初三下册数学期末试卷与答案

合集下载

九年级数学下学期期末考试试卷(含答案)

九年级数学下学期期末考试试卷(含答案)

九年级数学下学期期末考试试卷(时间90分钟 满分100分)班级 ___ 姓名 学号_____ 得分__ __一、选择题(本大题共10小题,每小题4分,共40分) 1.抛物线2)2(-=x y 的顶点坐标是( A )A .(2,0)B .(-2,0)C .(0,2)D .(0,-2)2.在相同时刻,物高与影长成正比。

如果高为1.5米的标杆影长为2.5米,那么影长为 30米的旗杆的高为 ( B ) A .20米 B .18米 C .16米 D .15米3. 如图,AB ∥CD ,AC 、BD 交于O ,BO=7,DO=3,AC=25,则AO 长为( D ) A .10 B .12.5 C .15 D .17.54.如图,梯子(长度不变)跟地面所成的锐角为A ,关于∠A 的三角函数值与梯子的倾斜 程度之间,叙述正确的是( A ) A .sinA 的值越大,梯子越陡 B .cosA 的值越大,梯子越陡 C .tanA 的值越小,梯子越陡 D .陡缓程度与∠A 的函数值无关(第6题) (第7题)5.已知△ABC∽△DEF,且△ABC 的三边长分别为4,5,6,△DEF 的一边长为2,则△DEF的周长为( D )(A )7.5 (B )6 (C )5或6 (D )5或6或7.56.已知函数y=ax 2+bx+c 图象如图所示,则下列结论中正确的个数( C )① abc <0 ② a- b +c <0 ③ a+b+c >0 ④ 2c =3b A .1 B .2 C .3 D .4 7. 8.如图所示,G 为△ABC 重心(即AD 、BE 、CF 分别为各边的中线),若已知S △EFG = 1,则S △ABC 为( D )A .2B .4C .8D .12(第9题) (第10题)二、填空题(本题共4小题,每小题5分,满分20分)11.将抛物线22x y =先沿x 轴方向向左平移2个单位,再沿y 轴方向向下平移3个单位,所得抛物线的解析式是3)2(22-+=x y 。

九年级数学(下册)期末试卷及答案(完美版)

九年级数学(下册)期末试卷及答案(完美版)

九年级数学(下册)期末试卷及答案(完美版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.94的值等于()A.32B.32-C.32±D.81162.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0 B.a<0,b>0C.a、b同号 D.a、b异号,且正数的绝对值较大3.已知m=4+3,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<64.若函数y=(3﹣m)27mx-﹣x+1是二次函数,则m的值为()A.3 B.﹣3 C.±3 D.95.实数a在数轴上的对应点的位置如图所示.若实数b满足a b a-<<,则b的值可以是()A.2 B.-1 C.-2 D.-36.若顺次连接四边形ABCD各边的中点所得四边形是菱形.则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形7.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm8.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°9.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,3),则点C的坐标为()A.(-3,1) B.(-1,3) C.(3,1) D.(-3,-1) 10.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算:23a a ⋅=______________.2.分解因式:3244a a a -+=__________.3.已知二次函数y =x 2,当x >0时,y 随x 的增大而_____(填“增大”或“减小”).4.如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为__________.5.如图,某校教学楼AC 与实验楼BD 的水平间距153CD =米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30,底部C 点的俯角是45︒,则教学楼AC 的高度是__________米(结果保留根号).6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.在平面直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,ABC 三点中的两点.(1)判断点B 是否在直线y x m =+上.并说明理由;(2)求,a b 的值;(3)平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.3.如图,在口ABCD 中,分别以边BC ,CD 作等腰△BCF ,△CDE ,使BC=BF ,CD=DE ,∠CBF =∠CDE ,连接AF ,AE.(1)求证:△ABF ≌△EDA ;(2)延长AB 与CF 相交于G ,若AF ⊥AE ,求证BF ⊥BC .4.如图,以Rt △ABC 的AC 边为直径作⊙O 交斜边AB 于点E ,连接EO 并延长交BC 的延长线于点D ,点F 为BC 的中点,连接EF 和AD .(1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为2,∠EAC =60°,求AD 的长.485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、B5、B6、D7、B8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a 52、2(2)a a -;3、增大.4、135、6、 1三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、(1)点B 在直线y x m =+上,理由见详解;(2)a=-1,b=2;(3)543、(1)略;(2)略.4、(1)略;(2)AD =5、(1)50、30%.(2)补图见解析;(3)35. 6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。

仁爱版九年级下册《数学》期末考试卷及答案【可打印】

仁爱版九年级下册《数学》期末考试卷及答案【可打印】

仁爱版九年级下册《数学》期末考试卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方,则这个数是()。

A. 1B. 0C. 1D. 1或12. 已知函数y=2x3,当x=2时,y的值是()。

A. 1B. 1C. 5D. 53. 下列哪个数是实数?()A. √1B. 3+4iC. πD. i4. 已知三角形ABC中,∠A=60°,∠B=70°,则∠C的度数是()。

A. 50°B. 60°C. 70°D. 80°5. 下列哪个数是分数?()A. 0.5B. √2C. πD. i6. 已知正方形的对角线长为10cm,则它的面积是()。

A. 25cm²B. 50cm²C. 100cm²D. 50√2cm²7. 下列哪个数是无理数?()A. 0.333B. √3C. 2/3D. 1.4148. 已知圆的半径为5cm,则它的面积是()。

A. 25πcm²B. 50πcm²C. 100πcm²D. 25cm²9. 下列哪个数是正数?()A. 3B. 0C. √1D. 1/210. 已知函数y=x²2x+1,当x=1时,y的值是()。

A. 0B. 1C. 2D. 3二、填空题(每题4分,共20分)1. 一个数的平方根是±3,则这个数是__________。

2. 已知函数y=3x+2,当x=0时,y的值是__________。

3. 下列哪个数是有理数?__________(填选项)A. 0.5B. √2C. πD. i4. 已知正方形的边长为6cm,则它的周长是__________。

5. 下列哪个数是负数?__________(填选项)A. 3B. 0C. √1D. 1/2三、解答题(每题10分,共30分)1. 已知函数y=2x3,求当x=4时,y的值。

九年级数学(下)期末测试卷含答案解析

九年级数学(下)期末测试卷含答案解析

九年级数学(下)期末测试卷(测试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知513ba=,则a ba b-+的值是()A.23B.32C.94D.492.如图是由4个大小相同的正方体搭成的几何体,其俯视图是()A. B. C. D.3.如图,在△ABC中,E、F分别是AB、AC上的点,EF∥BC,且12AEEB=,若△AEF的面积为2,则四边形EBCF的面积为()A.4 B.6 C.16 D.184.在Rt△ABC中,∠C=90°,若sinA=35,则co sB的值是()A.45B.35C.34D.435.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=32,则t的值是()A.1 B.1.5 C.2 D.36.反比例函数y=-x3的图象上有P 1(x 1,-2),P 2(x 2,-3)两点,则x 1与x 2的大小关系是( ) A. x 1>x 2 B. x 1=x 2 C. x 1<x 2 D. 不确定7.已知长方形的面积为20cm 2,设该长方形一边长为ycm ,另一边的长为xcm ,则y 与x 之间的函数图象大致是( )8.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为( )。

A .5. 3米 B. 4.8米 C. 4.0米 D.2.7米9.如图,在矩形ABCD 中,E 、F 分别是DC 、BC 边上的点,且∠AEF=90°则下列结论正确的是( )。

A 、△ABF ∽△AEF B 、△ABF ∽△CEF C 、△CEF ∽△DAE D 、△DAE ∽△BAF10.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图图形,其中AB ⊥BE ,EF ⊥B E ,AF 交BE 于D ,C 在BD 上.有四位同学分别测量出以下四组数据:①BC ,∠ACB ; ②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( ).A .1组B .2组C .3组D .4组二、填空题(每小题3分,共30分)11.若与成反比例,且图象经过点,则________.(用含的代数式表示)12.在Rt△ABC中,∠C=90°,AB=5,BC=3,则sin A= .13.如图,点在的边上,请你添加一个条件,使得∽,这个条件可以是______________.14.若,则=________.15.完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式.16.已知四条线段a=0.5 m,b=25 cm,c=0.2 m,d=10 cm,则这四条线段________成比例线段.(填“是”或“不是”)17.如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角α=︒,则飞机A到控制点B的距离约为_________________。

九年级下学期期末考试数学试卷(附答案)

九年级下学期期末考试数学试卷(附答案)

