形的面积公式可知,梯形的面积=.从上图我们还发现梯形的面积=三个三角形的面积和,即.两者列成等式化简即可得:a2+b2=c2;29.解:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD==15,∴BC=BD+CD=6+15=21,∴S△ABC=BC•AD=×21×8=84.因此△ABC的面积为84.故答案为84.30.解:(1)11,60,61;(2)后两个数表示为和,∵,,∴.又∵n≥3,且n为奇数,∴由n,,三个数组成的数是勾股数.故答案为:11,60,61.31.解:(1)是,理由是:在△CHB中,∵CH2+BH2=(1.2)2+(0.9)2=2.25,BC2=2.25,∴CH2+BH2=BC2,∴CH⊥AB,所以CH是从村庄C到河边的最近路;(2)设AC=x千米,在Rt△ACH中,由已知得AC=x,AH=x﹣0.9,CH=1.2,由勾股定理得:AC2=AH2+CH2∴x2=(x﹣0.9)2+(1.2)2,解这个方程,得x=1.25,1.25﹣1.2=0.05(千米)答:新路CH比原路CA少0.05千米.32.解:(1)∵DB=DC,∠BDF=∠ADC=90°又∵DA=DF,∴△BFD≌△ACD;(2)∵△BFD≌△ACD,∴BF=AC,又∵BF平分∠DBC,∴∠ABE=∠CBE,又∵BE⊥AC,∴∠AEB=∠CEB,又∵BE=BE,∴△ABE≌△CBE,∴CE=AE=AC,∴CE=AC=BF;(3)CE,GE,BG之间的数量关系为:CE2+GE2=BG2,连接CG.∵BD=CD,H是BC边的中点,∴DH是BC的中垂线,∴BG=CG,在Rt△CGE中有:CG2=CE2+GE2,∴CE2+GE2=BG2.。
2024年福建省中考真题数学试题
数学试题一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合要求的。
1.下列实数中,无理数是( )A .3-B .0C .23D 2.据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,2023年,全球PCT (《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为( )A .696110⨯B .2696.110⨯C .46.96110⨯D .50.696110⨯3.如图是由长方体和圆柱组成的几何体,其俯视图是()A .B .C .D .4.在同一平面内,将直尺、含30︒角的三角尺和木工角尺()CD DE ⊥按如图方式摆放,若AB CD ∥,则1∠的大小为()A .30︒B .45︒C .60︒D .75︒5.下列运算正确的是( )A .339a a a⋅=B .422a a a÷=C .()235aa =D .2222a a -=6.哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是()A .14B .13C .12D .237.如图,已知点,A B 在O 上,72AOB ∠=︒,直线MN 与O 相切,切点为C ,且C 为 AB的中点,则ACM ∠等于( )A .18︒B .30︒C .36︒D .72︒8.今年我国国民经济开局良好,市场销售稳定增长,社会消费增长较快,第一季度社会消费品零售总额120327亿元,比去年第一季度增长4.7%,求去年第一季度社会消费品零售总额.若将去年第一季度社会消费品零售总额设为x 亿元,则符合题意的方程是( )A .()1 4.7%120327x +=B .()1 4.7%120327x -=C .1203271 4.7%x=+D .1203271 4.7%x=-9.小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案,如图.其中OAB △与ODC △都是等腰三角形,且它们关于直线l 对称,点,E F 分别是底边,AB CD 的中点,OE OF ⊥.下列推断错误的是()A .OB OD ⊥B .BOC AOB ∠=∠C .OE OF=D .180BOC AOD ∠+∠=︒10.已知二次函数()220y x ax a a =-+≠的图象经过()12,,3,2a A y B a y ⎛⎫⎪⎝⎭两点,则下列判断正确的是( )A .可以找到一个实数a ,使得1y a >B .无论实数a 取什么值,都有1y a >C .可以找到一个实数a ,使得20y <D .无论实数a 取什么值,都有20y <二、填空题:本题共6小题,每小题4分,共24分。
中考数学第一轮复习基础知识训练(十)(附答案)
中考数学第一轮复习基础知识训练(十)时间:30分钟 你实际使用 分钟班级 姓名 学号 成绩一、精心选一选1.计算:3--=________.2.2006年5月20 日,世界上规模最大的混凝土重力坝三峡大坝浇筑完成.建成后,三峡水库库容总量为39 300 000 000立方米.用科学计数法表示库容总量为_____________立方米.3.如图,将矩形纸片ABCD 沿AE 向上折叠,使点B 落在DC 边上的F 点处.若AFD △的周长为9,ECF △的周长为3,则矩形ABCD 的周长为________. 4.为考察甲、乙两种小麦的长势,分别从中抽取50株小麦,测得苗高,经过数据处理,它们的平均数相同,方差分别为 2215.412S S ==甲乙,,由此可以估计______种小麦长的比较整齐.5.“平阳府有座大鼓楼,半截子插在天里头”.如图,为测量临汾市区鼓楼的高AB ,在距B 点50m 的C 处安装测倾器,测得鼓楼顶端A 的仰角为4012',测倾器的高CD 为 1.3m ,则鼓楼高AB 约为________m(tan 40120.85' ≈).6.写出一个图象位于第一、三象限内的反比例函数表达式__________________. 7.如图,AB 为O ⊙的直径,C D ,是O ⊙上两点,若50ABC = ∠,则D ∠的度数为________.8.为庆祝“六一”儿童节,幼儿园要用彩纸包裹底圆直径..为1m ,高为2m 的一根圆柱的侧面.若每平方米彩纸10元,则包裹这根圆柱侧面的彩纸共需________元(接缝忽略不计, 3.14π≈). 9.将图中线段AB 绕点A 按顺时针方向旋转90后,得到线段AB ',则点B '的坐标是______________.10.如图,依次连结第一个...正方形各边的中点得到第二个正方形,再依次连结第二个正方形各边的中点得到第三个正方形,按此方法继续下去.若第一个...正方形边长为1,则第.n 个.正方形的面积是_________________.AD……二、细心填一填11.下列运算正确的是( ) A= B= C .632a a a ÷=D .2336(2)8ab a b -=-12.不等式组2112x x -<⎧⎨-⎩,≤的解集在数轴上表示为( )13.半径分别为5和8的两个圆的圆心距为d ,若313d <≤,则这两个圆的位置关系一定是( )A .相交B .相切C . 内切或相交D .外切或相交14.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价一定为()A .180元B . 202.5元C . 180元或202.5元D .180元或200元15.如图,在Rt ABC △中,904cm 6cmC AC BC ===,,∠,动点P 从点C 沿CA ,以1cm/s的速度向点A 运动,同时动点Q 从点C 沿CB ,以2cm/s的速度向点B 运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的CPQ △的面积2(cm )y 与运动时间(s)x 之间的函数图象大致是( )16.一个质地均匀的小正方体的六个面上分别标有数字1,2,3,4,5,6.如果任意抛掷小正方体两次,那么下列说法正确的是( ) A .得到的数字和必然是4 B .得到的数字和可能是3 C .得到的数字和不可能是2 D .得到的数字和有可能是1 17.方体( ) D .A .B .C . (s) A. (s) B. (s) C. (s) D.正 视 图左 视 图 俯视图A .3块B .4块C .5块D .6块三、开心用一用19.(1)计算:1221(1)sin 302-⎛⎫-++- ⎪⎝⎭(2)化简:22362444x x x x x -+÷-++答案参考一、填空题:1.3-; 2.103.9310⨯; 3.12; 4.乙; 5.43.8; 6.(略); 7.40;8.62.8; 9.(30),; 10.112n -⎛⎫⎪⎝⎭.三、解答题18.解:(1)原式1124=++-4=. (2)原式23(2)2(2)(2)(2)x x x x x -+=÷+-+ 3(2)2x x =++ 3=.。
初三数学中考考前基础知识竞赛试卷(模拟201302)
初三数学中考考前基础知识竞赛试卷(模拟201302)命题人:岗埠中学 孙见礼 考试时间: 2009.4.2一、选择题(3’×20=60’)1.16-的相反数的绝对值是 ( A )A.16 B. 6 C.-6 D. 16-2.若|2|a -与2(3)b +互为相反数,则a b 的值为 ( D )A.-6B.18C.8D.93.截止2008年6月4日12时,全国共接受国内外各界捐助救灾款物已达到人民币436.81亿元,这个数据用科学记数法(保留三个有效数字)表示为 ( C ) A. 94.3710⨯元 B. 120.43710⨯元 C.104.3710⨯元 D.943.710⨯元4.小亮的爸爸想对小亮中考前的6次数学考试成绩进行统计分析,判断小亮的数学成绩是否稳定,则小亮的爸爸需要知道这6次数学考试成绩的 ( C ) A.平均数或中位数 B.众数或频数 C.方差或标准差 D.频数或众数5.如图2,边长为1的正三角形和边长为2的正方形在同一水平线上,正三角形沿水平线自左向右匀速穿过正方形。
下图反映了这个运动的全过程,设正三角形的运动时间为t ,正三角形与正方形的重叠部分面积为s ,则s 与t 的函数图象大致为 ( B )6. 如图图中有( B )个黄金三角形A.5B.20C.10D.157.若点(m,n )在反比例函数y=xk(k ≠0)点(n,m )、(-m,-n )、(-n,-m )、(-m,n )、(-n,m)、中有( B )个点在反比例函数的图像上。
A 1B 3C 5D 28、平面直角坐标系中,P (x -2,x )在第二象限, 则x 的取值范围―( A )A 0<x<2B x<2C x>0D x>2 9、现有一圆心角900,半径为8cm 的扇形纸片,用它恰好围成一个圆锥(接缝忽略不计),则该圆锥的底面圆的半径为――――( C )A 4 cmB 3 cmC 2 cmD 1 cm 10、函数y=-2x 的图像,经过( C )平移得 到函数y=-2(x-43)的图像A.向上平移43 B.向下平移43 C.向上平移23 D.向下平移2311、 不等式组无解,则m 的取值范围是( A )A.m ﹤32 B.m ﹥32 C.m ≦32 D.m ≧3212、下列函数是反比例函数的是( C )A .y =xk 12- (k 为常数) B. y =xk (k 为常数) C. y =xk 12+ D.y =1k +x (k ≠0的常数)13、代数式2346x x -+的值为9,则2463x x -+的值为 ( A )A .7B .18C .12D .9 14、下列命题中正确的个数有( B )①实数不是有理数就是无理数 ② a <a +a ③121的平方根是 ±11 ④在实数范围内,非负数一定是正数 ⑤两个无理数之和一定是无理数A 、1 个B 、2 个C 、3 个D 、4 个15、下列因式分解正确的是( B )A .x x x x x 3)2)(2(342++-=+-; B .)1)(4(432---=++-x x x x ; C .22)21(41x x x -=+-; D .)(232y x y xy x y x xy y x +-=+-16、一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元,设 这件商品的成本价为x 元,根据题意,下面所列的方程正确的是(B )A .x ·40%×80%=240B .x (1+40%)×80%=240C .240×40%×80%=xD .x ·40%=240×80%17、要使分式4452-+-x x x 的值为0,则x 应该等于( C )(A )4或1 (B )4 (C )1 (D )4-或1-18、m 是关于x 的一元二次方程02=++m nx x 的根,且m ≠0,则n m +的值为( A )(A )1- (B )1 (C )21-(D )2119.二次函数c bx x y ++=2的图像向左平移2个单位,再向上平移3个单位,得到函数解析式122+-=x x y 则b 与c 分别等于( C )(A )2,2-(B )8-,14 (C )6-,6 (D )8-,1820.已知二直线y x =-+356和y x =-2,则它们与y 轴围成的三角形的面积为( C )A .6B .10C .20D .12{02031≤-≥+m x x二、填空题(4’×17=68’)1.如图,图中是y=a 1x+b 1 和y=a 2x+b 2的图像,根据图像填空。
2023年中考数学----《函数基础知识--自变量的取值范围与函数值》专项练习题(含答案解析)
2023年中考数学复习----《函数基础知识--自变量的取值范围与函数值》知识总结与专项练习题(含答案解析)知识总结1. 函数的概念:设在一个变化过程中有两个变量x 与y ,对于x 的每一个确定的值,y 都有唯一的值与其对应,那么就说y 是x 的函数,x 是自变量。
2. 自变量的取值范围:(1)使函数表示有意义。
①分母不能为0。
②被开方数大于等于0。
③幂的底数和指数不能同时为0。
(2)满足实际问题的实际意义。
3. 函数值:函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值。
专项练习题1、(2022•黄石)函数y =113−++x x x 的自变量x 的取值范围是( ) A .x ≠﹣3且x ≠1 B .x >﹣3且x ≠1C .x >﹣3D .x ≥﹣3且x ≠1 【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【解答】解:函数y =+的自变量x 的取值范围是:x +3>0,且x ﹣1≠0,解得:x >﹣3且x ≠1.故选:B .2、(2022•丹东)在函数y =x x 3+中,自变量x 的取值范围是( ) A .x ≥3 B .x ≥﹣3C .x ≥3且x ≠0D .x ≥﹣3且x ≠0 【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式组,解不等式组得到答案.【解答】解:由题意得:x +3≥0且x ≠0,解得:x ≥﹣3且x ≠0,故选:D .3、(2022•牡丹江)函数y =2−x 中,自变量x 的取值范围是( )A .x ≤﹣2B .x ≥﹣2C .x ≤2D .x ≥2【分析】根据二次根式(a ≥0),可得x ﹣2≥0,然后进行计算即可解答.【解答】解:由题意得: x ﹣2≥0,∴x ≥2,故选:D .4、(2022•恩施州)函数y =31−+x x 的自变量x 的取值范围是( ) A .x ≠3 B .x ≥3C .x ≥﹣1且x ≠3D .x ≥﹣1 【分析】利用分式有意义的条件和二次根式有意义的条件得到不等式组,解不等式组即可得出结论.【解答】解:由题意得:,解得:x ≥﹣1且x ≠3.故选:C .5、(2022•连云港)函数y =1−x 中自变量x 的取值范围是( )A .x ≥1B .x ≥0C .x ≤0D .x ≤1【分析】根据二次根式的被开方数是非负数即可得出答案.【解答】解:∵x ﹣1≥0,∴x ≥1.故选:A .6、(2022•黑龙江)函数31−−=x x y 自变量x 的取值范围是( ) A .x ≥1且x ≠3 B .x ≥1C .x ≠3D .x >1且x ≠3 【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,x ﹣1≥0且x ﹣3≠0,解得x ≥1且x ≠3.故选:A .7、(2022•无锡)函数y =x −4中自变量x 的取值范围是( )A .x >4B .x <4C .x ≥4D .x ≤4【分析】因为当函数用二次根式表达时,被开方数为非负数,所以4﹣x ≥0,可求x 的范围.【解答】解:4﹣x ≥0,解得x ≤4,故选:D .8、(2022•安顺)要使函数y =12−x 在实数范围内有意义,则x 的取值范围是 .【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:2x ﹣1≥0,解得:x ≥,故答案为:x ≥.9、(2022•哈尔滨)在函数y =35+x x 中,自变量x 的取值范围是 . 【分析】根据分母不能为0,可得5x +3≠0,然后进行计算即可解答.【解答】解:由题意得:5x +3≠0,∴x ≠﹣,故答案为:x ≠﹣.10、(2022•巴中)函数y =31−x 中自变量x 的取值范围是 . 【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【解答】解:根据题意得:x ﹣3>0,解得:x >3.故答案为:x >3.x −4。
中考数学必考知识点专项训练
精品基础教育教学资料,仅供参考,需要可下载使用!中考数学必考知识点专项训练一、选择题1.在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为2.5米,那么影长为30米的旗杆的高是()A. 20米B. 18米C. 16米D. 15米2.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是()A. B. C. D.3.如图是由一个长方体和一个正方体组成的几何体,则该几何体的主视图为()A. B.C. D.4.如图,该几何体的主视图是()A. B. C. D.5.下列投影中,是平行投影的是()A. B. C. D.6.由5个完全相同的小长方形搭成的几何体的主视图和左视图如图所示,则这个几何体的俯视图是()A. B. C. D.7.如图所示的三视图所对应的几何体是()A. B. C. D.8.已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()A. 10B. 9C. 8D. 79.若一个几何体的俯视图是圆,则这个几何体不可能是()A. 圆柱B. 圆锥C. 正方体D. 球10.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为()A. 6B. 8C. 12D. 2411.下列几何体中,同一个几何体的三视图完全相同的是()A. 球B. 圆锥C. 圆柱D. 三棱柱12.在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的最少个数为m,最多个数为n,下列正确的是()A. m=5,n=13B. m=8,n=10C. m=10,n=13D. m=5,n=10二、填空题13.如图是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为________ m2.14.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为________.15.一个几何体由一些完全相同的小立方块搭成,从正面和从上面看到的这个几何体的形状如下,那么搭成这样一个几何体,最少需要________个这样的小立方块,最多需要________个这样的小立方块.16.小军晚上到乌当广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定的说“广场上的大灯泡一定位于两人________ ”.17.一个几何体由几个大小相同的小正方形搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是________.18.一个几何体由若干个大小相同点小立方块搭成,如图分别是从它的正面、上面看到的形状图,该几何体至少是用________块小立方块搭成的.三、解答题19.有若干个完全相同的棱长为1cm的小正方体堆成一个几何体,如图所示.(1)这个几何体由________个小正方体组成,请画出这个几何体的三视图.(2)该几何体的表面积是________cm2.(3)若还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加________个小正方体.参考答案一、选择题1.D2. B3. B4. C5.B6. A7. B8. B9.C 10.B 11. A 12. A二、填空题13.0.81π14.5 15. 6;8 16.中上方17.4 18. 6三、解答题19.(1)解:这个几何体由10个小正方体组成,如图所示:(2)解:38(3)4精品基础教育教学资料,仅供参考,需要可下载使用!一、选择题1.下列说法错误的是()A. 若AP=BP,则点P是线段的中点B. 若点C在线段AB上,则AB=AC+BCC. 顶点在圆心的角叫做圆心角D. 两点之间,线段最短2.下列说法正确的个数是()⑴射线AB和射线BA是一条射线⑵两点之间的连线中直线最短⑶若AP=BP,则P是线段AB的中点⑷经过任意三点可画出1条或3条直线.A. 1个B. 2个C. 3个D. 4个3.如图中,共有线段()A. 4条B. 5条C. 6条D. 7条4.下列语句中,属于定义的是()A. 两点确定一条直线B. 两直线平行,同位角相等C. 两点之间线段最短D. 直线外一点到直线的垂线段的长度,叫做点到直线的距离5.下列说法正确的是()A. 延长直线ABB. 延长线段AB到C,使AC=BCC. 延长射线ABD. 反向延长线段AB到C,使AC=AB6.下列语句中,假命题的是()A. 一条直线有且只有一条垂线B. 直角的补角必是直角C. 不相等的两个角一定不是对顶角D. 两直线平行,同旁内角互补7.如图,线段AB表示一条对折的绳子,现从P点将绳子剪断.剪断后的各段绳子中最长的一段为30cm.若AP= BP,則原来绳长为()cm.A. 55cmB. 75cmC. 55或75cmD. 50或75cm8.下列语句正确的是( )A. 在所有联结两点的线中,直线最短B. 线段A是点A与点B的距离C. 三条直线两两相交,必定有三个交点D. 在同一平面内,两条不重合的直线,不平行必相交9.下列说法正确的是()A. 角的边越长,角越大B. 在∠ABC一边的延长线上取一点DC. ∠B=∠ABC+∠DBCD. 以上都不对10.若∠A =20°18′,∠B =20°15′30〃,∠C =20.25°,则()A. ∠A>∠B>∠CB. ∠B>∠A>∠CC. ∠A>∠C>∠BD. ∠C>∠A>∠B11.时钟9点30分时,分针和时针之间形成的角的大小等于()A. 75°B. 90°C. 105°D. 120°12.如图,在△ABC中,∠A=36°,AB=AC,CD,BE分别是∠ACB,∠ABC的平分线,CD、BE相交于F点,连接DE,则图中全等的三角形有多少组()A. 3B. 4C. 5D. 613.如果∠l与∠2互补,∠2为锐角,则下列表示∠2余角的式子是()A. 90°-∠1B. ∠1-90°C. ∠1+90°D. 180°-∠114.如果一个角的补角是150°,那么这个角的余角的度数是()A. 30°B. 60°C. 90°D. 120°15.点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB边上的任意一点,下列选项正确的是()A. PQ≥5B. PQ>5C. PQ<5D. PQ≤5二、填空题16.平面上有三个点,可以确定直线的条数是________17.把命题“平行于同一直线的两直线平行”写成“如果…,那么…”的形式________.18.如果A、B、C三点在同一直线上,线段AB=3cm,BC=2cm,那么A、C两点之间的距离为________cm.19.经过一点的直线有________条;经过两点的直线有________条,并且只有________ 条,经过不在同一直线上的三点最多可画________条直线。
2021年九年级数学中考一轮复习知识点基础达标测评:中位线定理的应用(附答案)
