2018年大连中考试题
2018年大连市中考物理试题及答案解析卷
(2)设计出探究“浮力的大小与液体的密度是否有关”的记录实验数据的表格,表中要有必要的信息。 表中涉及到的物理量只用字母表示即可。
(3)在探究“浮力的大小与物体的体积是否有关”时,小明选用三个体积不同的铝块、烧杯、水和弹簧 测力计,用如图的方式进行实验。先用弹簧测力计测出一个铝块的重力,然后把这个铝块浸没在水中,读 出弹簧测力计的示数。再用其他两个铝块重复上述实验。分析数据得出了结论。
3
21.图 6 是探究“通电螺线管外部的磁场方向”的实验装置。实验中,用小磁针的 ___________极指向来判断通电螺线管外部某点的磁场方向;断开开关,将电源 的正负极对调,再闭合开关,观察小磁针的指向是否改变,此操作探究的问题 是“通电螺线管外部的磁场方向与___________方向是否有关”。
4.发电机的原理是
A.电磁感应
B.通电导体在磁场中受力
C.电流的磁效应
D.电流的热效应
5.四冲程汽油机工作时,主要将机械能转化为内能的冲程是
A.吸气冲程
B.压缩冲程
C.做功冲程
D.排气冲程
6.在抗震救灾中,要空投救灾物资。物资在加速下落的过程中
A.动能不变,重力势能变小
B.动能不变,重力势能不变
C.动能变大,重力势能变小
22.漂浮在海面的潜水艇受到的浮力为 F1,该艇下潜到海面下受到的浮力为 F2,则 F1___________F2;若该艇从海中潜行进入长江后,受到的浮力为 F3,已知海水的密度大于江水的密度, 则 F3___________F2。(均选填“>”“=”或“<”)
2018-2019年大连市中考数学真题(附答案)
2018年辽宁省大连市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(分)(2018•大连)﹣3的绝对值是()A.3 B.﹣3 C.D.2.(分)(2018•大连)在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(分)(2018•大连)计算(x3)2的结果是()A.x5B.2x3C.x9D.x64.(分)(2018•大连)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°5.(分)(2018•大连)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.三棱柱D.长方体6.(分)(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.37.(分)(2018•大连)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A.B.C.D.8.(分)(2018•大连)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=32x+b的图象与反比例函数y=的9.(分)(2018•大连)如图,一次函数y=k1图象相交于A(2,3),B(6,1)两点,当kx+b<时,x的取值范围为()1A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>6 10.(分)(2018•大连)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α二、填空题(本题共6小题,每小题3分,共18分)11.(分)(2018•大连)因式分解:x2﹣x= .12.(分)(2018•大连)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是.13.(分)(2018•大连)一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为cm.14.(分)(2018•大连)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为.15.(分)(2018•大连)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是,则旗杆AB的高度约为m.(精确到.参考数据:sin53°≈,cos53°≈,tan53°≈)16.(分)(2018•大连)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(分)(2018•大连)计算:(+2)2﹣+2﹣218.(分)(2018•大连)解不等式组:19.(分)(2018•大连)如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.20.(分)(2018•大连)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有人,最喜欢篮球的学生数占被调查总人数的百分比为%;(2)被调查学生的总数为人,其中,最喜欢篮球的有人,最喜欢足球的学生数占被调查总人数的百分比为%;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(分)(2018•大连)甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.22.(分)(2018•大连)【观察】1×49=49,2×48=96,3×47=141,...,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621, (47)3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是.【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为,并用你学过的知识加以证明.23.(分)(2018•大连)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E 在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(分)(2018•大连)如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m ≤b时,函数的解析式不同).(1)填空:△ABC的面积为;(2)求直线AB的解析式;(3)求S关于m的解析式,并写出m的取值范围.25.(分)(2018•大连)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠ACB=90°,点D在AB上,且∠BAC=2∠DCB,求证:AC=AD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法1:如图2,作AE平分∠CAB,与CD相交于点E.方法2:如图3,作∠DCF=∠DCB,与AB相交于点F.(1)根据阅读材料,任选一种方法,证明AC=AD.用学过的知识或参考小明的方法,解决下面的问题:(2)如图4,△ABC中,点D在AB上,点E在BC上,且∠BDE=2∠ABC,点F在BD上,且∠AFE=∠BAC,延长DC、FE,相交于点G,且∠DGF=∠BDE.①在图中找出与∠DEF相等的角,并加以证明;②若AB=kDF,猜想线段DE与DB的数量关系,并证明你的猜想.26.(分)(2018•大连)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m ﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m 的值.2018年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(分)(2018•大连)﹣3的绝对值是()A.3 B.﹣3 C.D.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(分)(2018•大连)在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用第二象限内点的符号特点进而得出答案.【解答】解:点(﹣3,2)所在的象限在第二象限.故选:B.【点评】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.3.(分)(2018•大连)计算(x3)2的结果是()A.x5B.2x3C.x9D.x6【分析】根据幂的乘方运算性质,运算后直接选取答案.【解答】解:(x3)2=x6,故选:D.【点评】本题主要考查幂的乘方,底数不变,指数相乘的性质,熟练掌握性质是解题的关键.4.(分)(2018•大连)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°【分析】先利用等腰直角三角形的性质得出∠1=45°,再利用平行线的性质即可得出结论;【解答】解:如图,∵△ABC是等腰直角三角形,∴∠1=45°,∵l∥l',∴∠α=∠1=45°,故选:A.【点评】此题主要考查了等腰直角三角形的性质,平行线的性质,求出∠1=45°是解本题的关键.5.(分)(2018•大连)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.三棱柱D.长方体【分析】由常见几何体的三视图即可判断.【解答】解:由三视图知这个几何体是三棱柱,故选:C.【点评】本题主要考查由三视图判断几何体,解题的关键是熟练掌握常见几何体的三视图.6.(分)(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.3【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;【解答】解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB===4,∴BD=2OB=8,故选:A.【点评】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.7.(分)(2018•大连)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A.B.C.D.【分析】列表得出所有等可能的情况数,找出两次摸出小球标号为偶数的情况数,即可求出概率.【解答】解:列表得:所有等可能的情况数有9种,它们出现的可能性相同,其中两次摸出的小球标号的和是偶数的有5种结果,所以两次摸出的小球标号的和是偶数的概率为,故选:D.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.8.(分)(2018•大连)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=32【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即可得出关于x的一元二次方程,此题得解.【解答】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据题意得:(10﹣2x)(6﹣2x)=32.故选:B.【点评】本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.(分)(2018•大连)如图,一次函数y=kx+b的图象与反比例函数y=的1x+b<时,x的取值范围为()图象相交于A(2,3),B(6,1)两点,当k1A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>6【分析】根据图象直线在反比例函数图象的下方部分的对应的自变量的值即为所求.x+b<时,x的取值范围为0<x<2或x 【解答】解:由图象可知,当k1>6.故选:D.【点评】此题考查了反比例函数与一次函数的交点问题以及待定系数法求解析式.此题难度适中,注意掌握数形结合思想与方程思想的应用.10.(分)(2018•大连)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α【分析】根据旋转的性质和四边形的内角和是360°,可以求得∠CAD的度数,本题得以解决.【解答】解:由题意可得,∠CBD=α,∠ACB=∠EDB,∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°,∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°﹣α,故选:C.【点评】本题考查旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本题共6小题,每小题3分,共18分)11.(分)(2018•大连)因式分解:x2﹣x= x(x﹣1).【分析】提取公因式x即可.【解答】解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).【点评】本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.12.(分)(2018•大连)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是189 .【分析】根据中位数的意义,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:这5名学生跳绳次数从小到大排列为163、184、189、195、201,所以该组数据的中位数是189,故答案为:189.【点评】本题考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.13.(分)(2018•大连)一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为9 cm.【分析】根据弧长公式L=求解即可.【解答】解:∵L=,∴R==9.故答案为:9.【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L=.14.(分)(2018•大连)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.15.(分)(2018•大连)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是,则旗杆AB的高度约为m.