九年级下学期期末考试数学试卷(附答案)一、选择题(本大题共8小题,每小题3分,共24分.)1.﹣2021的倒数是()A.2021 B.﹣2021 C.D.﹣2.函数y=2+中自变量x的取值范围是()A.x≥2 B.x≥C.x≤D.x≠3.下列计算正确的是()A.2x+3y=5xy B.(x+1)(x﹣2)=x2﹣x﹣2C.a2•a3=a6D.(a﹣2)2=a2﹣44.在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A.B.C.D.5.下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖6.已知2+是关于x的一元二次方程x2﹣4x+m=0的一个实数根,则实数m的值是()A.0 B.1 C.﹣3 D.﹣17.如图,在⊙O中,OA⊥BC,∠AOB=50°,则∠ADC的大小为()A.20°B.25°C.50°D.100°8.如图,二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=﹣1,下列结论:①abc<0;②3a<﹣c;③若m为任意实数,则有a﹣bm≤am2+b;④若图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),则2x1﹣x2=5.其中正确的结论的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)9.抛物线y=﹣3x2+6x+2的对称轴是.10.分解因式:a2b﹣4b3=.11.2020年我国武汉暴发新冠肺炎疫情,全国人民发扬“一方有难,八方支援”的精神,积极参与到武汉防疫抗疫保卫战中.据统计,参与到武汉防疫抗疫中的全国医护人员约为42000人,将42000这个数用科学记数法表示为.12.已知圆锥的底面半径为1cm,高为cm,则它的侧面展开图的面积为=cm2.13.如图,C,D是线段AB的两个黄金分割点,AB=1,则线段CD=.14.已知关于x的一元二次方程(m﹣1)x2﹣x+1=0有实数根,则m的取值范围是.15.在△ABC中,若∠A、∠B满足|cos A﹣|+(sin B﹣)2=0,则∠C=.16.如图,点A、B、C均在坐标轴上,AO=BO=CO=1,过A、O、C作⊙D,E是⊙D上任意一点,连结CE,BE,则CE2+BE2的最大值是.三、解答题(本大题共11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)计算:(1)2sin30°+3cos60°﹣4tan45°;(2)+tan260°.18.(8分)解方程:(1)4x2﹣25=0;(2)x2﹣2x﹣4=0.19.(8分)如图,在Rt△ABC中,∠C=90°,D是AC边上一点,DE⊥AB于点E.(1)求证:△ABC∽△ADE;(2)如果AC=8,BC=6,DE=3,求AD的长.20.(8分)如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出红色,转盘B转出蓝色,或者转盘A转出蓝色,转盘B转出红色,则红色和蓝色在一起配成紫色,这种情况下小明获得音乐会门票;若两个转盘转出同种颜色则小芳获得音乐会门票.(1)利用列表或树状图的方法表示所有等可能出现的结果;(2)此规则公平吗?试说明理由.21.(8分)为宣传普及新冠肺炎防控知识,引导学生做好防控,某校举行了主题为“防控新冠,从我做起“的线上知识竞赛活动,测试内容为20道判断题,每道题5分,满分100分.为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩,已知抽取得到的八年级的数据如下(单位:分):80,95,75,75,90,75,80,65,80,85,75,65,70,65,85,70,95,80,75,80.为了便于分析数据,统计员对八年级数据进行了整理,得到下表:成绩等级分数(单位:分)学生数D等60<x≤70 5C等70<x≤80 aB等80<x≤90 bA等90<x≤100 2八、九年级成绩的平均数、中位数、优秀率如下:(分数80分以上、不含80分为优秀)年级平均数中位数优秀率八年级78分c分m%九年级76分82.5分50%(1)根据题目信息填空:a=,c=,m=;(2)八年级王宇和九年级程义的分数都为80分,请判断王宇、程义在各自年级的排名哪位更靠前?请简述你的理由.22.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△A'B'C'以点O为位似中心,且它们的顶点都为网格线的交点.(1)在图中画出点O(要保留画图痕迹),并直接写出:△ABC与△A'B'C'的位似比是.(2)请在此网格中,以点C为位似中心,再画一个△A1B1C,使它与△ABC的位似比等于2:1.23.(10分)如图,在△ABC中,BC=4,∠B=45°,∠A=30°,求AB.24.(10分)如图,在喷水池的中心A处竖直安装一个水管AB.水管的顶端安有一个喷水管、使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C.高度为3m.水柱落地点D离池中心A处3m.建立适当的平面直角坐标系,解答下列问题.(1)求水柱所在抛物线的函数解析式:(2)求水管AB的长;25.(10分)如图,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:CD是⊙O的切线;(2)若DE=BC,⊙O的半径为2,求线段EA的长.26.(12分)如图是证明勾股定理时用到的一个图形,a、b、c是Rt△ABC和Rt△BED的边长,显然AE=c,我们把关于x的一元二次方程ax2+cx+b=0称为“弦系一元二次方程”.请解决下列问题:(1)判断方程=0是否为“弦系一元二次方程”?(填“是”或“否”),并说明理由;(2)求证:关于x的“弦系一元二次方程”ax2+cx+b=0必有实数根;(3)若x=﹣1是“弦系一元二次方程”ax2+cx+b=0的一个根,且四边形ACDE的周长是6,求△ABC的面积.27.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(4,0),与y轴交于点C,连接BC,点P是线段BC上的动点(与点B,C不重合),连接AP并延长AP交抛物线于点Q,连接CQ,BQ,设点Q的横坐标为m.(1)求抛物线的解析式和点C的坐标;(2)当△BCQ的面积等于2时,求m的值;(3)在点P运动过程中,是否存在最大值?若存在,求出最大值;若不存在,请说明理由.参考答案一、选择题1.【解答】解:﹣2021的倒数是.故选:D.2.【解答】解:由题意得,3x﹣1≥0;解得,x≥.故选:B.3.【解答】解:A.2x与3y不是同类项,所以不能合并,故本选项不合题意;B.(x+1)(x﹣2)=x2﹣x﹣2,故本选项符合题意;C.a2•a3=a5,故本选项不合题意;D.(a﹣2)2=a2﹣4a+4,故本选项不合题意.故选:B.4.【解答】解:根据题意可得:袋子中有3个白球,4个红球,共7个;从袋子中随机摸出一个球,它是红球的概率.故选:D.5.【解答】解:了解三名学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A不符合题意;任意画一个三角形,其内角和是360°是不可能事件,因此选项B不符合题意;根据平均数和方差的意义可得选项C符合题意;一个抽奖活动中,中奖概率为,表示中奖的可能性为,不代表抽奖20次就有1次中奖,因此选项D不符合题意;故选:C.6.【解答】解:根据题意,得(2+)2﹣4×(2+)+m=0;解得m=1;解法二:对方程变形得:x(x﹣4)+m=0,再代入x=2+,得到:(+2)(﹣2)+m=0;即m﹣1=0,m=1故选:B.7.【解答】解:如图,连接OC;∵OA⊥BC;∴=;∴∠AOC=∠AOB=50°;∴∠ADC=∠AOC=25°;故选:B.8.【解答】解:由图象可知:a<0,c>0,;∴b=2a<0;∴abc>0,故①abc<0错误;当x=1时,y=a+b+c=a+2a+c=3a+c<0;∴3a<﹣c,故②3a<﹣c正确;∵x=﹣1时,y有最大值;∴a﹣b+c≥am2+bm+c(m为任意实数);即a﹣b≥am2+bm,即a﹣bm≥am2+b,故③错误;∵二次函数y=ax2+bx+c(a≠0)图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|);∴二次函数y=ax2+bx+c与直线y=﹣2的一个交点为(﹣3,﹣2);∵抛物线的对称轴为直线x=﹣1;∴二次函数y=ax2+bx+c与直线y=﹣2的另一个交点为(1,﹣2);即x1=1,x2=﹣3;∴2x1﹣x2=2﹣(﹣3)=5,故④正确.所以正确的是②④;故选:C.二、填空题9.【解答】解:∵抛物线y=﹣3x2+6x+2=﹣3(x﹣1)2+5;∴该抛物线的对称轴是直线x=1;故答案为:直线x=1.10.【分析】先提取公因式b,再根据平方差公式进行二次分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2b﹣4b3=b(a2﹣4b2)=b(a+2b)(a﹣2b).故答案为b(a+2b)(a﹣2b).11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:42000=4.2×104.故答案为:4.2×104.12.【分析】先利用勾股定理求出圆锥的母线l的长,再利用圆锥的侧面积公式:S侧=πrl计算即可.【解答】解:根据题意可知,圆锥的底面半径r=1cm,高h=cm;∴圆锥的母线l==2(cm);∴S侧=πrl=π×1×2=2π(cm2).故答案为:2π.13.【解答】解:∵线段AB=1,点C是AB黄金分割点;∴较小线段AD=BC=1×;则CD=AB﹣AD﹣BC=1﹣2×=﹣2.故答案是:﹣2.14.【解答】解:∵一元二次方程有实数根;∴Δ=≥0且≠0;解得:m≤5且m≠4;故答案为:m≤5且m≠4.15.【解答】解:∵|cos A﹣|+(sin B﹣)2=0;∴cos A﹣=0,sin B﹣=0;∴cos A=,sin B=;∴∠A=60°,∠B=45°;则∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°;故答案为:75°.16.【分析】连接AC,OD,DE,设E(x,y),利用90°的圆周角所对的弦是直径可得,AC是⊙D的直径,再利用平面直角坐标系中的两点间距离公式求出CE2+BE2=2(x2+y2)+2,OE2=x2+y2,可得当OE为⊙D 的直径时,OE最大,CE2+BE2的值最大,然后进行计算即可解答.【解答】解:连接AC,OD,DE;设E(x,y);∵∠AOC=90°;∴AC是⊙D的直径;∵AO=BO=CO=1;∴A(0,1),C(1,0),B(﹣1,0);∴AC=;CE2=(x﹣1)2+y2;BE2=(x+1)2+y2;∴CE2+BE2=(x﹣1)2+y2+(x+1)2+y2=2(x2+y2)+2;∵OE2=x2+y2;∴当OE为⊙D的直径时,OE最大,CE2+BE2的值最大;∴OE2=AC2=()2=2;∴CE2+BE2的最大值=2×2+2=6;故答案为:6.三、解答题17.(8分)计算:(1)2sin30°+3cos60°﹣4tan45°;(2)+tan260°.【分析】(1)直接利用特殊角的三角函数值分别代入,进而计算得出答案;(2)直接利用特殊角的三角函数值分别代入,进而计算得出答案.【解答】解:(1)原式=2×+3×﹣4×1=1+﹣4=﹣;(2)原式=+()2=+3.18.(8分)解方程:(1)4x2﹣25=0;(2)x2﹣2x﹣4=0.【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程移项后,利用完全平方公式配方,开方即可求出解.【解答】解:(1)方程变形得:x2=;开方得:x=±;解得:x1=,x2=﹣;(2)方程移项得:x2﹣2x=4;配方得:x2﹣2x+1=5,即(x﹣1)2=5;开方得:x﹣1=±;解得:x1=1+,x2=1﹣.19.(8分)如图,在Rt△ABC中,∠C=90°,D是AC边上一点,DE⊥AB于点E.(1)求证:△ABC∽△ADE;(2)如果AC=8,BC=6,DE=3,求AD的长.【分析】(1)由余角的性质可得∠DEA=∠C=90°,可得结论;(2)由勾股定理可求AB的长,由相似三角形的性质可得,即可求解.【解答】(1)证明:∵DE⊥AB;∴∠DEA=∠C=90°;由∵∠A=∠A;∴△ABC∽△ADE;(2)∵AC=8,BC=6;∴AB===10;∵△ABC∽△ADE;∴;∴;∴AD=5.20.(8分)如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出红色,转盘B转出蓝色,或者转盘A转出蓝色,转盘B转出红色,则红色和蓝色在一起配成紫色,这种情况下小明获得音乐会门票;若两个转盘转出同种颜色则小芳获得音乐会门票.(1)利用列表或树状图的方法表示所有等可能出现的结果;(2)此规则公平吗?试说明理由.【分析】(1)根据题意列表,即可得出所有可能出现的情况;(2)共有6种等可能的结果,其中配成紫色的结果有2种,两个转盘转出同种颜色的结果有2种,再求出小明获得音乐会门票的概率和小芳获得音乐会门票的概率,即可得出结论.【解答】解:(1)根据题意列表如下:黄蓝红第二个转盘第一个转盘红(红,黄)(红,蓝)(红,红)蓝(蓝,黄)(蓝,蓝)(蓝,红)共有6种等可能的结果;(2)此规则公平,理由如下:由(1)可知,共有6种等可能的结果,其中配成紫色的结果有2种,两个转盘转出同种颜色的结果有2种;∴小明获得音乐会门票的概率为=,小芳获得音乐会门票的概率为=;∴小明获得音乐会门票的概率=小芳获得音乐会门票的概率;∴此规则公平.21.【分析】(1)利用唱票的方法得到a、b的值,再利用中位数的定义求c,然后用5除以20得到m的值;(2)利用中位数的意义进行判断.【解答】解:(1)由题意,得a=10,b=3,c=77.5;m%==25%,即m=25;故答案为:10,77.5,25;(2)王宇在八年级的排名更靠前.理由如下:八年级的中位数为77.5分,而王宇的分数为80分,所以王宇的排名更靠前;而九年级的中位数为82.5分,程义的分数都为80分,所以他在九年级为中下游.22.【分析】(1)直接利用位似图形的性质得出位似中心的位置;(2)直接利用位似比得出对应点位置进而得出答案.【解答】解:(1)如图所示:点O即为所求,△ABC与△A'B'C'的位似比是:1;2;故答案为:1:2;(2)如图所示:△A1B1C即为所求.23.【分析】过点C作CD⊥AB,垂足为D,先在Rt△CDB中,利用锐角三角函数求出CD,BD,再在Rt△ACD中,求出AD,然后进行计算即可解答.【解答】解:过点C作CD⊥AB,垂足为D;在Rt△CDB中,∠B=45°,BC=4;∴CD=BC sin45°=4×=4;BD=BC cos45°=4×=4;在Rt△ACD中,∠A=30°;∴tan30°==;∴AD==4;∴AB=AD+BD=4+4;∴AB的值为4+4.24.【分析】(1)以池中心为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系,设抛物线的解析式为y=a(x﹣1)2+3,将(3,0)代入求得a值;(2)由题意可得,x=0时得到的y值即为水管的长.【解答】解:(1)以池中心为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系.由于在距池中心的水平距离为1m时达到最高,高度为3m;则设抛物线的解析式为:y=a(x﹣1)2+3;代入(3,0)求得:a=﹣.将a值代入得到抛物线的解析式为:y=﹣(x﹣1)2+3(0≤x≤3);(2)令x=0,则y==2.25.故水管AB的长为2.25m.25.(10分)如图,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:CD是⊙O的切线;(2)若DE=BC,⊙O的半径为2,求线段EA的长.【分析】(1)连接OD,利用SAS得到三角形COD与三角形COB全等,利用全等三角形的对应角相等得到∠ODC为直角,即可得证;(2)根据全等三角形的性质和平行线分线段成比例定理即可得到结论.【解答】(1)证明:如图,连接OD.∵AD∥OC;∴∠DAO=∠COB,∠ADO=∠COD;又∵OA=OD;∴∠DAO=∠ADO;∴∠COD=∠COB;在△COD和△COB中;;∴△COD≌△COB(SAS);∴∠CDO=∠CBO=90°;∵OD是⊙O的半径;∴CD是⊙O的切线;(2)解:∵△COD≌△COB;∴CD=CB;∵DE=BC;∴ED=CD.∵AD∥OC;∴=;∵⊙O的半径为2;∴=;∴AE=3.26.(12分)如图是证明勾股定理时用到的一个图形,a、b、c是Rt△ABC和Rt△BED的边长,显然AE=c,我们把关于x的一元二次方程ax2+cx+b=0称为“弦系一元二次方程”.请解决下列问题:(1)判断方程=0是否为“弦系一元二次方程”?是(填“是”或“否”),并说明理由;(2)求证:关于x的“弦系一元二次方程”ax2+cx+b=0必有实数根;(3)若x=﹣1是“弦系一元二次方程”ax2+cx+b=0的一个根,且四边形ACDE的周长是6,求△ABC的面积.【分析】(1)根据“弦系一元二次方程”的定义判断即可.(2)证明Δ≥0.(3)想办法求出ab的值可得结论.【解答】(1)解:∵a=,b=,c=;∴a2+b2=c2;∴a,b,c能构成直角三角形;∴方程=0是否为是弦系一元二次方程”.故答案为:是.(2)证明:根据题意,得Δ=(c)2﹣4ab=2c2﹣4ab;∵a2+b2=c2;∴Δ=2c2﹣4ab=2(a2+b2)﹣4ab=2(a﹣b)2≥0;∴弦系一元二次方程必有实数根;(3)解:当x=﹣1时,有a﹣x+b=0,即a+b=c;∵2a+2b+c=6;∴3c=6;∴c=2;∴a2+b2=4,a+b=2;∵(a+b)2=a2+b2+2ab;∴ab=2;∴S△ABC=ab=1.27.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(4,0),与y轴交于点C,连接BC,点P是线段BC上的动点(与点B,C不重合),连接AP并延长AP交抛物线于点Q,连接CQ,BQ,设点Q的横坐标为m.(1)求抛物线的解析式和点C的坐标;(2)当△BCQ的面积等于2时,求m的值;(3)在点P运动过程中,是否存在最大值?若存在,求出最大值;若不存在,请说明理由.【分析】(1)将点A和点B的坐标代入抛物线表达式,求解即可;(2)连接OQ,得到点Q的坐标,利用S=S△OCQ+S△OBQ﹣S△OBC得出△BCQ的面积,再令S=2,即可解出m 的值;(3)证明△APC∽△QPH,根据相似三角形的判定与性质,可得,根据三角形的面积,可得QH =,根据二次函数的性质,可得答案.【解答】解:(1)∵抛物线A(﹣1,0),B(4,0),可得:;解得:;∴抛物线的解析式为:;令x=0,则y=2;∴点C的坐标为(0,2);(2)连接OQ;∵点Q的横坐标为m;∴Q(m,);∴S=S△OCQ+S△OBQ﹣S△OBC=﹣=﹣m2+4m;令S=2;解得:m=或;(3)如图,过点Q作QH⊥BC于H,连接AC;∵AC=,BC=,AB=5; 满足AC2+BC2=AB2;∴∠ACB=90°,又∠QHC=90°,∠APC=∠QPH;∴△APC∽△QPH;∴;∵S△BCQ=BC•QH=QH;∴QH=;∴=; ∴当m=2时,存在最大值.。