2021年九年级数学中考一轮复习知识点基础达标测评:中位线定理的应用(附答案)1.如图,在边长为4的等边三角形ABC中,DE为△ABC的中位线,则四边形BCED的面积为()A.2B.3C.4D.62.如图,四边形ABCD中.AC⊥BC,AD∥BC,BD为∠ABC的平分线,BC=3,AC=4.E,F分别是BD,AC的中点,则EF的长为()A.1B.1.5C.2D.2.53.如图,在△ABC中,AB=AC,点E是边BC的中点,ED∥AB交AC于点D,那么下列结论错误的是()A.∠1=∠2B.AE⊥BC C.AD=ED D.∠B=∠14.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,点D,E分别是直角边AC,BC的中点,则DE的长为()A.1B.2C.D.25.下列说法错误的是()A.线段垂直平分线上的点到这条线段两个端点的距离相等B.等腰三角形任意一条边上的高线、中线和角平分线都“三线合一”C.三角形的中位线平行于第三边且等于第三边的一半D.角平分线上的点到角两边的距离相等6.如图,若DE是△ABC的中位线,△ABC的周长为2,则△ADE的周长为()A.1B.2C.5D.47.如图,在△ABC中,D、E分别是AB和AC的中点,S四边形BCED=15,则S△ABC=()A.30B.25C.22.5D.208.如图,D,E分别是△ABC的边AC,BC的中点,则下列说法不正确的是()A.DE是△BCD的中线B.BD是△ABC的中线C.AD=DC,BE=EC D.DE是△ABC的中线9.如图,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点,则下列结论错误的是()A.GF=AD B.EF=AC C.GE=BC D.GE=GF10.如图,在Rt△ABC中,∠B=90°,BC=5,AB=12,点D,E分别是AB,AC的中点,CF平分Rt△ABC的一个外角∠ACM,交DE的延长线于点F,则DF的长为()A.5B.8.5C.9D.1211.A,B两地被池塘隔开,小明先在AB外选一点C,然后分别步测出AC,BC的中点D,E,并测出DE的长为20m,则AB的长为()A.10m B.20m C.30m D.40m12.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.若D,E分别为边AC,BC的中点,则DE的长为()A.10B.5C.4D.313.如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=5,CD=3,EF=2,∠AFE=45°,则∠ADC的度数为.14.已知一个三角形的周长为20cm,则连接它的各边的中点所得的三角形的周长为cm.15.如图,△A1B1C1中,A1B1=4,A1C1=5,B1C1=7.点A2,B2,C2分别是边B1C1,A1C1,A1B1的中点;点A3,B3,C3分别是边B2C2,A2C2,A2B2的中点;…以此类推,则第2020个三角形的周长是.16.若AB是⊙O的直径,AC是弦,OD⊥AC于点D,若OD=4,则BC=.17.如图,在四边形ABDC中,E、F、G、H分别为AB、BC、CD、DA的中点,并且E、F、G、H四点不共线.当AC=6,BD=8时,四边形EFGH的周长是.18.如图,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC ≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.当BC=4,DE =5,∠FMN=45°时,则BE的长为.19.如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为,则四边形DBCE的面积为.20.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=8,BC=14,则EF的长为.21.如图,在△ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点,CE=3,则DF.22.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.23.如图,在三角形△ABC中,AB=12cm,AC=8cm,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于点F,交AB于点G,连接EF,求线段EF的长.24.如图所示,在△ABC中,点D在BC上且CD=CA,CF平分∠ACB,AE=EB,求证:EF=BD.25.如图,在等边△ABC中,D,E分别为AB,AC的中点,延长BC至点F,使CF=BC,连结CD和EF.(1)求证:CD=EF;(2)猜想:△ABC的面积与四边形BDEF的面积的关系,并说明理由.26.如图,在△ABC中,AB<AC,点D、F分别为BC、AC的中点,E点在边AC上,连接DE,过点B作DE的垂线交AC于点G,垂足为点H,且△CDE与四边形ABDE的周长相等,设AC=b,AB=c.(1)求线段CE的长度;(2)求证:DF=EF;(3)若S△BDH=S△EGH,求的值.27.如图,已知AO是△ABC的∠A的平分线,BD⊥AO的延长线于D,E是BC的中点.求证:DE=(AB﹣AC)28.已知:△ABC中,D是BC上的一点,E、F、G、H分别是BD、BC、AC、AD的中点,求证:EG、HF互相平分.29.如图,△ABC中,AH⊥BC于点H,点D,E分别是AB,AC的中点,连接DH,EH,DE.(1)求证:AD=DH;(2)若四边形ADHE的周长是30,△ADE的周长是21,求BC的长.30.在证明定理“三角形的中位线平行于第三边,且等于第三边的一半”时,小明给出如下部分证明过程.已知:在△ABC中,D、E分别是边AB、AC的中点.求证:证明:如图,延长DE到点F,使EF=DE,连接CF,……(1)补全求证;(2)请根据添加的辅助线,写出完整的证明过程;(3)若CE=3,DF=8,求边AB的取值范围.31.已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若DE=2,∠BAC=30°,求⊙O的直径.32.如图,DE是△ABC的中位线,延长DE到F,使EF=DE,连接BF.求证:BF=DC.参考答案1.解:过点D作DF⊥BC于点F.∵△ABC是边长为4的等边三角形,∴AB=BC=AC=4,∠B=60°,又∵DE为中位线,∴DE=BC=2,BD=AB=2,DE∥BC,∴DF=BD•sin∠B=2×,∴四边形BCED的面积为:DF×(DE+BC)=××(2+4)=3.故选:B.2.解:∵AC⊥BC,∴∠ACB=90°,∵BC=3,AC=4,∴AB=5,∵AD∥BC,∴∠ADB=∠DBC,∵BD为∠ABC的平分线,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD=5,连接BF并延长交AD于G,∵AD∥BC,∴∠GAC=∠BCA,∵F是AC的中点,∴AF=CF,∵∠AFG=∠CFB,∴△AFG≌△CFB(AAS),∴BF=FG,AG=BC=3,∴DG=5﹣3=2,∵E是BD的中点,∴EF=DG=1.故选:A.3.解:∵在△ABC中,AB=AC,点E是边BC的中点,∴∠1=∠2,AE⊥BC,故A、B正确;∵ED∥AB交AC于点D,∴DE是△ABC的中位线,∴2DE=AB=AC,∴DE=AD=DC,故C正确;不能得出BE=AE,故得不出∠B=∠1,故D错误;故选:D.4.解:在Rt△ABC中,∠A=30°,∴AB=2BC=4,∵D,E分别是直角边BC,AC的中点,∴DE=AB=2,故选:B.5.解:A、∵线段垂直平分线上的点到这条线段两个端点的距离相等,∴选项A不符合题意;B、∵等腰三角形底边上的高线、中线和角平分线都“三线合一”,∴选项B符合题意;C、∵三角形的中位线平行于第三边且等于第三边的一半,∴选项C不符合题意;D、∵角平分线上的点到角两边的距离相等,∴选项D不符合题意;故选:B.6.解:∵DE是△ABC的中位线,∴点D、E分别是线段AB、AC的中点,∴DE=BC,AD=AB、AE=AC;又∵△ABC的周长为2,∴AB+BC+AC=2,∴△ADE的周长=AD+DE+AE=(AB+BC+AC)=1;故选:A.7.解:∵D、E分别是AB、AC边上的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=,∴S△ADE:S四边形BCED=1:3,即S△ADE:15=1:3,∴S△ADE=5,∴S△ABC=5+15=20.故选:D.8.解:∵D、E分别是△ABC的边AC、BC的中点,∴DE是△BCD的中线;BD是△ABC的中线;AD=DC,BE=EC;DE是△BCD的中线,不是△ABC的中线.观察选项,只有选项D符合题意;故选:D.9.解:∵E,F,G分别是AB,CD,AC的中点,∴,,,故选项A,C正确,∵AD=BC,∴GE=GF,故选项D正确,∵EF不一定等于AG,故选项B不正确;故选:B.10.解:∵∠B=90°,BC=5,AB=12,∴AC==13,∵D,E分别是AB,AC的中点,∴DE=BC=2.5,EC=AC=6.5,DE∥BC,∴∠FCM=∠EFC,∵CF平分Rt△ABC的一个外角∠ACM,∴∠FCM=∠FCE,∴∠EFC=∠FCE,∴EF=EC=6.5,∴DF=DE+EF=9,故选:C.11.解:∵点D,E是AC,BC的中点,∴DE是△ABC的中位线,∴AB=2DE=40m,故选:D.12.解:∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD=DC,CE=EB,∴DE=AB=5,故选:B.13.解:连接BD,如图所示:∵E、F分别是边AB、AD的中点,∴EF∥BD,BD=2EF=4,∴∠ADB=∠AFE=45°,∵BC=5,CD=3,∴BD2+CD2=25,BC2=25,∴BD2+CD2=BC2,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=135°,故答案为:135°.14.解:∵D、E、F分别为AB、BC、AC的中点,∴DE=AC,EF=AB,DF=BC,∵AB+BC+AC=10,∴DE+EF+FD=(AB+BC+AC)=10cm,故答案为:10.15.解:∵△A1B1C1中,A1B1=4,A1C1=5,B1C1=7,∴△A1B1C1的周长是16,∵A2,B2,C2分别是边B1C1,A1C1,A1B1的中点,∴B2C2,A2C2,A2B2分别等于A1B1、B1C1、C1A1的,…,以此类推,则△A4B4C4的周长是×16,∴△A n B n∁n的周长是,则第2020个三角形的周长是=.故答案为:.16.解:∵OD⊥AC于点D,∴AD=CD,即D为AC的中点,∵AB是⊙O的直径,∴点O为AB的中点,∴OD为△ABC的中位线,∴OD=BC,∴BC=2OD=2×4=8.故答案为:8.17.解:∵F,G分别为BC,CD的中点,∴FG=BD=4,FG∥BD,∵E,H分别为AB,DA的中点,∴EH=BD=4,EH∥BD,∴FG∥EH,FG=EH,∴四边形EFGH为平行四边形,∴EF=GH=AC=3,∴四边形EFGH的周长=3+3+4+4=14,故答案为:1418.解:∵点M,N,F分别为AB,AE,BE的中点,∴MF,MN都是△ABE的中位线,∴MF∥AE,MN∥BE,∴四边形EFMN是平行四边形,∴∠AEB=∠NMF=45°,又∵AB⊥AE,∴∠ABE=45°,∴△ABE是等腰直角三角形,∴AB=AE,∵BC⊥CD,DE⊥CD,又∵∠ABC+∠BAC=90°,∠EAD+∠BAC=90°,∴∠ABC=∠EAD,∵∠C=∠D=90°,∴△ABC≌△EAD(AAS),∴BC=AD=4,CA=DE=5,∴Rt△ABC中,AB==,∴等腰Rt△ABE中,BE==,故答案为:.19.解:∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=()2=,∵△ADE的面积为,∴△ABC的面积为2,∴四边形DBCE的面积=2﹣=,故答案为:.20.解:∵DE为△ABC的中位线,∠AFB=90°,AB=8,∴D为AB中点,DE=BC=7,DF=AB=4,∴EF=DE﹣DF=7﹣4=3,故答案为:3.21.解:∵∠ACB=90°,E是AB的中点,∴AB=2CE=6,∵D、F分别是AC、BC的中点,∴DF=AB=3,故答案为:=3.22.解:∵D为AB中点,∠AFB=90°,AB=5,∴DF=AB=2.5,∵DE是△ABC的中位线,BC=8,∴DE=4,∴EF=4﹣2.5=1.5,故答案为:1.523.解:在△AGF和△ACF中,,∴△AGF≌△ACF(ASA).∴AG=AC=8cm,∴GF=CF,则BG=AB﹣AG=12﹣8=4(cm).又∵BE=CE,∴EF是△BCG的中位线.∴EF=BG=2cm.答:EF的长为2cm,24.证明:∵CD=CA,CF平分∠ACB,∴F是AD中点,∵AE=EB,∴E是AB中点,∴EF是△ABD的中位线,∴EF=BD.25.解:(1)∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∵CF=BC,∴DE=FC,∵DE∥FC,∴四边形DCFE是平行四边形,∴CD=EF;(2)猜想:△ABC的面积=四边形BDEF的面积,理由如下:∵DE为△ABC的中位线,∴DE∥BC,DE=BC∴△ADE的面积=△DEC的面积,∴四边形DCFE是平行四边形,∴△DEC的面积=△ECF的面积,∴△ADE的面积=△ECF的面积,∴△ABC的面积=四边形BDEF的面积.26.(1)解:∵点D为BC的中点,∴BD=CD,∵△CDE与四边形ABDE的周长相等,∴CD+DE+CE=AB+BD+DE+AE,∴CE=AB+AE=AB+(AC﹣EC),∴2CE=AC+AB=b+c,∴CE=(b+c);(2)证明:∵点D、F分别为BC、AC的中点,∴DF是△CAB的中位线,∴DF=AB=c,AF=AC=b,由(1)知:CE=(b+c),∴AE=b﹣CE=b﹣(b+c)=(b﹣c),∴EF=AF﹣AE=b﹣(b﹣c)=c,∴DF=EF;(3)解:连接BE、DG,如图所示:∵S△BDH=S△EGH,∴S△BDG=S△DEG,∴BE∥DG,∵DF是△CAB的中位线,∴DF∥AB,=,∴△ABE∽△FDG,∴==,∴FG=AE=×(b﹣c)=(b﹣c),过点A作AP⊥BG于P,∵DF∥AB,∴∠DFC=∠BAC,∵∠DFC=∠DEF+∠EDF,EF=DF,∴∠DEF=∠EDF,∴∠BAP+∠P AC=2∠DEF,∵ED⊥BG,AP⊥BG,∴DE∥AP,∴∠P AC=∠DEF,∴∠BAP=∠DEF=∠P AC,∵AP⊥BG,∴AB=AG=c,∴CG=b﹣c,∴CF=b=FG+CG=(b﹣c)+(b﹣c),∴3b=5c,∴=.27.证明:延长AC、BD交于点F,∵在△ABD和△AFD中,,∴△ABD≌△AFD(ASA),∴AB=AF,BD=DF,又∵E是BC的中点,即ED是△BCF中位线,∴DE=CF=(AB﹣AC).28.证明:连接EH,GH,GF,∵E、F、G、H分别是BD、BC、AC、AD的中点,∴AB∥EH∥GF,GH∥BC∥BF.∴四边形EHGF为平行四边形.∵GE,HF分别为其对角线,∴EG、HF互相平分.29.解:(1)∵AH⊥BC,∴∠AHB=90°,∵点D是AB的中点,∴AD=DH=AB;(2)∵AH⊥BC,∴∠AHB=∠AHC=90°,∵点D,E分别是AB,AC的中点,∴AD=DH=AB,AE=HE=AC,∵四边形ADHE的周长是30,∴AD+AE=×30=15,∵△ADE的周长是21,∴DE=21﹣15=6,∵点D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=12.30.解:(1)DE∥BC,且;(2)∵点E是AC的中点,∴AE=CE,又∵EF=ED,∠AED=∠CEF,∴△ADE≌△CFE(SAS),∴AD=CF,∠A=∠ECF,∴AD∥CF,∴AB∥CF,∵点D是AB的中点,∴AD=BD,∴BD=CF,∴四边形BDFC是平行四边形,∴DE∥BC,DF=BC,∵DE=FE,∴;(3)∵DF=8,∴BC=8,∵CE=3,∴AC=6,∴BC﹣AC<AB<BC+AC,即2<AB<14.31.(1)解:直线DE与⊙O相切,理由如下:如图,连接OD,∵AB为⊙O的直径,∴O是线段AB的中点.又∵点D是AC的中点,∴OD是△ABC的中位线,∴OD∥BC.∵DE⊥BC,∴DE⊥OD.∵D点在⊙O上,∴直线DE与⊙O相切;(2)解:如图,连接BD.∵DE⊥BC,∴在直角△CDE中,DE=2,∠BAC=30°,∴CD=2DE=4.∵点D是AC的中点,∴AD=4.∵AB为⊙O的直径,∴∠ADB=90°.∵点D是AC的中点,∴BD垂直平分AC.∴BA=BC.∴∠BAD=∠BCD=30°.∴在直角△ADB中,AD=4,∠BAD=30°,∴AB=8.32.证明:连接DB,CF,∵DE是△ABC的中位线,∴CE=BE,∵EF=ED,∴四边形CDBF是平行四边形,∴CD=BF。
2021年九年级数学中考一轮复习知识点基础达标测评:数与式综合(附答案)
2021年九年级数学中考一轮复习知识点基础达标测评:数与式综合(附答案)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果高于海平面200米记为+200米,那么低于海平面300米应记为()A.﹣300米B.+500米C.+300米D.﹣100米2.设三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,则a2019+b2019的值为()A.0B.﹣1C.1D.23.如图,数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD.若A,D两点所表示的数分别是﹣5和6,则线段BD的中点所表示的数是()A.6B.5C.3D.24.﹣2018的相反数是()A.﹣2018B.2018C.D.﹣5.已知a是一个正整数,记G(x)=a﹣x+|x﹣a|.若G(1)+G(2)+G(3)+…+G(2019)+G(2020)=90,则a的值为()A.11B.10C.9D.86.|a﹣2|+|b+1|=0,则a+b等于()A.﹣1B.1C.0D.﹣27.有一个程序,当输入任意一个有理数时,显示屏上的结果总是1与输入的有理数的差的倒数,若第一次输入3,并将显示的结果第二次输入,则此时显示的结果是()A.3B.C.D.﹣38.若a+b<0,a<0,b>0,则a,﹣a,b,﹣b的大小关系是()A.a<﹣b<b<﹣a B.﹣b<a<﹣a<b C.a<﹣b<﹣a<b D.﹣b<a<b<﹣a 9.体育课上的口令:立正,向右转,向后转,向左转之间可以相加.连结执行两个口令就把这两个口令加起来.例如:向右转+向左转=立正;向左转+向后转=向右转.如果分别用0,1,2,3分别代表立正,向右转,向后转,向左转,就可以用如图所示的加法表来表示,在表中填了部分的数值和代表数值的字母.下列对于字母a,b,c,d的值,说法错误的是()A.a=0B.b=1C.c=2D.d=310.下列运算正确的是()A.﹣2+(﹣5)=﹣(5﹣2)=﹣3B.(+3)+(﹣8)=﹣(8﹣3)=﹣5 C.(﹣9)﹣(﹣2)=﹣(9+2)=﹣11D.(+6)+(﹣4)=+(6+4)=+10 11.下列说法正确的是()①已知a,b是不为0的有理数,则的值为﹣1或3.②如果定义,当ab<0,a+b<0,|a|>|b|时,{a,b}的值为b﹣a.③若|a+3|=﹣3﹣a,|b﹣2|=b﹣2,则化简|b+3|﹣|a﹣2|的结果为a﹣b+5.A.①②B.①③C.②③D.①②③12.如果向东走2米可记作+2,那么向西走3米可记作.13.在有理数中最大的负整数是,最小的非负数.14.如图,已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动,设t分钟时点P到点M、点N的距离相等,则t的值为.15.﹣3的绝对值等于.16.若,则xy=.17.﹣的倒数是.18.写出一个比﹣2小的有理数:.19.绝对值大于1而小于3.5的所有整数的和为.20.已知(a+3)2+|b﹣2|=0,则a﹣b的值是.21.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A→C(,),B→C(,),C→D(,);(2)若这只甲虫的行走路线为A→B→C→D,则该甲虫走过的路程是;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+3,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.(4)若图中另有两个格点M、N,且M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),则N →A应记为什么?22.如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数字1,AB=6,BC =2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?23.已知y=|2x+6|+|x﹣1|+4|x+1|,求y的最小值.24.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,b﹣a0,c﹣a0.(2)化简:|b﹣c|+|b﹣a|﹣|c﹣a|.25.请根据情景对话回答下面的问题:小明:这条数轴上的两个点A、B表示的数都是绝对值是4的数,点A在点B的左边;小宇:点C表示负整数,点D表示正整数,且这两个数的差为3;小智:点E表示的数的相反数是它本身;(1)求A、B、C、D、E五个不同的点对应的数.(2)求这五个点表示的数的和.26.随着手机的普及,微信的兴起,许多人抓住这种机会,做起了“微商”,很多农产品改变原来的销售模式,实行网上销售,刚大学毕业的小明把自家的冬枣产品放到网上,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤):(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)此前的上个周日小明卖了100斤冬枣,现在用正数表示比前一天多的销售量,负数表示比前一天少的销售量.完成下面的销量变化表:星期一二三四五六日计划量的差额+4﹣3﹣5+14﹣8+21﹣6星期一二三四五六日实际销售量比前一天的变化量(3)求本周实际销售总量与计划总量相比,具体增加或减少了多少斤?27.在一条不完整的数轴上,有A、B、C三个点,C点在A点的右侧,B点在A、C两点之间,已知A点对应数为﹣5,AB=3,设A、C两点对应数的和为m,A、B、C三个点对应数的积为n.(1)求B点表示的数是;(2)若点B是线段AC的三等分点,求m的值;【注:把一条线段平均分成三等分的两个点,都叫线段的三等分点】(3)如图所示,把一把直尺放置在数轴上,发现A点、B点、C点与直尺的刻度0.6,刻度2.4,刻度6分别对应,求n的值.28.有一块面积为64米2的正方形纸片,第1次剪掉一半,第2次剪掉剩下纸片的一半,如此继续剪下去,第6次后剩下的纸片的面积是多少米?29.计算(1)6+(﹣4)+(﹣2)+(﹣5);(2)(﹣+﹣)×(﹣24);(3)﹣22+3×(﹣1)4﹣(﹣4)×2;(4)﹣5﹣[﹣﹣(1﹣0.2×)÷(﹣2)2].参考答案1.解:如果高于海平面200米记为+200米,那么低于海平面300米应记为﹣300米.故选:A.2.解:∵三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b 的形式,∴这两个三数组分别对应相等.∴a+b、a中有一个是0,由于有意义,所以a≠0,则a+b=0,所以a、b互为相反数.∴=﹣1,b=1,a=﹣1.∴a2019+b2019=(﹣1)2019+12019=0.故选:A.3.解:设BC=6x,∵2AB=BC=3CD,∴AB=3x,CD=2x,∴AD=AB+BC+CD=11x,∵A,D两点所表示的数分别是﹣5和6,∴11x=11,解得:x=1,∴AB=3,CD=2,∴B,D两点所表示的数分别是﹣2和6,∴线段BD的中点表示的数是2.故选:D.4.解:﹣2018的相反数是2018.故选:B.5.解:当x≥a时,则|x﹣a|=x﹣a,∴G(x)=a﹣x+x﹣a=0;当x<a时,则|x﹣a|=﹣(x﹣a)=﹣x+a,∴G(x)=a﹣x﹣x+a=2a﹣2x,∵G(1)+G(2)+G(3)+G(4)+…+G(2020)=90,∴设第n个数时,即x=n,G(x)开始为0,即x=a=n,∴G(n)=2n﹣2n=0,∴G(1)+G(2)+G(3)+G(4)+…+G(2020)=2n﹣2+2n﹣4+2n﹣6+…+2n﹣2n+0+0+…+0=2n×n﹣2(1+2+3+…+n)=2n2﹣2×=n2﹣n,即n2﹣n=90,解得n1=10,n2=﹣9(舍去).故选:B.6.解:∵|a﹣2|+|b+1|=0,∴a=2,b=﹣1,∴a+b=1.故选:B.7.解:由题意可得:1﹣3=﹣2,则输出﹣,故第二次输入﹣,得到:1﹣(﹣)=,输出.