(精确到.参考数据:sin53°≈,cos53°≈,tan53°≈)【分析】根据三角函数和直角三角形的性质解答即可.【解答】解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为53°,∴∠ADE=53°,∵BC=DE=6m,∴AE=DE•tan53°≈6×≈,∴AB=AE+BE=AE+CD=+=≈,故答案为:【点评】此题考查了考查仰角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.16.(分)(2018•大连)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为6﹣2.【分析】如图作A′H⊥BC于H.由△CDF∽△A′HC,可得=,延长构建方程即可解决问题;【解答】解:如图作A′H⊥BC于H.∵∠ABC=90°,∠ABE=∠EBA′=30°,∴∠A′BH=30°,∴A′H=BA′=1,BH=A′H=,∴CH=3﹣,∵△CDF∽△A′HC,∴=,∴=,∴DF=6﹣2,故答案为6﹣2.【点评】本题考查翻折变换、矩形的性质、勾股定理、直角三角形30度角性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(分)(2018•大连)计算:(+2)2﹣+2﹣2【分析】根据完全平方公式和零指数幂的意义计算.【解答】解:原式=3+4+4﹣4+=.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(分)(2018•大连)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤﹣1,解不等式②得:x≤3,∴不等式组的解集为x≤﹣1.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.19.(分)(2018•大连)如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.【分析】只要证明△BEO≌△DFO即可;【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OD=OB,∵AE=CF,∴OE=OF,在△BEO和△DFO中,,∴△BEO≌△DFO,∴BE=DF.【点评】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(分)(2018•大连)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有 4 人,最喜欢篮球的学生数占被调查总人数的百分比为32 %;(2)被调查学生的总数为50 人,其中,最喜欢篮球的有16 人,最喜欢足球的学生数占被调查总人数的百分比为24 %;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.【分析】(1)依据统计图表中的数据即可得到结果;(2)依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比;(3)依据最喜欢排球的学生数占被调查总人数的百分比,即可估计该校最喜欢排球的学生数.【解答】解:(1)由题可得,被调查的学生中,最喜欢乒乓球的有4人,最喜欢篮球的学生数占被调查总人数的百分比为32%,故答案为:4;32;(2)被调查学生的总数为10÷20%=50人,最喜欢篮球的有50×32%=16人,最喜欢足球的学生数占被调查总人数的百分比=×100%=24%;故答案为:50;16;24;(3)根据调查结果,估计该校最喜欢排球的学生数为×450=54人.【点评】本题考查统计表、扇形统计图、样本估计总体等知识,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.解题的关键是灵活运用所学知识解决问题.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(分)(2018•大连)甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.【分析】设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据题意得:=,解得:x=60,经检验,x=60是原分式方程的解.答:甲平均每分钟打60个字.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(分)(2018•大连)【观察】1×49=49,2×48=96,3×47=141,...,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621, (47)3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为625 ;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50 .【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为900 ,并用你学过的知识加以证明.【分析】【发现】(1)观察题目给出的等式即可发现两数相乘,积的最大值为625;(2)观察题目给出的等式即可发现a与b的数量关系是a+b=50;【类比】由于m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,利用二次函数的性质即可得出m=30时,mn的最大值为900.【解答】解:【发现】(1)上述内容中,两数相乘,积的最大值为625.故答案为625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.故答案为a+b=50;【类比】由题意,可得m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,∴m=30时,mn的最大值为900.故答案为900.【点评】本题考查了因式分解的应用,配方法,二次函数的性质,是基础知识,需熟练掌握.23.(分)(2018•大连)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E 在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判断出△CFD∽△BCD,即可得出结论.【解答】解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵DE∥AC,∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF=AC,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD,∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,∴,∴,∴CD=4,在Rt△BCD中,BD==4同理:△CFD∽△BCD,∴,∴,∴CF=,∴AC=2AF=.【点评】此题主要考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,勾股定理,求出BC=8是解本题的关键.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(分)(2018•大连)如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m ≤b时,函数的解析式不同).(1)填空:△ABC的面积为;(2)求直线AB的解析式;(3)求S关于m的解析式,并写出m的取值范围.【分析】(1)由图2结合平移即可得出结论;(2)判断出△AOB≌△CEA,得出AE=OB,CE=OA,再由图2知,点C的纵坐标是点B纵坐标的2倍,即可利用三角形ABC的面积求出OB,OA,即可得出结论;(3)分两种情况,利用三角形的面积公式或三角形的面积差即可得出结论.【解答】解:(1)结合△ABC的移动和图2知,点B移动到点A处,就是图2中,m=a时,S=S △A'B'D=,点C移动到x轴上时,即:m=b时,S=S△A'B'C '=S△ABC=,故答案为,(2)如图2,过点C作CE⊥x轴于E,∴∠AEC=∠BOA=90°,∵∠BAC=90°,∴∠OAB+∠CAE=90°,∵∠OAB+∠OBA=90°,∴∠OBA=∠CAE,由旋转知,AB=AC,∴△AOB≌△CEA,∴AE=OB,CE=OA,由图2知,点C的纵坐标是点B纵坐标的2倍,∴OA=2OB,∴AB2=5OB2,由(1)知,S==AB2=×5OB2,△ABC∴OB=1,∴OA=2,∴A(2,0),B(0,1),∴直线AB的解析式为y=﹣x+1;(3)由(2)知,AB2=5,∴AB=,①当0≤m≤时,如图3,∵∠AOB=∠AA'F,∠OAB=∠A'AF,∴△AOB∽△AA'F,∴,由运动知,AA'=m,∴,∴A'F=m,∴S=AA'×A'F=m2,②当<m≤2时,如图4同①的方法得,A'F=m,∴C'F=﹣m,过点C作CE⊥x轴于E,过点B作BM⊥CE于E,∴BM=3,CM=1,易知,△ACE∽△FC'H,∴,∴∴C'H=,在Rt△FHC'中,FH=C'H=由平移知,∠C'GF=∠CBM,∵∠BMC=∠GHC',∴△BMC∽△GHC',∴,∴∴GH=,∴GF=GH﹣FH=∴S=S△A'B'C '﹣S△C'FG=﹣××=﹣(2﹣m)2,即:S=.【点评】此题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,三角形的面积公式,平移的性质,相似三角形的判定和性质,构造相似三角形是解本题的关键.25.(分)(2018•大连)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠ACB=90°,点D在AB上,且∠BAC=2∠DCB,求证:AC=AD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法1:如图2,作AE平分∠CAB,与CD相交于点E.方法2:如图3,作∠DCF=∠DCB,与AB相交于点F.(1)根据阅读材料,任选一种方法,证明AC=AD.用学过的知识或参考小明的方法,解决下面的问题:(2)如图4,△ABC中,点D在AB上,点E在BC上,且∠BDE=2∠ABC,点F在BD上,且∠AFE=∠BAC,延长DC、FE,相交于点G,且∠DGF=∠BDE.①在图中找出与∠DEF相等的角,并加以证明;②若AB=kDF,猜想线段DE与DB的数量关系,并证明你的猜想.【分析】(1)方法一:如图2中,作AE平分∠CAB,与CD相交于点E.想办法证明△AEC≌△AED即可;方法二:如图3中,作∠DCF=∠DCB,与AB相交于点F.想办法证明∠ACD=∠ADC即可;(2)①如图4中,结论:∠DEF=∠FDG.理由三角形内角和定理证明即可;②结论:BD=k•DE.如图4中,如图延长AC到K,使得∠CBK=∠ABC.首先证明△DFE∽△BAK,推出==,推出BK=k•DE,再证明△BCD≌△BCK,可得BD=BK;【解答】解:(1)方法一:如图2中,作AE平分∠CAB,与CD相交于点E.∵∠CAE=∠DAE,∠CAB=2∠DCB,∴∠CAE=∠CDB,∵∠CDB+∠ACD=90°,∴∠CAE+∠ACD=90°,∴∠AEC=90°,∵AE=AE,∠AEC=∠AED=90°,∴△AEC≌△AED,∴AC=AD.方法二:如图3中,作∠DCF=∠DCB,与AB相交于点F.∵∠DCF=∠DCB,∠A=2∠DCB,∴∠A=∠BCF,∵∠BCF+∠ACF=90°,∴∠A+∠ACF=90°,∴∠AFC=90°,∵∠ACF+∠BCF=90°,∠BCF+∠B=90°,∴∠ACF=∠B,∵∠ADC=∠DCB+∠B=∠DCF+∠ACF=∠ACD,∴AC=AD.(2)①如图4中,结论:∠DEF=∠FDG.理由:在△DEF中,∵∠DEF+∠EFD+∠EDF=180°,在△DFG中,∵∠GFD+∠G+∠FDG=180°,∵∠EFD=∠GFD,∠G=∠EDF,∴∠DEF=∠FDG.②结论:BD=k•DE.理由:如图4中,如图延长AC到K,使得∠CBK=∠ABC.∵∠ABK=2∠ABC,∠EDF=2∠ABC,∴∠EDF=∠ABK,∵∠DFE=∠A,∴△DFE∽△BAK,∴==,∴BK=k•DE,∴∠AKB=∠DEF=∠FDG,∵BC=BC,∠CBD=∠CBK,∴△BCD≌△BCK,∴BD=BK,∴BD=k•DE【点评】本题考查三角形综合题、三角形内角和定理、三角形外角的性质、全等三角形的判定和性质.相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.26.(分)(2018•大连)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m ﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(m,2m﹣5)(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.【分析】(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;(2)过点C作直线AB的垂线,交线段AB的延长线于点D,由AB∥x轴且AB=4,可得出点B的坐标为(m+2,4a+2m﹣5),设BD=t,则点C的坐标为(m+2+t,4a+2m﹣5﹣t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出S△ABC 的值;(3)由(2)的结论结合S=2可求出a值,分三种情况考虑:①当m>2m△ABC﹣2,即m<2时,x=2m﹣2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;③当m<2m﹣5,即m>5时,x=2m﹣5时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值.综上即可得出结论.【解答】解:(1)∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,∴抛物线的顶点坐标为(m,2m﹣5).故答案为:(m,2m﹣5).