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若a > b > 0,则下列不等式中成立的是()A. a^2 > b^2B. a^3 < b^3C. 1/a > 1/bD. a^2 b^2 < 02. 已知函数y = 2x 3,若y = 0,则x的值为()A. 1.5B. 1C. 2D. 33. 在直角坐标系中,点A(2, 3),点B(2, 3),则线段AB的中点坐标为()A. (0, 0)B. (2, 3)C. (2, 3)D. (0, 3)4. 若一元二次方程ax^2 + bx + c = 0(a ≠ 0)有两个实数根,则判别式b^2 4ac的值为()A. 正数B. 负数C. 0D. 不确定5. 在等差数列{an}中,已知a1 = 2,d = 3,则a5的值为()A. 5B. 8C. 11D. 14二、填空题(每题5分,共20分)6. 若一个三角形的两边长分别为5cm和8cm,则第三边长的取值范围是______。

7. 已知函数y = x^2 4x + 3,当x = 2时,函数的最小值为______。

8. 在直角坐标系中,点P(x, y)关于x轴的对称点坐标为______。

9. 已知一元二次方程x^2 3x 4 = 0,则该方程的根的判别式为______。

10. 在等比数列{an}中,已知a1 = 2,q = 3,则a4的值为______。

三、解答题(每题10分,共30分)11. 解一元二次方程x^2 5x + 6 = 0。

12. 已知函数y = 2x 3,求当x = 1时,函数的值。

13. 在直角坐标系中,已知点A(2, 3),点B(2, 3),求线段AB的长度。

四、证明题(10分)14. 已知:在等腰三角形ABC中,AB = AC,底边BC上的高为AD,求证:AD垂直于BC。

五、应用题(20分)15. 已知:某工厂生产一批产品,每件产品的成本为100元,销售价格为150元。

2023年人教版初中数学九年级(下)期末综合测试卷及部分答案(共五套)

2023年人教版初中数学九年级(下)期末综合测试卷及部分答案(共五套)

人教版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤132.若△ABC ∽△A ′B ′C ′,其相似比为3:2,则△ABC 与△A ′B ′C ′的面积比为( ) A .3:2B .9:4C .2:3D .4:93.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52 C .32 D .2554.反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .无法判断5.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P 到CD 的距离是2 m ,则点P 到AB 的距离是( ) A .13mB .12m C .23m D .1 m6.如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( ) A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中的图形的高度为6 cm ,则屏幕上图形的高度为( ) A .6 cmB .12 cmC .18 cmD .24 cm8.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BD ,且AE ,BD 交于点F ,S △DEF :S △ABF =4:25,则DE EC =( )A .2:3B .2:5C .3:5D .3:29.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2 km.从A 站测得船C 在北偏东45°的方向,从B 站测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4 kmB .(2+2)kmC .22kmD .(4-2)km10.如图,边长为1的正方形ABCD 中,点E 在CB 的延长线上,连接ED 交AB 于点F ,AF =x (0.2≤x ≤0.8),EC =y .则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共30分)11.写出一个反比例函数y =k x(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为________m.15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1:1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比是________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.19.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =k x(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A (-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为________________.20.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C恰好落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG+DF =FG .其中正确的是________(把所有正确结论的序号都填上).三、解答题(21题4分,22题8分,23题10分,26题14分,其余每题12分,共60分) 21.计算:2cos 245°-(tan 60°-2)2-(sin 60°-1)0+(sin 30°)-2.22.如图所示是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)23.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =k x(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =kx(k ≠0)的图象上,请通过计算说明理由.24.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0)25.如图①,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过C 点的切线,垂足为D ,AB 的延长线交直线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长;(3)如图②,连接OD 交AC 于点G ,若CG GA =34,求sin E 的值.26.已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B 落在CD 边上的点P 处.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,O A . ① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1:4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.B 2.B 3.D 4.C 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.1918.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD时,△QCP ∽△ADP ,此时x 4=22,∴x =4.19.y =-x +320.①③④ 点拨:∵△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处,∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10,∴AF =102-62=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD -CE =6-x .在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x )2+22=x 2,解得x =103,∴DE =83.∵△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,∴∠BHG =∠A =90°,∠3=∠4,BH =BA =6,AG =HG ,∴∠EBG =∠2+∠3=12∠ABC =45°,∴①正确;HF =BF -BH =10-6=4,设AG =y ,则GH =y ,GF =8-y .在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y )2,解得y =3,∴AG =GH =3,GF =5.∵∠A =∠D ,AB DE =94,AG DF =32,∴AB DE ≠AG DF ,∴△ABG 与△DEF 不相似,∴②错误;∵S △ABG =12AB ·AG =12×6×3=9,S △FGH =12GH ·HF =12×3×4=6,∴S △ABG =32S △FGH ,∴③正确;∵AG +DF =3+2=5,而GF =5,∴AG +DF =GF ,∴④正确.三、21.解:原式=2×⎝ ⎛⎭⎪⎫222-(2-3)-1+⎝ ⎛⎭⎪⎫12-2=1-(2-3)-1+4=3+2.22.解:(1)圆柱 (2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570. 23.解:(1)∵四边形OABC 是平行四边形, ∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2). 将(1,2)代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2).由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.24.解:根据题意,得AB ⊥EF ,DE ⊥EF , ∴∠ABC =90°,AB ∥DE ,∴△ABF ∽△DEF ,∴AB DE =BF EF ,即AB 9=44+6,解得AB =3.6 m. 在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 25.(1)证明:连接OC ,如图①. ∵DC 切半圆O 于C ,∴OC ⊥DC , 又AD ⊥CD .∴OC ∥AD .∴∠OCA =∠DAC . ∵OC =OA ,∴∠OAC =∠OCA . ∴∠DAC =∠OAC ,即AC 平分∠DAB .(2)解:∵AB =4,∴OC =2.在Rt △OCE 中,∵OC =OB =12OE ,∴∠E =30°.∴∠COF =60°.∴在Rt △OCF 中,CF =OC ·sin60°=2×32= 3. (3)解:连接OC ,如图②.∵CO ∥AD ,∴△CGO ∽△AGD .∴CG GA =CO AD =34.不妨设CO =AO =3k ,则AD =4k .又易知△COE ∽△DAE ,∴CO AD =EO AE =34=EO3k +EO .∴EO =9k .在Rt △COE 中,sin E =CO EO =3k 9k =13.26.(1)①证明:如图①,∵四边形ABCD 是矩形, ∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1:4,且△OCP ∽△PDA ,∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5.即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .由(1)中可得PC =4,又∵BC =AD =8,∠C =90°. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题(每题3分,共30分)1.已知反比例函数y =k x的图象经过点P (-1,2),则这个函数的图象位于( )A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )3.若Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A.53B.52C.32D.2554.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤135.如图,在等边三角形ABC 中,点D ,E 分别在AB ,AC 边上,如果△ADE ∽△ABC ,AD ∶AB=1∶4,BC =8 cm ,那么△ADE 的周长等于( ) A .2 cmB .3 cmC .6 cmD .12 cm(第5题) (第7题) (第8题)6.小芳和爸爸在阳光下散步,爸爸身高1.8 m ,他在地面上的影长为2.1 m .小芳比爸爸矮0.3 m ,她的影长为( ) A .1.3 mB .1.65 mC .1.75 mD .1.8 m7.一次函数y 1=k 1x +b 和反比例函数y 2=k 2x(k 1k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( ) A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <18.如图,△ABO 缩小后变为△A ′B ′O ,其中A ,B 的对应点分别为A ′,B ′,点A ,B ,A ′,B ′均在图中格点上,若线段AB 上有一点P (m ,n ),则点P 在A ′B ′上的对应点P ′的坐标为( )A.⎝ ⎛⎭⎪⎫m2,n B .(m ,n )C.⎝ ⎛⎭⎪⎫m ,n 2 D.⎝ ⎛⎭⎪⎫m 2,n2 9.如图,在两建筑物之间有一旗杆GE ,高15 m ,从A 点经过旗杆顶点恰好看到矮建筑物的墙脚C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底部点G 为BC 的中点,则矮建筑物的高CD 为( ) A .20 mB .10 3 mC .15 3 mD .5 6 m(第9题) (第10题)10.如图,已知第一象限内的点A 在反比例函数y =3x的图象上,第二象限内的点B 在反比例函数y =k x 的图象上,且OA ⊥OB ,cos A =33,则k 的值为( ) A .-3B .-6C .- 3D .-2 3二、填空题(每题3分,共24分)11.计算:2cos 245°-(tan 60°-2)2=________.12.如图,山坡的坡度为i =1∶3,小辰从山脚A 出发,沿山坡向上走了200 m 到达点B ,则他上升了________m.(第12题) (第13题) (第14题) (第15题)13.如图,在△ABC 中,DE ∥BC ,DE BC =23,△ADE 的面积是8,则△ABC 的面积为________.14.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则sin B的值是__________.15.如图,一艘轮船在小岛A 的北偏东60°方向距小岛80 n mile 的B 处,沿正西方向航行3 h 后到达小岛A 的北偏西45°方向的C 处,则该船行驶的速度为__________n mile/h.16.如图是一个几何体的三视图,若这个几何体的体积是48,则它的表面积是________.(第16题) (第17题) (第18题)17.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x上,点C ,D 在x 轴上,若四边形ABCD为矩形,则它的面积为________.18.如图,正方形ABCD 的边长为62,过点A 作AE ⊥AC ,AE =3,连接BE ,则tan E =________. 三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.如图,△ABC 三个顶点的坐标分别为A (4,6),B (2,2),C (6,4),请在第一象限内,画出一个以原点O 为位似中心,与△ABC 的相似比为12的位似图形△A 1B 1C 1,并写出△A 1B 1C 1各个顶点的坐标.(第19题)20.由几个棱长为1的小立方块搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小立方块的个数.(第20题)(1)请在方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为________个平方单位(包括底面积).21.如图,一棵大树在一次强台风中折断倒下,未折断树干AB与地面仍保持垂直的关系,而折断部分AC与未折断树干AB形成53°的夹角.树干AB旁有一座与地面垂直的铁塔DE,测得BE=6 m,塔高DE=9 m.在某一时刻太阳光的照射下,未折断树干AB落在地面的影子FB长为4 m,且点F,B,C,E在同一条直线上,点F,A,D也在同一条直线上.求这棵大树没有折断前的高度(结果精确到0.1 m,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0).(第21题)22.如图,在平面直角坐标系xOy 中,一次函数y =3x +2的图象与y 轴交于点A ,与反比例函数y =kx()k ≠0在第一象限内的图象交于点B ,且点B 的横坐标为1,过点A 作AC ⊥y 轴,交反比例函数y =k x(k ≠0)的图象于点C ,连接BC .求:(第22题)(1)反比例函数的解析式; (2)△ABC 的面积.23.如图,AB 是⊙O 的直径,过点A 作⊙O 的切线并在其上取一点C ,连接OC 交⊙O 于点D ,BD 的延长线交AC 于点E ,连接AD .(第23题)(1)求证△CDE ∽△CAD ;(2)若AB =2,AC =22,求AE 的长.24.如图,将矩形ABCD 沿AE 折叠得到△AFE ,且点F 恰好落在DC 上.(第24题)(1)求证△ADF ∽△FCE ;(2)若tan ∠CEF =2,求tan ∠AEB 的值.25.如图,直线y =2x +2与y 轴交于点A ,与反比例函数y =kx(x >0)的图象交于点M ,过点M 作MH ⊥x 轴于点H ,且tan ∠AHO =2. (1)求k 的值.(2)在y 轴上是否存在点B ,使以点B ,A ,H ,M 为顶点的四边形是平行四边形?如果存在,求出点B 的坐标;如果不存在,请说明理由.(3)点N (a ,1)是反比例函数y =k x(x >0)图象上的点,在x 轴上有一点P ,使得PM +PN 最小,请求出点P 的坐标.(第25题)答案一、1.D 2.C 3.D 4.B 5.C 6.C7.A 8.D9.A 点拨:∵点G是BC的中点,EG∥AB,∴EG是△ABC的中位线.∴AB=2EG=30.在Rt△ABC中,∠CAB=30°,则BC=AB·tan∠BAC=30×33=10 3.延长CD至F,使DF⊥AF.在Rt△AFD中,AF=BC=103,∠FAD=30°,则FD=AF·tan∠FAD=103×33=10.∴CD=AB-FD=30-10=20(m).10.B 点拨:∵cos A=33,∴可设OA=3a,AB=3a(a>0).∴OB=(3a)2-(3a)2=6a.过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵点A 在反比例函数y =3x的图象上,∴可设点A 的坐标为⎝ ⎛⎭⎪⎫m ,3m .∴OE =m ,AE =3m .易知△AOE ∽△OBF ,∴AE OF =OA OB ,即3m OF =3a 6a,∴OF =32m.同理,BF =2m ,∴点B 的坐标为⎝⎛⎭⎪⎫-32m,2m .把B ⎝⎛⎭⎪⎫-32m,2m 的坐标代入y =k x,得k =-6. 二、11.3-1 12.100 13.18 14.2315.40+403316.88 点拨:由题中的三视图可以判断,该几何体是一个长方体.从主视图可以看出,该长方体的长为6, 从左视图可以看出,该长方体的宽为2. 根据体积公式可知,该长方体的高为486×2=4,∴该长方体的表面积是2×(6×2+6×4+2×4)=88.17.2 点拨:如图,延长BA 交y 轴于点E ,则四边形AEOD ,BEOC 均为矩形.由点A 在双曲线y =1x 上,得矩形AEOD 的面积为1;由点B 在双曲线y =3x上,得矩形BEOC 的面积为3,故矩形ABCD 的面积为3-1=2.(第17题)18.23点拨:∵正方形ABCD 的边长为62,∴AC =12. 过点B 作BF ⊥AC 于点F ,则CF =BF =AF =6.设AC 与BE 交于点M ,∵BF ⊥AC ,AE ⊥AC ,∴AE ∥BF .∴△AEM ∽△FBM . ∴AM FM =AE FB =36=12.∴AM AF =13. ∴AM =13AF =13×6=2.∴tan E =AM AE =23.三、19.解:画出的△A 1B 1C 1如图所示.(第19题)△A 1B 1C 1的三个顶点的坐标分别为A 1(2,3),B 1(1,1),C 1(3,2). 20.解:(1)如图所示.(第20题) (2)2421.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE . ∴△ABF ∽△DEF . ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6.在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98.∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m.22.解:(1)∵点B 在一次函数y =3x +2的图象上,且点B 的横坐标为1,∴y =3×1+2=5. ∴点B 的坐标为(1,5).∵点B 在反比例函数y =k x (k ≠0)的图象上,∴5=k1,则k =5.∴反比例函数的解析式为y =5x.(2)∵一次函数y =3x +2的图象与y 轴交于点A ,当x =0时,y =2, ∴点A 的坐标为(0,2).∵AC ⊥y 轴, ∴点C 的纵坐标为2.∵点C 在反比例函数y =5x的图象上,当y =2时,2=5x ,x =52, ∴AC =52.过点B 作BD ⊥AC 于点D , ∴BD =y B -y C =5-2=3.∴S △ABC =12AC ·BD =12×52×3=154.23.(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°. ∴∠ABD +∠BAD =90°. 又∵AC 是⊙O 的切线, ∴AB ⊥AC ,即∠BAC =90°. ∴∠CAD +∠BAD =90°. ∴∠ABD =∠CAD . ∵OB =OD ,∴∠ABD =∠BDO =∠CDE . ∴∠CAD =∠CDE . 又∵∠C =∠C , ∴△CDE ∽△CAD . (2)解:∵AB =2, ∴OA =OD =1.在Rt △OAC 中,∠OAC =90°, ∴OA 2+AC 2=OC 2, 即12+(22)2=OC 2. ∴OC =3,则CD =2. 又由△CDE ∽△CAD ,得CD CE =CACD, 即2CE =222,∴CE = 2. ∴AE =AC -CE =22-2= 2. 24.(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°.∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴∠AFE =∠B =90°.∴∠AFD +∠CFE =180°-∠AFE =90°. 又∵∠AFD +∠DAF =90°, ∴∠DAF =∠CFE . ∴△ADF ∽△FCE .(2)解:在Rt △CEF 中,tan ∠CEF =CF CE=2,设CE =a ,CF =2a (a >0), 则EF =CF 2+CE 2=5a .∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴BE =EF =5a ,BC =BE +CE =(5+1)a ,∠AEB =∠AEF . ∴AD =BC =(5+1)a . ∵△ADF ∽△FCE , ∴AF FE =AD CF =(5+1)a 2a =5+12. ∴tan ∠AEF =AFFE=5+12. ∴tan ∠AEB =tan ∠AEF =5+12. 25.解:(1)由y =2x +2可知A (0,2),即OA =2.∵tan ∠AHO =2,∴OH =1. ∵MH ⊥x 轴,∴点M 的横坐标为1. ∵点M 在直线y =2x +2上, ∴点M 的纵坐标为4.∴M (1,4).∵点M 在反比例函数y =k x(x >0)的图象上,∴k =1×4=4. (2)存在.如图所示.[第25(2)题]当四边形B 1AHM 为平行四边形时,B 1A =MH =4, ∴OB 1=B 1A +AO =4+2=6,即B 1(0,6). 当四边形AB 2HM 为平行四边形时,AB 2=MH =4, ∴OB 2=AB 2-OA =4-2=2, 此时B 2(0,-2).综上,存在满足条件的点B ,且点B 的坐标为(0,6)或(0,-2). (3)∵点N (a ,1)在反比例函数y =4x(x >0)的图象上,∴a =4,即点N 的坐标为(4,1).如图,作N 关于x 轴的对称点N 1,连接MN 1,交x 轴于点P ,连接PN ,此时PM +PN 最小.[第25(3)题]∵N 与N 1关于x 轴对称,N 点坐标为(4,1), ∴N 1的坐标为(4,-1).设直线MN 1对应的函数解析式为y =k ′x +b (k ′≠0), 由⎩⎪⎨⎪⎧4=k ′+b ,-1=4k ′+b ,解得⎩⎪⎨⎪⎧k ′=-53,b =173. ∴直线MN 1对应的函数解析式为y =-53x +173.令y =0,得x =175,∴点P 的坐标为⎝ ⎛⎭⎪⎫175,0.人教版初中数学九年级(下)期末综合测试卷及答案(三)一、选择题(每题3分,共30分)1.下列四个几何体中,主视图为三角形的是( )2.【教材P 6练习T 2变式】反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .第一、四象限3.若△ABC ∽△A ′B ′C ′,其相似比为32,则△ABC 与△A ′B ′C ′的周长比为( )A .3∶2B .9∶4C .2∶3D .4∶94.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52C .32D .2555.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P到CD 的距离是2 m ,则点P 到AB 的距离是( )A .13mB .12mC .23mD .1 m6.【教材P 22复习题T 10改编】如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( )A.-1<x<0 B.-1<x<1C.x<-1或0<x<1 D.-1<x<0或x>17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm,到屏幕的距离为60 cm,且幻灯片中的图形的高度为6 cm,则屏幕上图形的高度为( )A.6 cm B.12 cm C.18 cm D.24 cm8.如图,在▱ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,S△DEF∶S△ABF=4∶25,则DE∶EC=( )A.2∶3 B.2∶5 C.3∶5 D.3∶29.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2 km.从A站测得船C在北偏东45°的方向,从B站测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD 的长)为( )A.4 km B.(2+2)km C.22km D.(4-2)km10.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x (0.2≤x ≤0.8),EC =y ,则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共24分)11.写出一个反比例函数y =kx(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.【教材P 41练习T 1变式】在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12 m ,那么这栋建筑物的高度为________m. 15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1∶1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.【教材P 102习题T 5变式】如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A(-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为____________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.三、解答题(19题6分,20题10分,24题14分,其余每题12分,共66分) 19.计算:3tan30°+cos 245°-(sin30°-1)0.20.【教材P 110复习题T 6变式】如图所示的是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)21.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =kx(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =k x(k ≠0)的图象上,请通过计算说明理由.22.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据: sin 53°≈0.798 6, cos 53°≈0.601 8,tan 53°≈1.327 0)23.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD ⊥CE ,垂足为D ,AC 平分∠DAB .(1)求证:CE 是⊙O 的切线;(2)若AD =4,cos ∠CAB =45,求AB 的长.24.【教材P 85复习题T 11拓展】已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B落在CD 边上的点P 处,然后展开.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,OA .① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.A 2.C 3.A 4.D 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.y =-x +318.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD 时,△QCP∽△ADP ,此时x 4=22,∴x =4.三、19.解:原式=3×33+⎝ ⎛⎭⎪⎫222-1=12. 20.解:(1)圆柱(2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570.21.解:(1)∵四边形OABC 是平行四边形,∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2).将点B (1,2)的坐标代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2). 由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.22.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE , ∴△ABF ∽△DEF , ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6 m.在Rt △ABC 中,∵cos ∠BAC =AB AC,∠BAC =53°, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 23.(1)证明:连接OC .∵AC 平分∠DAB ,∴∠DAC =∠BAC . ∵OA =OC ,∴∠BAC =∠OCA , ∴∠DAC =∠OCA ,∴AD ∥OC , 又∵AD ⊥CE ,∴OC ⊥CE .又∵OC 是⊙O 的半径,∴CE 是⊙O 的切线.(2)解:连接BC .在Rt △ADC 中,cos ∠DAC =cos ∠CAB =45=AD AC =4AC ,∴AC =5,∵AB 为⊙O 的直径,∴∠ACB =90°. 在Rt △ABC 中,cos ∠CAB =AC AB =5AB =45,∴AB =254. 24.(1)①证明:如图①,∵四边形ABCD 是矩形,∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1∶4,且△OCP ∽△PDA , ∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5,即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .∵BC =AD =8,∠C =90°,PC =4. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,动点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷(四)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的。