故选:C.8.解:按题意,可设a=﹣2,b=1,则﹣a=2,﹣b=﹣1.由于﹣2<﹣1<1<2,所以a<﹣b<b<﹣a.故选:A.9.解:根据题意,将表格中的数据填写完整如图所示:因此,a=0,b=1,c=1,d=3,故选:C.10.解:A、﹣2+(﹣5)=﹣(2+5)=﹣7,故本选项不符合题意.B、(+3)+(﹣8)=﹣(8﹣3)=﹣5,本选项符合题意.C、(﹣9)﹣(﹣2)=(﹣9)+2=﹣(9﹣2)=﹣7,本选项不符合题意.D、(+6)+(﹣4)=+(6﹣4)=2,本选项不符合题意,故选:B.11.解:①已知a,b是不为0的有理数,可分4种情况:a>0,b>0,此时ab>0,∴=1+1+1=3;a>0,b<0,此时ab<0,∴=1﹣1﹣1=﹣1;a<0,b<0,此时ab>0,∴=﹣1﹣1+1=﹣1;a<0,b>0,此时ab<0,∴=﹣1+1﹣1=﹣1;∴的值为﹣1或3,故①正确;②当ab<0,a+b<0,|a|>|b|时,a<0<b,∴{a,b}=b﹣a,故②正确;③若|a+3|=﹣3﹣a,|b﹣2|=b﹣2,则a+3≤0,b﹣2≥0,∴a≤﹣3,b≥2,∴b+3>0,a﹣2<0,∴|b+3|﹣|a﹣2|=b+3+a﹣2=a+b+1.故③错误.综上,正确的有①②.故选:A.12.解:向东走2米可记作+2,那么向西走3米可记作﹣3米,故答案为:﹣3米.13.解:在有理数中最大的负整数是﹣1,最小的非负数0,故答案为:﹣1,0.14.解:设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.故答案为:或4.15.解:﹣3的绝对值等3.故答案为:3.16.解:根据题意得,x+2=0,y﹣1=0,解得x=﹣2,y=1,∴xy=(﹣2)×1=﹣2.故答案为:﹣2.17.解:﹣的倒数是﹣8,故答案为:﹣8.18.解:比﹣2小的有理数为﹣3(答案不唯一),故答案为:﹣3.19.解:绝对值大于1而小于3.5的整数包括±2,±32+(﹣2)+3+(﹣3)=0.故答案为:0.20.解:∵(a+3)2≥0,|b﹣2|≥0,而(a+3)2+|b﹣2|=0,∴a+3=0,b﹣2=0,∴a=﹣3且b=2.∴a﹣b=﹣3﹣2=﹣5.故答案为:﹣5.21.解:(1)∵规定:向上向右走为正,向下向左走为负,∴A→C记为(+4,+4),B→C记为(+3,0),C→D记为(+1,﹣3);故答案为:+4;+4;+3;0;+1;﹣3;(2)据已知条件可知:A→B表示为:(+1,+4),B→C记为(+3,0),C→D记为(+1,﹣3);∴该甲虫走过的路线长为1+4+3+1+3=12.故答案为:12;(3)P点位置如图所示.(4)∵M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),∴4﹣a﹣(2﹣a)=2,b﹣3﹣(b﹣5)=2,∴从而得到点A向右走2个格点,向上走2个格点到点N,∴N→A应记为(﹣2,﹣2).22.解:(1)∵点B对应的数为1,AB=6,BC=2,∴点A对应的数是1﹣6=﹣5,点C对应的数是1+2=3.(2)∵动点P、Q分别同时从A、C出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动,∴点P对应的数是﹣5+2t,点Q对应的数是3+t;(3)①当点P与点Q在原点两侧时,若OP=OQ,则5﹣2t=3+t,解得:t=;②当点P与点Q在同侧时,若OP=OQ,则﹣5+2t=3+t,解得:t=8;当t为或8时,OP=OQ.23.解:令2x+6=0,x﹣1=0,x+1=0,解得:x=﹣3,x=1,x=﹣1.当x<﹣3时,则y=﹣2x﹣6﹣x+1﹣4x﹣4=﹣7x﹣9,则没有最小值;当﹣3≤x<﹣1时,则y=2x+6﹣x+1﹣4x﹣4=﹣3x+3,则最小值为﹣6;当﹣1≤x<1时,则y=2x+6﹣x+1+4x+4=5x+11,则最小值为6;当x≥1时,则y=2x+6+x﹣1+4x+4=7x+9,则最小值为16;故y的最小值为﹣6.24.解:(1)观察数轴可知:a<0<b<c,∴b﹣c<0,b﹣a>0,c﹣a>0.故答案为:<;>;>.(2)∵b﹣c<0,b﹣a>0,c﹣a>0,∴|b﹣c|+|b﹣a|﹣|c﹣a|=c﹣b+b﹣a﹣c+a=0.25.解:(1)∵点E表示的数的相反数是它本身,∴E表示0,∵A.B表示的数都是绝对值是4的数,且点A在点B左边,∴A表示﹣4,B表示4,∵点C表示负整数,点D表示正整数,且这两个数的差是3,∴若C表示﹣1,则D表示2:若C表示﹣2.则D表示1.即A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣1,2,0或﹣4,4,﹣2,1,0;(2)当A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣1,2,0时,这五个点表示的数的和是﹣4+4+(﹣1)+2+0=1;当A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣2,1,0时,这五个点表示的数的和是﹣4+4+(﹣2)+1+0=﹣1.26.解:(1)21﹣(﹣8)=29(斤),答:销售量最多的一天比销售量最少的一天多销售29斤,故答案为29;(2)星期一实际销售100+4=104(斤),星期二实际销售100﹣3=97(斤),星期三实际销售100﹣5=95(斤),星期四实际销售100+14=114(斤),星期五实际销售100﹣8=92(斤),星期六实际销售100+21=121(斤),星期日实际销售100﹣6=94(斤),本周每天实际销售量比前一天的变化量分别为:+4,﹣7,﹣2,+19,﹣22,+29,﹣27,故列表如下:星期一二三四五六日+4﹣7﹣2+19﹣22+29﹣27实际销售量比前一天的变化量(3)+4﹣3﹣5+14﹣8+21﹣6=17(斤),答:本周实际销售总量与计划总量相比,具体增加了17斤.27.解:(1)∵A点对应数为﹣5,AB=3,C点在A点的右侧,B点在A、C两点之间,∴B点表示的数为﹣2,故答案为﹣2;(2)∵点B是AC的三等分点,∴当点B靠近点A时,AC=3AB=9,∵A点表示的数为﹣5,且C点在A点的右侧,∴C点表示的数为4,∴m=﹣5+4=﹣1;当点B靠近点C时,AC=AB=,∵A点表示的数为﹣5,且C点在A点的右侧,∴C点表示的数为,∴m=﹣5+=;(3)数轴上的一个单位长度对应刻度尺上是,∴BC的长为,∴C点表示的数为4,∴n=(﹣5)×(﹣2)×4=40.28.解:由题意得,64×()6=64×=1平方米,答:第六次后,还剩1平方米.29.解:(1)原式==4+(﹣10)=﹣6;(2)原式==4﹣30+14=﹣12;(3)原式=﹣4+3+8=7;(4)原式=﹣5﹣[﹣﹣(1﹣)÷4]=﹣5﹣(﹣﹣×)=﹣5﹣()=﹣5+=。
万唯中考数学基础题 初中数学基础题 中考数学基础知识 初三数学
万唯中考数学基础题初中数学基础题中考数学基础知识初三数学站在初三生的角度,中考数学基础知识的积累至关重要。
尤其是在今年最后一场考试中,准确掌握并熟练应用基础数学知识更是必须的。
本文将为大家概述万唯中考数学基础题,包括基本知识概念、基本问题类型以及相关工具,为初中数学基础题的学习提供参考。
一、万唯中考数学基础知识1. 数表、数列:用文字或数字表示规律发展和变化的序列称之为数列,称其中每一项的值为数列的项。
2. 函数:函数是把一个离散的变量作为输入,通过某种规律的计算,求得另一个离散变量作为输出的数学关系。
3. 线性方程:线性方程组是指有方程组的形式表示的变量的函数,它的关系是一元一次的线性函数关系。
4. 椭圆方程:椭圆方程通常用一元二次函数的形式来表达,表示一个椭圆形状的函数,由系数a、b、c、d、e决定。
5. 不等式:不等式是代数运算式中表示不等比较关系的部分。
6. 三角函数:三角函数是由角度或弧度来表示的函数,常用于处理关于角度和长度之间的关系。
7. 图形:图形通常是指平面几何图形,它可以由若干直线、圆弧或曲线拼接而成,代表几何物体的外观。
二、基本问题类型1. 求和:可以求出一组数之和,是初中数学知识学习的重要组成部分,如公式求和、线段求和等。
2. 差分方程:差分方程是以微分方程所代表的关系为基础,以数学形式来表示时间和某一现象之间的内在联系的数学方程。
3. 极值问题:极值问题是讨论定义域内的函数取得极大值或极小值的问题,其中不仅包含定义域内的函数极值点,还包括定义域外的函数极值点等。
4. 平面几何:平面几何是几何学的一部分,主要研究平面上的点、线、弧、圆、抛物线、椭圆以及其它图形之间的结构、运动、测量以及代数表示方法等。
三、相关工具1. 模型分析:利用现有模型,对中考数学基础问题进行推演分析,更好地理解其背后的逻辑思维。
2. 函数图像软件:这一软件可帮助学生可视化的分析所讨论的数学问题,增强数学思维的训练。
中考数学专题复习:函数基础知识练习题(含答案)
中考数学专题复习:函数基础知识练习题一.选择题1.在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB 向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.2.如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x (0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.3.如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A 和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.4.小亮饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小亮离家的时间与离家的距离之间关系的是()A.B.C.D.5.如图①,动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动到点C,图②是点P运动时,△ACP的面积y(cm2)随着时间x(s)的变化的关系图象,则正六边形的边长为()A.2cm B.cm C.1cm D.3cm6.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿B→C→D→A运动至点A 停止,如图②是点P运动时,△P AB的面积y(cm2)随点P运动的路程x(cm)变化的关系图象,则图②中H点的横坐标为()A.12B.14C.16D.7.如图所示的是一辆汽车行驶的速度(千米/时)与时间(分)之间的变化图,下列说法正确的是()A.时间是因变量,速度是自变量B.汽车在1~3分钟时,匀速运动C.汽车最快的速度是30千米/时D.汽车在3~8分钟静止不动8.小苏和小林在如图1所示的跑道上进行4×50米折返跑,在整个过程中跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次9.小聪步行去上学,5分钟走了总路程的,估计步行不能准时到校,于是他改乘出租车赶往学校,他的行程与时间关系如图所示,(假定总路程为1,出租车匀速行驶),则他到校所花的时间比一直步行提前了()分钟.A.16B.18C.20D.2410.如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K 运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是5,则图2中a的值为()A.B.5C.7D.3二.填空题11.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是min.12.如图①,在平行四边形ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA 运动至点A停止.设点P运动的路程为xcm,△P AB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为.13.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,小宇操作机器人以每秒1个单位长度的速度在图1中给出的线段路径上运行,他将机器人运行的时间设为t秒,机器人到点A的距离设为y,得到的函数图象如图2.通过观察函数图象,可以得到下列推断:①机器人一定经过点D;②机器人一定经过点E;③当t=3时,机器人一定位于点O;④存在符合图2的运行路线,使机器人能够恰好经过六边形的全部6个顶点;其中正确的是(填序号).14.在课本的阅读与思考中,科学家利用放射性物质的半衰期这个函数模型来测算岩石的年,生活中也有很多类似这样半衰的现象.请思考下面的问题:一个皮球从16m高处下落,第一次落地后反弹起8m,第二次落地后反弹起4m,以后每次落地后的反弹高度都减半.试写出表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式.皮球第次落地后的反弹高度是m?15.重庆实验外国语学校运动会期间,小明和小欢两人打算匀速从教室跑到600米外的操场参加入场式,出发时小明发现鞋带松了,停下来系鞋带,小欢继续跑往操场,小明系好鞋带后立即沿同一路线开始追赶小欢小明在途中追上小欢后继续前行,小明到达操场时入场式还没有开始,于是小明站在操场等待,小欢继续前往操场.设小明和小欢两人相距s(米),小欢行走的时间为t(分钟),s关于t的函数图象如图所示,则在整个运动过程中,小明和小欢第一次相距80米后,再过分钟两人再次相距80米.三.解答题16.王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小强先上了多少米?山顶离山脚多少米?(2)谁先爬上山顶?小强爬上山顶用了多少分钟?(3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?17.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?请说明理由;(2)结合图象回答:①当=0.7s时,h的值是多少?并说明它的实际意义;②秋千摆第二个来回需多少时间?18.2018年5月14日川航3U863航班挡风玻璃在高空爆裂,机组临危不乱,果断应对.正确处置,顺利返航,避免了一场灾难的发生,创造了世界航空史上的奇迹!下表给出了距离地面高度与所在位置的温度之间的大致关系.根据下表,请回答以下几个问题:(1)上表反映的两个变量中,是自变量,是因变量?(2)若用h表示距离地面的高度,用y表示表示温度,则y与h的之间的关系式是:;当距离地面高度5千米时,所在位置的温度为:℃.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用时间关系图.根据图象回答以下问题:(3)返回途中飞机再2千米高空水平大约盘旋了几分钟?(4)飞机发生事故时所在高空的温度是多少?19.如图1,在△ABC中,点D是线段BC上的动点,将线段AD绕点D逆时针旋转90°得到线段DE,连接BE.若已知BC=8cm,设B,D两点间的距离为xcm,A,D两点间的距离为y1cm,B,E两点距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2随x的变化而变化的规律进行了探究,请补充完整.下面是小明的探究过程的几组对应值.(1)按照下表中自变量x的值进行取点画图,测量分别得到了与x的几组对应值如下表:(说明补全表格时相关数值保留一位小数)(2)在同一平面直角坐标系xoy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象(如图2),解决问题:①当E在线段BC上时,BD的长约为cm;②当△BDE为等腰三角形时,BD的长x约为cm.20.小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,描述小凡的运动过程;(2)谁先出发,先出发了分钟;(3)先到达图书馆,先到了分钟;(4)当t=分钟时,小凡与小光在去学校的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)参考答案一.选择题1.解:在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,∴AD=DC=DB=2,∠CDB=60°∵EF两点的速度均为1cm/s∴当0≤x≤2时,y=当2≤x≤4时,y=由图象可知A正确故选:A.2.解:过点H作HE⊥BC,垂足为E.∵BD是正方形的对角线∴∠DBC=45°∵QH⊥BD∴△BHQ是等腰直角三角形.∵BQ•HE=BH•HQ∴HE=∴△BPH的面积S=BP•HE=x=∴S与x之间的函数关系是二次函数,且二次函数图象开口方向向上;因此,选项中只有A选项符合条件.故选:A.3.解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.4.解:依题意,0﹣20分钟散步,离家路程增加到900米,20﹣30分钟看报,离家路程不变,30﹣45分钟返回家,离家路程减少为0米.故选:D.5.解:如图,连接BE,AE,CE,BE交AC于点G由正六边形的对称性可得BE⊥AC,易证△ABC≌△CDE≌△AFE(SAS)∴△ACE为等边三角形,GE为AC边上的高线∵动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动∴当点P运动到点E时△ACP的面积y取最大值设AG=CG=a(cm),则AC=AE=CE=2a(cm),GE=a(cm)∴2a×a÷2=(cm)∴a2=3∴a=(cm)或a=﹣(舍)∵正六边形的每个内角均为120°∴∠ABG=×120°=60°∴在Rt△ABG中,=sin60°∴=∴AB=2(cm)∴正六边形的边长为2cm故选:A.6.解:图②显示,当BC=4时,y=6,即y=×AB×BC sin60°=AB×4×=6,解得:AB=6,点H的横坐标为:BC+CD+AD=4+4+6=14,故选:B.7.解:速度是因变量,时间是自变量,故选项A不合题意;汽车在1~3分钟时,速度在增加,故选项B不合题意;汽车最快速度是30千米/时,故选项C符合题意;汽车在3~8分钟,匀速运动,故选项D不合题意;故选:C.8.解:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A选项不符合题意;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B选项不符合题意;由函数图象可知:小苏前15s跑过的路程小于小林前15s跑过的路程,故C选项不符合题意;在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次,故D选项符合题意;故选:D.9.解:小聪步行的速度为:÷5=,改乘出租车后的速度为:(﹣)÷(7﹣5)=,小聪到校所花的时间比一直步行提前的时间=﹣5﹣=20(分钟),故选:C.10.解:由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,曲线开始AK=a,结束时AK=a,所以AB=AC.当AK⊥BC时,在曲线部分AK最小为5.所以BC×5=5,解得BC=2.所以AB==.故选:A.二.填空题(共5小题)11.解:由图可得,去校时,上坡路的距离为3600米,所用时间为18分,∴上坡速度=3600÷18=200(米/分),下坡路的距离是9600﹣36=6000米,所用时间为30﹣18=12(分),∴下坡速度=6000÷12=500(米/分);∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小亮从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2(分钟).故答案为:37.212.解:由图象可知,当x=4时,点P到达C点,此时△P AB的面积为6,∵∠B=120°,BC=4,∴×2×AB=6,解得AB=6,H点表示点P到达A时运动的路程为4+6+4=14,故答案为:14.13.解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1;①所有点中,只有点D到A距离为2个单位,故①正确;②因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故②错误.③观察图象t在3﹣4之间时,图象具有对称性则可知,机器人在OB或OF上,则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故③正确;④由②知,机器人不经过点E,故④错误;故答案为:①③.14.解:表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式h=(n为正整数).=,2n=16×8=27,n=7.故皮球第7次落地后的反弹高度是m.故答案为:h=(n为正整数),7.15.解:由题意小欢的速度为40米/分钟,小明的速度为80米/分钟,设小明在途中追上小欢后需要x分钟两人相距80米,则有:80x﹣40x=80,∴x=2,此时小欢一共走了40×(2+2)=160(米),(600﹣160﹣80)÷40=9(分).即小明和小欢第一次相距80米后,再过9分钟两人再次相距80米.故答案为:9三.解答题(共5小题)16.解:(1)由图可知,爷爷比小强先上了100米,当小强爬了10分钟,爬了300米∴小强的速度300÷10=30米/分,∴山高30×15=450米;(2)小强先到山顶,小强爬了15分钟;(3)图中两条线段的交点表示小强和爷爷相遇的时候,这时小强爬山用时10分钟,离山脚300米.17.解:(1)h是t的函数是两个变量、每一个时间t的确定值,高度h都有唯一的值与其对应,故变量h是否为关于t的函数;(2)①当t=0.7s时,h=0.5m,它的意义是:秋千摆动0.7s时,设地面的高度为0.5m.②从图象看前两个来回用时2.8,后面两个来回用时5.4﹣2.8=2.6,再后面两个来回用时7.8﹣5.4=2.4,为均匀减小,故第一个来回应该是1.5s,第二个来回2.6s.18.解:(1)根据函数的定义:距离地面高度是自变量,所在位置的温度是因变量,故答案为:距离地面高度,所在位置的温度;(2)由题意得:y=20﹣6h,当x=5时,y=﹣10,故答案为:y=20﹣6h,﹣10;(3)从图象上看,h=2时,持续的时间为2分钟,即返回途中飞机在2千米高空水平大约盘旋了2分钟;(4)h=2时,y=20﹣12=8,即飞机发生事故时所在高空的温度是8度.19.解:(1)当x=0时,a=AD=7.03≈7.0,b=3.0;(2)描绘后表格如下图:(3)①当E在线段BC上时,即:x=y1+y2,从图象可以看出,当x=6时,y1+y2=6,故答案为6;②当BE=DE时,即:y1=y2,此时x=7.5或0,故x=7.5;当BE=BD时,即:y2=x,在图上画出直线y=x,此时x≈3;当DE=BE时,即:y1=x,从上图可以看出x≈4.1;故答案为:3或4.1或7.5.20.解:(1)由图可得,l1和l2中,l1描述小凡的运动过程,故答案为:l1;(2)由图可得,小凡先出发,先出发了10分钟,故答案为:小凡,10;(3)由图可得,小光先到达图书馆,先到了60﹣50=10(分钟),故答案为:小光,10;(4)小光的速度为:5÷(50﹣10)=千米/分钟,小光所走的路程为3千米时,用的时间为:3÷=24(分钟),∴当t=10+24=34(分钟)时,小凡与小光在去学校的路上相遇,故答案为:34;(5)小凡的速度为:=10(千米/小时),小光的速度为:=7.5(千米/小时),即小凡与小光从学校到图书馆的平均速度分别为10千米/小时、7.5千米/小时.。
中考数学总复习《函数基础知识》练习题及答案