(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示.∵AB∥x轴,且AB=4,∴点B的坐标为(m+2,4a+2m﹣5).∵∠ABC=135°,∴设BD=t,则CD=t,∴点C的坐标为(m+2+t,4a+2m﹣5﹣t).∵点C在抛物线y=a(x﹣m)2+2m﹣5上,∴4a+2m﹣5﹣t=a(2+t)2+2m﹣5,整理,得:at2+(4a+1)t=0,解得:t1=0(舍去),t2=﹣,∴S△ABC=AB•CD=﹣.(3)∵△ABC的面积为2,∴﹣=2,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣5.分三种情况考虑:①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣5=2,整理,得:m2﹣14m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,解得:m=;③当m<2m﹣5,即m>5时,有﹣(2m﹣5﹣m)2+2m﹣5=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m4=10+2.综上所述:m的值为或10+2.【点评】本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m<2、2≤m≤5及m>5三种情况考虑.2019年辽宁省大连市中考数学真题(附答案)副标题题号一二三总分得分一、选择题(本大题共9小题,共分)1.-2的绝对值是()A. 2B. 12C. −12D. −22.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()3.A. B. C. D.4. 2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg ,将数58000用科学记数法表示为( ) A. 58×103 B. 5.8×103 C. 0.58×105 D. 5.8x1045. 在平面直角坐标系中,将点P (3,1)向下平移2个单位长度,得到的点P ′的坐标为( ) A. (3,−1) B. (3,3) C. (1,1) D. (5,1) 6. 不等式5x +1≥3x -1的解集在数轴上表示正确的是( )A. B. C.D.7. 下列所述图形中,既是轴对称图形又是中心对称图形的是( )A. 等腰三角形B. 等边三角形C. 菱形D. 平行四边形 8. 计算(-2a )3的结果是( )A. −8x 3B. −6x 3C. 6x 3D. 8x 3 9. 不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( )A. 23B. 12C. 13D. 1410. 如图,将矩形纸片ABCD 折叠,使点C 与点A 重合,折痕为EF ,若AB =4,BC =8.则D ′F 的长为( )A. 2√5B. 4C. 3D. 2二、填空题(本大题共7小题,共分)11. 如图,抛物线y =-14x 2+12x +2与x 轴相交于A 、B 两点,与y 轴相交于点C ,点D 在抛物线上,且CD ∥AB .AD 与y 轴相交于点E ,过点E 的直线PQ 平行于x 轴,与拋物线相交于P ,Q 两点,则线段PQ 的长为______.。
2018年辽宁省大连市中考语文真题及参考答案
2018年辽宁省大连市中考语文真题及答案(WORD版本真题试卷+名师解析答案,建议下载保存)语文注意事项1.请在答题卡上作答,在试卷上作答无效。
2.本试卷共四大题,23小题,满分150分。
考试时间150分钟。
一、积累与运用(27分)1.请用正楷将下面的汉字抄写在田字格里,要求书写规范、端正、整洁。
(2分)用奋斗诠释青春2.下列词语中加点字的字音和字形都正确的一组是()(2分)A.诀.别(jué)祷.告(dǎo)潜心惯.注(guàn)人迹罕.至(hǎn)B.取缔.(dì)顷.刻(qīng)寻.章摘句(xúin)红装.素裹(zhuāng)C.酒肄.(sì)馈.赠(kuì)一气呵.成(hē)开卷有益.(yì)D.阻遏.(è)冗.杂(rǒng)润.如油膏(rùn)粗制乱.造(làn)3.默写填空。
(12分)(1)假如生活欺骗了你,不要悲伤,不要心急!:_______________相信吧,______________。
(普希金《假如生活欺骗了你》)(2)_______________,_______________。
仍怜故乡水,万里送行舟。
(李白《渡判门送别》)(3)莫道不消魂,_______________,_______________。
(李清照《醉花阴》)(4)吾日三省吾身:为人谋而不忠乎?_______________?(《く论语>十二章》)(5)清代诗人龚自珍在《己亥杂诗》中以落花为喻,表明自己心志的诗句是:_______________,_______________。
(6)2017年,一批重大科技成果相继涌现:“慧眼”卫星成功发射运行,国产大型客机首飞,首艘国产航母顺利下水……真可谓“_______________,_______________”让我们感受到了盎然的春意。
(用岑参《白雪歌送武判官归京》中的诗句填空)4.按要求完成文后各题。
2018年辽宁省大连市中考数学试卷(含答案)
辽宁省大连市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1. (3.00分)(2018?大连)-3的绝对值是()A. 3B.—3C.D.3 32. (3.00分)(2018?大连)在平面直角坐标系中,点(-3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3. (3.00分)(2018?大连)计算(x3)2的结果是()A . x5B . 2x3 C. x9 D . x64 . (3.00分)(2018?大连)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中/ a的度数为()5 (3.00 分)(2018?大连)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.三棱柱D .长方体6 . (3.00分)(2018?大连)如图,菱形ABCD中,对角线AC, BD相交于点O,A. 8B. 7C. 4D. 37. (3.00分)(2018?大连)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A.】B.彳C - D.39 2 98. (3.00分)(2018?大连)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A. 10X6 - 4X6x=32B. (10-2x) (6- 2x) =32C. ( 10 - x) ( 6 - x) =32D. 10X 6-4x2=32%9. (3.00分)(2018?大连)如图,一次函数y=kx+b的图象与反比例函数y= 的x图象相交于A (2, 3),B(6, 1)两点,当bx+b v邑时,x的取值范围为( )xA. x v2B. 2v x v6C. x>6D. 0v x v 2 或x>610. (3.00分)(2018?大连)如图,将△ ABC绕点B逆时针旋转a得到△ EBD 若点A恰好在ED的延长线上,则/ CAD的度数为()A. 90°—aB.aC. 180°— aD. 2 a二、填空题(本题共6小题,每小题3分,共18分)11. __________________________________________ (3.00 分)(2018?大连)因式分解:x2- x= ___________________________ .12. (3.00分)(2018?大连)五名学生一分钟跳绳的次数分别为189, 195, 163,184, 201,该组数据的中位数是 ______ .13. __________________ (3.00分)(2018?大连)一个扇形的圆心角为120°,它所对的弧长为6n cm 则此扇形的半径为cm.14. (3.00分)(2018?大连)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为__________ .15. (3.00分)(2018?大连)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为_________ m.(精确到0.1m •参考数据:sin53^0.80, cos53~0.60, tan53 1.33)16. (3.00 分)(2018?大连)如图,矩形ABCD中,AB=2, BC=3 点E 为AD 上一点,且/ ABE=30,将厶ABE沿BE翻折,得到△ A BE连接CA并延长,与AD相交于点F,贝U DF的长为______ .F E D三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17. (9.00分)(2018?大连)计算:(乙+2)2-「+2 —218. (9.00分)(2018?大连)解不等式组:r-L/工lT<319. (9.00分)(2018?大连)如图,?ABCD的对角线AC, BD相交于点O,点E、F在AC上,且AF=CE求证:BE=DF20. (12.00分)(2018?大连)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动. 以下是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有_____ 人,最喜欢篮球的学生数占被调查总人数的百分比为 _______ %;(2)被调查学生的总数为____ 人,其中,最喜欢篮球的有________ 人,最喜欢足球的学生数占被调查总人数的百分比为 _______ %;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21. (9.00分)(2018?大连)甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同•已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.22. (9.00 分)(2018?大连)【观察】1X 49=49, 2X48=96, 3X47=141,…,23 X 27=621, 24X 26=624, 25X 25=625, 26X 24=624, 27X 23=621,…,47X3=141, 28 X 2=96, 49 X 1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为______ ;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b 的数量关系是___________ .【类比】观察下列两数的积:1X 59, 2X 58, 3X 57, 4X 56,…,m X n ,…,56 X 4, 57X 3, 58X 2, 59X 1.猜想mn的最大值为 _______ ,并用你学过的知识加以证明.23. (10.00分)(2018?大连)如图,四边形ABCD内接于。
2018年辽宁省大连市中考数学试卷(答案及详解)
2018年辽宁省大连市中考数学试卷(答案及详解)2018年省市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(3.00分)(2018?)﹣3的绝对值是()A.3 B.﹣3 C.D.2.(3.00分)(2018?)在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3.00分)(2018?)计算(x3)2的结果是()A.x5B.2x3C.x9D.x64.(3.00分)(2018?)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°5.(3.00分)(2018?)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.三棱柱D.长方体6.(3.00分)(2018?)如图,菱形ABCD中,对角线AC,BD 相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.37.(3.00分)(2018?)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A.B.C.D.8.(3.00分)(2018?)如图,有一矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小形的边长.设剪去的小形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=329.(3.00分)(2018?)如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A (2,3),B(6,1)两点,当k1x+b<时,x的取值围为()A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>610.(3.00分)(2018?)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED 的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.°﹣αD.2α二、填空题(本题共6小题,每小题3分,共18分)11.(3.00分)(2018?)因式分解:x2﹣x= .12.(3.00分)(2018?)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是.13.(3.00分)(2018?)一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为cm.14.(3.00分)(2018?)《子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为.15.(3.00分)(2018?)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)16.