九年级数学下册期末考试卷及答案【完整版】

九年级数学下册期末考试卷及答案【完整版】

九年级数学下册期末考试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1 )A .2B .C .D .22.若999999a =,990119b =,则下列结论正确是( ) A .a <b B .a b = C .a >b D .1ab =3.下列计算正确的是( )A .a 2+a 3=a 5B .1=C .(x 2)3=x 5D .m 5÷m 3=m 24.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14x -=C .2(6)44x -=D .2(3)1x -=5.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k>-时,0y > 6.已知二次函数y=x 2﹣x+14m ﹣1的图象与x 轴有交点,则m 的取值范围是( )A .m ≤5B .m ≥2C .m <5D .m >27.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图,在平面直角坐标系中,矩形ABCD 的顶点A 点,D 点分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数(0,0)k y k x x=>>的图象经过矩形对角线的交点E ,若点A(2,0),D(0,4),则k 的值为( )A .16B .20C .32D .409.如图,在矩形AOBC 中,A (–2,0),B (0,1).若正比例函数y=kx 的图象经过点C ,则k 的值为( )A .–12B .12C .–2D .210.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11二、填空题(本大题共6小题,每小题3分,共18分)1169__________.2.因式分解:a 3﹣2a 2b+ab 2=_______.3.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.4.如图,直线343y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为________.5.如图,某校教学楼AC 与实验楼BD 的水平间距153CD =米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30,底部C 点的俯角是45︒,则教学楼AC 的高度是__________米(结果保留根号).6.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC=60°,AB=2,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为__________.(结果保留π)三、解答题(本大题共6小题,共72分)1.解方程:3x x +﹣1x=12.先化简,再求值:2111x y x y xy y ⎛⎫+÷ ⎪+-+⎝⎭,其中x 52,y 5 2.3.如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.4.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、A5、D6、A7、B8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、4 32、a(a﹣b)2.3、如果两个角是等角的补角,那么它们相等.4、5、)6、2 3π三、解答题(本大题共6小题,共72分)1、分式方程的解为x=﹣34.2、2xyx y-,123、(1)矩形的周长为4m;(2)矩形的面积为33.4、(1)略;(2)四边形BECD是菱形,理由略;(3)当∠A=45°时,四边形BECD是正方形,理由略5、(1)60,10;(2)96°;(3)1020;(4)2 36、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.。