中考数学总复习《函数基础知识》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线L:y=x−3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中a的值为()A.7B.9C.12D.132.弹簧挂物体会伸长,测得弹簧长度y(cm)(最长为20cm),与所挂物体质量x(kg)之间有下面的关系:x/kg01234…y/cm88.599.510…A.x与y都是变量,x是自变量,y是x的函数B.所挂物体质量为6kg时,弹簧长度为11cmC.y与x的函数表达式为y=8+0.5xD.挂30kg物体时,弹簧长度一定比原长增加15cm3.甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是()A.甲B.乙C.丙D.丁4.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ∠CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是()A.2B.95C.65D.15.将水匀速滴进如图所示的容器时,能符合题意反映容器中水的高度(h)与时间(t)之间对应关系的图象大致是()A.B.C.D.6.函数y= √x−1的自变量x的取值范围是()A.x=1B.x≠1C.x≥1D.x≤17.在函数y=√x+2x中,自变量x的取值范围为( )A.x≥-2B.x<-2且x≠0C.x≥-2且x≠0D.x≠0.8.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为()A.1.1,8B.0.9,3C.1.1,12D.0.9,89.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千克0.51 1.52 2.53 3.54烤制时间/分406080100120140160180 A.140B.138C.148D.16010.下列各曲线中表示y是x的函数的是()A.B.C.D.11.下列函数中自变量x的取值范围是x>1的是().A.y=1√x−1B.y=√x−1C.y=1√x−1D.y=1√1−x12.习近平总书记在全国教育大会上强调,要坚持中国特色社会主义教育发展道路.培养德智体美劳全面发展的社会主义建设者和接班人.枣庄某学校利用周未开展课外劳动实践活动.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为()A.1.1,8B.0.9,3C.1.1,12D.0.9,8二、填空题13.一棵树现在高60cm,每个月长高2cm,x月之后这棵树的高度为hcm,则h关于x的函数解析式为.14.甲、乙两车分别从A,B两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过15小时后两车同时到达距A地300千米的C地(中途休息时间忽略不计).设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则当甲车到达B地时,乙车距A地千米.15.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,自变量是.,则自变量x的取值范围是.16.已知函数y= √2x+1x−217.如图1,在平面直角坐标系中,平行四边形ABCD在第一象限,且AB∠x轴.直线y=﹣x从原点出发沿x轴正方向平移,被平行四边形ABCD截得的线段EF的长度y与平移的距离x的函数图象如图2所示,那么平行四边形ABCD的面积为.18.甲、乙两地相距360km,一辆货车从甲地以60km/ℎ的速度匀速前往乙地,到达乙地后停止在货车出发的同时,另一辆轿车从乙地沿同一公路匀速前往甲地,到达甲地后停止.两车之间的路程y(km)与货车出发时间x(ℎ)之间的函数关系如图中的折线CD−DE−EF所示.其中点C的坐标是(0,360),点D的坐标是(2,0),则点E的坐标是.三、综合题19.我国边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防部迅速派出快艇B追赶(如图1).图2中l1、l2分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象回答问题:(1)直线l1与直线l2中表示B到海岸的距离与追赶时间之间的关系(2)A与B比较,速度快;(3)l1与l2对应的两个一次函数表达式S1=k1t+b1与S2=k2t+b2中,k1、k2的实际意义各是什么?并直接写出两个具体表达式(4)15分钟内B能否追上A?为什么?(5)当A逃离海岸12海里的公海时,B将无法对其进行检查,照此速度,B能否在A逃入公海前将其拦截?为什么?20.为迎接元旦,某食品加工厂计划用三天时间生产某种糕点600斤,其库存量稳定增加,从第四天开始停止生产,进行销售,每天销售150斤,图中的折线OAB表示该糕点的库存量y(斤)与销售时间x(天)之间的函数关系.(1)B点坐标为,线段AB所在直线的解析式为;(2)在食品销售期间,某超市提前预定当天这种糕点150斤的销量,并搭配活动将这批糕点分甲乙两种方式售卖,甲种方式每斤8元,乙种方式每斤12元,同时为了保证甲种方式的数量不低于乙种方式,求该超市卖完全部糕点销售总额的最大值.21.已知y是x 的函数,自变量x的取值范围是x >0,下表是y与x 的几组对应值.x···123579···y··· 1.98 3.95 2.63 1.58 1.130.88···与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质:.22.沙沙骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校. 以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)沙沙家到学校的路程是多少米?(2)在整个上学的途中哪个时间段沙沙骑车速度最快,最快的速度是多少米/分?(3)沙沙在书店停留了多少分钟?(4)本次上学途中,沙沙一共行驶了多少米?23.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?24.2022年3月23日“天宫课堂”第二课开讲.传播普及空间科学知识,激发了广大青少年不断追求“科学梦”的热情.小明在周末从家骑自行车到晋中市科技馆探索科技的奥秘,他骑行了一段时间后,在某路口等待红绿灯,待绿灯亮起后继续向科技馆方向骑行,在快到科技馆时突然发现钥匙不见了,于是他着急地原路返回,在刚刚等红绿灯的路口处找到了钥匙,使继续前往科技馆.小明离科技馆的距离(m)与离家的时间(min)的关系如图所示,请根据图中提供的信息回答下列问题:(1)小明家到晋中市科技馆的距离是m;(2)小明等待红绿灯所用的时间为min;(3)图中点C表示的意义是;(4)小明在整个途中,哪个时间段骑车速度最快?,最快速度是m/min.(5)小明在整个途中,共行驶了m.参考答案1.【答案】D 2.【答案】D 3.【答案】A 4.【答案】B 5.【答案】D 6.【答案】C 7.【答案】C 8.【答案】D 9.【答案】C 10.【答案】D 11.【答案】A 12.【答案】D 13.【答案】h=60+2x 14.【答案】100 15.【答案】时间 16.【答案】x≥﹣12且x≠217.【答案】12 18.【答案】(3,180) 19.【答案】(1)直线l 1(2)B(3)由题意可得k 1、k 2的实际意义是分别表示快艇B 的速度和可疑船只的速度 S 1=0.5t ,S 2=0.2t+5; (4)15分钟内B 不能追上A理由:当t =15时,S 2=0.2×15+5=8,S 1=0.5×15=7.5 ∵8>7.5∴15分钟内B 不能追上A ; (5)B 能在A 逃入公海前将其拦截 理由:当S 2=12时,12=0.2t+5,得t =35 当t =35时,S 1=0.5×35=17.5∵17.5>12∴B能在A逃入公海前将其拦截.20.【答案】(1)(7,0);y=-150x+1050(2)解:设该超市卖完全部糕点销售总额是y元,甲种方式售卖x斤,则乙种方式售卖(150−x)斤根据题意得:y=8x+12(150−x)=−4x+1800∵甲种方式的数量不低于乙种方式∴x≥150−x∴x≥75而−4<0∴y随x的增大而减小∴x=75时,y最大为−4×75+1800=1500答:该超市卖完全部糕点销售总额的最大值是1500元.21.【答案】(1)解:如下图:(2)2(2.1到1.8之间都正确);该函数有最大值(其他符合题意性质都可以).22.【答案】(1)解:根据图象,学校的纵坐标为1500,小明家的纵坐标为0故沙沙家到学校的路程是1500米(2)解:根据图象,12≤x≤14时,直线最陡故沙沙在12分钟到14分钟最快,最快的速度是1500−60014−12=450米/分(3)解:根据题意,沙沙在书店停留的时间为从8分到12分,12-8=4故沙沙在书店停留了4分钟.(4)解:读图可得:沙沙共行驶了1200+600+900=2700米.23.【答案】(1)解:∵对于每一个摆动时间t,都有一个唯一的ℎ的值与其对应∴变量h是关于t的函数。
中考数学第一轮复习基础知识训练(十七)(附答案)
中考数学第一轮复习基础知识训练(十七)时间:30分钟 你实际使用 分钟班级 姓名 学号 成绩一、精心选一选1.如图1,在平面直角坐标系中,点E 的坐标是( ) A.(12), B.(21), C.(12)-, D.(12)-, 2.在ABC △中,90C ∠= ,34AC BC ==,,则sin A 的值是( ) A.43B.45C.34D.353.如图2,Rt Rt ABC DEF △≌△,则E ∠的度数为( ) A.30 B.45 C.60 D.904.下列各式运算结果为8x 的是( ) A.44x x ·B.44()xC.162x x ÷D.44x x +5.小伟五次数学考试成绩分别为:86分,78分,80分,85分,92分,李老师想了解小伟数学学习变化情况,则李老师最关注小伟数学成绩的( ) A.平均数 B.众数 C.中位数 D.方差 6.如图3,数轴上点N 表示的数可能是( )7.如图4,点A B C D E F G H K ,,,,,,,,都是78⨯方格纸中的格点,为使DEM ABC △∽△,则 点M 应是F G H K ,,,四点中的( ) A.F B.G C.HD.K8.图5能折叠成的长方体是( )图 5A. B. C. D.0 1 2 341- N图2图4二、细心填一填9.2-的绝对值等于 .10.某水井水位最低时低于水平面5米,记为5-米,最高时低于水平面1米,则水井水位h 米中h 的取值范围是 . 11.已知两圆的圆心距12O O 为3,1O 的半径为1,2O 的半径为2,则1O 与2O 的位置关系为 . 12.如图6,点P 是O 外一点,PA 切O 于点A , 60O ∠= ,则P ∠度数为 .13.大连某小区准备在每两幢楼房之间,开辟面积为300平方米的 一块长方形绿地,并且长比宽多10米,设长方形绿地的宽为x 米,则可列方程为 .14.如图7,双曲线ky x=与直线y mx =相交于A B ,两点,B 点坐标为(23)--,,则A 点坐标为 .15.图8是二次函数221y ax x a =-+-的图象, 则a 的值是 .三、解答题 16.已知方程111x =-的解是k ,求关于x 的方程20x kx +=的解.P图6 图8图7答案参考一、选择题 1.A; 2.B; 3.C;4.A;5.D;6.B;7.C;8.D. 二、填空题9.2; 10.51h --≤≤;11.外切;12.30 ;13.(10)300x x +=; 14.(23),;15.1.三、解答题16.解:111x =-.方程两边同时乘以(1)x -,得11x =-.解得2x =.经检验,2x =是原方程的解,所以原方程的解为2x =. 即2k =.把2k =代入20x kx +=,得220x x +=. 解得1202x x ==-,.。
2021年九年级数学中考一轮复习知识点基础达标测评:函数综合(附答案)
2021年九年级数学中考一轮复习知识点基础达标测评:函数综合(附答案)1.如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…),且每秒运动一个单位长度,那么2020秒时,这个粒子所处位置为()A.(4,44)B.(5,44)C.(44,4)D.(44,5)2.在平面直角坐标系中,点A的坐标为(﹣4,3),AB∥y轴,AB=5,则点B的坐标为()A.(1,3)B.(﹣4,8)C.(﹣4,8)或(﹣4,﹣2)D.(1,3)或(﹣9,3)3.在平面直角坐标系中,点P(3,4)到原点的距离是()A.3B.4C.5D.±54.如果每盒笔售价16元,共有10支,用y(元)表示笔的售价,x表示笔的支数,那么y 与x的关系式为()A.y=10x B.y=16x C.y=x D.y=x5.函数y=自变量的取值范围是()A.x≠2020B.x≠﹣2020C.x≠2021D.x≠﹣20216.根据如图所示的计算程序,若输入x=﹣2,则输出结果y的值为()A.﹣3B.3C.﹣7D.77.已知关于x的函数的图象如图所示,根据探究函数图象的经验,可以推断常数a,b的值满足()A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a<0,b>08.如图1,在矩形MNPO中,动点R从点N出发,沿N→P→O→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPO的周长是()A.11B.15C.16D.249.在平面直角坐标系中,点(2,3)到x轴的距离是.10.如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA、OC分别在x轴、y 轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2020的纵坐标为.11.如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°),B 的位置为(4,210°),则C的位置为.12.在平面直角坐标系中有一点P(a+1,a﹣3),其中a为任意实数,m,n分别表示点P 到x轴和y轴的距离,则m+n的最小值为.13.已知变量x与y的四种关系:①y=|x|;②|y|=x;③2x2﹣y=0;④x+y2=1,其中y是x的函数的式子有个.14.如图,三角形ABC的高AD=4,BC=6,点E在BC上运动,若设BE的长为x,三角形ACE的面积为y,则y与x的关系式为.15.函数y=中,自变量x的取值范围是.16.已知f(x)=kx,f()=2,那么k=.17.如图是某物体的抛射曲线图,其中s表示物体与抛射点之间的水平距离,h表示物体的高度.那么此次抛射过程中,物体达到的最大高度是m.18.如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K 运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是,则①BC=;②AC=.19.已知当m,n都是实数.且满足2m=8+n时,称p(m﹣1,)为“开心点”.(1)判断点A(5,3),B(4,10)是否为“开心点”,并说明理由;(2)若点M(a,2a﹣1)是“开心点”,请判断点M在第几象限?并说明理由.20.已知点A(3a+2,2a﹣4),试分别根据下列条件,求出a的值并写出点A的坐标.(1)点A在x轴上;(2)点A与点A'(﹣4,﹣)关于y轴对称;(3)经过点A(3a+2,2a﹣4),B(3,4)的直线,与x轴平行;(4)点A到两坐标轴的距离相等.21.育新实验学校八(二)班的学生从学校O点出发,要到某基地进行为期一周的校外实践活动,他们第一天的任务是进行体能训练,学生们先向正西方向行走了2km到A处,又往正南方向行走3km到B处,然后又折向正东方向行走6km到C处,再向正北方向走5km才到校外实践基地P处.如图,以点O为原点,取O点的正东方向为x轴的正方向,取O点的正北方向为y轴的正方向,以500m为一个单位长度建立平面直角坐标系.(1)在平面直角坐标系中,画出学生体能训练的行走路线图;(2)分别写出A,B,C,P点的坐标.(3)请在横线上直接写出O,P两点之间的距离.22.如图,在矩形ABCD中,AB=4cm,BC=3cm,点P从点A出发,沿A→B→C向终点C匀速运动,在边AB,BC上分别以4cm/s,3cm/s的速度运动,同时点Q从点A出发,沿A→D→C向终点C匀速运动,在边AD,DC上分别以3cm/s,4cm/s的速度运动,连接PQ,设点P的运动时间为t(s),四边形PBDQ的面积为S(cm2).(1)当点P到达边AB的中点时,求PQ的长;(2)求S与t之间的函数解析式,并写出自变量t的取值范围.23.为了探索函数y=x+(x>0)的图象与性质,我们参照学习函数的过程与方法.列表:x…12345…y…2…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图1所示:(1)补全表格,并用一条光滑曲线将所描的点顺次连接起来,作出函数图象;(2)点(x1,y1),(x2,y2)在函数图象上,若0<x1<x2≤1,则y1y2;若x1•x2=1,则y1y2(填“>”,“=”或“<”);若方程x+=k(x>0)有两个不相等的实数根,则k的取值范围是;由图象可得y=x+(x>0)≥2,小明想换个角度说明它的正确性,请你帮他证明.(3)某农户要建造一个图2所示的长方体形无盖水池,其底面积为1平方米,深为1米.已知底面造价为1千元/平方米,侧面造价为0.5千元/平方米.设水池底面一边的长为x米,水池总造价为y千元.①请写出y与x的函数关系式;②若该农户预算不超过3.5千元,则水池底面一边的长x应控制在什么范围内?24.电话费b与通话时间a的关系如下表:通话时间a/分电话费b/元10.2+0.820.4+0.830.6+0.840.8+0.8(1)试用含a的式子表示b;(2)计算当a=100时,b的值.25.已知y=(m﹣2)x+|m|﹣2.(1)m满足什么条件时,y=(m﹣2)x+|m|﹣2是一次函数?(2)m满足什么条件时,y=(m﹣2)x+|m|﹣2是正比例函数?26.在如图所示的平面直角坐标系中.画出函数y=2x+4的图象.(1)若该函数图象与x轴交于点A,与y轴交于点B,求△AOB的面积;(2)利用该函数图象直接写出:当y<0时,x的取值范围.27.已知一次函数y=(2﹣k)x﹣k2+4.(1)k为何值时,y随x的增大而减小?(2)k为何值时,它的图象经过原点?28.设一次函数y=kx+b﹣3(k,b是常数,且k≠0).(1)该函数的图象过点(﹣1,2),试判断点P(4,5k+2)是否也在此函数的图象上,并说明理由.(2)已知点A(a,y1)和点B(a﹣2,y1+2)都在该一次函数的图象上,求k的值.(3)若k+b<0,点Q(5,m)(m>0)在该一次函数上,求证:k>.29.如图所示的是某市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),若海洋极地公园的坐标为(4,0),大唐芙蓉园的坐标为(2,﹣1),请建立平面直角坐标系,并用坐标表示大明宫国家遗址公园的位置.参考答案1.解:由题意,设粒子运动到A1,A2,…,A n时所用的间分别为a1,a2,…,a n,则a1=2,a2=6,a3=12,a4=20,…,a n﹣a n﹣1=2n,a2﹣a1=2×2,a3﹣a2=2×3,a4﹣a3=2×4,…,a n﹣a n﹣1=2n,相加得:a n﹣a1=2(2+3+4+…+n)=n2+n﹣2,∴a n=n(n+1).∵44×45=1980,故运动了1980秒时它到点A44(44,44);又由运动规律知:A1,A2,…,A n中,奇数点处向下运动,偶数点处向左运动.故达到A44(44,44)时向左运动40秒到达点(4,44),即运动了2020秒.所求点应为(4,44).故选:A.2.解:∵AB∥y轴,∴A、B两点的横坐标相同,又AB=5,∴B点纵坐标为:3+5=8或3﹣5=﹣2,∴B点的坐标为:(﹣4,﹣2)或(﹣4,8);故选:C.3.解:∵点P(3,4),∴点P到原点的距离是=5.故选:C.4.解:由题意得,y=x=x,故选:C.5.解:要使有意义,必须2021﹣x≠0,解得,x≠2021,故选:C.6.解:x=﹣2时,y=2x2﹣1=7,故选:D.7.解:由图象可知,当x>0时,y<0,∴a<0;x=﹣b时,函数值不存在,∴﹣b<0,∴b>0;故选:D.8.解:∵x=3时,及R从N到达点P时,面积开始不变,∴PN=3,同理可得OP=5,∴矩形的周长为2(3+5)=16.故选:C.9.解:点(2,3)到x轴的距离是3,故答案为:3.10.解:∵正方形OABC边长为1,∴OB=,∵正方形OBB1C1是正方形OABC的对角线OB为边,∴OB1=2,∴B1点坐标为(0,2),同理可知OB2=2,∴B2点坐标为(﹣2,2),同理可知OB3=4,B3点坐标为(﹣4,0),B4点坐标为(﹣4,﹣4),B5点坐标为(0,﹣8),B6(8,﹣8),B7(16,0),B8(16,16),B9(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2020÷8=252…4,∴B2020的横纵坐标符号与点B4相同,横纵坐标相同,且都在第三象限,∴B2020的坐标为(﹣21010,﹣21010).故答案为:(﹣21010,﹣21010).11.解:由题意,点C的位置为(4,150°).故答案为(4,150°).12.解:∵P(a+1,a﹣3),其中a为任意实数,m,n分别表示点P到x轴和y轴的距离,∴m=|a﹣3|,n=|a+1|,∴m+n=|a﹣3|+|a+1|,∴m+n的最小值即为|a﹣3|+|a+1|的最小值,∴①当a≤﹣1时,m+n=|a﹣3|+|a+1|=﹣2a+2≥4;②当﹣1<a<3时,m+n=|a﹣3|+|a+1|=4;③当a≥3时,m+n=|a﹣3|+|a+1|=a﹣3+a+1=2a﹣2≥4;综上,m+n≥4,∴m+n的最小值为4,故答案为:4.13.y是x的函数的式子有:①y=|x|;③2x2﹣y=0,共2个,故答案为:2.14.解:由线段的和差,得CE=6﹣x,由三角形的面积,得y=×4×(6﹣x)化简,得y=﹣2x+12,故答案为:y=﹣2x+12.15.解:由题意得,≥0,则或,解得,x>2或x≤1,故答案为:x>2或x≤1.16.解:由题意可得:k=2,解得.故答案为:.17.解:由函数图象可得,当S=6时,h有最大值3,∴此次抛射过程中,物体达到的最大高度是3m,故答案为:3.18.解:由图象的曲线部分看出直线部分表示K点在AB上,且AB=3,曲线开始AK=3,结束时AK=3,所以AB=AC=3.当AK⊥BC时,在曲线部分AK最小为5.所以BC×5=10,解得BC=4.故答案为4、3.19.解:(1)点A(5,3)为“开心点”,理由如下,当A(5,3)时,m﹣1=5,,得m=6,n=4,则2m=12,8+n=12,所以2m=8+n,所以A(5,3)是“开心点”;点B(4,10)不是“开心点”,理由如下,当B(4,10)时,m﹣1=4,,得m=5,n=18,则2m=10,8+18=26,所以2m≠8+n,所以点B(4,10)不是“开心点”;(2)点M在第三象限,理由如下:∵点M(a,2a﹣1)是“开心点”,∴m﹣1=a,,∴m=a+1,n=4a﹣4,代入2m=8+n有2a+2=8+4a﹣4,∴a=﹣1,2a﹣1=﹣3,∴M(﹣1,﹣3),故点M在第三象限.20.解:(1)依题意有2a﹣4=0,解得a=2,3a+2=3×2+2=8.故点A的坐标为(8,0);(2)依题意有3a+2=4,解得a=.点A的坐标为(4,﹣);(3)依题意有2a﹣4=4,解得a=4,3a+2=3×4+2=14,故点A的坐标为(14,4);(4)依题意有|3a+2|=|2a﹣4|,则3a+2=2a﹣4或3a+2+2a﹣4=0,解得a=﹣6或a=0.4,当a=﹣6时,3a+2=3×(﹣6)+2=﹣16,当a=0.4时,3a+2=3×0.4+2=3.2,2a﹣4=﹣3.2.故点A的坐标为(﹣16,﹣16)或(3.2,﹣3.2).21.解:(1)如图所示:(2)A(﹣4,0);B(﹣4,﹣6);C(8,﹣6);P(8,4);(3)O,P两点之间的距离为×=2(km).故O,P两点之间的距离为2km.故答案为:2km.22.解:(1)由题意得,当点P在线段AB上时,AP=4t,AQ=3t,当点P到达边AB的中点时,AP=2,即4t=2,解得,t=,∴AQ=,∴PQ===(cm);(2)当点P在边AB上时,S=×AB×AD﹣×AP×AQ=×4×3﹣×4t×3t=6﹣6t2(0<t<1);当点P在边BC上时,CP=3﹣3(t﹣1)=6﹣3t,CQ=4﹣4(t﹣1)=8﹣4t,S=×BC×CD﹣×CP×CQ=×3×4﹣(6﹣3t)(8﹣4t)=﹣6t2+24t﹣18(1<t<2);23.解:(1)当x=5时,y=x+=,故答案为,通过描点、连线绘制的函数图象如下:(2)从图象看,若0<x1<x2≤1,则y1>y2;若x1•x2=1,则y1=y2.从图象看,若方程x+=k(x<0)有两个不相等的实数根,则k的取值范围是为k>2;故答案为>,=,k>2;∵x>0,故>0,则(﹣)2≥0,即y=x+≥2;(3)①由题意,y=1+(2x+)×0.5=1+x+(x>0).②由题意1+x+≤3.5,∵x>0,可得2x2﹣5x+2≤0,解得:≤x≤2,∴水池底面一边的长x应控制在≤x≤2的范围内.24.解:(1)由题可得,b=0.2a+0.8;(2)当a=100时,b=0.2×100+0.8=20.8(元).25.解:(1)由题意得:m﹣2≠0,解得:m≠2;(2)由题意得:|m|﹣2=0,且m﹣2≠0,解得:m=﹣2.26.解:∵函数y=2x+4,∴当x=0,y=4,当y=0时,x=﹣2,即该函数图象过点(0,4),(﹣2,0),所画的函数图象如右图所示;(1)由图象可得,点A(﹣2,0),点B(0,4),则OA=2,OB=4,故△AOB的面积是=4;(2)由图象可得,当y<0时,x的取值范围是x<﹣2.27.解:(1)∵一次函数y=(2﹣k)x﹣k2+4的图象y随x的增大而减小,∴2﹣k<0,解得:k>2,∴当k>2时,y随x的增大而减小;(2)∵一次函数y=(2﹣k)x﹣k2+4的图象经过原点,∴,解得:k=﹣2,∴当k=﹣2时,它的图象经过原点.28.解:(1)点P(4,5k+2)在此函数的图象上,理由如下:∵该函数的图象过点(﹣1,2),∴2=﹣k+b﹣3,∴k﹣b=﹣5.把点P(4,5k+2)代入一次函数y=kx+b﹣3,5k+2=4k+b﹣3k﹣b=﹣5.∴点P(4,5k+2)也在此函数的图象上;(2)∵点A(a,y1)和点B(a﹣2,y1+2)都在该一次函数的图象上,∴解得k=﹣1.答:k的值为﹣1;(3)∵k+b<0,解得b<﹣k,∵点Q(5,m)(m>0)在该一次函数上,∴m=5k+b﹣3>0,解得b>3﹣5k所以3﹣5k<b<﹣k所以3﹣5k<﹣k解得k>.故得证.29.解:如图所示:大明宫国家遗址公园(1,5)。