(3.00分)(2018?)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9.00分)(2018?)计算:(+2)2﹣+2﹣218.(9.00分)(2018?)解不等式组:19.(9.00分)(2018?)如图,?ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.20.(12.00分)(2018?)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.类别A B C D E F类型足球羽毛球乒乓球篮球排球其他人数10462根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有人,最喜欢篮球的学生数占被调查总人数的百分比为%;(2)被调查学生的总数为人,其中,最喜欢篮球的有人,最喜欢足球的学生数占被调查总人数的百分比为%;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(9.00分)(2018?)甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.22.(9.00分)(2018?)【观察】1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述容中,两数相乘,积的最大值为;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是.【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为,并用你学过的知识加以证明.23.(10.00分)(2018?)如图,四边形ABCD接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(11.00分)(2018?)如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m≤b时,函数的解析式不同).(1)填空:△ABC的面积为;(2)求直线AB的解析式;(3)求S关于m的解析式,并写出m的取值围.25.(12.00分)(2018?)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠ACB=90°,点D在AB上,且∠BAC=2∠DCB,求证:AC=AD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法1:如图2,作AE平分∠CAB,与CD相交于点E.方法2:如图3,作∠DCF=∠DCB,与AB相交于点F.(1)根据阅读材料,任选一种方法,证明AC=AD.用学过的知识或参考小明的方法,解决下面的问题:(2)如图4,△ABC中,点D在AB上,点E在BC上,且∠BDE=2∠ABC,点F在BD上,且∠AFE=∠BAC,延长DC、FE,相交于点G,且∠DGF=∠BDE.①在图中找出与∠DEF相等的角,并加以证明;②若AB=kDF,猜想线段DE与DB的数量关系,并证明你的猜想.26.(12.00分)(2018?)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.2018年省市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(3.00分)(2018?)﹣3的绝对值是()A.3 B.﹣3 C.D.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3.00分)(2018?)在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用第二象限点的符号特点进而得出答案.【解答】解:点(﹣3,2)所在的象限在第二象限.故选:B.【点评】此题主要考查了点的坐标,正确记忆各象限点的坐标符号是解题关键.3.(3.00分)(2018?)计算(x3)2的结果是()A.x5B.2x3C.x9D.x6【分析】根据幂的乘方运算性质,运算后直接选取答案.【解答】解:(x3)2=x6,故选:D.【点评】本题主要考查幂的乘方,底数不变,指数相乘的性质,熟练掌握性质是解题的关键.4.(3.00分)(2018?)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°【分析】先利用等腰直角三角形的性质得出∠1=45°,再利用平行线的性质即可得出结论;【解答】解:如图,∵△ABC是等腰直角三角形,∴∠1=45°,∵l∥l',∴∠α=∠1=45°,故选:A.【点评】此题主要考查了等腰直角三角形的性质,平行线的性质,求出∠1=45°是解本题的关键.5.(3.00分)(2018?)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.三棱柱D.长方体【分析】由常见几何体的三视图即可判断.【解答】解:由三视图知这个几何体是三棱柱,故选:C.【点评】本题主要考查由三视图判断几何体,解题的关键是熟练掌握常见几何体的三视图.6.(3.00分)(2018?)如图,菱形ABCD中,对角线AC,BD 相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.3【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB 即可;【解答】解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB===4,∴BD=2OB=8,故选:A.【点评】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.7.(3.00分)(2018?)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A.B.C.D.【分析】列表得出所有等可能的情况数,找出两次摸出小球标号为偶数的情况数,即可求出概率.【解答】解:列表得:123123423453456所有等可能的情况数有9种,它们出现的可能性相同,其中两次摸出的小球标号的和是偶数的有5种结果,所以两次摸出的小球标号的和是偶数的概率为,故选:D.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.8.(3.00分)(2018?)如图,有一矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小形的边长.设剪去的小形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=32【分析】设剪去的小形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即可得出关于x的一元二次方程,此题得解.【解答】解:设剪去的小形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据题意得:(10﹣2x)(6﹣2x)=32.故选:B.【点评】本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.(3.00分)(2018?)如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A (2,3),B(6,1)两点,当k1x+b<时,x的取值围为()A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>6【分析】根据图象直线在反比例函数图象的下方部分的对应的自变量的值即为所求.【解答】解:由图象可知,当k1x+b<时,x的取值围为0<x<2或x>6.故选:D.【点评】此题考查了反比例函数与一次函数的交点问题以及待定系数法求解析式.此题难度适中,注意掌握数形结合思想与方程思想的应用.10.(3.00分)(2018?)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED 的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.°﹣αD.2α【分析】根据旋转的性质和四边形的角和是360°,可以求得∠CAD的度数,本题得以解决.【解答】解:由题意可得,∠CBD=α,∠ACB=∠EDB,∵∠EDB+∠ADB=°,∴∠ADB+∠ACB=°,∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=°﹣α,故选:C.【点评】本题考查旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本题共6小题,每小题3分,共18分)11.(3.00分)(2018?)因式分解:x2﹣x= x(x﹣1).【分析】提取公因式x即可.【解答】解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).【点评】本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.12.(3.00分)(2018?)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是189 .【分析】根据中位数的意义,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:这5名学生跳绳次数从小到大排列为163、184、189、195、201,所以该组数据的中位数是189,故答案为:189.【点评】本题考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.13.(3.00分)(2018?)一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为9 cm.【分析】根据弧长公式L=求解即可.【解答】解:∵L=,∴R==9.故答案为:9.【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L=.14.(3.00分)(2018?)《子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.15.(3.00分)(2018?)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为9.5 m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】根据三角函数和直角三角形的性质解答即可.【解答】解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为53°,∴∠ADE=53°,∵BC=DE=6m,∴AE=DE?tan53°≈6×1.33≈7.98m,∴AB=AE+BE=AE+CD=7.98+1.5=9.48m≈9.5m,故答案为:9.5【点评】此题考查了考查仰角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.16.(3.00分)(2018?)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为6﹣2.【分析】如图作A′H⊥BC于H.由△CDF∽△A′HC,可得=,延长构建方程即可解决问题;【解答】解:如图作A′H⊥BC于H.∵∠ABC=90°,∠ABE=∠EBA′=30°,∴∠A′BH=30°,∴A′H=BA′=1,BH=A′H=,∴CH=3﹣,∵△CDF∽△A′HC,∴=,∴=,∴DF=6﹣2,故答案为6﹣2.【点评】本题考查翻折变换、矩形的性质、勾股定理、直角三角形30度角性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9.00分)(2018?)计算:(+2)2﹣+2﹣2【分析】根据完全平方公式和零指数幂的意义计算.【解答】解:原式=3+4+4﹣4+=.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(9.00分)(2018?)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤﹣1,解不等式②得:x≤3,∴不等式组的解集为x≤﹣1.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.19.(9.00分)(2018?)如图,?ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.。
2018年辽宁省大连市中考数学试卷含答案解析
一、选择题(本题共 10 小题,每小题 3 分,共 30 分,在每小题给出的四个选项中,只有一个选项正确) 1.﹣3 的绝对值是( )
A.3
B.﹣3
C.
D.
解:|﹣3|=﹣(﹣3)=3.
故选 A.
2.在平面直角坐标系中,点(﹣3,2)所在的象限是( )
A.第一象限
连接 CA′并延长,与 AD 相交于点 F,则 DF 的长为
.
解:如图作 A′H⊥BC 于 H.
∵∠ABC=90°,∠ABE=∠EBA′=30°,∴∠A′BH=30°,∴A′H= BA′=1,BH= A′H= ,∴CH=3﹣ .
∵△CDF∽△A′HC,∴ =
,∴
= ,∴DF=6﹣2 .
故答案为:6﹣2 . 三、解答题(本题共 4 小题,其中 17、18、19 题各 9 分,20 题 12 分,共 39 分) 17.计算:( +2)2﹣ +2﹣2 解:原式=3+4 +4﹣4 +
解:设甲平均每分钟打 x 个字,则乙平均每分钟打(x+20)个字,根据题意得:
=
,解得:x=60,
经检验,x=60 是原分式方程的解.
答:甲平均每分钟打 60 个字.
22.【观察】1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,
mn 的最大值为 900.
故答案为:900.
23.如图,四边形 ABCD 内接于⊙O,∠BAD=90°,点 E 在 BC 的延长线上,且∠DEC=∠BAC.
(1)求证:DE 是⊙O 的切线;
(2)若 AC∥DE,当 AB=8,CE=2 时,求 AC 的长.