(完整)九年级下册数学期末试卷附答案

(完整)九年级下册数学期末试卷附答案

九年级下册数学期末试卷附答案【篇一】一、选择题(每小题3分,共30分)1.如图所示的三个矩形中,其中相似图形是(B)A.甲与乙B.乙与丙C.甲与丙D.以上都不对2.若函数y=m+2x的图象在其所在的每一象限内,函数值y随自变量x的增大而增大,则m的取值范围是(A)A.m<-2B.m<0C.m>-2D.m>03.点M(-sin60°,cos60°)关于x轴对称的点的坐标是(B)A.(32,12)B.(-32,-12)C.(-32,12)D.(-12,-32)4.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为(C)A.30tanα米B.30sinα米C.30tanα米D.30cosα米5.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是(C)6.如图,点A,E,F,C在同一条直线上,AD∥BC,BE的延长线交AD于点G,且BG∥DF,则下列结论错误的是(C)A.AGAD=AEAFB.AGAD=EGDFC.AEAC=AGADD.ADBC=DFBE7.如图,反比例函数y1=k1x和正比例函数y2=k2x的图象交于A(-1,-3),B(1,3)两点,若k1x>k2x,则x的取值范围是(C)A.-1<x<0B.-1<x<1C.x<-1或0<x<1D.-1<x<0或x>18.如图,△ABC是一块锐角三角形材料,高线AH长8cm,底边BC长10cm,要把它加工成一个矩形零件,使矩形DEFG的一边EF在BC 上,其余两个顶点D,G分别在AB,AC上,则四边形DEFG的面积为(B)A.40cm2B.20cm2C.25cm2D.10cm29.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax +b与反比例函数y=cx的大致图象是(C)10.若两个扇形满足弧长的比等于它们半径的比,则称这两个扇形相似.如图,如果扇形AOB与扇形A1O1B1是相似扇形,且半径OA∶O1A1=k(k为不等于0的常数),那么下面四个结论:①∠AOB=∠A1O1B1;②△AOB∽△A1O1B1;③ABA1B1=k;④扇形AOB与扇形A1O1B1的面积之比为k2.其中成立的个数为(D)A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.小明在操场上练习双杠,他发现双杠两横杠在地面上的影子的关系是平行.12.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB=5,sinA=45.13.在平面直角坐标系中,△ABC顶点A的坐标为(3,2),若以原点O为位似中心,画△ABC的位似图形△A′B′C′,使△ABC与△A′B′C′的相似比等于12,则点A′的坐标为(6,4)或(-6,-4).14.在Rt△ABC中,CA=CB,AB=92,点D在BC边上,连接AD,若tan∠CAD=13,则BD的长为6.15.如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为8π.16.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为13.17.如图,双曲线y=kx(k>0)与⊙O在第一象限内交于P,Q两点,分别过P,Q两点向x轴和y轴作垂线.已知点P坐标为(1,3),则图中阴影部分的面积为4.18.在平面直角坐标系中,有如图所示的Rt△ABO,AB⊥x轴于点B,斜边AO=10,sin∠AOB=35,反比例函数y=kx(x>0)的图象经过AO的中点C,且与AB交于点D,则点D的坐标为(8,32).提示:AB=OAsin∠AOB=10×35=6,OB=OA2-AB2=102-62=8,AO的中点C的坐标为(4,3),把C(4,3)代入y=kx(x>0),得y =12x,当x=8,y=32,∴点D的坐标为(8,32).三、解答题(共66分)19.(6分)计算:(-1)2019-(12)-3+(cos68°)0+|33-8sin60°|.解:原式=-1-8+1+|33-8×32|=-8+3.20.(8分)如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于点E.求证:△ABD∽△CBE.证明:在△ABC中,AB=AC,BD=CD,∴AD⊥BC.∵CE⊥AB,∴∠ADB=∠CEB=90°.∵∠B=∠B,∴△ABD∽△CBE.21.(12分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6.(1)求函数y=mx和y=kx+b的解析式;(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y=mx的图象上一点P,使得S△POC=9.解:(1)把点A(4,2)代入反比例函数y=mx可得m=8,∴反比例函数的解析式为y=8x.∵OB=6,∴B(0,-6).把点A(4,2),B(0,-6)代入一次函数y=kx+b,得2=4k+b,-6=b,解得k=2,b=-6.∴一次函数的解析式为y=2x-6.(2)在y=2x-6中,令y=0,则x=3,即C(3,0),∴CO=3.设P(a,8a),则由S△POC=9,可得12×3×8a=9.解得a=43.∴P(43,6).22.(12分)某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格实行了4天的试销,试销情况如表所示:第1天第2天第3天第4天售价x(元/双)150200250300销售量y(双)40302420(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?解:(1)由表中数据,得xy=6000,∴y=6000x.∴y是x的反比例函数,所求函数关系式为y=6000x.(2)由题意,得(x-120)y=3000,把y=6000x代入,得(x-120)6000x=3000.解得x=240.经检验,x=240是原方程的根.答:若商场计划每天的销售利润为3000元,则其单价应定为240元.23.(14分)如图是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数.参考数据:2≈1.414,3≈1.732).解:由题意,得AH=10米,BC=10米.在Rt△ABC中,∠CAB=45°,∴AB=BC=10米.在Rt△DBC中,∠CDB=30°,∴DB=BCtan∠CDB=103米.∴DH=AH-AD=AH-(DB-AB)=10-(103-10)=20-103≈2.7(米).∵2.7米<3米,∴该建筑物需要拆除.24.(14分)如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cosC=13时,求⊙O的半径.解:(1)证明:连接OM,则OM=OB.∴∠OBM=∠OMB.∵BM平分∠ABC,∴∠OBM=∠GBM.∴∠OMB=∠GBM.∴OM∥BC.∴∠AMO=∠AEB.在△ABC中,AB=AC,AE是角平分线,∴AE⊥BC.∴∠AEB=90°.∴∠AMO=90°.∴OM⊥AE.又∵OM是⊙O的半径,∴AE与⊙O相切.(2)在△ABC中,AB=AC,AE是角平分线,∴BE=12BC,∠ABC=∠C.∵BC=4,cosC=13,∴BE=2,cos∠ABC=13.在△ABE中,∠AEB=90°,∴AB=BEcos∠ABC=6.设⊙O的半径为r,则AO=6-r,∵OM∥BC,∴△AOM∽△ABE.∴OMBE=AOAB.∴r2=6-r6.解得r=32.∴⊙O的半径为32.【篇二】一、选择题(每小题3分,共30分)1.反比例函数y=2x的图象位于平面直角坐标系的(A)A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限2.(2016永州)如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为(B)3.若点P1(x1,y1),P2(x2,y2)在反比例函数y=kx(k>0)的图象上,且x1=-x2,则(D)A.y1<y2B.y1=y2C.y1>y2D.y1=-y24.(2016福州)如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是AB︵上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是(C)A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα),第4题图),第5题图),第6题图)5.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC与△BDA相似,能够添加一个条件.下列添加的条件中错误的是(C)A.∠ACD=∠D ABB.AD=DEC.ADAB=CDBDD.AD2=BDCD6.如图是测量小玻璃管口径的量具ABC,AB的长为12cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是(A)A.8cmB.10cmC.20cmD.60cm7.如图,一次函数y1=k1x+b的图象和反比例函数y2=k2x的图象交于A(1,2),B(-2,-1)两点,若y1<y2,则x的取值范围是(D)A.x<1B.x<-2C.-2<x<0或x>1D.x<-2或0<x<1,第7题图),第9题图),第10题图)8.已知两点A(5,6),B(7,2),先将线段AB向左平移1个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的12得到线段CD,则点A的对应点C的坐标为(A)A.(2,3)B.(3,1)C.(2,1)D.(3,3)9.如图,有一轮船在A处测得南偏东30°方向上有一小岛P,轮船沿正南方向航行至B处,测得小岛P在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛P在正东方向上,则A,B之间的距离是(D)A.103海里B.(102-10)海里C.10海里D.(103-10)海里10.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为(C)A.22B.32C.1D.62二、填空题(每小题3分,共24分)11.△ABC中,∠A,∠B都是锐角,若sinA=32,cosB=12,则∠C=__60°__.12.已知点A(-1,y1),B(-2,y2)和C(3,y3)都在反比例函数y=kx(k<0)的图象上,则y1,y2,y3的大小关系为__y3<y1<y2__.(用“<”连接)13.直线y=ax(a>0)与双曲线y=3x交于A(x1,y1),B(x2,y2)两点,则4x1y2-3x2y1=__-3__.14.如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1∶5,则AC的长度是__210__cm.,第14题图),第15题图),第16题图)15.如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的49,则AB∶DE=__2∶3__.16.如图是由一些大小相同的小正方体搭成的几何体的主视图和俯视图,则搭成该几何体的小正方体最多是__7__个.17.如图,在平行四边形ABCD中,AD=10cm,CD=6cm,E为AD 上一点,且BE=BC,CE=CD,则DE=__3.6__cm.,第17题图),第18题图)18.如图,A,B是双曲线y=kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为__83__.三、解答题(共66分)19.(6分)计算:1sin60°-cos60°-(sin30°)-2+(2018-tan45°)0.解:原式=3-220.(8分)如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个立体图形的表面积.解:根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm,∴立体图形的表面积是4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2-4×2=200(mm2)21.(8分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A(2,3),B(-3,n)两点.(1)求一次函数和反比例函数的解析式;(2)若P是y轴上一点,且满足△PAB的面积是5,直接写出OP的长.解:(1)y=6x,y=x+1(2)对于一次函数y=x+1,令x=0求出y=1,即该函数与y轴的交点为C(0,1),∴OC=1,根据题意得S△ABP=12PC×2+12PC×3=5,解得PC=2,则OP=OC+PC=1+2=3或OP=PC-OC=2-1=122.(10分)如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.(结果精确到1米,参考数据2≈1.4,3≈1.7)解:在直角△ABD中,BD=ABtanβ=123tan60°=413(米),则DF=BD-OE=413-10(米),CF=DF+CD=413-10+40=413+30(米),则在直角△CEF中,EF=CFtanα=413+30≈41×1.7+30=99.7≈100(米),则点E离地面的高度EF是100米23.(10分)如图,在△AB C中,∠ABC=90°,BC=3,D为AC延长线上一点,AC=3CD,过点D作DH∥AB,交BC的延长线于点H.(1)求BDcos∠HBD的值;(2)若∠CBD=∠A,求AB的长.解:(1)∵DH∥AB,∴∠BHD=∠ABC=90°,∴△ABC∽△DHC,∴ACCD=BCCH=3,∴CH=1,BH=BC+CH=4,在Rt△BHD中,cos∠HBD=BHBD,∴BDcos∠HBD=BH=4(2)∵∠CBD=∠A,∠ABC=∠BHD,∴△ABC∽△BHD,∴BCHD=ABBH,∵△ABC∽△DHC,∴ABDH=ACCD=3,∴AB=3DH,∴3DH=3DH4,解得DH=2,∴AB=3DH=3×2=6,即AB的长是624.(12分)如图,以点O为圆心,AB长为直径作圆,在⊙O上取一点C,延长AB至点D,连接DC,过点A作⊙O的切线交DC的延长线于点E,且∠DCB=∠DAC.(1)求证:CD是⊙O的切线;(2)若AD=6,tan∠DCB=23,求AE的长.解:(1)连接OC,OE,∵AB为直径,∴∠ACB=90°,即∠BCO+∠ACO=90°,又∵∠DCB=∠CAD,∠CAD=∠ACO,∴∠ACO=∠DCB,∴∠DCB+∠BCO=90°,即∠DCO=90°,∴CD是⊙O的切线(2)∵EA 为⊙O的切线,∴EC=EA,EA⊥AD,OE⊥AC,∴∠BAC+∠CA E=90°,∠CAE+∠OEA=90°,∴∠BAC=∠OEA,∴∠DCB=∠OEA.∵tan∠DCB =23,∴tan∠OEA=OAAE=23,易证Rt△DCO∽Rt△DAE,∴CDDA=OCAE=ODDE=23,∴CD=23×6=4,在Rt△DAE中,设AE=x,∴(x+4)2=x2+62,解得x=52,即AE的长为5225.(12分)如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ,当△CQE的面积时,求点Q的坐标;(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存有这样的直线l,使得△ODF是等腰三角形?若存有,请求出点P的坐标;若不存有,请说明理由.解:(1)y=-12x2+x+4(2)设点Q的坐标为(m,0),过点E作EG⊥x轴于点G.由抛物线的对称性得点B的坐标为(-2,0),∴AB=6,BQ=m+2,∵QE∥AC,∴BEBC=BQBA,又∵EG∥y轴,∴△BEG∽△BCO,∴EGCO=BEBC=BQBA,即EG4=m+26,∴EG=2m+43,∴S△CQE=S△CBQ-S△EBQ=12BQCO-12BQEG=12(m+2)(4-2m+43)=-13m2+23m+83=-13(m-1)2+3,又∵-2≤m≤4,∴当m=1时,S△CQE有值3,此时Q(1,0)(3)存有.在△ODF中,(ⅰ)若DO=DF,∵A(4,0),D(2,0),∴AD=OD=DF=2,又在Rt△AOC中,OA=OC=4,∴∠OAC=45°,∴∠DFA=∠OAC=45°,∴∠ADF=90°,此时点F的坐标为(2,2),令-12x2+x+4=2,得x1=1+5,x2=1-5,此时点P的坐标为P(1+5,2)或P(1-5,2);(ⅱ)若FO=FD,过点F作FM⊥x轴于点M,由等腰三角形的性质得OM=12OD=1,∴AM=3,∴在等腰直角△AMF中,MF=AM=3,∴F(1,3),令-12x2+x+4=3,得x1=1+3,x2=1-3,此时点P的坐标为P(1+3,3)或P(1-3,3);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°,∴AC=42,∴点O到AC的距离为22,而OF=OD=2<22,与OF≥22矛盾,所以AC上不存有点使得OF=OD=2,此时,不存有这样的直线l,使得△ODF是等腰三角形.综上所述,存有这样的直线l,使得△ODF是等腰三角形,所求点P的坐标为P(1+5,2)或P(1-5,2)或P(1+3,3)或P(1-3,3)【篇三】一、选择题(每题3分,共30分)1.下列立体图形中,主视图是三角形的是()2.在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为()A.35B.45C.34D.以上都不对3.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(-3,2).若反比例函数y=kx(x>0)的图象经过点A,则k的值为()A.-6B.-3C.3D.6(第3题)(第4题)(第5题)4.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4B.5C.6D.85.如图,在ABCD中,若E为DC的中点,AC与BE交于点F,则△EFC与△BFA的面积比为()A.12B.12C.14D.186.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为()A.6cmB.12cmC.18cmD.24cm(第6题)(第7题)(第9题)7.如图,反比例函数y1=k1x和正比例函数y2=k2x的图象交于A(-1,-3),B(1,3)两点,若k1x>k2x,则x的取值范围是()A.-1<x<0B.-1<x<1C.x<-1或0<x<1D.-1<x<0或x>18.如果点A(-1,y1),B(2,y2),C(3,y3)都在反比例函数y=3x的图象上,那么()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y3<y2<y1< p>9.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km.从A站测得船C在北偏东45°的方向,从B站测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为()A.4kmB.(2+2)kmC.22kmD.(4-2)km10.如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()(第10题)二、填空题(每题3分,共30分)11.写出一个反比例函数y=kx(k≠0),使它的图象在每个象限内,y的值随x值的增大而减小,这个函数的解析式为____________.12.在△ABC中,∠B=45°,cosA=12,则∠C的度数是________.13.在下列函数①y=2x+1;②y=x2+2x;③y=3x;④y=-3x中,与众不同的一个是________(填序号),你的理由是____________________________________.14.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为________m.15.活动楼梯如图所示,∠B=90°,斜坡AC的坡度为11,斜坡AC的坡面长度为8m,则走这个活动楼梯从A点到C点上升的高度BC为________.(第15题)(第16题)(第17题)(第18题)16.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD =1,DB=2,则△ADE的面积与△ABC的面积的比是________.18.如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=kx(k≠0)的图象交于第二、四象限的A,B两点,与x轴交于C点.已知A(-2,m),B(n,-2),tan∠BOC=25,则此一次函数的解析式为________________.19.如图,反比例函数y=6x在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB的面积是________.(第19题)(第20题)20.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=32S△FGH;④AG+DF=FG.其中准确的是________(把所有准确结论的序号都填上).三、解答题(21题4分,22题8分,23题10分,26题14分,其余每题12分,共60分)21.计算:(5-π)0-6tan30°+12-2+|1-3|.22.如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=kx(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠A OH=43,点B的坐标为(m,-2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.23.如图,点A,B,C表示某旅游景区三个缆车站的位置,线段AB,BC表示连接缆车站的钢缆,已知A,B,C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米,310米,710米,钢缆AB的坡度i1=1∶2,钢缆BC的坡度i2=1∶1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)(第23题)24.如图①,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.(1)求证:AC平分∠DAB;(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;(3)如图②,连接OD交AC于点G,若CGGA=34,求sinE的值.25.如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=33.(1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;(2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)(第25题)26.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图①,已知折痕与边BC交于点O,连接AP,OP,OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为14,求边AB的长.(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.答案一、1.A2.A3.D4.C5.C6.C7.C8.B9.B10.C二、11.y=3x(答案不)12.75°13.③;只有③的自变量取值范围不是全体实数点拨:这是开放题,答案灵活,能给出合适的理由即可.14.2415.42m16.6或7或817.1918.y=-x+319.820.①③④点拨:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10.在Rt△ABF中,∵AB=6,BF=10,∴AF=102-62=8,∴DF=AD-AF=10-8=2.设EF=x,则CE=x,DE=CD-CE=6-x.在Rt△DEF中,∵DE2+DF2=EF2,∴(6-x)2+22=x2,解得x=103,∴DE=83.∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠EBG=∠2+∠3=12∠ABC=45°,∴①准确;HF=BF-BH=10-6=4,设AG =y,则GH=y,GF=8-y.在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8-y)2,解得y=3,∴AG=GH=3,GF=5.∵∠A=∠D,ABDE=94,AGDF=32,∴ABDE≠AGDF,∴△ABG与△DEF不相似,∴②错误;∵S△ABG=12ABAG=12×6×3=9,S△FGH=12GHHF=12×3×4=6,∴S△ABG=32S△FGH,∴③准确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,∴④准确.三、21.解:原式=1-6×33+4+3-1=4-3.22.解:(1)由OH=3,AH⊥y轴,tan∠AOH=43,得AH=4.∴A点坐标为(-4,3).由勾股定理,得AO=OH2+AH2=5,∴△AHO的周长为AO+AH+OH=5+4+3=12.(2)将A点坐标代入y=kx(k≠0),得k=-4×3=-12,∴反比例函数的解析式为y=-12x.当y=-2时,-2=-12x,解得x=6,∴B点坐标为(6,-2).将A、B两点坐标代入y=ax+b,得-4a+b=3,6a+b=-2,解得a=-12,b=1.∴一次函数的解析式为y=-12x+1.23.解:过点A作AE⊥CC′于点E,交BB′于点F,过B点作BD⊥CC′于点D,则△AFB,△BDC和△AEC都是直角三角形,四边形AA′B′F,四边形BB′C′D和四边形BFED都是矩形,∴BF=BB′-FB′=BB′-AA′=310-110=200(米),CD=CC′-DC′=CC′-BB′=710-310=400(米),∵BF∶AF=1∶2,CD∶BD=1∶1,∴AF=2BF=400(米),BD=CD=400(米),又∵FE=BD=400(米),DE=BF=200(米),∴AE=AF+FE=800(米),CE=CD+DE=600(米),∴在Rt△AEC中,AC=AE2+CE2=8002+6002=1000(米).答:钢缆AC的长度为1000米.24.(1)证明:连接OC,如图①.∵OC切半圆O于C,∴OC⊥DC,又AD⊥CD.∴OC∥AD.∴∠OCA=∠DAC.∵OC=OA,∴∠OAC=∠ACO.∴∠DAC=∠CAO,即AC平分∠DAB.(2)解:在Rt△OCE中,∵OC=OB=12OE,∴∠E=30°.∴在Rt△OCF中,CF=OCsin60°=2×32=3.(3)解:连接OC,如图②.∵CO∥AD,∴△CGO∽△AGD.∴CGGA=COAD=34.不妨设CO=AO=3k,则AD=4k.又△COE∽△DAE,∴COAD=EOAE=34=EO3k+E O.∴EO=9k.在Rt△COE中,sinE=COEO=3k9k=13.(第24题)25.解:(1)在Rt△OBA中,∠AOB=30°,OB=33,∴AB=OBtan30°=3.∴点A的坐标为(3,33).设反比例函数的解析式为y=kx(k≠0),∴33=k3,∴k=93,则这个反比例函数的解析式为y=93x.(2)在Rt△OBA中,∠AOB=30°,AB=3,sin∠AOB=ABOA,即sin30°=3OA,∴OA=6.由题意得:∠AOC=60°,S扇形AOA′=60π62360=6π.在Rt△OCD中,∠DOC=45°,OC=OB=33,∴OD=OCcos45°=33×22=362.∴S△ODC=12OD2=123622=274.∴S阴影=S扇形AOA′-S△ODC=6π-274.26.(1)①证明:如图①,∵四边形ABCD是矩形,∴∠C=∠D=∠B=90°,∴∠1+∠3=90°.由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°.∴∠3=∠2.又∵∠C=∠D,∴△OCP∽△PDA.②解:∵△OCP与△PDA的面积比为14,且△OCP∽△PDA,∴OPPA=CPDA=12.∴CP=12AD=4.设OP=x,则易得CO=8-x.在Rt△PCO中,∠C=90°,由勾股定理得x2=(8-x)2+42.解得x=5.∴AB=AP=2OP=10.(第26题)(2)解:作MQ∥AN,交PB于点Q,如图②.∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ.又BN=PM,∴BN=QM.∵MQ∥AN,∴∠QMF=∠BNF,∠MQF=∠FBN,∴△MFQ≌△NFB.∴QF=FB.∴QF=12QB.∵MP=MQ,ME⊥PQ,∴EQ=12PQ.∴EF=EQ+QF=12PQ+12QB=12PB.由(1)中的结论可得PC=4,BC=8,∠C=90°.∴PB=82+42=45,∴EF=12PB=25.∴在(1)的条件下,点M,N在移动的过程中,线段EF的长度不变,它的长度恒为25.。