中考数学复习考点知识专题训练10---一次函数综合(基础篇)
中考数学复习考点知识专题训练10 一次函数综合(基础)1.如图,已知点A(3,0),C(﹣1,0),点B为y轴正半轴上的一点,且S△ABC=6.(1)求直线AB的解析式;(2)在y轴上是否存在点T,将直线CB沿直线CT翻折后,点B的对称点H恰好落在x轴上.若存在,求出T点的坐标;若不存在,说明理由.(3)若P、Q两点在直线AB上,且x P、x Q是方程x2﹣x﹣2mx+m2+m﹣2=0的两个根,当∠POQ =90°时,求m的值.2.如图,在平面直角坐标系中,直线l与x轴交于点A(﹣1,0),与y轴交于点B(0,﹣2),点C 是x轴上一点,且满足CA=CB(1)求直线l的解析式;(2)求点C的坐标和△ABC的面积;(3)过点C作y轴的平行线CH,借助△ABC的一边构造与△ABC面积相等的三角形,第三个顶点P在直线CH上,求出符合条件的点P的坐标.3.如图,在平面直角坐标系xOy中,A(4,0),OA=OC,∠AOC=60°,且CB∥OA,OB平分∠AOC,点P是四边形OABC的内部一点,且点P到四边形OABC四条边的距离相等.(1)直接写出点P的坐标是;(2)若一次函数y=x+b的图象经过点P,求b的值;(3)若一次函数y=x+m的图象与四边形OABC有两个公共点时,直接写出m的取值范围.4.如图,把矩形纸片OABC放入直角坐标系中,使OA、OC分别落在x轴、y轴的正半轴上,连接AC,将△ABC翻折,点B落在该坐标平面内,设这个落点为D,CD交x轴于点E,已知CB=8,AB=4.(1)求AC所在直线的函数关系式;(2)求点E的坐标和△ACE的面积;(3)求点D的坐标,并判断点(8,﹣4)是否在直线OD上,说明理由.5.如图,若A (0,a ),B (b ,0),C (c ,c ),且(a ﹣5)2+|b +2|+√c −3=0.四边形ABCD 为平行四边形,点D 在第一象限,直线AC 交x 轴于点F .(1)求点D 的作坐标;(2)求证:∠DCF =∠ABF +∠AFB ;(3)求CF AC 的比值.6.如图1,在平面直角坐标系中,已知点A (0,4√3),点B 在x 正半轴上,且∠ABO =30°,动点P 在线段AB 上从点A 向点B 以每秒√3个单位的速度运动,设运动时间为t 秒,在x 轴上取两点M ,N 作等边△PMN ,(1)求直线AB 的解析式;(2)求等边△PMN 的边长(用t 的代数式表示),并求出当等边△PMN 的顶点M 运动到与原点O 重合时t 的值;(3)如果取OB 的中点D ,以OD 为边在Rt △AOB 内部作如图2所示的矩形ODCE ,点C 在线段AB 上,设等边△PMN 和矩形ODCE 重叠部分的面积为S ,①t =2时,S 的值;②请求出当0≤t ≤1时S 与t 的函数关系式.7.直线y=x+6交x轴、y轴于A、B两点,AC⊥AB交y轴于C,P为x轴正半轴上一点.(1)求直线AC的解析式;(2)过P作PM⊥BP交AC于M,求证:PM=PB;(3)在(2)的条件下,过B任作直线BG,MG⊥BG于G,连接PG,∠PGM的度数是否变化?若不变,求出其值;若变化,请说明理由.8.已知点A,B分别在x轴的负半轴和正半轴上,OA,OB的长分别是一元二次方程x2﹣5x+6=0的两个根,且OA>OB,点C的坐标为(0,﹣4),点D在y轴上,直线AD平分∠CAB.(1)求A,B两点的坐标;(2)求直线BD的解析式;(3)点P是直线BD上一点,平面内是否存在点Q,使得以A,B,P,Q为顶点的四边形为菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.9.如图,在平面直角坐标系xOy中,将直线y=kx(k≠0)沿y轴向上平移2个单位得到直线l,已知直线l经过点A(﹣4,0)(1)求直线l的解析式;(2)设直线l与y轴交于点B,在x轴正半轴上任取一点C(OC>2),在y轴负半轴上取点D,使得OD=OC,过D作直线DH⊥BC于H,交x轴于点E,求点E的坐标;(3)若点P的坐标为(﹣3,m),△ABP与△ABO的面积之间满足S△ABP=12S△ABO,求m的值.10.如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,AB与OD交于点P,其中OA=3,OB=2.(1)求AB所在直线的解析式;(2)求OD所在直线的解析式;(3)求交点P的坐标.11.如图,已知点A(m,m+1),B(m+3,m﹣1)(1)求线段AB的长;(2)若已知m=3,x轴上是否存在一点P,使得P A+PB的值最小?若存在,请求出点P的坐标,若不存在,请说明理由;(3)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.12.如图,A(4,0),B(0,4),直线y=13x与直线AB交于点C.(1)求点C的坐标;(2)点P是x轴正半轴上一点,若∠PCO=3∠ABO.①求直线PB的解析式;②求点P的坐标.13.如图,直线y=kx+6与x轴,y轴分别交于点E、点F,点E的坐标为(﹣8,0)(1)求k的值;(2)已知点A(﹣6,0),若点P(x,y)是直线上第二象限内的一个动点,试写出△OP A的面积S 关于x 的函数解析式,并写出自变量x 的取值范围;(3)探究:在(2)的条件下,当点P 运动到什么位置时,△OP A 的面积为274?并说明理由.14.如图,在平面直角坐标系中,直线与x 轴、y 轴分别交于点A (6,0)、点B (0,6√3),点D 是线段AB 的中点,点C (0,2√3),点E 为x 轴上一动点.(1)求直线AB 的表达式,并直接写出点D 的坐标;(2)联结CE 、DE ,以CE 、DE 为边作▱CEDF ,▱CEDF 的顶点F 恰好落在y 轴上,求点F 的坐标;(3)设点M 是直线y =x +4√3上一点,若以C 、D 、E 、M 为顶点的四边形为平行四边形,请直接写出所有符合条件的点M 的坐标.15.已知:如图,直线y =−12x +1与x 轴、y 轴的交点分别是A 和B ,把线段AB 绕点A 顺时针旋转90°得线段AB ′.(1)直接写出点B ′的坐标;(2)若点C (1,a )在第一象限内,并且S △ABC =S △ABB ′,求a 的值;(3)P 在x 轴上,且△P AB 是等腰三角形,请直接写出点P 的坐标.16.如图,点A 的坐标是(2,1),点B 的坐标是(5,1),过点A 的直线l 的表达式为y =2x +b ,点C 在直线l 上运动,在直线OA 上是否存在一点D ,使得以A ,B ,C ,D 为顶点的四边形是平行四边形?若存在,求出点D 的坐标;若不存在,请说明理由.17.一次函数y =kx +b 的图象经过点A (0,9),并与直线y =53x 相交于点B ,与x 轴相交于点C ,其中点B 的横坐标为3.(1)求B 点的坐标和k ,b 的值;(2)点Q 为直线y =kx +b 上一动点,当点Q 运动到何位置时△OBQ 的面积等于272?请求出点Q的坐标;(3)在y 轴上是否存在点P 使△P AB 是等腰三角形?若存在,请直接写出点P 坐标;若不存在,请说明理由.18.如图,直线y=﹣x+1与x轴,y轴分别交于B,A两点,动点P在线段AB上移动,以P为顶点作∠OPQ=45°交x轴于点Q.(1)求点A和点B的坐标;(2)比较∠AOP与∠BPQ的大小,说明理由.(3)是否存在点P,使得△OPQ是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.19.在平面直角坐标系中,一次函数y=−12x+2的图象交x轴、y轴分别于A、B两点,交直线y=kx于P.(1)求点A、B的坐标;(2)若OP=P A,求k的值;(3)在(2)的条件下,C是线段BP上一点,CE⊥x轴于E,交OP于D,若CD=2ED,求C 点的坐标.20.如图,在平面直角坐标中,直角梯形OABC的边OC、OA分别在x轴、y轴上,AB∥OC,∠AOC =90°,∠BCO=45°,BC=12√2,点C的坐标为(﹣18,0).(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y轴于点E,交x轴于点F,且OE=4,∠OFE=45°,求直线DE的解析式;(3)求点D的坐标.11 / 11。
一次函数(中考常考点分类)(基础练)-八年级数学上册基础知识专项突破讲与练(北师大版)
专题4.31一次函数(中考常考点分类专题)(基础练)一、单选题【考点1】函数的概念★★自变量的取值范围★★函数解析式★★函数值1.(2023秋·全国·八年级专题练习)下列图像中,不能表示y 是x 的函数的是()A .B .C .D .2.(2022秋·广东深圳·八年级校联考开学考试)一支签字笔的单价为2.5元,小涵同学拿了100元钱去购买了()40x x ≤支该型号的签字笔,写出所剩余的钱y 与x 间的关系式是()A . 2.5y x=B .100 2.5y x=-C . 2.5100y x =-D .100 2.5y x=+【考点2】一次函数➼➻定义★★参数★★自变量与函数值★★列一次函数解析式3.(2023秋·全国·八年级专题练习)若函数()124a y a x -=-+是一次函数,则a 的值为()A .2-B .2±C .2D .04.(2020·江苏泰州·统考中考真题)点(),P a b 在函数32y x =+的图像上,则代数式621a b -+的值等于()A .5B .3C .3-D .1-【考点3】正比例函数➼➻正比例函数的图象与性质5.(2023秋·安徽蚌埠·八年级统考阶段练习)关于正比例函数14y x =-,下列结论不正确的是()A .图象经过原点B .y 随x 的增大而减小C .点12,2⎛⎫⎪⎝⎭在函数14y x =-的图象上D .图象经过二、四象限6.(2023春·重庆九龙坡·八年级重庆实验外国语学校统考阶段练习)已知正比例函数(21)y m x =+的图象上两点()11,A x y ,()22,B x y ,当12x x <时,有12y y >,那么m 的取值范围是()A .12m >-B .12m <-C .1m >-D .1m <-【考点4】一次函数图象和性质➼➻判断位置★★求参数★★画一次函数图象7.(2022春·贵州安顺·八年级统考期末)已知一次函数22022y x m =-++的图象一定不经过的象限是()A .第四象限B .第三象限C .第二象限D .第一象限8.(2022秋·陕西榆林·八年级校考期中)已知一次函数()34y a x a =+++的图象如图所示,那么a 的取值范围是()A .3a >-B .3a <-C .43a -<<-D .a<0【考点5】一次函数图象和性质➼➻一次函数图象与坐标轴交点9.(2022秋·陕西西安·八年级校考期中)如图,在同一平面直角坐标系中,一次函数()11110y k x b k =+≠与()22220y k x b k =+≠的图象分别为直线1l 和直线2l ,下列结论正确的是()A .120k k > B .120k k ->C .120b b +<D .12·0b b >10.(2023秋·安徽合肥·八年级校考阶段练习)已知一次函数4y ax =-与2y bx =+图象在x 轴上相交于同一点,则ba的值是()A .4B .2-C .12D .12-【考点6】一次函数图象和性质➼➻一次函数图象平移问题11.(2023秋·重庆沙坪坝·八年级重庆八中校考阶段练习)将直线22y x =-+平移后,所得到的直线为23y x =--,则原直线()A .向上平移5个单位B .向下平移5个单位C .向左平移5个单位D .向右平移5个单位12.(2022春·陕西渭南·八年级统考期末)如图,A 为x 轴负半轴上一点,过点A 作AB x ⊥轴,与直线y x =交于点B ,将ABO 沿直线y x =向上平移'A'B'O △,若点A 的坐标为(3,0)-,则点B'的坐标是()A .()1,1B .()2,2C .()3,3D .()5,5【考点7】一次函数图象和性质➼➻一次函数的增减性➼➻求参数★★比较大小13.(2023秋·黑龙江齐齐哈尔·九年级克东县第三中学校考开学考试)对于函数 1y x =-+,下列结论正确的是()A .它的图象必经过点(1,0)-B .它的图象经过第一、二、三象限C .当1x >时,0y <D .y 的值随x 值的增大而增大14.(2023春·山东聊城·八年级统考期末)已知11 A x y (,),22 Bx y (,)为直线23y x =-上不相同的两个点,以下判断正确的是()A .()()12120x x y y -->B .()()12120x x y y --<C .()()12120x x y y --≥D .()()12120x x y y --≤【考点8】一次函数图象和性质➼➻直线与坐标轴交点➼➻求方程的解15.(2023春·天津·八年级统考期末)已知方程0ax b +=的解为x =-32,则一次函数y ax b =+的图象与x 轴交点的坐标为()A .()3,0B .(-23,0)C .()2,0-D .(-32,0)16.(2023春·河南洛阳·八年级偃师市实验中学校考期末)一次函数y kx b =+的图象与x 轴交于点()30A -,,则关于x 的方程0kx b -+=的解为()A .3x =B .3x =-C .0x =D .2x =【考点9】一次函数图象和性质➼➻规律问题★★最值问题17.(2019·福建厦门·校考二模)关于x 的一次函数1(2)(1)(01)=-+-<<y x k x k k,当2≤x≤3时,y 的最大值是()A .2-+kkB .12-k kC .kD .-k18.(2023春·八年级课时练习)正方形111A B C O ,2221A B C C ,3332A B C C ,…,按如图的方式放置,点1A ,2A ,3A ,…和点1C ,2C ,3C ,…分别在直线1y x =+和x 轴上,则点7B 的坐标是()A .(31,16)B .(63,32)C .(64,32)D .(127,64)二、填空题【考点1】函数的概念★★自变量的取值范围★★函数解析式★★函数值19.(2023·辽宁辽阳·辽阳市第一中学校联考一模)函数1y x=+x 的取值范围是.20.(2023秋·上海杨浦·八年级统考期末)已知()6=f x x,那么f=.【考点2】一次函数➼➻定义★★参数★★自变量与函数值★★列一次函数解析式21.(2022秋·浙江·八年级期末)一次函数y =10-2x 的比例系数是.22.(2023秋·全国·八年级专题练习)如图,点(0,4)A ,(2,4)B ,点P 在直线112y x =+上,当PA PB =时,点P 的坐标是.【考点3】正比例函数➼➻正比例函数的图象与性质23.(2023春·贵州黔西·八年级校考阶段练习)如图,正比例函数11223344y k x y k xy k x y k x ====,,,在同一平面直角坐标系中的图象如图所示.则比例系数1k ,2k ,3k ,4k 从小到大排列并用“<”连接为.24.(2022秋·上海·八年级校考期中)已知正比例函数()0y kx k =≠的图象经过一、三象限,且经过点()2,21P k k ++,则k =.【考点4】一次函数图象和性质➼➻判断位置★★求参数★★画一次函数图象25.(2023春·黑龙江鹤岗·八年级统考期末)直线y kx b =+经过一、二、四象限,则直线y bx k =-+不经过第象限.26.(2020春·湖北武汉·八年级校考阶段练习)在同一平面直角坐标系中,函数y =|3x -1|+2的图象记为l 1,y =x -7的图象记为l 2,把l 1、l 2组成的图形记为图形M .若直线y =kx -5与图形M 有且只有一个公共点,则k 应满足的条件是【考点5】一次函数图象和性质➼➻一次函数图象与坐标轴交点27.(2022秋·四川达州·八年级校考阶段练习)函数42y x =-与x ,y 轴交点坐标分别为.28.(2023秋·山西运城·八年级统考期中)如图,已知直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,以点A 为圆心,AB 为半径画弧,交x 轴负半轴于点C ,则点C 坐标为.【考点6】一次函数图象和性质➼➻一次函数图象平移问题29.(2022春·贵州安顺·八年级统考期末)直接写出一个与直线21y x =+平行的一次函数的解析式:.30.(2020春·福建福州·九年级校考开学考试)将直线4y x =-向右平移3个单位后,所得直线的表达式是.【考点7】一次函数图象和性质➼➻一次函数的增减性➼➻求参数★★比较大小31.(2023春·河南新乡·八年级校考期末)请写出一个过点()11,A y -和点()25,B y 且函数值满足12y y >的一次函数解析式:.32.(2023秋·重庆沙坪坝·八年级重庆八中校考阶段练习)已知一次函数1y ax b =+,2y cx d =+(a ,b ,c ,d 均为常数,且0a c ⋅≠)在平面直角坐标系中的图象如图所示,比较a ,b ,c ,d 的大小关系用“<”连接【考点8】一次函数图象和性质➼➻直线与坐标轴交点➼➻求方程的解33.(2023春·广东汕尾·八年级统考期末)已知一次函数y kx b =+的图象与x 轴相交于点()2,0A ,与y 轴相交于点()0,3B ,则关于x 的方程0kx b +=的解是.34.(2023春·八年级课时练习)已知直线24y x =+与两坐标轴分别交于A ,B 两点,线段AB 的长为.【考点9】一次函数图象和性质➼➻规律问题★★最值问题35.(2023春·四川德阳·八年级四川省德阳市第二中学校校考阶段练习)对于函数123y x =+和21y x =-+,3122y x =-,对于实数范围内x 的任意取值,y 总取y 1、y 2、y 3中的最小值,则y 的最大值等于.36.(2023春·四川广安·八年级广安中学校考阶段练习)如图,在平面直角坐标系中,直线:1l y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C …、正方形1n n n n A B C C -,使得点123,,A A A …在直线l 上,点123,,C C C …在y 轴正半轴上,则点2020B 的坐标是.参考答案1.D【分析】根据函数的概念,对于自变量x 的每一个值,y 都有唯一的值和它对应,判断即可.解:A 、对于自变量x 的每一个值,y 都有唯一的值和它对应,所以能表示y 是x 的函数,故A 不符合题意;B 、对于自变量x 的每一个值,y 都有唯一的值和它对应,所以能表示y 是x 的函数,故B 不符合题意;C 、对于自变量x 的每一个值,y 都有唯一的值和它对应,所以能表示y 是x 的函数,故C 不符合题意;D 、对于自变量x 的每一个值,y 不是有唯一的值和它对应,所以不能表示y 是x 的函数,故D 符合题意;故选:D .【点拨】本题考查了函数的概念,熟练掌握函数的概念是解题的关键.2.B【分析】用100减去买签字笔花的钱,即可表示出剩余的钱.解:由题知,因为签字笔每支2.5元,且小涵买了x 支,所以用取2.5x 元.故余下()100 2.5x -元.所以剩余的钱y 与x 之间的关系式是100 2.5y x =-.故选:B .【点拨】本题考查函数关系式,准确表示出剩余的钱数是解题的关键.3.A【分析】根据一次函数y kx b =+的定义可知,k 、b 为常数,0k ≠,自变量的次数为1,即可求解.解:()124a y a x-=-+ 是关于x 的一次函数,11a ∴-=,且20a -≠,2a ∴=,且2a ≠,2a ∴=±且2a ≠,2a ∴=-.故选:A .【点拨】本题考查了一次函数的定义,熟练掌握一次函数的定义和性质是解题的关键.4.C【分析】把(),P a b 代入函数解析式得32=+b a ,化简得32-=-a b ,化简所求代数式即可得到结果;解:把(),P a b 代入函数解析式32y x =+得:32=+b a ,化简得到:32-=-a b ,∴()()621=231=221=-3-+-+⨯-+a b a b .故选:C .【点拨】本题主要考查了通过函数解析式与已知点的坐标得到式子的值,求未知式子的值,准确化简式子是解题的关键.5.C【分析】根据正比例函数的图象和性质,逐项判断即可求解.解:A 、图象经过原点,故本选项正确,不符合题意;B 、因为104-<,所以y 随x 的增大而减小,故本选项正确,不符合题意;C 、当2x =时,1112422y =-⨯=-≠,则点12,2⎛⎫⎪⎝⎭不在函数14y x =-的图象上,故本选项错误,符合题意;D 、因为104-<,所以图象经过二、四象限,故本选项正确,不符合题意;故选:C【点拨】本题主要考查了正比例函数的图象和性质,熟练掌握正比例函数的图象和性质是解题的关键.6.B【分析】根据一次函数的性质即可求出当12x x <时,12y y >时,列出不等式,进而求出m 的取值范围.解:∵正比例函数图象上两点11(,)A x y ,22(,)B x y ,当12x x <时,有12y y >,∴210m +<,∴12m <-.故选:B .【点拨】本题考查的是一次函数的性质.解答此题要熟知一次函数y kx b =+:当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.7.B【分析】根据一次函数的性质,由0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限,即可得出;解:根据一次函数的性质,10-<,220220m +>,故0k <,0b >,函数y kx b =+的图象经过第一、二、四象限,不经过第三象限.故选:B ;【点拨】本题考查了一次函数的性质.一次函数y kx b =+的图象经过的象限由k 、b 的值共同决定,有六种情况:①当0k >,0b >时,函数y kx b =+的图象经过第一、二、三象限,y 的值随x 的值增大而增大;②当0k >,0b <时,函数y kx b =+的图象经过第一、三、四象限,y 的值随x 的值增大而增大;③当0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限,y 的值随x 的值增大而减小;④当0k <,0b <时,函数y kx b =+的图象经过第二、三、四象限,y 的值随x 的值增大而减小;⑤当0k >,0b =时,函数y kx b =+的图象经过第一、三象限;⑥当0k <,0b =时,函数y kx b =+的图象经过第二、四象限.8.A【分析】根据一次函数图象经过一、二、三象限得出3040a a +>⎧⎨+>⎩,求出结果即可.解:∵一次函数图象经过一、二、三象限,∴3040a a +>⎧⎨+>⎩,解得:3a >-,故A 正确.故选:A .【点拨】本题主要考查了一次函数的图象和性质,解题的关键是熟练掌握一次函数的性质,一次函数()0y kx b k =+≠,当0k >直线经过一、三象限,当0k <直线经过二、四象限,当0b >直线与y 轴正半轴有交点,0b <直线与y 轴负半轴有交点.9.B【分析】根据图示,可得110,0k b >>,220,0k b <<,根据不等式的性质即可求解.解:根据图示,可知一次函数()11110y k x b k =+≠中,110,0k b >>;一次函数()22220y k x b k =+≠中,220,0k b <<,∴A 、12·0k k <,故原选项错误,不符合题意;B 、∵120,0k k ><,∴120k k ->,故原选项正确,符合题意;C 、∵120,0b b ><,且12b b >,∴120b b +>,故原选项错误,不符合题意;D 、∵120,0b b ><,∴120b b < ,故原选项错误,不符合题意;故选:B .