_辽宁省大连市2018年中考语文试题(解析版)
第1页,总8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………辽宁省大连市2018年中考语文试题考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 六 七 八 九 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共1题))A .诀别(jué) 祷告(dǎo ) 潜心惯注(guàn ) 人迹罕至(hǎn )B .取缔(dì) 顷刻(qīng ) 寻章摘句(xúin ) 红装素裹(zhuāng )C .酒肆(sì) 馈赠(kuì) 一气呵成(hē) 开卷有益(yì)D .阻遏(è) 冗杂(rǒng ) 润如油膏(rùn ) 粗制乱造(làn )第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、字词书写(共1题)1. 请用正楷将下面的汉字抄写在田字格里,要求书写规范、端正、整洁。
用奋斗诠释青春评卷人 得分二、句子默写(共1题)写填空。
(1)假如生活欺骗了你,不要悲伤,不要心急!_______相信吧,______。
(普希金《假如生活欺骗了你》) (2)_______________,___________。
仍怜故乡水,万里送行舟。
(李白《渡判门送别》) (3)莫道不消魂,_______________,_______________。
(李清照《醉花阴》) (4)吾日三省吾身:为人谋而不忠乎?_______________?(《く论语>十二章》)答案第2页,总8页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(5)清代诗人龚自珍在《己亥杂诗》中以落花为喻,表明自己心志的诗句是:_________,_________。
2018年辽宁省大连市中考语文试题含答案
辽宁省大连市2018年初中毕业升学考试语文注意事项1.请在答题卡上作答,在试卷上作答无效。
2.本试卷共四大题,23小题,满分150分。
考试时间150分钟。
一、积累与运用(27分)1.请用正楷将下面的汉字抄写在田字格里,要求书写规范、端正、整洁。
(2分)用奋斗诠释青春2.下列词语中加点字的字音和字形都正确的一组是()(2分)A.诀.别(jué)祷.告(dǎo)潜心惯.注(guàn)人迹罕.至(hǎn)B.取缔.(dì)顷.刻(qīng)寻.章摘句(xúin)红装.素裹(zhuāng)C.酒肄.(sì)馈.赠(kuì)一气呵.成(hē)开卷有益.(yì)D.阻遏.(è)冗.杂(rǒng)润.如油膏(rùn)粗制乱.造(làn)3.默写填空。
(12分)(1)假如生活欺骗了你,不要悲伤,不要心急!:_______________相信吧,______________。
(普希金《假如生活欺骗了你》)(2)_______________,_______________。
仍怜故乡水,万里送行舟。
(李白《渡判门送别》)(3)莫道不消魂,_______________,_______________。
(李清照《醉花阴》)(4)吾日三省吾身:为人谋而不忠乎?_______________?(《く论语>十二章》)(5)清代诗人龚自珍在《己亥杂诗》中以落花为喻,表明自己心志的诗句是:_______________,_______________。
(6)2017年,一批重大科技成果相继涌现:“慧眼”卫星成功发射运行,国产大型客机首飞,首艘国产航母顺利下水……真可谓“_______________,_______________”让我们感受到了盎然的春意。
(用岑参《白雪歌送武判官归京》中的诗句填空)4.按要求完成文后各题。
(5分)①“白日不到处,青春恰自来。
辽宁省大连市2018年中考语文试题(答案解析)
(材料二)
(摘自网络)
(材料三)
“櫻桃好吃树难栽”,大櫻桃在我国的适宜栽培区域有限。经过多年的探索和实践,大连市对果园的基出设施、品种选择、水肥技术集成应用等生产全过程实行标准化管理,逐步形成了标准化优质高效栽培技术体系。曾经,大连果农也面临过“捧着金饭碗要饭吃”的困境。近两年,大连市把大连大櫻桃从以前的“养在深人不知”,打造成今天的“走出国门天下闻”的知名品牌。載至2017年年底,大连市已拥有了“金州红”“千岛録”“丹珠格格”等大桃产品注册商标50余个。此外,大连市还积极改变“酒香不怕巷子深”的传统销售思维,一边加大在媒体上的宣传力度,一边新建5个区域性大櫻桃交易中心,形成产销衔接的产地市场体系,实现了由“产得好”向“卖得好”的转变。
(1)假如生活欺骗了你,不要悲伤,不要心急!_______相信吧,______。(普希金《假如生活欺骗了你》)
(2)_______________,___________。仍怜故乡水,万里送行舟。(李白《渡判门送别》)
(3)莫道不消魂,_______________,_______________。(李清照《醉花阴》)
六、文言文阅读
阅读下文,完成后面小题
一箪食,一豆羹,得之则生,弗得则死。呼尔而与之,行道之人弗受;蹴尔而与之,乞人不屑也。万钟则不辩礼义而受之,万钟于我何加焉!为宫室之美,妻妾之奉,所识穷乏者得我与?乡为身死而不受,今为宫室之美为之;乡为身死而不受,今为妻妾之奉为之;乡为身死而不受,今为所识穷乏者得我而为之;是亦不可以已乎?此之谓失其本心。
(1)第②句中有语病,你的修改建议是_______________
(2)请在第③句横线上填写一对表示因果关系的关联词语。
(3)第⑤句画线部分表意过于绝对,你的修改建议是_______________。
2018年辽宁省大连市中考数学试卷(含答案)
辽宁省大连市2018年中考数学试卷一、选择题<共8小题,每小题3分,共24分)A.3B.﹣3C.D.﹣考点:相反数.分析:根据相反数的意义,3的相反数即是在3的前面加负号.解答:解:根据相反数的概念及意义可知:3的相反数是﹣3.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.几何体的主视图是< )b5E2RGbCAPA.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有2个正方形,第二层有3个正方形.故选A.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2018年大连市管辖海域总面积为29000平方公里,29000用科学记数法表示为< )A.2.9×103B.2.9×104C.29×103D.0.29×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将29000用科学记数法表示为:2.9×104.故选B.点此题考查科学记数法的表示方法.科学记数法的表示形式为评:a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.<3分)<2018•大连)在平面直角坐标系中,将点<2,3)向上平移1个单位,所得到的点的坐标是< )DXDiTa9E3dA .<1,3)B.<2,2)C.<2,4)D.<3,3)考点:坐标与图形变化-平移.分析:根据向上平移,横坐标不变,纵坐标加解答.解答:解:∵点<2,3)向上平移1个单位,∴所得到的点的坐标是<2,4).故选C.点评:本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.5.<3分)<2018•大连)下列计算正确的是< )A .a+a2=a3B.<3a)2=6a2C.a6÷a2=a3D.a2•a3=a5考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项法则,积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加对各选项分析判断利用排除法求解.解答:解:A、a与a2不是同类项,不能合并,故本选项错误;B、<3a)2=9a2,故本选项错误;C、a6÷a2=a6﹣2=a4,故本选项错误;D、a2•a3=a2+3=a5,故本选项正确.故选D.点评:本题考查了同底数幂的除法,同底数幂的乘法,积的乘方的性质,熟记性质并理清指数的变化是解题的关键.6.<3分)<2018•大连)不等式组的解集是< )A .x>﹣2B.x<﹣2C.x>3D.x<3考点:解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:,解①得:x>3,解②得:x>﹣2,则不等式组的解集是:x>3.故选C.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.7.<3分)<2018•大连)甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个A .B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取出的两个球都是红的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有6种等可能的结果,取出的两个球都是红的有1种情况,∴取出的两个球都是红的概率为:.故选A.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.A .12πcm2B.15πcm2C.20πcm2D.30πcm2考点:圆锥的计算.分析:首先根据圆锥的高和底面半径求得圆锥的母线长,然后计算侧面积即可.解答:解:∵圆锥的高是4cm,底面半径是3cm,∴根据勾股定理得:圆锥的母线长为=5cm,则底面周长=6π,侧面面积=×6π×5=15πcm2.故选B.点评:考查了圆锥的计算,首先利用勾股定理求得圆锥的母线长是解决此题的关键.9.<3分)<2018•大连)分解因式:x2﹣4= <x+2)<x﹣2).考点:因式分解-运用公式法.专题:计算题.分析:直接利用平方差公式进行因式分解即可.解答:解:x2﹣4=<x+2)<x﹣2).点评:本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.考点:二次函数的最值.分析:根据顶点式得到它的顶点坐标是<1,3),再根据其a>0,即抛物线的开口向上,则它的最小值是3.解答:解:根据非负数的性质,<x﹣1)2≥0,于是当x=1时,函数y=<x﹣1)2+3的最小值y等于3.故答案是:3.点评:本题考查了二次函数的最值的求法.求二次函数的最大<小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.考点:因式分解-运用公式法;代数式求值.分析:直接利用完全平方公式分解因式进而将已知代入求出即可.解答:解:∵a2+2a+1=<a+1)2,∴当a=9时,原式=<9+1)2=100.故答案为:100.点评:此题主要考查了因式分解法以及代数式求值,正确分解因式是解题关键.BC=4cm,则DE=2cm.jLBHrnAILg考点:三角形中位线定理.分析:根据三角形的中位线得出DE=BC,代入求出即可.解解:∵点D、E分别为△ABC的边AB、AC的中点,答:∴DE是△ABC的中位线,∴DE=BC.又BC=4cm,∴DE=2cm.故答案是:2.点评:本题主要考查对三角形的中位线定理的理解和掌握,能熟练地运用性质进行计算是解此题的关键.13.<3分)<2018•大连)如图,菱形ABCD中,AC、BD相交于点O,若∠BCO=55°,则∠ADO=35°.xHAQX74J0X考点:菱形的性质.