九年级数学下册期末考试及答案【完美版】

九年级数学下册期末考试及答案【完美版】

九年级数学下册期末考试及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的平方根是( )A .±2B .2C .﹣2D .162.若单项式a m ﹣1b 2与212n a b 的和仍是单项式,则n m 的值是( ) A .3 B .6 C .8 D .93.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( )A .先向左平移2个单位长度,然后向上平移1个单位长度B .先向左平移2个单位长度,然后向下平移1个单位长度C .先向右平移2个单位长度,然后向上平移1个单位长度D .先向右平移2个单位长度,然后向下平移1个单位长度4.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5在实数范围内有意义,则x 的取值范围是( )A .2x ≠B .2x ≥C .2x ≤D .2x ≠-6.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度8.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .339.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0.其中正确的个数为( )A .1B .2C .3D .410.如图,在平面直角坐标系中,ABCD 的三个顶点坐标分别为()()()1,04,22,3A B C ,,,第四个顶点D 在反比例函数()0k y x x=<的图像上,则k 的值为( )-D.4-A.1-B.2-C.3二、填空题(本大题共6小题,每小题3分,共18分)1.计算:16=__________.2.因式分解:32-+=_________.a a a693.设m,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=_______. 4.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为__________.5.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=__________度.AD=,对角线AC与BD相交于点O,6.如图,在矩形ABCD中,8AE BD⊥,垂足为点E,且AE平分BAC∠,则AB的长为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:33122x x x-+=--2.已知关于x 的一元二次方程()22x 2k 1x k k 0-+++= (1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5.当△ABC 是等腰三角形时,求k 的值3.如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.41.如图,在△ABC 中,∠ACB =90°,∠CAB =30°,以线段AB 为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.6.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、C5、B6、B7、C8、D9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、42、2(3)a a -3、54、 45、30°6、.三、解答题(本大题共6小题,共72分)1、x=12、(1)详见解析(2)k 4=或k 5=3、(1)y=x 2-4x+3.(2)当m=52时,四边形AOPE 面积最大,最大值为758.(3)P 点的坐标为 :P 1P 235,),P 3),P 4.4、(1)略;(2)5、(1)90人,补全条形统计图见解析;.(2)48 ;(3)560人.6、(1)打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)打折后购买这批粽子比不打折节省了3640元.。

九年级下学期数学期末考试试卷及答案

九年级下学期数学期末考试试卷及答案

九年级下学期数学期末考试试卷及答案数 学一、选择题(本大题共10道小题;每小题3分;满分30分.每道小题给出的四个选项中;只有一项是符合题设要求的;1.若反比例函数)0(≠=k xy 的图象经过点P (-1;1);则k 的值是 A .0 B .-2 C .2 D .-1 2.一元二次方程652=+x x 的一次项系数、常数项分别是A. 1;5B. 1;-6C. 5;-6D. 5;6 3.一元二次方程210x x ++=的根的情况为A .有两个相等的实数根;B .没有实根;C .只有一个实数根;D .有两个不相等的实数根;4.两个相似多边形的周长比是2:3;其中较小多边形的面积为4cm 2;则较大多边形的面积为A .9cm 2B .16cm 2C .56cm 2D .24cm 2 5.000sin30tan 45cos60+-的值等于B.0C.1D.6.在直角三角形ABC 中;已知∠C=90°;∠A=60°;AC=BC 等于 A .30 B .10 C .20 D .02=++c bx ax 7.如图1;Rt △ABC ∽Rt △DEF ;∠A=35°;则∠E 的度数为A.35°B.45°C.55°D.65°图1 图2 图38.如图2;为测量河两岸相对两电线杆A 、B 间的距离;在距A 点16m 的C 处(AC ⊥AB );测得∠ACB =52°;则A 、B 之间的距离应为A .16sin 52°mB .16cos 52°mC .16tan 52°m D.16tan 52° m9.青蛙是我们人类的朋友;为了了解某池塘里青蛙的数量;先从池塘里捕捞20只青蛙;作上标记后放回池塘;经过一段时间后;再从池塘中捕捞出40只青蛙;其中有标记的青蛙有4只;请你估计一下这个池塘里有多少只青蛙? A .100只 B .150只 C .180只 D .200只10.如图3;△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上;BD ⊥AC 于点D .则BD 的长为AB. C. D二、填空题(本大题共8道小题;每小题3分, 满分24分)11.已知函数是反比例函数;则m的值为1 .12.已知关于x 的一个一元二次方程一个根为1;则c b a ++=____0___.13.甲同学的身高为1.5m ;某一时刻他的影长为1m ;此时一塔影长为20 m ;则该塔高为__30__m.22(1)m y m x-=+14.老师对甲、乙两人的五次数学测验成绩进行统计;得出两人五次测验成绩的平均分均为90分;方差分别是.22S 17,15S ==乙甲.则成绩比较稳定的是乙(填“甲”、“乙”中的一个). 15.已知α是锐角;且35Sin α=;则tan α=43.16.如图4;王伟家(图中点O 处)门前有一条东西走向的公路;经测得有一水塔(图中点A 处)在她家北偏东60度方向上的500m 处;那么水塔所在的位置到公路的距离AB 是250图417.已知锐角A 满足关系式22sin 7sin 30A A -+=;则sin A 的值为21. 18.已知关开220x x x a +-=的一元二次方程的两个实根为12,x x 且121123x x +=则a 的值为3.三、解答题(每小题6分, 满分12分)19.解下列方程(1)x (x -2)+x -2=0.(2)x 2-4x -12=0解:(1)提取公因式;得(x -2)(x +1)=0;解得x 1=2;x 2=-1. 3分 (2). x 1=6;x 2=-26分20.已知1-=x 是一元二次方程022=--mx x 的一个根,求m 的值和方程的另一个根.解:m =1, 3分; 另一个根为2=x 6分四、解答题(每小题8分, 满分16分)21.如图5,在△ABC 中,∠ACB=90°;CD ⊥AB,垂足为D,若角B=30°;CD=6,求AB 的长.解:38 AB图522.某校开展了主题为“梅山文化知多少”的专题调查活动;采取随机抽样的方式进行问卷调查;问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级;整理调查数据制成了不完整的表格和扇形统计图(如图6).图6根据以上提供的信息解答下列问题:(1)本次问卷调查共抽取的学生数为___200_人;表中m 的值为__90__; (2)计算等级为“非常了解”的频数在扇形统计图中对应扇形的圆心角的度数;并补全扇形统计图;(3)若该校有学生2000人;请根据调查结果估计这些学生中“不太了解”梅山文化知识的人数约为多少? 解:(1)40÷20%=200人;200×45%=90人;2分(2)50200×100%×360°=90°;1-25%-45%-20%=10%;扇形统计图如图所示:第22题答图5分(3) 2000×10%=200人;答:这些学生中“不太了解”梅山文化知识的人数约为200人.8分五、解答题(每小题9分, 满分18分)23.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售;由于部分菜农盲目扩大种植;造成该蔬菜滞销.李伟为了加快销售;减少损失;对价格经过两次下调后;以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜;因数量多;李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折;每吨优惠现金200元.试问小华选择哪种方案更优惠;请说明理由.解:(1)设平均每次下调的百分率为x.由题意;得5(1-x)2=3.2.解方程;得x1=0.2;x2=1.8.因为降价的百分率不可能大于1;所以x2=1.8不符合题意;符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%. 5分(2)小华选择方案一购买更优惠.理由:方案一所需费用为3.2×0.9×5 000=14 400(元);方案二所需费用为3.2×5 000-200×5=15 000(元).∵14 400<15 000;∴小华选择方案一购买更优惠. 9分24.如图7;已知△ABC ∽△ADE ;AE=5 cm ;EC=3 cm ;BC=7 cm ;∠BAC=45°;∠C=40°.(1)求∠AED 和∠ADE 的大小; (2)求DE 的长.图7解:(1)∠AED=40°;∠ADE=95°. 4分 (2)∵△ABC ∽△ADE ;∴AE AC =DE BC ;即5537DE=+;∴DE=4.375 cm 9分六、综合探究题 (每小题10分;满分20分)25.超速行驶是引发交通事故的主要原因之一;上周末;小明和三位同学尝试用自己所学的知识检测车速;如图8;观测点设在A 处;离娄新高速的距离(AC )为30m ;这时;一辆小轿车由西向东匀速行驶;测得此车从B 处行驶到C 处所用的时间为4s ;∠BAC =75°. (1)求B 、C 两点的距离;(2)请判断此车是否超过了娄新高速100km/h 的限制速度?(计算时距离精确到 1 m ;参考数据:sin 75°≈0.965 9;cos 75°≈0.258 8;tan 75°≈3.732;3≈1.732;100 km/h ≈27.8m/s)图8解:(1)在Rt △ABC 中;∠ACB =90°; ∠BAC =75°;AC =30 m ;∴BC =AC ·tan ∠BAC =30×tan 75°≈30×3.732≈112 m ; 6分 (2)∵此车速度112÷4=28m/s>27.8m/s ≈100 km/h ; ∴此车超过限制速度.10分26.如图9;一次函数y =kx +b 与反比例函数y =6x (x >0)的图象交于A (m ;6);B (3;n )两点.(1)求一次函数的解析式; (2)求△AOB 的面积.图9解:(1)分别把A (m ;6);B (3;n )代入y =6x (x >0)得;6m =6;3n =6;解得m =1;n =2;∴A 点坐标为(1;6);B 点坐标为(3;2).把点A (1;6);B (3;2)代入y =kx +b 得;⎩⎨⎧k +b =6;3k +b =2;解得⎩⎨⎧k =-2;b =8.∴一次函数的解析式为y =-2x +8; 5分(2)设一次函数y =kx +b 与y 轴交于点C ;与x 轴交于点D.当x =0时;y =-2x +8=8;则C 点坐标为(0;8).当y =0时;则有-2x +8=0;解得x =4;∴D 点坐标为(4;0);∴S △AOB =S △COD -S △COA -S △BOD =12×4×8-12×8×1-12×4×2=8.10分。