【点拨】本题主要考查一次函数图象的性质,掌握一次函数图象的性质,不等式的性质是解题的关键.10.B【分析】由一次函数4y ax =-与2y bx =+的图象在x 轴上相交于同一点,即两个图象与x 轴的交点是同一个点.可用a 、b 分别表示出这个交点的横坐标,然后联立两式,可求出ba的值.解:在4y ax =-中,令0y =,得:4x a=;在2y bx =+中,令0y =,得:2=-x b;由于两个一次函数交于x 轴的同一点,因此42a b=-,则ab =422=--.故选:B .【点拨】本题考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上点,就一定满足函数解析式.11.B【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.解:∵将直线22y x =-+平移后,得到直线23y x =--,设向上平移了a 个单位,∴2223x a x -++=--,解得:5a =-,所以沿y 轴向上平移了5-个单位,即向下平移5个单位,故选:B .【点拨】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.12.B【分析】求得B 的坐标,根据题意,将△ABO 向右平移5个单位,向上平移5个单位得到△A ′B ′O ′,从而得到B ′的坐标为(-3+5,-3+5),即B ′(2,2).解:∵点A 的坐标为(-3,0),AB ⊥x 轴,与直线y =x 交于点B ,∴B (-3,-3),将△ABO 沿直线y =x 向上平移A ′B ′O ′,实质上是将△ABO 向右平移5个单位,向上平移5个单位,∴B ′的坐标为(-3+5,-3+5),即B ′(2,2),故选:B .【点拨】本题主要考查了一次函数的图象与几何变换,点的平移问题,能根据题意得出平移的实质是本题的关键.13.C【分析】根据一次函数的性质及一次函数图象上点的坐标特点对各选项进行逐一分析即可.解:A 、把=1x -代入函数 1y x =-+得,() 1120y =--+=≠,故点(1,0)-不在此函数图象上,故本选项错误,不符合题意;B 、函数 1y x =-+中,10k =-<,10b =>,则该函数图象经过第一、二、四象限,故本选项错误,不符合题意;C 、当1x >时,110-+=,则0y <,故本选项正确,符合题意;D 、函数 1y x =-+中,10k =-<,则该函数图象y 值随着x 值增大而减小,故本选项错误,不符合题意.故选:C .【点拨】本题考查了一次函数图象上点的坐标特征,一次函数的性质,掌握一次函数的性质是解题的关键.14.A【分析】将两个点代入直线方程整理判断即可.解:将A 、B 两点坐标分别代入直线方程,得1123y x =-,2223y x =-,则()12122y y x x -=-.()()()212121220x x y y x x --=-≥.∵A 、B 两点不相同,∴120x x -≠,∴()()12120x x y y -->.故选:A .【点拨】本题主要考查一次函数图象上点的坐标,比较简单,分别代入计算整理即可.15.D【分析】关于x 的一元一次方程0ax b +=的根是x =32-,即x =32-时,函数值为0,所以直线过点(32-,0),于是得到一次函数y ax b =+的图象与x 轴交点的坐标.解:方程0ax b +=的解为x =32-,则一次函数y ax b =+的图象与x 轴交点的坐标为(-32,0),故选:D .【点拨】本题主要考查了一次函数与一元一次方程:任何一元一次方程都可以转化为0ax b +=(a ,b 为常数,0)a ≠的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y ax b =+确定它与x 轴的交点的横坐标的值.16.A【分析】先根据一次函数y kx b =+的图象与x 轴交于点()30A -,,求出3b k =,然后解方程即可.解: 一次函数y kx b =+的图象与x 轴交于点()30A -,,30k b ∴-+=,3b k ∴=,0kx b -+= ,33b k x k k∴===.故选:A .【点拨】本题主要考查了一次函数与一元一次方程之间的关系,正确求出3b k =是解题的关键.17.B【分析】根据题目中的函数解析式和k 的取值范围,可以判断该函数一次项系数的正负,然后利用一次函数的性质即可解答本题.解:y=()()121x k x k-+-=12x k kx k k -+-=(1k -k )x 2k -+k ,∵0<k <1,∴1k k->0,∴该函数y 随x 的增大而增大,∴当2≤x≤3时,x=3时y 取得最大值,此时y=()()13213k k -+-=12-k k,故选:B .【点拨】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.18.D【分析】先求出1B ,2B ,3B ,4B 的坐标,探究规律后即可解决问题.解:∵1111111OC OA B C A B ====,∴()11,1B ,∵2A 在直线1y x =+上,∴()21,2A ,∴12222C C B C ==,∴()23,2B ,同理可得()37,4B ,()415,8B …所以()121,2n n n B --,所以7B 的坐标为()127,64;故选:D .【点拨】此题考查一次函数图象上点的坐标特征,规律型:点的坐标,解题关键在于根据题意找到规律.19.1x ≥【分析】根据二次根式的被开方数是非负数、分式分母不为0列出不等式组,解不等式组得到答案.解:由题意得:0x ≠且10x -≥,解得:1x ≥,故答案为: 1.x ≥【点拨】本题考查的是函数自变量的取值范围的确定,熟记二次根式的被开方数是非负数、分式分母不为0是解题的关键.20.【分析】将x ()6=f x x ,进行求解即可.解:f ==故答案为:【点拨】本题考查求函数值,分母有理化.正确的计算是解题的关键.21.2-【分析】先化为标准形式,再根据一次函数的定义解答.解:一次函数变形为:102210y x x =-=-+,故其比例系数k 是2-.故答案为:2-.【点拨】本题考查了一次函数的定义,解题的关键是掌握一次函数的定义:一般地,形如(0y kx b k =+≠,k 、b 是常数)的函数,叫做一次函数.22.3(1,)2【分析】设点P 的坐标为1(,1)2m m +,利用两点间的距离结合PA PB =,即可得出关于m 的一元一次方程,解之即可得出结论.解: 点P 在直线112y x =+上,∴设点P 的坐标为1(,1)2m m +.PA PB = ,222211(0)(14)(2)(14)22m m m m ∴-++-=-++-,即440m -=,解得:1m =,∴点P 的坐标为3(1,)2.故答案为:3(1,)2.【点拨】本题考查了一次函数图象上点的坐标特征、两点间的距离以及解一元一次方程,利用一次函数图象上点的坐标特征及两点间的距离,找出关于m 的方程是解题的关键.23.2143k k k k <<<【分析】首先根据直线经过的象限判断k 的符号,再根据直线的平缓趋势判断k 的绝对值的大小,最后判断四个系数的大小.解:由直线经过的象限,知:12340000k k k k <>,,,,∵根据直线越陡,k 越大,∴21k k >,34k k >,∴2143k k k k <<<,故答案为:2143k k k k <<<.【点拨】本题考查正比例函数图象与性质,掌握正比例函数的性质是解题的关键.24.1【分析】先根据正比例函数的性质求出k 的取值范围,再把P 点坐标代入求解即可.解:∵正比例函数()0y kx k =≠的图象经过一、三象限,∴0k >.把()2,21P k k ++代入()0y kx k =≠,得()221k k k +=+,解得1k =或1k =-(舍去).故答案为:1.【点拨】本题考查了正比例函数图象与系数的关系:对于y kx =(k 为常数,0k ≠),当0k >时,y kx =的图象经过一、三象限,y 随x 的增大而增大;当0k <时,y kx =的图象经过二、四象限,y 随x 的增大而减小.25.一【分析】根据图象在坐标平面内的位置关系确定k ,b 的取值范围,从而求解.解:由直线y kx b =+的图象经过第一、二、四象限,∴0k <,0b >,∴0k <,0b -<,∴直线y bx k =-+经过第二、三、四象限,∴直线y bx k =-+不经过第一象限,故答案为:一.【点拨】本题考查一次函数图象与系数的关系.解答本题注意理解:直线y kx b =+所在的位置与k 、b 的符号有直接的关系.0k >时,直线必经过一、三象限.0k <时,直线必经过二、四象限.0b >时,直线与y 轴正半轴相交.0b =时,直线过原点;0b <时,直线与y 轴负半轴相交.26.-3≤k≤3且k≠1.【分析】根据图像即可求得k 的取值范围.解:根据题意当x≥13时,y =3x -1+2=3x+1;当x <13时,y =1-3x +2=3-3x ,由此画出图形M ,直线y =kx -5过定点(0,-5),交点在l 2上,如图可得:-3≤k≤3且k≠1,故答案为:-3≤k≤3且k≠1.【点拨】本题考查了一次函数图像上点的坐标特征,画出图像是本题关键.27.()2,0,()0,4【分析】根据坐标轴上点的坐标特点:横轴上的点,纵坐标为零;纵轴上的点,横坐标为零进行计算即可.解:∵当0x =时,4y =,∴与y 轴交点坐标为()0,4,∵当0y =时,2x =,∴与x 轴交点坐标为()2,0,故答案为:()2,0,()0,4.【点拨】此题主要考查了一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.28.()2-/()2,0-【分析】先根据坐标轴上点的坐标特征得到()2,0A ,()0,4B ,再利用勾股定理计算出AB =根据圆的半径相等得到AC AB ==解:当0y =时,240x -+=,解得2x =,则()2,0A ;当0x =时,244y x =-+=,则()0,4B ,所以AB ===因为以点A 为圆心,AB 为半径画弧,交x 轴于点C ,所以AC AB ==所以2OC AC AO =-=.即可得点C 坐标为()2C -.故答案为:()2-.【点拨】本题主要考查了一次函数与坐标轴的交点坐标,勾股定理,正确求出一次函数与坐标轴的交点坐标是解题的关键.29.21y x =-(答案不唯一)【分析】根据平行得出一次函数的解析式2k =,1b ≠即可;解:设一次函数的解析式是y kx b =+,与直线21y x =+平行,2k ∴=,1b ≠,∴符合条件的一次函数的解析式可以是21y x =-,故答案为:21(y x =-答案不唯一;【点拨】本题考查了两直线相交或平行问题的应用,关键是根据题意求出2k =,1b ≠.30.7y x =-【分析】直接根据“左加右减,上加下减”的原则进行解答即可.解:将直线4y x =-向右平移3个单位后,所得直线的表达式是()34y x =--,即7y x =-.故答案为:7y x =-.【点拨】本题考查的是一次函数的图象的平移,熟知函数图象平移的法则“左加右减,上加下减”是解答此题的关键.31.21y x =-+【分析】根据题意可知所求的一次函数中,函数值随自变量的增大而减小,即所得函数中,自变量的系数为负,据此作答即可.解:一次函数过点()11,A y -和点()25,B y ,∵15-<,且12y y >,∴一次函数的函数值随自变量的增大而减小,∴一次函数中,自变量的系数为负,故答案为:21y x =-+(答案不唯一).【点拨】本题主要考查了一次函数的图象与性质,判断出一次函数的函数值随自变量的增大而减小,是解答本题的关键.32.d b a c<<<【分析】首先根据函数图像可知0a >,0b <,0c >,0d <,由图象可以得到函数1y ax b =+与y 轴的交点在函数2y cx d =+与y 轴的交点的上方,故b d >,由图象可以发现函数1y ax b =+的图象的倾斜度比函数2y cx d =+的图象的倾斜度缓,故a c <,即可求解.解:由图象可得,0a >,0b <,0c >,0d <,由图象可以得到函数1y ax b =+与y 轴的交点在函数2y cx d =+与y 轴的交点的上方,故b d >,由图象可以发现函数1y ax b =+的图象的倾斜度比函数2y cx d =+的图象的倾斜度缓,故a c <,由上可得,d b a c <<<,故答案为:d b a c <<<.【点拨】本题主要考查了一次函数图像的性质,解题的关键在于能够熟练掌握相关知识进行求解.33.2x =【分析】根据一次函数与一元一次方程的关系,一次函数y kx b =+图象与x 轴交点的横坐标是方程0kx b +=的解,即可得出答案.解:∵一次函数y kx b =+的图象与x 轴相交于点()2,0A ,∴方程0kx b +=的解是2x =.故答案是2x =.【点拨】本题主要考查了图象法解一元一次方程,熟练掌握一次函数y kx b =+图象与x 轴交点的横坐标是方程0kx b +=的解,利用数形结合的思想解决问题是解题的关键.34.【分析】根据表达式求出A 、B 两点坐标,再利用勾股定理求出AB 的长即可.解:把x =0代入y =2x +4得:y =4,∴直线与y 轴交点坐标为(0,4),把y =0代入y =2x +4得:0=2x +4,x =-2,∴直线与x 轴交点坐标为(-2,0),∴AB =故答案为:【点拨】本题考查一次函数及勾股定理,利用表达式求出点的坐标,再把坐标转化成线段长是解题的关键.35.1-【分析】利用两直线相交,分别求出三条直线两两相交的交点,观察函数图像,利用一次函数的性质解答.解:直线123y x =+和直线21y x =-+的交点21,33⎛⎫- ⎪⎝⎭,直线123y x =+和直线3122y x =-的交点1011,33骣琪--琪桫,直线21y x =-+和直线3122y x =-的交点()2,1-,结合图像,对于实数范围内x 的任意取值,y 总取y 1、y 2、y 3中的最小值,所以,当2x =时,y 有最大值,最大值为1-,故答案为:1-.【点拨】本题考查一次函数的性质,掌握一次函数的图像性质是解题的关键,学会运用数形结合的思想解答更容易方便,这里注意求两条一次函数图像的交点即为联立两个一次函数解析式,求解出来的x 与y 即为交点坐标的横纵坐标.36.20192020(2,21)-【分析】根据题意,直线:1l y x =-与x 轴交于点1A ,当0y =时,1x =,可算出点,A B 的规律,由此即可求解.解:直线:1l y x =-与x 轴交于点1A ,当0y =时,1x =,∴1(1,0)A ,∴1(1,1)B ,同理可得,2(2,1)A ,3(4,3)A ,4(8,7)A ,5(16,15)A ,┈2(2,3)B ,3(4,7)B ,4(8,15)B ,5(16,31)B ,┈∴1(2,21)n n n B --(n 为正正数),∴2020120202020(2,21)B --,即201920202020(2,21)B -,故答案为:20192020(2,21)-.【点拨】本题主要考查一次函数图像的几何变换规律,掌握一次函数图像的性质,点的规律是解题的关键.。
2021年九年级数学中考一轮复习知识点基础达标测评:等腰三角形(附答案)
2021年九年级数学中考一轮复习知识点基础达标测评:等腰三角形(附答案)1.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有()个.A.5B.6C.7D.82.如图,等腰三角形ABC中,AB=AC,∠A=46°,CD⊥AB于D,则∠DCB等于()A.30°B.26°C.23°D.20°3.如图,在4×4方格中,以AB为一边,第三个顶点也在格点上的等腰三角形可以作出()A.7个B.6个C.4个D.3个4.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.5条B.4条C.3条D.2条5.如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是()A.10B.8C.6D.46.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若,则△A6B6A7的边长为()A.6B.12C.16D.327.如图,是半径为1的圆弧,△AOC为等边三角形,D是上的一动点,则四边形AODC 的面积s的取值范围是()A.≤s≤B.<s≤C.≤s≤D.<s<8.如图,已知等边△AEB和等边△BDC在线段AC同侧,则下面错误的是()A.△ABD≌△EBC B.△NBC≌△MBD C.DM=DC D.∠ABD=∠EBC 9.如图,在钝角三角形ABC中,∠ABC为钝角,以点B为圆心,AB长为半径画弧;再以点C为圆心,AC长为半径画弧;两弧交于点D,连结AD,CB的延长线交AD于点E.下列结论错误的是()A.CE垂直平分AD B.CE平分∠ACDC.△ABD是等腰三角形D.△ACD是等边三角形10.在下列结论中:(1)有一个外角是120°的等腰三角形是等边三角形;(2)有两个外角相等的等腰三角形是等边三角形;(3)有一边上的高也是这边上的中线的等腰三角形是等边三角形;(4)三个外角都相等的三角形是等边三角形.其中正确的个数是()A.4个B.3个C.2个D.1个11.如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④12.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②∠APO=∠DCO;③△OPC是等边三角形;④AB=AO+AP.其中正确的是()A.①③④B.①②③C.①③D.①②③④13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为.14.等腰三角形的两边长分别为4,8,则它的周长为.15.已知:如图△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ACD的度数为.16.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为.17.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=10,则线段MN的长为.18.如图,在△ABC中,AD平分∠BAC,AD⊥BD于点D,DE∥AC交AB于点E,若AB =8,则DE=.19.如图,BD为等边△ABC的边AC上的中线,E为BC延长线上一点,且DB=DE,若AB=6cm,则CE=cm.20.如图,AD是等边三角形ABC的中线,AE=AD,则∠EDC=.21.已知a、b、c是△ABC的三边的长,且满足a2+2b2+c2﹣2b(a+c)=0,则此三角形的形状为.22.如图,在一个正方体的两个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于度.23.如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D为线段CE 的中点,BE=AC.(1)求证:AD⊥BC.(2)若∠BAC=75°,求∠B的度数.24.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.(1)若∠ABC=70°,求∠MNA的度数.(2)连接NB,若AB=8cm,△NBC的周长是14cm.求BC的长.25.在△ABC中,AD平分∠BAC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:AB =AC.26.如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G)27.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.28.已知:如图,∠EAC是△ABC的外角,AD平分∠EAC,且AD∥BC,求证:AB=AC.29.如图所示,已知△ABC中,AB=AC=BC=10厘米,M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度是1厘米/秒的速度,点N的速度是2厘米/秒,当点N第一次到达B点时,M、N同时停止运动.(1)M、N同时运动几秒后,M、N两点重合?(2)M、N同时运动几秒后,可得等边三角形△AMN?(3)M、N在BC边上运动时,能否得到以MN为底边的等腰△AMN,如果存在,请求出此时M、N运动的时间?30.如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60°.31.如图1,在四边形ABCD中,DC∥AB,AD=BC,BD平分∠ABC.(1)求证:AD=DC;(2)如图2,在上述条件下,若∠A=∠ABC=60°,过点D作DE⊥AB,过点C作CF ⊥BD,垂足分别为E、F,连接EF.判断△DEF的形状并证明你的结论.32.已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.(1)求证:AD=AE.(2)若BE∥AC,试判断△ABC的形状,并说明理由.参考答案1.解:①若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点;②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有2个交点(A点除外);③若CA=CB,则点C在AB的垂直平分线上,∵A(0,0),B(2,2),∴AB的垂直平分线与坐标轴有2个交点.综上所述:符合条件的点C的个数有8个.故选:D.2.解:∵∠A=46°,AB=AC,∴∠B=∠C=67°.∵∠BDC=90°,∴∠DCB=23°,故选:C.3.解:如图所示,分别以A、B为圆心,AB长为半径画弧,则圆弧经过的格点C1、C2、C3、C4、C5、C6、C7即为第三个顶点的位置;作线段AB的垂直平分线,垂直平分线未经过格点.故以AB为一边,第三个顶点也在格点上的等腰三角形可以作出7个.故选:A.4.解:如图所示,当AB=AF=3,BA=BD=3,AB=AE=3,BG=AG时,都能得到符合题意的等腰三角形.故选:B.5.解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=S△ABC=×12=6,故选:C.6.解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=,∴A2B1=,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=2,A4B4=8B1A2=4,A5B5=16B1A2=8,…∴△A n B n A n+1的边长为×2n﹣1,∴△A6B6A7的边长为×26﹣1=×25=16.故选:C.7.解:根据题意,得四边形AODC的面积最小即是三角形AOC的面积,最大面积即是当OD⊥OC时四边形的面积.作CH⊥AO于H,∵△AOC为等边三角形∴CH=∴S△AOC=;当OD⊥OC时面积最大,∴S△OCD=,则最大面积是+=∴四边形AODC的面积s的取值范围是<s≤.故选:B.8.解:A、可以利用SAS验证,正确;B、可以利用AAS验证,正确;C、可证∠MBN=60°,若DM=DC=DB,则△DMB为等边三角形,即∠BDM=60°∵∠EAB=∠DBC,∴AE∥BD.∴∠BDM=∠EAD=60°.与已知不符,错误;D、可由∠ABE,∠DBC同加一个∠DBE得到,正确.所以错误的是第三个.故选C.9.解:由题可得,CA=CD,BA=BD,∴CB是AD的垂直平分线,即CE垂直平分AD,故A选项正确;∴∠CAD=∠CDA,∠CEA=∠CED,∴∠ACE=∠DCE,即CE平分∠ACD,故B选项正确;∵DB=AB,∴△ABD是等腰三角形,故C选项正确;∵AD与AC不一定相等,∴△ACD不一定是等边三角形,故D选项错误;故选:D.10.解:(1):因为外角和与其对应的内角的和是180°,已知有一个外角是120°,即是有一个内角是60°,有一个内角为60°的等腰三角形是等边三角形.该结论正确.(2):两个外角相等说明该三角形中两个内角相等,而等腰三角形的两个底角是相等的,故不能确定该三角形是等边三角形.该结论错误.(3):等腰三角形的底边上的高和中线本来就是重合的,“有一边”可能是底边,故不能保证该三角形是等边三角形.该结论错误.(4):三个外角都相等的三角形是等边三角形.正确;故选:C.11.