分析:根据菱形性质得出AC⊥BD,AD∥B∥,求出∠CBO,根据平行线的性质求出∠ADO即可.解答:解:∵四边形ABCD是菱形,∴AC⊥BD,∴∠BOC=90°,∵∠BCO=55°,∴∠CBO=90°﹣55°=35°,∵四边形ABCD是菱形,∴AD∥BC,∴∠ADO=∠CBO=35°,故答案为:35°.点评:本题考查了菱形的性质,平行线的性质的应用,注意:菱形的对角线互相垂直,菱形的对边平行.14.<3分)<2018•大连)如图,从一般船的点A处观测海岸上高为41m的灯塔BC<观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则观测点A到灯塔BC的距离约为59m<精确到1m).LDAYtRyKfE<参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)考点:解直角三角形的应用-仰角俯角问题.分析:根据灯塔顶部B的仰角为35°,BC=41m,可得tan∠BAC=,代入数据即可求出观测点A到灯塔BC的距离AC的长度.解答:解:在Rt△ABC中,∵∠BAC=35°,BC=41m,∴tan∠BAC=,∴AC==≈59<m).故答案为:59.点评:本题考查了解直角三角形的应用,解答本题的关键是利用仰角构造直角三角形,利用三角函数求解.15.<3分)<2018•大连)如表是某校女子排球队队员的年龄分布:年龄13141516频数1254则该校女子排球队队员的平均年龄为15岁.考点:加权平均数.分析:根据加权平均数的计算公式列出算式,再进行计算即可.解答:解:根据题意得:<13+14×2+15×5+16×4)÷12=15<岁),答:该校女子排球队队员的平均年龄为15岁;故答案为:15.点评:此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键.16.<3分)<2018•大连)点A<x1,y1)、B<x2,y2)分别在双曲线y=﹣的两支考点:反比例函数图象上点的坐标特征.分析:先把点A<x1,y1)、B<x2,y2)代入双曲线y=﹣,用y1、y2表示出x1,x2,再根据y1+y2>0即可得出结论.解答:解:∵A<x1,y1)、B<x2,y2)分别在双曲线y=﹣的两支上,∴y1y2<0,y1=﹣,y2=﹣,∴x1=﹣,x2=﹣,∴x1+x2=﹣﹣=﹣,∵y1+y2>0,y1y2<0,∴﹣>0,即x1+x2>0.故答案为:>0.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解读式是解答此题的关键.考点:二次根式的混合运算;负整数指数幂.分析:分别进行二次根式的乘法运算,二次根式的化简,负整数指数幂的运算,然后合并.解答:解:原式=﹣3+2+3=3.点评:本题考查了二次根式的混合运算,解答本题的关键是掌握各知识点的运算法则.18.<9分)<2018•大连)解方程:=+1.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:6=x+2x+2,移项合并得:3x=4,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.<9分)<2018•大连)如图:点A、B、C、D在一条直线上,AB=CD,AE∥BF,CE∥DF.求证:AE=BF.dvzfvkwMI1考点:全等三角形的判定与性质.专题:证明题.分析:根据两直线平行,同位角相等可得∠A=∠FBD,∠D=∠ACE,再求出AC=BD,然后利用“角边角”证明△ACE和△BDF全等,根据全等三角形对应边相等证明即可.解答:证明:∵AE∥BF,∴∠A=∠FBD,∵CE∥DF,∴∠D=∠ACE,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△ACE和△BDF中,,∴△ACE≌△BDF<ASA),∴AE=BF.点评:本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形的判定方法并确定出全等的条件是解题的关键.20.<12分)<2018•大连)某地为了解气温变化情况,对某月中午12时的气温<单位:℃)进行了统计.如表是根据有关数据制作的统计图表的一部分.rqyn14ZNXI分组气温x天数A 4≤x<8 aB 8≤x<12 6C 12≤x<169D 16≤x<208E 20≤x<244根据以上信息解答下列问题:<1)这个月中午12时的气温在8℃至12℃<不含12℃)的天数为6天,占这个月总天数的百分比为20%,这个月共有30天;EmxvxOtOco<2)统计表中的a=3,这个月中行12时的气温在12≤x<16范围内的天数最多;<3)求这个月中午12时的气温不低于16℃的天数占该月总天数的百分比.考点:频数<率)分布表;扇形统计图.分析:<1)根据统计表即可直接求得气温在8℃至12℃<不含12℃)的天数,根据扇形统计图直接求得占这个月总天数的百分比为,据此即可求得总天数;<2)a等于总天数减去其它各组中对应的天数;<3)利用百分比的定义即可求解.解答:解:<1)这个月中午12时的气温在8℃至12℃<不含12℃)的天数为6天,占这个月总天数的百分比为20%,这个月共有6÷20%=30<天);<2)a=30﹣6﹣9﹣8﹣4=3<天),这个月中行12时的气温在12≤x<16范围内的天数最多;<3)气温不低于16℃的天数占该月总天数的百分比是:×100%=40%.点评:本题难度中等,考查统计图表的识别;解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.21.<9分)<2018•大连)某工厂一种产品2018年的产量是100万件,计划2018年产量达到121万件.假设2018年到2018年这种产品产量的年增长率相同.SixE2yXPq5<1)求2018年到2018年这种产品产量的年增长率;考点:一元二次方程的应用.专题:增长率问题.分析:<1)根据提高后的产量=提高前的产量<1+增长率),设年平均增长率为x,则第一年的常量是100<1+x),第二年的产量是100<1+x)2,即可列方程求得增长率,然后再求第4年该工厂的年产量.<2)2018年的产量是100<1+x).解答:解:<1)2018年到2018年这种产品产量的年增长率x,则100<1+x)2=121,解得 x1=0.1=10%,x2=﹣2.1<舍去),答:2018年到2018年这种产品产量的年增长率10%.<2)2018年这种产品的产量为:100<1+0.1)=110<万件).答:2018年这种产品的产量应达到110万件.点评:考查了一元二次方程的应用,本题运用增长率<下降率)的模型解题.读懂题意,找到等量关系准确的列出方程是解题的关键.相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距出发地280M.小明登上山顶立即按原路匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地.小明、爸爸在锻炼过程中离出发地的路程y1<M)、y2<M)与小明出发的时间x<分)的函数关系如图.6ewMyirQFL<1)图中a=8,b=280;<2)求小明的爸爸下山所用的时间.考点:一次函数的应用.分析:<1)根据图象可判断出小明到达山顶的时间,爸爸距离山脚下的路程.<2)由图象可以得出爸爸上山的速度和小明下山的速度,再求出小明从下山到与爸爸相遇用的时间,再求出爸爸上山的路程,小与爸爸相遇后,和爸爸一起以原下山速度返回出发地.利用爸爸行的路程除以小明的速度就是所求的结果.解答:解:<1)由图象可以看出图中a=8,b=280,故答案为:8,280.<2)由图象可以得出爸爸上山的速度是:280÷8=35M/分,小明下山的速度是:400÷<24﹣8)=25M/分,∴小明从下山到与爸爸相遇用的时间是:<400﹣280)÷<35+25)=2分,∴2分爸爸行的路程:35×2=70M,∵小与爸爸相遇后,和爸爸一起以原下山速度返回出发地.∴小明的爸爸下山所用的时间:<280+70)÷25=14分.点评:本题考查函数的图象的知识,有一定的难度,解答此类题目的关键计算出小明下山的速度及爸爸上山的路程.23.<10分)<2018•大连)如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,BD∥AC.<1)图中∠OCD=90°,理由是圆的切线垂直于经过切点的半径;<2)⊙O的半径为3,AC=4,求CD的长.考点:切线的性质.分析:<1)根据切线的性质定理,即可解答;<2)首先证明△ABC∽△CDB,利用相似三角形的对应边的比相等即可求解.解答:解:<1)∵CD与⊙O相切,∴OC⊥CD,<圆的切线垂直于经过切点的半径)∴∠OCD=90°;故答案是:90,圆的切线垂直于经过切点的半径;<2)连接BC.∵BD∥AC,∴∠CBD=∠OCD=90°,∴在直角△ABC中,BC===2,∠A+∠ABC=90°,∵OC=OB,∴∠BCO=∠ABC,∴∠A+∠BCO=90°,又∵∠OCD=90°,即∠BCO+∠BCD=90°,∴∠BCD=∠A,又∵∠CBD=∠OCD,∴△ABC∽△CDB,∴=,∴=,解得:CD=3.点评:本题考查了切线的性质定理以及相似三角形的判定与性质,证明两个三角形相似是本题的关键.24.<11分)<2018•大连)如图,矩形纸片ABCD中,AB=6,BC=8.折叠纸片使点B落在AD上,落点为B′.点B′从点A开始沿AD移动,折痕所在直线l的位置也随之改变,当直线l经过点A时,点B′停止移动,连接BB′.设直线l与AB 相交于点E,与CD所在直线相交于点F,点B′的移动距离为x,点F与点C的距离为y.kavU42VRUs<1)求证:∠BEF=∠AB′B;<2)求y与x的函数关系式,并直接写出x的取值范围.。
2018年辽宁大连中考数学试卷及答案解析版
大连市2018年初中毕业升学考试数 学注意事项:1.请在答题卡上作答,在试卷上作答无效.2.本试卷共五大题,26小题,满分150分.考试时间120分钟.一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确) 1.(2018辽宁大连,1,3分)-2的相反数是 A .-2B .-21C .21 D .2【答案】 D . 2.(2018辽宁大连,2,3分)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是【答案】 A . 3.(2018辽宁大连,3,3分)计算(x 2)3的结果是 A .x B .3 x 2 C .x 5 D .x 6 【答案】D . 4.(2018辽宁大连,4,3分)一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为 A .31 B .52 C .21 D .53 【答案】B . 5.(2018辽宁大连,5,3分)如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于A .35°B .70°C .110°D .145°ABCD正面【答案】C . 6.(2018辽宁大连,6,3分)若关于x 的方程x 2-4x +m =0没有实数根,则实数m 的取值范围是A .m <-4B .m >-4C .m <4D .m >4 【答案】D . 7.(2018辽宁大连,7,3分)在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金这8名同学捐款的平均金额为 A .3.5元 B .6元 C .6.5元 D .7元 【答案】C . 8.