人教版初三下册《数学》期末考试卷及答案【可打印】

人教版初三下册《数学》期末考试卷及答案【可打印】

人教版初三下册《数学》期末考试卷及答案一、选择题(每题1分,共5分)1. 如果一个等边三角形的周长是15厘米,那么它的每条边长是()。

A. 3厘米B. 5厘米C. 10厘米D. 15厘米2. 下列哪一个数是有理数?()A. √3B. √9C. √1D. π3. 下列函数中,哪一个函数是增函数?()A. y = x^2B. y = x^3C. y = 2x + 1D. y = 1/x4. 已知一组数据的平均数是10,方差是4,那么这组数据中的数值()。

A. 都大于10B. 都小于10C. 大于10和小于10的都有D. 无法确定5. 下列哪一个图形不是正多边形?()A. 等边三角形B. 等腰梯形C. 矩形D. 正方形二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。

()2. 0的任何次幂都等于0。

()3. 两个负数相乘,结果是正数。

()4. 一元二次方程的解可以是两个相同的数。

()5. 任何一个数都有相反数。

()三、填空题(每题1分,共5分)1. 如果一个数的平方是36,那么这个数是______。

2. 任何数的零次幂都等于______。

3. 两个数的乘积为负数,那么这两个数______。

4. 一元二次方程ax^2 + bx + c = 0的判别式是______。

5. 如果一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的面积是______平方厘米。

四、简答题(每题2分,共10分)1. 请简要说明等差数列和等比数列的定义。

2. 请简要说明一元二次方程的求解方法。

3. 请简要说明概率的意义和计算方法。

4. 请简要说明相似三角形的性质。

5. 请简要说明圆的周长和面积的计算公式。

五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是2、5、8,求这个数列的第10项。

2. 解方程:2x^2 5x 3 = 0。

3. 已知一个长方体的长、宽、高分别是10厘米、6厘米、4厘米,求这个长方体的体积。

九年级数学下册期末考试卷及答案【全面】

九年级数学下册期末考试卷及答案【全面】

九年级数学下册期末考试卷及答案【全面】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-3.若式子2(m 1)-有意义,则实数m 的取值范围是( ) A .m 2>- B .m 2>-且m 1≠C .m 2≥-D .m 2≥-且m 1≠ 4.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值() A .0或2 B .-2或2 C .-2 D .25.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 6.正十边形的外角和为( )A .180°B .360°C .720°D .1440°7.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°8.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58°9.已知,a b 是非零实数,a b >,在同一平面直角坐标系中,二次函数21y ax bx =+与一次函数2y ax b =+的大致图象不可能是( )A .B .C .D .10.如图,抛物线2y ax bx c =++的对称轴是1x =.下列结论:①0abc >;②240b ac ->;③80a c +<;④520a b c ++>,正确的有( )A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1.计算14287-的结果是______________.2.分解因式:x3y﹣2x2y+xy=______.3.已知x,y满足方程组x2y5x2y3-=⎧+=-⎨⎩,则22x4y-的值为__________.4.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________度.5.如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△PAB =13S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为__________.6.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.三、解答题(本大题共6小题,共72分)1.解方程:3x x +﹣1x =12.已知关于x 的一元二次方程220x x k +-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个不相等实数根是a ,b ,求111a a b -++的值.3.如图,已知抛物线y=ax 2+bx+c (a ≠0)经过点A (3,0),B (﹣1,0),C (0,﹣3).(1)求该抛物线的解析式;(2)若以点A 为圆心的圆与直线BC 相切于点M ,求切点M 的坐标;(3)若点Q 在x 轴上,点P 在抛物线上,是否存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.4.已知AB 是O 的直径,弦CD 与AB 相交,38BAC ∠=︒.(Ⅰ)如图①,若D 为AB 的中点,求ABC ∠和ABD ∠的大小;(Ⅱ)如图②,过点D 作O 的切线,与AB 的延长线交于点P ,若//DP AC ,求OCD ∠的大小.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、D5、B6、B7、A8、B9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、02、xy(x﹣1)23、-154、22.5°5、6、42.三、解答题(本大题共6小题,共72分)1、分式方程的解为x=﹣34.2、(1)k>-1;(2)13、(1)y=x2﹣2x﹣3;(2)M(﹣35,﹣65);(3)存在以点B,C,Q,P为顶点的四边形是平行四边形,P的坐标为(3)或(13)或(2,﹣3).4、(1)52°,45°;(2)26°5、(1)34;(2)1256、甲、乙两个工厂每天分别能加工40件、60件新产品。

2024年人教版初三数学下册期末考试卷(附答案)

2024年人教版初三数学下册期末考试卷(附答案)

2024年人教版初三数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是3,则这个数是()。

A. 3B. 9C. 27D. 812. 下列各数中,不是有理数的是()。

A. 3/4B. √2C. 0.25D. 3/53. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是()。

A. 34厘米B. 32厘米C. 30厘米D. 28厘米4. 一个正方体的边长是5厘米,那么它的体积是()。

A. 25立方厘米B. 125立方厘米C. 50立方厘米D. 100立方厘米5. 下列函数中,是一次函数的是()。

A. y = x^2B. y = 3x + 2C. y = 1/xD. y = x^3二、判断题(每题1分,共5分)1. 一个数的平方根有两个,一个是正数,一个是负数。

()2. 两个相似的三角形,它们的面积比等于它们对应边的长度比。

()3. 一个等差数列的通项公式是an = a1 + (n1)d,其中an表示第n项,a1表示首项,d表示公差。

()4. 两个平行线上的任意一点,到这两条平行线的距离相等。

()5. 一个数的立方根和它的平方根是同一个数。

()三、填空题(每题1分,共5分)1. 若a > b,则a^2 > b^2。

()2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是34厘米。

()3. 一个正方体的边长是5厘米,那么它的体积是125立方厘米。

()4. 下列函数中,是一次函数的是y = 3x + 2。

()5. 一个数的立方根和它的平方根是同一个数。

()四、简答题(每题2分,共10分)1. 简述一次函数的定义。

2. 简述相似三角形的性质。

3. 简述等差数列的定义。

4. 简述平行线的性质。

5. 简述立方根和平方根的区别。

五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。

2023-2024学年全国初中九年级下数学人教版期末考卷(含答案解析)

2023-2024学年全国初中九年级下数学人教版期末考卷(含答案解析)

样题1:一、选择题(每题2分,共20分)1. 若a=3,b=4,则a²+b²的值为()A. 5B. 7C. 9D. 252. 下列哪个数是质数?A. 15B. 19C. 21D. 273. 若一个等腰三角形的底边长为10,腰长为x,则x的取值范围是()A. x>10B. x≥10C. x<10D. x≤10答案解析:1. 答案:D。

根据勾股定理,a²+b²=3²+4²=9+16=25。

2. 答案:B。

质数是指只能被1和它本身整除的数,19符合这个条件。

3. 答案:B。

等腰三角形的底边和腰长相等,所以x≥10。

样题2:二、填空题(每题2分,共20分)1. 若x²=16,则x的值为______。

2. 若a+b=10,ab=21,则a²+b²的值为______。

3. 在等腰三角形ABC中,若底边BC的长度为6,腰长AB=AC=8,则三角形ABC的周长为______。

答案解析:1. 答案:±4。

x²=16,所以x=±√16=±4。

2. 答案:149。

根据(a+b)²=a²+2ab+b²,可以得到a²+b²=(a+b)²2ab=10²2×21=10042=58。

3. 答案:22。

等腰三角形ABC的周长为AB+AC+BC=8+8+6=22。

样题3:三、解答题(每题10分,共30分)1. 解方程:2x5=3x+1。

2. 已知a²+b²=25,ab=10,求a+b的值。

3. 在直角三角形ABC中,∠C=90°,AC=3,BC=4,求AB的长度。

答案解析:1. 答案:x=6。

将方程2x5=3x+1移项得x=6。

2. 答案:5或5。

根据(a+b)²=a²+2ab+b²,可以得到(a+b)²=(a²+b²)+2ab=25+2×10=45,所以a+b=±√45=±5。

九年级数学下册期末考试卷及参考答案

九年级数学下册期末考试卷及参考答案

九年级数学下册期末考试卷及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .03.下列计算正确的是( )A .a 2+a 3=a 5B .3221-=C .(x 2)3=x 5D .m 5÷m 3=m 24.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0a b< 5.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .6.已知x 1,x 2是方程x 2﹣3x ﹣2=0的两根,则x 12+x 22的值为( )A .5B .10C .11D .137.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A .102B .112C .122D .928.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°9.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°10.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以2cm/s 的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线AC CB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算(31)(31)+-的结果等于___________.2.分解因式:2218x-=______.3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为_______.4.如图,ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=__________厘米.5.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=______.6.如图,菱形ABCD顶点A在例函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠DAB=30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解分式方程:271326+=++ xx x2.先化简,再求值:822224x xxx x+⎛⎫-+÷⎪--⎝⎭,其中12x=-.3.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF ∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.4.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1-S2的最大值.105阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.6.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本⨯每天的销售量)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、D5、B6、D7、B8、B9、B10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、22、2(3)(3)x x +-3、60°或120°4、35、6、三、解答题(本大题共6小题,共72分)1、16x = 2、3.3、(1)略;(2)略;(3)10.4、(1)抛物线解析式为213222y x x =-++;(2)点D 的坐标为(3,2)或(-5,-18);(3)当t=85时,有S 1-S 2有最大值,最大值为165. 5、(1)5,20,80;(2)图见解析;(3)35.6、()()21y 5x 800x 2750050x 100=-+-≤≤;(2)当x 80=时,y 4500 最大值;(3) 销售单价应该控制在82元至90元之间.。