解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=CD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.12.解:①如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=∠BAC=×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;故①正确;②由①知:∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故②不正确;③∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形;故③正确;④如图2,在AC上截取AE=P A,连接PE,∵∠P AE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=P A,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OP A和△CPE中,,∴△OP A≌△CPE(SAS),∴AO=CE,∴AB=AC=AE+CE=AO+AP;故④正确;本题正确的结论有:①③④故选:A.13.解:当为锐角时,如图∵∠ADE=40°,∠AED=90°,∴∠A=50°,当为钝角时,如图∠ADE=40°,∠DAE=50°,∴顶角∠BAC=180°﹣50°=130°.故答案为:50°或130°.14.解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故答案是:20.15.解:如图,有三种情形:①当AC=AD时,∠ACD=70°.②当CD′=AD′时,∠ACD′=40°.③当AC=AD″时,∠ACD″=20°,故答案为70°或40°或20°16.解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OEC=∠OCE=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;故答案为:120°或75°或30°.17.解:∵MN∥BC∴∠MEB=∠CBE,∠NEC=∠BCE∵在△ABC中,∠ABC和∠ACB的平分线交于点E,∴∠MBE=∠EBC,∠NCE=∠BCE∴∠MEB=∠MBE,∠NEC=∠NCE∴ME=MB,NE=NC∴MN=ME+NE=BM+CN=10故答案为:1018.解:∵AD是∠BAC的平分线,∴∠CAD=∠BAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠ADE=∠BAD,∴AE=DE,∵BD⊥AD,∴∠ADE+∠BDE=∠BAD+∠ABD=90°,∴∠ABD=∠BDE,∴DE=BE,∴DE=AB,∵AB=8,∴DE=×8=4.故答案为:4.19.解:∵BD为等边△ABC的边AC上的中线,∴BD⊥AC,∵DB=DE,∴∠DBC=∠E=30°∵∠ACB=∠E+∠CDE=60°∴∠CDE=30°∴∠CDE=∠E,即CE=CD=AC=3cm.故填3.20.解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED==75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故答案为:15°.21.解:由已知条件a2+2b2+c2﹣2b(a+c)=0化简得,(a﹣b)2+(b﹣c)2=0∴a﹣b=0,b﹣c=0即a=b,b=c∴a=b=c故答案为等边三角形.22.解:连接BC.设正方体的边长为1,则AB=AC=BC=,所以△ABC为等边三角形,∠BAC=60°.故答案是60.23.解:(1)连接AE,∵EF垂直平分AB∴AE=BE∵BE=AC∴AE=AC∵D是EC的中点∴AD⊥BC(2)设∠B=x°∵AE=BE∴∠BAE=∠B=x°∴由三角形的外角的性质,∠AEC=2x°∵AE=AC∴∠C=∠AEC=2x°在三角形ABC中,3x°+75°=180°x°=35°∴∠B=35°24.(1)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=40°,∵MN是AB的垂直平分线,∴AN=BN,∴∠ABN=∠A=40°,∴∠ANB=100°,∴∠MNA=50°;(2)①∵AN=BN,∴BN+CN=AN+CN=AC,∵AB=AC=8cm,∴BN+CN=8cm,∵△NBC的周长是14cm.∴BC=14﹣8=6cm.25.解:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,根据角平分线上的点到角两边的距离相等得出DE=DF,又∵BD=CD,∠DEB=∠DFC=90°,∴Rt△DEB≌Rt△DFC(HL)),∴∠B=∠C,∴AB=AC.26.证明:过点D作DG∥AC交BC于点G,如图所示.∵DG∥AC,∴∠GDF=∠E,∠DGB=∠ACB.在△GDF和△CEF中,,∴△GDF≌△CEF(ASA),∴GD=CE.∵BD=CE,∴BD=GD,∴∠B=∠DGB=∠ACB,∴△ABC是等腰三角形.27.解:(1)根据等腰三角形的定义判断,△ABC等腰直角三角形;∵BE为角平分线,而AE⊥AB,ED⊥CE,故AE=DE,故△ADE均为等腰三角形;∵BE=BE,∠ABE=∠DEB,∴△ABE≌△DBE(SAS),∴AB=BD,∴△ABD和△ADE均为等腰三角形;∵∠C=45°,ED⊥DC,∴△EDC也符合题意,综上所述符合题意的三角形为有△ABC,△ABD,△ADE,△EDC;(2)AD与BE垂直.证明:∵△ABE≌△DBE(SAS),∴BA=BD,EA=EC,∴BE垂直平分相等AD,即AD⊥BE.(3)∵BE是∠ABC的平分线,DE⊥BC,EA⊥AB,∴AE=DE,在Rt△ABE和Rt△DBE中∴Rt△ABE≌Rt△DBE(HL),∴AB=BD,又△ABC是等腰直角三角形,∠BAC=90°,∴∠C=45°,又ED⊥BC,∴△DCE为等腰直角三角形,∴DE=DC,即AB+AE=BD+DC=BC=10.28.证明:∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C.∵AD平分∠EAC,∴∠EAD=∠DAC.∴∠B=∠C.∴AB=AC.29.解:(1)设点M、N运动x秒后,M、N两点重合,x×1+10=2x,解得:x=10;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=10﹣2t,∵三角形△AMN是等边三角形,∴t=10﹣2t,解得t=,∴点M、N运动秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知10秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN(AAS),∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣10,NB=30﹣2y,CM=NB,y﹣10=30﹣2y,解得:y=.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰△AMN,此时M、N运动的时间为秒.30.证明:∵BM=CN,BC=AC,∴CM=AN,又∵AB=AC,∠BAN=∠ACM,∴△AMC≌△BNA,则∠BNA=∠AMC,∵∠MAN+∠ANB+∠AQN=180°∠MAN+∠AMC+∠ACB=180°,∴∠AQN=∠ACB,∵∠BQM=∠AQN,∴∠BQM=∠AQN=∠ACB=60°.31.(1)证明:∵DC∥AB,∴∠CDB=∠ABD,又∵BD平分∠ABC,∴∠CBD=∠ABD,∴∠CDB=∠CBD,∴BC=DC,又∵AD=BC,∴AD=DC;(2)△DEF为等边三角形,证明:∵BC=DC(已证),CF⊥BD,∴点F是BD的中点,∵∠DEB=90°,∴EF=DF=BF.∵∠ABC=60°,BD平分∠ABC,∴∠DBE=30°,∠BDE=60°,∴△DEF为等边三角形.32.(1)证明:∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠ADB=90°,∵AE⊥BE,∴∠E=90°=∠ADB,∵AB平分∠DAE,∴∠1=∠2,在△ADB和△AEB中,,∴△ADB≌△AEB(AAS),∴AD=AE;(2)△ABC是等边三角形.理由:∵BE∥AC,∴∠EAC=90°,∵AB=AC,点D是BC的中点,∴∠1=∠2=∠3=30°,∴∠BAC=∠1+∠3=60°,∴△ABC是等边三角形.。
中考数学基础知识习题
2 0 1 8 年中考数学基础知识试卷一.选择题(共12分)1.﹣23 的相反数是()A.﹣8 B.8 C.﹣6 D.62.关于的叙述正确的是()A.在数轴上不存在表示的点B.= +C.=±2 D.与最接近的整数是33.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°4.如图,已知在Rt△ABC中,∠C=90°,AC=BC,AB=6,点P是Rt△ABC的重心,则点P到AB所在直线的距离等于()A.1 B.C.D.25.下列计算正确的是()A.a3?a2=a6 B.(﹣2a2)3=﹣8a6 C.(a+b)2=a2+b2 D.2a+3a=5a26.如图,⊙O的半径为6,△ABC是⊙O的内接三角形,连接O B、OC,若∠BAC与∠BOC互补,则线段BC的长为()A.B.3 C.D.6二.填空题(共24分)37.分解因式:x ﹣4x= .8.△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是.9.在实数﹣5,﹣,0,π,中,最大的一个数是.10.计算:(+ )? = .11.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于度.12.二元一次方程组= =x+2的解是.13.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),⋯,则点P2017的坐标是.14.如图,在△ABC中,∠ACB=9°0,AC=4,BC=3,将△ABC绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E处),连接BD,则四边形AEDB的面积为.三.解答题(共20分)15.小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.16.如图,在?ABCD中,点E是AB边的中点,DE的延长线与C B的延长线交于点F.求证:BC=BF.17.计算:(﹣)×+|﹣2|﹣()﹣1.18.某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.四、解答题(共28分)19.某公司共25名员工,下表是他们月收入的资料.月收入/元45001800100055048034030022000000000人数111361111(1)该公司员工月收入的中位数是元,众数是元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元.你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.20.如图,AE∥B F,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接C D.(1)求证:四边形ABCD是菱形;(2)若∠ADB=3°0,BD=6,求AD的长.21.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.22.A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中l 1,l 2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是(填l 1 或l 2);甲的速度是km/h,乙的速度是km/h;(2)甲出发多少小时两人恰好相距5km?五、(共16 分)23.【探究函数y=x+ 的图象与性质】(1)函数y=x+ 的自变量x 的取值范围是;(2)下列四个函数图象中函数y=x+ 的图象大致是;(3)对于函数y=x+ ,求当x>0 时,y 的取值范围.请将下列的求解过程补充完整.解:∵x>0∴y=x+ =() 2+()2=(﹣)2+2+()∵(﹣) 2≥0∴y≥.[ 拓展运用](4)若函数y= ,则y 的取值范围.24.(1)感知:如图①,以△ABC的边AB和BC为边向外作等腰直角三角形ABD和等腰直角三角形BCE,其中∠ABD=∠CBE=9°0 ,连接AE、D C.求证:△ABE≌△DBC.(2)应用:在(1)的条件下,若AE=8,求四边形ACED的面积.(3)拓展:如图②,在锐角∠BAC内有点P,以点P为直角顶点分别作等腰直角三角形DEP和等腰直角三角形FGP,点D、E、F、G分别在边AB和AC上,连结EF、D G.若F G∥E P,且DE=4,PG=2,求四边形DEFG的面积.六、(共20分)25.如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在B C上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,P,Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长;(用含t的代数式表示)(2)连结PQ,当PQ与△ABC的一边平行时,求t的值;(3)如图②,过点P作P E⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连结DF.设矩形PEQF与△ABC重叠部分图形的面积为S.①当点Q在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF分成两部分的面积比为1:2时t的值.26.如图,已知抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),C(0,3),点M、N为抛物线上的动点,过点M作MD∥y轴,交直线B C于点D,交x轴于点E.(1)求二次函数y=ax2+bx+c的表达式;(2)过点N作NF⊥x轴,垂足为点F,若四边形MNFE为正方形(此处限定点M在对称轴的右侧),求该正方形的面积;(3)若∠DMN=9°0,MD=M,N求点M的横坐标.2018 年中考数学基础知识试卷一.选择题(共 6 小题)1.(2016?营口)﹣2 3 的相反数是()A.﹣8 B.8 C.﹣6 D.6解:∵﹣2 3=﹣8﹣8 的相反数是8∴﹣2 3的相反数是8.故选:B2.(2017?连云港)关于的叙述正确的是()A.在数轴上不存在表示的点B.= +C.=±2 D.与最接近的整数是3解:A、在数轴上存在表示的点,故选项错误;B、≠+ ,故选项错误;C、=2 ,故选项错误;D、与最接近的整数是3,故选项正确.故选:D.3.(2017?山西)如图,将矩形纸片ABCD沿B D折叠,得到△BC′D,C′D与AB 交于点E.若∠1=35°,则∠ 2 的度数为()A.20°B.30°C.35°D.55°解:∵∠1=35°,C D∥A B,∴∠ABD=3°5 ,∠DBC=5°5 ,由折叠可得∠DBC'=∠DBC=5°5 ,∴∠2=∠DBC'﹣∠DBA=5°5 ﹣35°=20°,故选:A.4.(2017?湖州)如图,已知在Rt△ABC中,∠C=90°,AC=BC,AB=6,点P 是Rt△ABC的重心,则点P到AB所在直线的距离等于()A.1 B.C.D.2解:连接CP并延长,交AB于D,∵P是Rt△ABC的重心,∴CD是△ABC的中线,PD= C D,∵∠C=90°,∴CD= AB=3,∵AC=BC,CD是△ABC的中线,∴C D⊥AB,∴PD=1,即点P 到AB所在直线的距离等于1,故选:A.5.(2017?牡丹江)下列计算正确的是()3?a2=a6 B.(﹣2a2)3=﹣8a6 C.(a+b)2=a2+b2 D.2a+3a=5a2A.a3?a2=a5,故此选项错误;解:A、a23=﹣8a6B、(﹣2a),正确;2=a2+2ab+b2,故此选项错误;C、(a+b)D、2a+3a=5a,故此选项错误;故选:B.6.(2017?遂宁)如图,⊙O的半径为6,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC与∠BOC互补,则线段BC的长为()A.B.3 C.D.6解:∵∠BAC与∠BOC互补,∴∠BAC+∠BOC=18°0 ,∵∠BAC= ∠BOC,∴∠BOC=12°0 ,过O作OD⊥B C,垂足为D,∴BD=C,D∵OB=O,C∴O B平分∠BOC,∴∠DOC= ∠BOC=6°0 ,∴∠OCD=9°0 ﹣60°=30°,在Rt△DOC中,OC=6,∴OD=3,∴DC=3 ,∴BC=2DC=6 ,故选:C.二.填空题(共8 小题)7.(2017?大庆)分解因式:x 3﹣4x= x(x+2)(x﹣2).解:x 3﹣4x,=x(x 2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).8.(2017?达州)△ABC中,AB=5,AC=3,AD是△ABC的中线,设A D长为m,则m的取值范围是1<m<4 .解:延长AD至E,使AD=D,E 连接CE,则AE=2m,∵A D是△ABC的中线,∴BD=C,D在△ADB和△EDC中,∵,∴△ADB≌△EDC,∴EC=AB=,5在△AEC中,E C﹣A C<A E<AC+EC,即5﹣3<2m<5+3,∴1<m<4,故答案为:1<m<4.9.(2017?陕西)在实数﹣5,﹣,0,π,中,最大的一个数是π.解:根据实数比较大小的方法,可得π>>0>>﹣5,故实数﹣5,,0,π,其中最大的数是π.故答案为:π.10.(2017?荆门)计算:(+ )? = 1 .解:原式= ? = ? =1.故答案为:111.(2017?福建)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于108 度.解:如图,由正五边形的内角和,得∠1=∠2=∠3=∠4=108°,∠5=∠6=180°﹣108°=72°,∠7=180°﹣72°﹣72°=36°.∠AOB=36°0﹣108°﹣108°﹣36°=108°,故答案为:108.12.(2017?乐山)二元一次方程组= =x+2的解是.解:原方程可化为:,化简为,解得:.故答案为:;13.(2017?阿坝州)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1 个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),⋯,则点P2017 的坐标是(672,1).解:由图可得,P6(2,0),P12(4,0),⋯,P6n(2n,0),P6n+1(2n,1),2016÷6=336,∴P6×336(2×336,0),即P2016(672,0),∴P2017(672,1),故答案为:(672,1).14.(2017?鞍山)如图,在△ABC中,∠ACB=9°0 ,AC=4,BC=3,将△ABC绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E 处),连接BD,则四边形AEDB的面积为.解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D 处,∴AD=AB=,5∴CD=A﹣D AC=1,∴四边形AEDB的面积为,故答案为:.三.解答题(共12小题)15.(2017?舟山)小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.解:错误的是①②⑤,正确解答过程如下:去分母,得3(1+x)﹣2(2x+1)≤6,去括号,得3+3x﹣4x﹣2≤6,移项,得3x﹣4x≤6﹣3+2,合并同类项,得﹣x≤5,两边都除以﹣1,得x≥﹣5.16.(2017?广元)如图,在?ABCD中,点E是AB边的中点,DE的延长线与CB 的延长线交于点F.求证:BC=BF.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,又∵点F在CB的延长线上,∴AD∥CF,∴∠1=∠2.∵点E是AB边的中点,∴AE=BE.∵在△ADE与△BFE中,,∴△ADE≌△BFE(AAS),∴AD=BF,∴BC=BF.17.(2017?陕西)计算:(﹣)×+| ﹣2| ﹣()﹣1.解:原式=﹣+2﹣﹣2=﹣2 ﹣=﹣318.(2017?长春)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的 3 倍,购买跳绳共花费750 元,购买排球共花费900 元,购买跳绳的数量比购买排球的数量多30 个,求跳绳的单价.解:设跳绳的单价为x 元,则排球的单价为3x 元,依题意得:﹣=30,解方程,得x=15.经检验:x=15是原方程的根,且符合题意.答:跳绳的单价是15 元.19.(2017?南京)某公司共25 名员工,下表是他们月收入的资料.月收入/ 元4500 1800 1000 550 480 340 300 2200 0 0 0 0 0 0 0人数 1 1 1 3 6 1 11 1(1)该公司员工月收入的中位数是3400 元,众数是3000 元.(2)根据上表,可以算得该公司员工月收入的平均数为6276 元.你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.解:(1)共有25 个员工,中位数是第13 个数,则中位数是3400 元;3000出现了11次,出现的次数最多,则众数是3000.故答案为3400;3000;(2)用中位数或众数来描述更为恰当.理由:平均数受极端值45000元的影响,只有3个人的工资达到了6276元,不恰当;20.(2017?襄阳)如图,A E∥B F,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接C D.(1)求证:四边形ABCD是菱形;(2)若∠ADB=3°0,BD=6,求AD的长.(1)证明:∵A E∥BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,BD=6,∴AC⊥BD,OD=OB=BD=3,∵∠ADB=3°0,∴cos∠ADB==,∴AD==2.21.(2017?衡阳)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.解:(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率= ;(2)画树状图为:共有12 种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率= .22.(2017?青岛)A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中l 1,l 2 表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是l 2 (填l 1 或l 2);甲的速度是30 km/h,乙的速度是20 km/h;(2)甲出发多少小时两人恰好相距5km?解:(1)由题意可知,乙的函数图象是l 2,甲的速度是=30km/h,乙的速度是=20km/h.故答案为l 2,30,20.(2)设甲出发x 小时两人恰好相距5km.由题意30x+20(x﹣)+5=60或30x+20(x﹣)﹣5=60解得或,答:甲出发小时或小时两人恰好相距5km.23.(2017?自贡)【探究函数y=x+ 的图象与性质】(1)函数y=x+ 的自变量x 的取值范围是x≠0 ;(2)下列四个函数图象中函数y=x+ 的图象大致是 C ;(3)对于函数y=x+ ,求当x>0 时,y 的取值范围.请将下列的求解过程补充完整.解:∵x>0∴y=x+ =() 2+()2=(﹣)2+ 42+()∵(﹣) 2≥0∴y≥ 4 .[ 拓展运用](4)若函数y= ,则y 的取值范围y≥1 或y≤﹣11 .解:(1)函数y=x+ 的自变量x 的取值范围是x≠0;(2)函数y=x+ 的图象大致是C;(3)解:∵x>0∴y=x+ =() 2+()2=(﹣)2+42+()∵(﹣) 2≥0∴y≥4.(4)①当x>0,y= =x+ ﹣5═()2+()2﹣5=(﹣)2+1∵(﹣) 2≥0,∴y≥1.②x<0,y= =x+ ﹣5═﹣[ ()2+()2+5]= ﹣(﹣)2﹣11=∵﹣(﹣)2≤0,∴y≤﹣11.