(2018辽宁大连,8,3分)P 是∠AOB 内一点,分别作点P 关于直线OA 、OB 的对称点P 1、P 2,连接OP 1、OP 2,则下列结论正确的是 A .OP 1⊥OP 2 B .OP 1=OP 2 C .OP 1⊥OP 2且OP 1=OP 2 D .OP 1≠OP 2 【答案】B .二、填空题(本题共8小题,每小题3分,共24分) 9.(2018辽宁大连,9,3分)分解因式:x 2+x =_________. 【答案】x (x +1). 10.(2018辽宁大连,10,3分)在平面直角坐标系中,点(2,-4)在第________象限. 【答案】 四. 11.(2018辽宁大连,11,3分)将16 000 000用科学记数法表示为_______________. 【答案】 1.6×107. 12.(2018辽宁大连,12,3分)某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示O ABCD第5题图【答案】0.9.13.(2018辽宁大连,13,3分)化简:x +1-122++x xx =___________.【答案】11+x . 14.(2018辽宁大连,14,3分)用一个圆心角为90°,半径为32 cm 的扇形作为一个圆锥的侧面(接缝处不重叠),则这个圆锥的底面圆的半径为_______cm . 【答案】8. 15.(2018辽宁大连,15,3分)如图,为了测量河的宽度AB ,测量人员在高21m 的建筑物CD 的顶端D 处测得河岸B 处的俯角为45°,测得河对岸A 处的俯角为30°(A 、B 、C 在同一条直线上),则河的宽度AB 约为________m (精确到0.1m ).(参考数据:2≈ 1.41,3≈1.73)【答案】15.3.16.(2018辽宁大连,16,3分)如图,抛物线y =x 2+bx +29与y 轴相交于点A ,与过点A 平行于x 轴的直线相交于点B (点B 在第一象限).抛物线的顶点C 在直线OB 上,对称轴与x 轴相交于点D .平移抛物线,使其经过点A 、D ,则平移后的抛物线的解析式为_________.DCBA45°30°第15题图【答案】y =x 2-29x +29.三、解答题(本题共4小题,第17、18、19题各9分,第20题12分,共39分)17.(2018辽宁大连,17,9分)计算:()()123131511--++⎪⎭⎫⎝⎛-.解:()()123131511--++⎪⎭⎫⎝⎛-=5+(1-3)-23=5-2-23=3-23.18. (2018辽宁大连,18,9分)解不等式组:⎩⎨⎧-<++>-)1(48112x x x x解:解不等式①得x >2;解不等式②得x >4.所以不等式组的解集为x >4.19. (2018辽宁大连,19,9分)如图,ABCD 中,点E 、F 分别在AD 、BC 上,且AE =CF .求证:BE =DF .证明:∵四边形ABCD 中是平行四边形 ∴AB =CD . ∠A =∠C .又∵AE =CF .第16题图FB A E第19题图∴△ABE ≌△CDF ∴BE =DF .20.(2018辽宁大连,20,12分)以下是根据《2012年大连市环境状况公报》中有关海水浴场环境质量和市区空气质量级别的数据制作的统计图表的一部分(2012年其366天) .大连市2012年海水浴场环境质量监测结果统计表 监测时段:2012年7月至9月根据以上信息,解答下列问题:(1)2012年7月至9月被监测的8个海水浴场环境质量最好的是_____(填浴场名称),海水浴场环境质量为优的数据的众数为______%,海水浴场环境质量为良的数据的中位数为____%; (2)2012年大连市区空气质量达到优的天数为_____天,占全年(366天)的百分比约为_____(精确到0.1%);(3)求2012年大连市区空气质量为良的天数(按四舍五入,精确到个位).【解】(1)浴场5;30;70;(2)129;35.2;(3)1-35.2%-3.8%=61%,366×61%≈223(天).答:50 优良污染大连市2012年市区空气质量级别统计图污染的天数 级别2012年大连市区空气质量为良的天数为223天.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分) 21.(2018辽宁大连,21,9分)某超市购进A 、B 两种糖果,A 种糖果用了480元,B 种糖果用了1260元,A 、B 两种糖果的重量比是1:3,A 种糖果每千克的进价比B 种糖果每千克的进价多2元.A 、B 两种糖果各购进多少千克?解:设A 种糖果购进x 千克,则B 种糖果购进3x 千克,根据题意列方程,得xx 312602480=- 解得x =30经检验,x =30是原方程的解,且符合题意. 3x =90答:A 种糖果购进30千克,B 种糖果购进90千克.22.(2018辽宁大连,22,9分)如图,在平面直角坐标系xOy 中,一次函数y =ax +b 的图象与反比例函数y =xk的图象相交于点A (m ,1)、B (-1,n ),与x 轴相交于点C (2,0),且AC =22OC . (1)求该反比例函数和一次函数的解析式; (2)直接写出不等式ax +b ≥xk的解集.(1)解:过点A 作AD ⊥x 轴,垂足为D ,则AD =1. 在Rt △ACD 中,CD =112221222222=-⎪⎪⎭⎫⎝⎛⨯=-⎪⎪⎭⎫⎝⎛=-OC AD AC . ∴点A 的坐标为(3,1). ∴1=3k,k =3.第22题图∴反比例函数的解析式为y =x3. 由题意得⎩⎨⎧-=+-=+313b a b a 解得⎩⎨⎧-==21b a∴一次函数的解析式为y =x -2 (2)不等式ax +b ≥xk的解集为-1≤x <0或x ≥3.23.(2018辽宁大连,23,10分)如图,AB 是⊙O 的直径,CD 与⊙O 相切于点C ,DA ⊥AB ,DO 及DO 的延长线与⊙O 分别相交于点E 、F ,EB 与CF 相交于点G . (1)求证:DA =DC ;(2) ⊙O 的半径为3,DC =4,求CG 的长.(1)证明: AB 是⊙O 的直径,DA ⊥AB ∴DA 是⊙O 的切线. ∵DC 是⊙O 的切线, ∴DA =DC .(2)解:连接AC 、OC ,AC 与DO 相交于点H . ∵DA =DC , AO =CO ,DO =DO , ∴△AOD ≌△COD . ∴∠AOD =∠COD .ODABCFGE第23题图第22题图∴OD 是AC 的垂直平分线.∵∠AHO =∠DAO ,∠AOH =∠DOA . ∴△AOH ∽△DOA .∴DA AH OD OA OA OH ==,即4533AHOH ==. ∴OH =59,AH =512=CH .在Rt △CHF 中,CF =2222593512⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛=+HF CH =5512.∵O 、H 分别是A B 、A C 的中点, ∴BC =2OH =518. 又∵∠CFE =∠CBE =21∠COE =21∠AOE =21∠BOF =∠BEF =∠BCF , ∴△EFG ∽△BCG . ∴3556===BC EF CG FG ,即5CG =3FG =3(5512-CG ).∴CG =1059.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分) 24.(2018辽宁大连,24,11分)如图,一次函数y =-34x +4的图象与x 轴、y 轴分别相交于点A 、B ,P 是射线BO 上的一个动点(点P 不与点B 重合),过点P 作PC ⊥AB ,垂足为C ,在射线CA 上截取CD =CP .连接PD ,设BP =t . (1)t 为何值时,点D 恰好与点A 重合?(2)设△PCD 与△AOB 重叠部分的面积为s ,求s 与t 的函数关系式,并直接写出t 的取值范围.ODABCFGE H解:(1)如图1,由y =-34x +4知:当x =0时,y =4;当y =0时,x =3. ∴O A =3,OB =4,A B =5. ∵∠PCB =∠A OB =90°,∠PBO =∠A BO , ∴△PCB ∽△A OB .∴BO BC AO PC AB PB ==,即435BCPC t ==. ∴PC =53t ,BC =54t.当点D 与点A 重合时,BC +CD =B A ,即53t +54t=5. ∴t =725.(2)当0<t ≤725时(如图1),S =21PC ·CD =21×(53t )2=509t 2. 当725<t ≤4时,(如图2),设PD 与x 轴相交于点E ,作EF ⊥CD ,垂足为F. 第24题图1第24题图由(1)知AD =BC +CD -BA =54t +53t -5=57t-5. ∵∠EF A =∠BOA ,∠EAF =∠BAO ,∴△AFE ∽△AOB . ∴BO EF AO AF ,即EF =34AF =34(FD -AD ). ∵CD =CP ,∠PCD =90°, ∴∠PDC =∠DPC =45°=90°-∠DEF . ∴∠DEF =45°=∠FDE .∴FD =EF =34(FD -AD )=34[EF -(57t-5)]. ∴EF =4(57t-5).∴S =21PC ·CD -21AD ·EF =509t 2-21(57t -5)×4(57t -5)=-50187t 2+28t -50.当4<t <425时(如图3),设PC 与x 轴相交于点E .则AC =AB -BC =5-54t . 同理EC =34AC =34(5-54t ).∴S =21AC ·EC =21(5-54t )×34(5-54t )=27532t -316t +350.第24题图2综上,S =⎪⎪⎪⎩⎪⎪⎪⎨⎧+-≤-+-≤)4254(3503167532)4725(502850187)7250(509222 t t t t t t t t .25. (2018辽宁大连,25,12分)将△ABC 绕点B逆时针旋转α得到△DBE ,DE 的延长线与AC 相交于点F,连接DA 、BF .(1)如图1,若∠ABC =α=60°,BF =AF .①求证:DA ∥BC ;②猜想线段DF 、AF 的数量关系,并证明你的猜想;(2)如图2,若∠ABC <α,BF =mAF (m 为常数),求AFDF 的值(用含m 、α的式子表示)。
2018年辽宁省大连市中考数学试卷(带解析)
A.x<2 B.2<x<6 C.x>6D.0<x<2 或 x>6 【解答】解:由图象可知,当 k1x+b< 时,x 的取值范围为 0<x<2 或 x>6. 故选:D. 10.(3 分)如图,将△ABC 绕点 B 逆时针旋转α,得到△EBD,若点 A 恰好在 ED 的延长线上,则∠CAD 的度数为( )
第 3页(共 20页)
A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C .( 10 ﹣ x )( 6 ﹣ x ) =32 D.10×6﹣4x2=32
【解答】解:设剪去的小正方形边长是 xcm,则纸盒底面的长为(10﹣2x)cm, 宽为(6﹣2x)cm, 根据题意得:(10﹣2x)(6﹣2x)=32. 故选:B.
类别
A
B
C
D
E
F
类型 足球 羽毛球 乒乓球 篮球 排球 其他
人数
10
4
6
2
根据以上信息,解答下列问题:
第 8页(共 20页)
(1)被调查的学生中,最喜欢乒乓球的有 4 人,最喜欢篮球的学生数占被调 查总人数的百分比为 32 %; (2)被调查学生的总数为 50 人,其中,最喜欢篮球的有 16 人,最喜欢 足球的学生数占被调查总人数的百分比为 24 %; (3)该校共有 450 名学生,根据调查结果,估计该校最喜欢排球的学生数.