2023-2024学年山东省烟台市牟平区初三下学期期末数学试卷及参考答案

2023-2024学年山东省烟台市牟平区初三下学期期末数学试卷及参考答案

2023-2024学年山东省烟台市牟平区初三下学期期末数学试卷一、选择题:(本题共12个小题,每小题3分,满分36分.)1.下列命题中,假命题的是( )A.分别有一个角是110︒的两个等腰三角形相似B.有一条边相等的两个矩形相似C.有一个角相等的两个菱形相似D.若a cb d=(0a b +≠,0c d +≠),则a cb a dc =++ 2.下列计算正确的是( )A.=3=C.==3.已知蓄电池的电压U 为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系U I R ⎛⎫=⎪⎝⎭.下列反映电流I 与电阻R 之间函数关系的图象大致是( ) A. B. C. D.4.下列四组线段中,不是成比例线段的是( )A.3a =,6b =,2c =,4d =B.1a =,b =c =,d =C.4a =,6b =,5c =,10d =D.2a =,b =c =,d =5.已知m ,n 是方程2340x x −−=的两根,则22(1)(1)m n −−的值是( )A.0B.6−C.7−D.66.下列选项中,是最简二次根式的是( )7.如图,已知矩形OABC 与矩形ODEF 是位似图形,P 是位似中心,若点B 的坐标为(2,4),点E 的坐标为(1,2)−,则点P 的坐标是( )A.(3,0)−B.(2,0)−C.(1,0)−D.(4,0)−8.如图,反比例函数(0)ky k x=>的图象与过点(1,0)−的直线AB 相交于A 、B 两点.已知点A 的坐标为(1,3),点C 为x 轴上任意一点.如果9ABC S =△,那么点C 的坐标可能是( )A.(3,0)−B.(5,0)C.(3,0)−或(50),D.(3,0)9.已知2230a a −−=,则2(23)(23)(21)a a a +−+−的值是( )A.4B.6C.3−D.5−10.一次函数y ax b =+与反比例函数aby x=(a ,b 为常数且均不等于0)在同一坐标系内的图象可能是( )A.B. C. D.11.关于x 的方程2(1)20m x −−=有两个实数根,则m 的取值范围为( )A.3m ≤且1m ≠B.537m ≤≤ C.537m ≤≤且1m ≠ D.57m ≥且1m ≠ 12.操场上有一根竖直的旗杆AB ,它的一部分影子(BC )落在水平地面上,另一部分影子(CD )落在对面的墙壁上,经测量,墙壁上的影高为1.2m ,地面的影长为2.8m ,同时测得一根高为2m 的竹竿OM 的影长是 1.4m ON =,请根据以上信息,则旗杆的高度是( )A.4.5mB.4.7mC.5.2mD.5.7m二、填空题(每题3分,共18分)13.若34y x =,则x y x+的值为______.14.m 的值为______.15.某种商品原来每件售价为100元,经过连续两次降价后,该种商品每件售价为81元,设平均每次降价的百分率为x ,试根据题意求x 的值______.16.如果实数,a b 满足3)180−−=,则2的值是______.17.如图,矩形ABCD 的边AB 平行于x 轴,反比例函数(0)ky x x=>的图象经过点B ,D ,对角线CA 的延长线经过原点O ,且2AC AO =,若矩形ABCD 的面积是12,则k 的值为______.18.如图,在正方形ABCD 中,点E 是CD 的中点,点F 是BC 上的一点,且3BF CF =,连接AE 、AF 、EF ,下列结论:①~ADE ECF △△;②DAE EAF ∠=∠;③2AE AD AF =⋅;④5AEF BCF S S =△△,其中正确结论是______.(填写序号)三、解答题(满分66分)19.(本题6分)计算或按要求解一元二次方程:(1(2)223(2)4x x −=−(因式分解法)20.(本题6分)已知|129|0a b −+=的值.21.(本题6分)如图,在平面直角坐标系中,OAB △的顶点分别为(0,0)O ,(2,1)A −−和(1,3)B −−,111O A B △与OAB △是以点P 为位似中心的位似图形,三个顶点1O ,1A ,1B 都在格点上.(1)在图中确定出位似中心P 的位置,并写出点P 及点B 的对应点1B 的坐标(2)以原点O 为位似中心,在位似中心的同侧画出与OAB △位似的22OA B △,使它与OAB △的相似比为2:1,并写出点B 的对应点2B 的坐标;(3)OAB △内部一点M 的坐标为(,)a b ,写出M 在22OA B △中的对应点2M 的坐标. 22.(本题8分)已知若ABC △的一边长为5,另外两边长为关于x 的方程2(2)280x m x m −−+−=的两个实数根,求m 的取值范围。

2024年最新人教版初三数学(下册)期末考卷及答案(各版本)

2024年最新人教版初三数学(下册)期末考卷及答案(各版本)

2024年最新人教版初三数学(下册)期末考卷及答案一、选择题(每题1分,共5分)1. 下列函数中,既是奇函数又是偶函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = x^2 + x2. 在直角坐标系中,点P(a, b)关于原点对称的点是()A. P(a, b)B. P(a, b)C. P(a, b)D. P(b, a)3. 下列等式中,正确的是()A. sin(π/2) = cos(π/2)B. sin(π/6) = cos(π/3)C. sin(π/4) = cos(π/4)D. sin(π/3) = cos(π/6)4. 一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长为()A. 32cmB. 42cmC. 46cmD. 52cm5. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √1二、判断题(每题1分,共5分)6. 任何两个平行线之间的距离都相等。

()7. 两条对角线互相垂直的四边形一定是矩形。

()8. 任何两个实数的和都是实数。

()9. 一元二次方程的解一定是实数。

()10. 相似三角形的面积比等于边长比的平方。

()三、填空题(每题1分,共5分)11. 若a:b=3:4,则5a+3b : 5b+3a = ___ : ___ 。

12. 在直角三角形中,若一个锐角的度数为30°,则其邻角的度数为___°。

13. 函数y=2x+3的图象是一条___线,且过___象限。

14. 一个等边三角形的周长为18cm,则其边长为___cm。

15. 若|x|=3,则x的值为___或___。

四、简答题(每题2分,共10分)16. 简述平行线的性质。

17. 请写出勾股定理的内容。

18. 如何判断两个三角形是否相似?19. 一元二次方程的解法有哪些?20. 简述概率的基本性质。

五、应用题(每题2分,共10分)21. 某商店举行打折活动,一件商品原价为200元,打八折后售价为多少?22. 一辆汽车以60km/h的速度行驶,行驶了3小时后,行驶的距离是多少?23. 一个长方体的长、宽、高分别为10cm、6cm、4cm,求其体积。

人教版九年级下册《数学》期末考试卷及答案【可打印】

人教版九年级下册《数学》期末考试卷及答案【可打印】

一、选择题(每题1分,共5分)1. 已知a=3,b=4,则a²+b²=()。

A. 5B. 7C. 9D. 252. 下列函数中,y随x增大而增大的是()。

A. y=2x+1B. y=3x2C. y=1/2x+3D. y=4x+53. 已知a²+b²=10,ab=6,则a+b=()。

A. 2B. 4C. 6D. 84. 下列四个数中,最大的数是()。

A. 3/5B. 0.4C. 0.5D. 0.65. 若函数y=2x+1与y=3x2的交点坐标为(x,y),则x的值为()。

A. 1B. 2C. 3D. 4二、判断题(每题1分,共5分)1. 对于任意实数a,都有a²≥0。

()2. 两个数的平方和一定大于等于这两个数的和的平方。

()3. 函数y=2x+1与y=3x2的图像一定相交。

()4. 两个函数的图像可能没有交点。

()5. 对于任意实数a,都有a²=|a|。

()三、填空题(每题1分,共5分)1. 若a²+b²=10,ab=6,则a+b=______。

2. 已知函数y=2x+1,当x=2时,y的值为______。

3. 两个数的平方和一定大于等于这两个数的和的平方,这个说法是______。

4. 函数y=2x+1与y=3x2的交点坐标为(x,y),则x的值为______。

5. 对于任意实数a,都有a²=|a|,这个说法是______。

四、简答题(每题2分,共10分)1. 简述二次函数的定义及图像特征。

2. 简述一次函数的定义及图像特征。

3. 简述正比例函数的定义及图像特征。

4. 简述反比例函数的定义及图像特征。

5. 简述函数的交点及其求解方法。

五、应用题(每题2分,共10分)1. 已知a²+b²=10,ab=6,求a+b的值。

2. 已知函数y=2x+1,当x=2时,求y的值。

3. 已知函数y=2x+1与y=3x2的交点坐标为(x,y),求x的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三下册数学期末试卷与答案一、选择:(每小题 3 分,共24 分)1. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B .C .D.2.如图是某个几何体的三视图,该几何体是()A. 正方体B. 圆柱C. 圆锥D. 球3.某药品经过两次降价,每瓶零售价由168元降为128 元.已知两次降价的百分率相同,每次降价的百分率为X,根据题意列方程得()A . 168(1+x)2=128B . 168(1 - x)2=128C . 168(1 - 2x)=128D . 168(1 - x2)=128 4.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A .B . 2 nC . 3 nD . 12 n5 .若ab> 0,则一次函数y=ax+b与反比例函数y=在同一坐标系数中的大致图象是()A. B. C . D.6.如图,在Rt△ ABC中,/ C=90°, BC=3 AC=4,那么cosA的值等于()7 .已知二次函数y=ax2+bx+c (a^ 0)的图象如图所示,则下列结论中正确的是()A. a>0 B . 3 是方程ax2+bx+c=0 的一个根C. a+b+c=0 D .当x v 1时,y随x的增大而减小8 .如图,CD是O O的直径,弦AB丄CD于E,连接BC BD下列结论中不一定正确的是()A . AE=BE B. = C . OE=DE D. / DBC=90二、填空:(每小题 3 分,共18分)9.方程的根为 .10 .抛物线的对称轴是.11.已知.12 .如图,在厶ABC中,D是AB的中点,DE // BC.则.13.直径为10cm的O O中,弦AB=5cm则弦AB所对的圆周角是.14 .为了求1+2+22+23+…+2100 的值,可令S=1+2+22+23+・・ +2100,则2S=2+22+23+24+…+2101, 因此2S- S=2101 - 1,所以S=2101 - 1,即卩1+2+22+23+…+2100=2101 - 1,仿照以上推理计算1+3+32+33+…+32014 的值是三、解答:(共58 分)15. (5分)计算: .16. (5 分)化简求值:? (),其中x= .17. (8分)已知:如图,AB是O O的直径,AB= 6,延长AB到点C,使BC= AB, D是O O上一点,DC=.求证:(1)△ CDB^A CAD (2)CD 是O O 的切线.18. (4分)在平面直角坐标系中,△ABC的三个顶点坐标分别为 A (- 2, 1), B (- 4, 5), C(- 5,2).(1)画出△ ABC关于y轴对称的厶A1B1C1(2)画出△ ABC关于原点0成中心对称的△ A2B2C219. (6分)如图,△ ABC是一块锐角三角形余料,边BC=120mm高AD=80mm要把它加工成长方形零件PQMN使长方形PQMN勺边QM在BC上,其余两个项点P,N分别在AB,AC上•求这个长方形零件PQMN面积S的值。

20. (6分)如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向•请问船继续航行多少海里与钓鱼岛A的距离最近?21. (6分)有三张正面分别标有数字:- 1, 1 , 2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x, y)落在双曲线上y=上的概率.22. (9 分)我市为改善农村生活条件,满足居民清洁能源的需求,计划为万宝村400 户居民修建A B两种型号的沼气池共24个.政府出资36万元,其余资金从各户筹集. 两种沼气池的型号、修建费用、可供使用户数、占地面积如下表:沼气池修建费用(万元/个)可供使用户数(户/个)占地面积(平方米/个)A 型3 20 10B 型2 15 8政府土地部门只批给该村沼气池用地212平方米,设修建A型沼气池x个,修建两种沼气池共需费用y 万元.(1 )求y与x之间函数关系式.(2)试问有哪几种满足上述要求的修建方案.(3)要想完成这项工程,每户居民平均至少应筹集多少钱?23. (9分)如图:直线y=kx+3与x轴、y轴分别交于A、B两点,tan / OAB=,点C (x, y)是直线y=kx+3上与A、B不重合的动点.( 1 )求直线y=kx+3 的解析式;(2)当点C运动到什么位置时△ AOC的面积是6;(3)过点C的另一直线CD与y轴相交于D点,是否存在点C使厶BCD与△ AOB全等?若存在,请求出点C的坐标;若不存在,请说明理由.数学试卷答案一、解答题:(每题3分,共24 分)1. A2. B3. B4. C5. A6. D7. B8. C二、填空题:(每题3 分, 共18 分)9. 0 或2 10 . x=1 11 . 2 12 . 1:4 13 . 14 .解:设M=1+3+32+33+・・ +32014 ①,①式两边都乘以3,得3M=3+32+33+- +32015 ②.②-①得2M=32015- 1,两边都除以2,得M= ,三、解答题:(共58 分)15.原式=16. 原式==x+1当x= 时,原式= x+1=17.17. (略)18. 解:⑴设长方形的边长PQ=x毫米•/ PN// BC•••△ APN^A ABC•/人。

是厶ABC的高• AE± PN(?)• (AE/AD)=(PN/BC)• (80-x/80)=(PN/120)• PN=120-1.5xS[PQMN]=x(120-1.5x)=-1.5((x-40)A2)+2400当x=40,即一边长是40mm另一边长是PN=120-1.5x=?时,面积,值=2400 平方毫米.20.解:过点A作ADL BC于D,根据题意得/ ABC=30,/ ACD=60 ,•••/ BAC玄ACD-Z ABC=30 ,• CA=CB.•/ CB=50X 2=100 (海里),• CA=10 0(海里),在直角△ ADC中,/ ACD=60 ,• CD= AC= X 100=50 (海里).故船继续航行50海里与钓鱼岛A的距离最近19. 解:( 1 )根据题意画出树状图如下:;(2 )当x= - 1 时,y= = - 2,当x=1 时,y= =2 ,当x=2 时,y= =1 ,一共有9种等可能的情况,点(x, y)落在双曲线上y=上的有2种情况, 所以,P= .20. 解:( 1 ) y=3x+2( 24- x) =x+48;2)根据题意得解得:8 w x w 10,••• x取非负整数,••• x等于8或9或10,答:有三种满足上述要求的方案:修建A型沼气池8个,B型沼气池16个,修建A沼气池型9个,B型沼气池15个,修建A型沼气池10个,B型沼气池14个;(3)y=x+48 ,•/ k=1 > 0,• y 随x 的减小而减小,•当x=8 时,y 最小=8+48=56(万元),56 - 36=20 (万元),200000- 400=500 (元),•每户至少筹集500 元才能完成这项工程中费用最少的方案.点评:此题考查了一次函数的解析式的性质的运用, 列一元一次不等式组解实际问题的运用, 一元一次不等式组的解法的运用,解答时建立不等式组求出修建方案是关键.备注说明,非正文,实际使用可删除如下部分。

本内容仅给予阅读编辑指点:1、本文件由微软OFFICE办公软件编辑而成,同时支持WPS。

2、文件可重新编辑整理。

3、建议结合本公司和个人的实际情况进行修正编辑。

4、因编辑原因,部分文件文字有些微错误的,请自行修正,并不影响本文阅读。

Note: it is not the text. The following parts can be deleted for actual use. This content only gives reading and editing in structi ons:1. This docume nt is edited by Microsoft office office software and supports WPS.2. The files can be edited and reorganized.3. It is suggested to revise and edit accord ing to the actual situati on of the compa ny and in dividuals.4. Due to edit ing reas ons, some minor errors in the text of some docume nts should be corrected by yourself, which doesnot affect the readi ng of this article.。

相关文档
最新文档