故答案为:x≠0,C,4,4,y≥1 或y≤﹣11,24.(1)感知:如图①,以△ABC的边AB和BC为边向外作等腰直角三角形ABD和等腰直角三角形BCE,其中∠ABD=∠CBE=9°0 ,连接AE、D C.求证:△ABE≌△DBC.(2)应用:在(1)的条件下,若AE=8,求四边形ACED的面积.(3)拓展:如图②,在锐角∠BAC内有点P,以点P为直角顶点分别作等腰直角三角形DEP和等腰直角三角形FGP,点D、E、F、G分别在边AB和AC上,连结EF、D G.若F G∥E P,且DE=4,PG=2,求四边形DEFG的面积.解:(1)∵BA=BD,BC=BE,∠ABD=∠CBE=9°0,∴∠ABE=∠DBC,在△ABE和△DBC中,,∴△ABE≌△DBC.(2)设CD与AE交于点G,AB与CD交于点O.∵△ABE≌△DBC,∴∠BAE=∠BDC,AE=DC=,8∵∠BDC+∠DOB=9°0,∵∠DOB=∠AOG,∴∠BAE+∠AOG=9°0,∴∠AGD=9°0,∴AE⊥C D,∴S四边形ADEC=?CD?AG+?CD?EG=?CD?AE=×8×8=32.(3)如图②中,延长DP交AG于M,连接DF、EG.(1)可知△DPF≌△EPG,DF=EG,D F⊥E G,∵PE∥AG,∴∠DEP=∠A=45°,∵∠ADM=4°5,∴∠A=∠ADM=4°5,∴∠AMD=9°0,∵PF=PG,∴MF=M,G∵DE=4,PG=2,∴DP=2,PM=FM=MG=,∴,∴DF===2,∴S四边形DEFG=?DF?EG=1.025.(2017?长春)如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线A B﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,P,Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长;(用含t的代数式表示)(2)连结PQ,当PQ与△ABC的一边平行时,求t的值;(3)如图②,过点P作P E⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连结DF.设矩形PEQF与△ABC重叠部分图形的面积为S.①当点Q在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF分成两部分的面积比为1:2时t的值.解:(1)在Rt△ABC中,∵∠C=90°,AB=10,BC=6,∴AC===8,∵CQ=t,∴AQ=8﹣t(0≤t≤4).(2)①当PQ∥BC时,=,∴=,∴t=s.②当PQ∥AB时,=,∴=,∴t=3,综上所述,t=s或3s时,当PQ与△ABC的一边平行.(3)①如图1中,a、当0≤t≤时,重叠部分是四边形PEQF.S=PE?EQ=3t(?8﹣4t﹣2+24t.t)=﹣16tb、如图2中,当<t≤2时,重叠部分是四边形PNQ.E﹣24t)﹣?[5t﹣(8﹣t)]?[5t﹣(8﹣S=S四边形PEQF﹣S△PFN=(16t2t)]=.c、如图3中,当2<t≤3时,重叠部分是五边形MNPB.QS=S四边形PBQ﹣F S△FNM=t?[6﹣3(t﹣2)]﹣?[t﹣4(t﹣2)]?[t﹣4(t﹣2)]=﹣t2+32t﹣24.②a、如图4中,当D E:DQ=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.则有(4﹣4t):(4﹣t)=1:2,解得t=s,b、如图5中,当NE:PN=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.∴D E:DQ=N:E FQ=1:3,∴(4t﹣4):(4﹣t)=1:3,解得t=s,综上所述,当t=s或s时,DF将矩形PEQF分成两部分的面积比为1:2.26.(2017?威海)如图,已知抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),C (0,3),点M、N为抛物线上的动点,过点M作MD∥y轴,交直线BC于点D,交x轴于点E.(1)求二次函数y=ax2+bx+c的表达式;(2)过点N作NF⊥x轴,垂足为点F,若四边形MNFE为正方形(此处限定点M在对称轴的右侧),求该正方形的面积;(3)若∠DMN=9°0,MD=M,N求点M的横坐标.解:(1)∵抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),∴设抛物线的函数解析式为y=a(x+1)(x﹣3),将点C(0,3)代入上式,得:3=a(0+1)(0﹣3),解得:a=﹣1,∴所求抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;(2)由(1)知,抛物线的对称轴为x=﹣=1,如图,设点M坐标为(m,﹣m2+2m+3),∴ME=|﹣m2+2m+3|,∵M、N关于x=1对称,且点M在对称轴右侧,∴点N的横坐标为2﹣m,∴MN=2﹣m2,∵四边形MNFE为正方形,∴ME=M,N∴|﹣m2+2m+3|=2m﹣2,分两种情况:①当﹣m1=、m2=﹣(不符合题意,舍去),2+2m+3=2m﹣2时,解得:m当m=时,正方形的面积为(2﹣2)2=24﹣8;②当﹣m3=2+,m4=2﹣(不符合题意,舍去),2+2m+3=2﹣2m时,解得:m当m=2+时,正方形的面积为[2(2+)﹣2]2=24+8;综上所述,正方形的面积为24+8或24﹣8.(3)设BC所在直线解析式为y=kx+b,把点B(3,0)、C(0,3)代入表达式,得:,解得:,∴直线BC的函数表达式为y=﹣x+3,设点M的坐标为(a,﹣a2+2a+3),则点N(2﹣a,﹣a2+2a+3),点D(a,﹣a+3),①点M在对称轴右侧,即a>1,则|﹣a+3﹣(﹣a2+2a+3)|=a2﹣3a|=2a﹣2,﹣(2﹣a),即|a2+2a+3)|=a﹣(2﹣a),即|a若a2﹣3a≥0,即a≤0或a≥3,a2﹣3a=2a﹣2,解得:a=或a=<1(舍去);若a2﹣3a<0,即0≤a≤3,a2﹣3a=2﹣2a,解得:a=﹣1(舍去)或a=2;②点M在对称轴左侧,即a<1,则|﹣a+3﹣(﹣a2+2a+3)|=2﹣a﹣a,即|a2﹣3a|=2﹣2a,2+2a+3)|=2﹣a﹣a,即|a若a2﹣3a≥0,即a≤0或a≥3,a2﹣3a=2﹣2a,解得:a=﹣1或a=2(舍);若a2﹣3a<0,即0≤a≤3,a2﹣3a=2a﹣2,解得:a=(舍去)或a=;综上,点M的横坐标为、2、﹣1、.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年中考数学基础知识测试一.选择题(共10小题)1.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Φ45.02B.Φ44.9C.Φ44.98D.Φ45.012.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0 D.5a2﹣4a2=13.一个长方形的周长为30cm,若这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,设长方形的长为xcm,可列方程为()A.x+1=(30﹣x)﹣2 B.x+1=(15﹣x)﹣2 C.x﹣1=(30﹣x)+2 D.x﹣1=(15﹣x)+24.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.5.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°6.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种 B.2种 C.3种 D.4种7.如图,不等式组的解集在数轴上表示正确的是()A.B.C D.8.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°9.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.410.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC 的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°二.填空题(共10小题)11.当a=﹣1时,代数式的值是.12.如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.13.如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN=.14.已知等腰三角形的一边长为9,另一边长为方程x2﹣8x+15=0的根,则该等腰三角形的周长为.15.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE 绕点C顺时针旋转90°得到△DCF,若CE=1cm,则BF=cm.16.如图,CD是⊙O的直径,若AB⊥CD,垂足为B,∠OAB=40°,则∠C等于度.17.如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的图形是轴对称图形的概率是.18.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,若S△DEC=3,则S△BCF=.19.如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.20.为解决都市停车难的问题,计划在一段长为56米的路段规划出如图所示的停车位,已知每个车位是长为5米,宽为2米的矩形,且矩形的宽与路的边缘成45°角,则该路段最多可以划出个这样的停车位.(取=1.4,结果保留整数)三.解答题(共7小题)21.某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表优秀良好合格不合格七年级a20248八年级2913135九年级24b147根据以上信息解决下列问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.22.先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.23.如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.24.快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.25.如图,在办公楼AB和实验楼CD之间有一旗杆EF,从办公楼AB顶部A点处经过旗杆顶部E点恰好看到实验楼CD的底部D点,且俯角为45°,从实验楼CD顶部C点处经过旗杆顶部E点恰好看到办公楼AB的G点,BG=1米,且俯角为30°,已知旗杆EF=9米,求办公楼AB的高度.(结果精确到1米,参考数据:≈1.41,≈1.73)26.已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形(1)求证:△DFB是等腰三角形;(2)若DA=AF,求证:CF⊥AB.27.如图1,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.(1)求抛物线的解析式,并写出其顶点B的坐标;(2)①当P点运动到A点处时,计算:PO=,PH=,由此发现,PO PH (填“>”、“<”或“=”);②当P点在抛物线上运动时,猜想PO与PH有什么数量关系,并证明你的猜想;(3)如图2,设点C(1,﹣2),问是否存在点P,使得以P,O,H为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.2017年01月24日546730637的初中数学组卷一.选择题(共10小题)1.(2016•金华)如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是(B)A.Φ45.02B.Φ44.9C.Φ44.98D.Φ45.012.(2015•玉林)下列运算中,正确的是(C)A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0 D.5a2﹣4a2=1 3.(2016•绥化)一个长方形的周长为30cm,若这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,设长方形的长为xcm,可列方程为(D)A.x+1=(30﹣x)﹣2 B.x+1=(15﹣x)﹣2 C.x﹣1=(30﹣x)+2D.x﹣1=(15﹣x)+24.(2016•资阳)如图是一个正方体纸盒的外表面展开图,则这个正方体是(C)A.B.C.D.【解答】解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选C.5.(2016•东营)如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于(C)A.30°B.35°C.40°D.50°6.(2015•齐齐哈尔)为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有(B)A.1种 B.2种 C.3种 D.4种解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35,y=7﹣x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.7.(2016•河池)如图,不等式组的解集在数轴上表示正确的是(B)A.B. C D.8.(2016•乐山)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=(C)A.35°B.95°C.85°D.75°9.(2015•湖州)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于(C)A.10 B.7 C.5 D.410.(2016•德州)如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为(A)A.65°B.60°C.55°D.45°二.填空题(共10小题)11.(2016•荆州)当a=﹣1时,代数式的值是.12.(2016•烟台)如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M 对应的实数为.【解答】解:∵△ABC为等腰三角形,OA=OB=3,∴OC⊥AB,在Rt△OBC中,OC===,∵以O为圆心,CO长为半径画弧交数轴于点M,∴OM=OC=,∴点M对应的数为.13.(2016•随州)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN=3.【解答】解:连接CM,∵M、N分别是AB、AC的中点,∴NM=CB,MN∥BC,又CD=BD,∴MN=CD,又MN∥BC,∴四边形DCMN是平行四边形,∴DN=CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=3,∴DN=3,故答案为:3.14.(2016•随州)已知等腰三角形的一边长为9,另一边长为方程x2﹣8x+15=0的根,则该等腰三角形的周长为19或21或23.解:由方程x2﹣8x+15=0得:(x﹣3)(x﹣5)=0,∴x﹣3=0或x﹣5=0,解得:x=3或x=5,当等腰三角形的三边长为9、9、3时,其周长为21;当等腰三角形的三边长为9、9、5时,其周长为23;当等腰三角形的三边长为9、3、3时,3+3<9,不符合三角形三边关系定理,舍去;当等腰三角形的三边长为9、5、5时,其周长为19;综上,该等腰三角形的周长为19或21或23,故答案为:19或21或23.15.(2016•南通)如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1cm,则BF=2+cm.解:过点E作EM⊥BD于点M,如图所示.∵四边形ABCD为正方形,∴∠BAC=45°,∠BCD=90°,∴△DEM为等腰直角三角形.∵BE平分∠DBC,EM⊥BD,∴EM=EC=1cm,∴DE=EM=cm.由旋转的性质可知:CF=CE=1cm,∴BF=BC+CF=CE+DE+CF=1++1=2+cm.故答案为:2+.16.(2016•重庆)如图,CD是⊙O的直径,若AB⊥CD,垂足为B,∠OAB=40°,则∠C等于25度.解:∵AB⊥CD,∠OAB=40°,∴∠AOB=50°,∵OA=OC,∴∠C=∠CAO,∴∠AOB=2∠C=50°,∴∠C=25°,17.(2016•南宁)如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的图形是轴对称图形的概率是.解:共有13种等可能的情况,其中3处涂黑得到黑色部分的图形是轴对称图形,如图,所以涂黑任意一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的图形是轴对称图形的概率=.故答案为.18.(2016•梅州)如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,若S△DEC =3,则S△BCF=4.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴,=()2,∵E是边AD的中点,∴DE=AD=BC,∴=,∴△DEF的面积=S△DEC=1,∴=,∴S△BCF=4;19.(2016•宿迁)如图,在平面直角坐标系中,一条直线与反比例函数y=(x >0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.解:∵点A、B在反比例函数y=(x>0)的图象上,设点B的坐标为(,m),∵点B为线段AC的中点,且点C在x轴上,∴点A的坐标为(,2m).∵AD∥x轴、BE∥x轴,且点D、E在反比例函数y=(x>0)的图象上,∴点D的坐标为(,2m),点E的坐标为(,m).=(+)×(2m﹣m)=.∴S梯形ABED故答案为:.20.(2016•黔南州)为解决都市停车难的问题,计划在一段长为56米的路段规划出如图所示的停车位,已知每个车位是长为5米,宽为2米的矩形,且矩形的宽与路的边缘成45°角,则该路段最多可以划出19个这样的停车位.(取=1.4,结果保留整数)解:如图,∵CE=2,DE=5,且∠BCE=∠CBE=∠ABD=∠ADB=45°,∴BE=CE=2,BD=DE﹣BE=3,∴BC=2÷sin45°=2,AB=(5﹣2)×sin45°=(5﹣2)×=,设至多可划x个车位,依题意可列不等式2x+≤56,将=1.4代入不等式,化简整理得,28x≤539,解得x≤19,因为是正整数,所以x=19,所以这个路段最多可以划出19个这样的停车位.故答案为:19.三.解答题(共7小题)21.(2016•宿迁)某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表优秀良好合格不合格七年级a20248八年级2913135九年级24b147根据以上信息解决下列问题:(1)在统计表中,a的值为28,b的值为15;(2)在扇形统计图中,八年级所对应的扇形圆心角为108度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.解:(1)由题意和扇形统计图可得,a=200×40%﹣20﹣24﹣8=80﹣20﹣24﹣8=28,b=200×30%﹣24﹣14﹣7=60﹣24﹣14﹣7=15,故答案为:28,15;(2)由扇形统计图可得,八年级所对应的扇形圆心角为:360°×(1﹣40%﹣30%)=360°×30%=108°,故答案为:108;(3)由题意可得,2000×=200人,即该校三个年级共有2000名学生参加考试,该校学生体育成绩不合格的有200人.22.(2016•齐齐哈尔)先化简,再求值:(1﹣)÷﹣,其中x2+2x ﹣15=0.解:原式=•﹣=﹣=,∵x2+2x﹣15=0,∴x2+2x=15,∴原式=.23.(2016•菏泽)如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.解:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M为EF的中点,OM=3,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.24.(2016•牡丹江)快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x (小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.解:(1)快车速度:180×2÷()=120千米/时,慢车速度:120÷2=60千米/时;(2)快车停留的时间:﹣×2=(小时),+=2(小时),即C(2,180),设CD的解析式为:y=kx+b,则将C(2,180),D(,0)代入,得,解得,∴快车返回过程中y(千米)与x(小时)的函数关系式为y=﹣120x+420(2≤x ≤);(3)相遇之前:120x+60x+90=180,解得x=;相遇之后:120x+60x﹣90=180,解得x=;快车从甲地到乙地需要180÷120=小时,快车返回之后:60x=90+120(x﹣﹣)解得x=综上所述,两车出发后经过或或小时相距90千米的路程.25.(2016•恩施州)如图,在办公楼AB和实验楼CD之间有一旗杆EF,从办公楼AB顶部A点处经过旗杆顶部E点恰好看到实验楼CD的底部D点,且俯角为45°,从实验楼CD顶部C点处经过旗杆顶部E点恰好看到办公楼AB的G点,BG=1米,且俯角为30°,已知旗杆EF=9米,求办公楼AB的高度.(结果精确到1米,参考数据:≈1.41,≈1.73)【解答】解:由题意可知∠BAD=∠ADB=45°,∴FD=EF=9米,AB=BD在Rt△GEH中,∵tan∠EGH==,即,∴BF=8,∴PG=BD=BF+FD=8+9,AB=(8+9)米≈23米,答:办公楼AB的高度约为23米.26.(2016•株洲)已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形(1)求证:△DFB是等腰三角形;(2)若DA=AF,求证:CF⊥AB.解:(1)∵AB是⊙O直径,∴∠ACB=90°,∵△AEF为等边三角形,∴∠CAB=∠EFA=60°,∴∠B=30°,∵∠EFA=∠B+∠FDB,∴∠B=∠FDB=30°,∴△DFB是等腰三角形;(2)过点A作AM⊥DF于点M,设AF=2a,∵△AEF是等边三角形,∴FM=EM=a,AM=a,在Rt△DAM中,AD=AF=2a,AM=,∴DM=5a,∴DF=BF=6a,∴AB=AF+BF=8a,在Rt△ABC中,∠B=30°,∠ACB=90°,∴AC=4a,∵AE=EF=AF=2a,∴CE=AC﹣AE=2a,∴∠ECF=∠EFC,∵∠AEF=∠ECF+∠EFC=60°,∴∠CFE=30°,∴∠AFC=∠AFE+∠EFC=60°+30°=90°,∴CF⊥AB.27.(2016•十堰)如图1,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A (4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.(1)求抛物线的解析式,并写出其顶点B的坐标;(2)①当P点运动到A点处时,计算:PO=5,PH=5,由此发现,PO =PH(填“>”、“<”或“=”);②当P点在抛物线上运动时,猜想PO与PH有什么数量关系,并证明你的猜想;(3)如图2,设点C(1,﹣2),问是否存在点P,使得以P,O,H为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.(1)解:∵抛物线y=ax2+1经过点A(4,﹣3),∴﹣3=16a+1,∴a=﹣,∴抛物线解析式为y=﹣x2+1,顶点B(0,1).(2)①当P点运动到A点处时,∵PO=5,PH=5,∴PO=PH,故答案分别为5,5,=.②结论:PO=PH.理由:设点P坐标(m,﹣m2+1),∵PH=2﹣(﹣m2+1)=m2+1PO==m2+1,∴PO=PH.(3)∵BC==,AC==,AB==4∴BC=AC,∵PO=PH,又∵以P,O,H为顶点的三角形与△ABC相似,∴PH与BC,PO与AC是对应边,∴=,设点P(m,﹣m2+1),∴=,解得m=±1,∴点P坐标(1,)或(﹣1,).。