3.(3 分)计算(x3)2 的结果是( ) A.x5 B.2x3 C.x9 D.x6 【解答】解:(x3)2=x6, 故选:D.
4.(3 分)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的 度数为( )
2018年辽宁大连市中考数学试题卷及答案解析
2018年大连市中考数学试题卷一、选择题(本题共10小题,每小题3分,共30分.)1.﹣3的绝对值是()A.3B.﹣3C.D.2.在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.计算(x3)2的结果是()A.x5B.2x3C.x9D.x64.如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°5.一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.三棱柱D.长方体6.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8B.7C.4D.37.一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A.B.C.D.8.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32B.(10﹣2x)(6﹣2x)=32C.(10﹣x)(6﹣x)=32D.10×6﹣4x2=329.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(2,3),B(6,1)两点,当k1x+b <时,x的取值范围为()A.x<2B.2<x<6C.x>6D.0<x<2或x>610.如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α二、填空题(本题共6小题,每小题3分,共18分)11.因式分解:x2﹣x=.12.五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是.13.一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为cm.14.《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为.15.如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D 处测得旗杆顶端A的仰角为53°,若测角仪的高度是 1.5m,则旗杆AB的高度约为m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)16.如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.计算:( +2)2﹣+2﹣218.解不等式组:解:19.如图,?ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.20.某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.类别A B C D E F类型足球羽毛球乒乓球篮球排球其他人数10462根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有人,最喜欢篮球的学生数占被调查总人数的百分比为%;(2)被调查学生的总数为人,其中,最喜欢篮球的有人,最喜欢足球的学生数占被调查总人数的百分比为%;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.22.【观察】1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是.【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为,并用你学过的知识加以证明.23.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m≤b时,函数的解析式不同).(1)填空:△ABC的面积为;(2)求直线AB的解析式;(3)求S关于m的解析式,并写出m的取值范围.25.阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠ACB=90°,点D在AB上,且∠BAC=2∠DCB,求证:AC=AD.。
2018年辽宁省大连市中考物理试卷
24.将图中的电灯和两个开关接入家庭电路中,要求:同时闭合两个开关,电灯发光;只闭合一个开关,电灯不发光。
三、计算题(本题共3小题,共20分)
25.用天然气灶给常温下 的水加热,消耗了 的天然气,已知天然气灶烧水的效率为 ,天然气的热值为 ,水的比热容为 ,试求:
D.岸边树木
2.下列现象中,由光的反射形成的是()
A.树荫下的光斑
B.月光下人在地面上的影子
C.平静的河面映出桥的“倒影”
D.注水后的游泳池看上去“变浅”
3.下列实例中,通过热传递改变物体内能的是()
A.铁锤锻打工件,工件受热
B.锯条锯木头,锯条变热
C.双手互相摩擦,双手变热
D.电水壶烧水,水变热
4.发电机的原理是()
1.
【答案】
A
【考点】
参照物及其选择
【解析】
判断一个物体的运动情况时,必须先确定一个作为标准的参照物,分析研究对象和参照物之间的相对位置是否发生了改变,如果发生改变,则物体是运动的;如果未发生变化,则物体是静止的。分析题意可知,题中的研究对象是“山”,它的运动状态是“向船尾跑去了”,即山在“运动”。
(1)连好电路后,开关闭合前应将滑动变阻器的滑片移动到________接线柱那一端(选填“ ”或“ ”)。
(2)该同学用开关“试触”时,发现电压表和电流表均无示数。他检查导线与各接线桂均接触良好,猜想可能是滑动变阻器出现了断路。他另外取来一根导线,用这根导线验证出猜想是正确的。写出他的做法和观察到的现象。
C.电压表 示数的变化量与电流表示数的变化量之比变大
D.电压表 示数的变化量大于电压表 示数的变化量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年大连中考化学试题
相对原子质量单位:O-16 Cl-35.5 K-39 Mn-55
一、选择题(本题共15小题,每小题1分,共15分。
每小题只有一个选项符合题意)
1、下列变化中,属于化学变化的是()
A. 水结成冰
B. 胆矾研碎
C. 煤气燃烧
D. 干冰升华
2、下列空气成分中,化学性质很不活泼且通电时会发出不同颜色光的是()
A. 氮气
B. 氧气
C. 二氧化碳
D. 稀有气体
3、合理饮食,健康生活。
下列食物富含油脂的是()
A. 豆腐
B. 肥肉
C. 米饭
D. 西红柿
4、下列化肥中,属于复合肥料的是()
A. KNO3
B. CO(NH2)2
C. Ca3(PO4)2
D. K2SO4
5、下列人体必需微量元素中,缺少可能引起表皮角质化和癌症的是()
A. 铁
B. 锌
C. 硒
D. 氟
6、下列物品由有机合成材料制成的是()
A. 纯棉被套
B. 橡胶手套
C. 真丝上衣
D. 羊毛西裤
7、下列物质中,属于单质的是()
A. 水
B. 钢
C. 酒精
D. 石墨
8、下列物质中,属于氧化物的是()
A. P2O5
B. AgNO3
C. O2
D. C6H12O6
9、下列物质中,属于盐的是()
A. Na2O
B. HNO3
C. KOH
D. MgCl2
10、下列物质由分子构成的是()
A. 金刚石
B. 汞
C. 氢气
D. 氯化钠
11、下列物质中,氮元素化合价为-3价的是()
A. NH3
B. N2O
C. NO
D. NO2
12、下表是人体内某些液体的pH范围,其中酸性最强的是()
体液胆汁胃液血浆尿液
pH 7.1~7.3 0.9~1.5 7.35~7.45 4.7~8.4
A. 胆汁
B. 胃酸
C. 血浆
D. 尿液
13、绿水青山就是金山银山,下列做法不利于环境保护的是()
A. 废旧金属回收再利用
B. 提倡用布袋代替塑料袋购物
C. 生活污水未经处理直接排放
D. 推广新能源汽车代替传统能源汽车
14、结构决定性质。
下列微粒的化学性质比较活泼的是()
A. B. C. D.
15、性质决定用途。
下列关于物质用途的说法正确的是()
A. 石灰石可用做补钙剂
B. 亚硝酸钠可用做调味品
C. 烧碱可用于中和过多的胃酸
D. 氯化钠可用于消除公路上的积雪
二、填空题(本题共5小题,每空1分,共25分)
16、水与人类的生产、生活密切相关。
___将其除去。
常用______________吸附水中的色素和异味。
⑵使用硬水会给生活和生产带来许多麻烦。
可用_______________检验硬水和软水。
生活中可以通过____ ____________降低水的硬度。
⑶电解水实验证明水是由_______________________组成的。
17、我国经济的快速发展对能源的需求日益增长。
⑴煤主要含有碳元素,将煤作为燃料,主要是利用碳与氧反应放出的______________;氧气不充足时,煤中的碳燃烧会产生__________________等物质污染空气。
⑵将石油加热炼制,可得到用作汽车燃料的产品之一是______________。
压缩天然气也可用作汽车燃料,主要成分甲烷燃烧的化学方程式为_______________________________________。
⑶化石燃料是不可再生能源。
人们正在开发和使用的新能源之一是__________________。
18、早在春秋战国时期,我国就开始生产和使用铁器。
⑴用赤铁矿(主要成分Fe2O3)冶炼生铁的化学方程式为_______________________________。
⑵用铁锅炒菜是利用铁的___________性,用生铁制铁锅而不用纯铁的主要原因是____________。
铁锅与_______________接触时容易锈蚀,防止铁锅锈蚀的一种方法是__________________________。
19、右图是氯化钾和硝酸钾的溶解度曲线。
⑴氯化钾溶液中的溶质是_______________。
⑵硝酸钾饱和溶液中混有少量氯化钾,提纯硝酸钾应采用的方法是
_________________________________。
⑶要使氯化钾饱和溶液变成不饱和溶液,除加水之外的方法是
__________________________。
⑷t℃时,硝酸钾饱和溶液中溶质的质量分数是_____________。
20、写出下列反应的化学方程式,并注明反应的基本类型
⑴高温煅烧石灰石:_____________________________ ________________
⑵镁条在氧气中燃烧:_____________________________ ________________
⑶铁与硫酸铜溶液反应:_____________________________ ________________
三、简答题(本题共5小题,共24分)
21、(3分)用微粒观点解释下列事实。
市售瓶装葡萄酒中含有一定量的二氧化硫,其作用之一是杀菌,并且增强葡萄酒的酸度,抑制细菌生长。
饮用前,把葡萄酒倒入敞口容器放置一段时间,可以减少部分有害物质,这种饮酒方法对人体健康比较有益(资料:二氧化硫易溶于水且能与水反应生成亚硫酸)。
22、(4分)运用所学知识解释下列实验现象。
有两块加热至部分红热的木炭,一块放在空气中燃烧一会儿后熄灭,另一块伸入充满氧气的集气瓶,木炭剧烈燃烧,发出白光。
由瓶口向下缓慢插入到瓶底的过程中,木炭持续剧烈燃烧。
23、(6分)在实验室利用以下装置进行气体的制取和性质实验。
A B
⑴用装置A制取氧气、二氧化碳的化学方程式分别为_________________________、___________________ ____________________,发生装置相同的理由是______________________________________________,收集气体的方法是____________________________。
⑵装置B中观察到的现象是____________________________,反应的化学方程式为_________________。
24、(5分)我国古代将炉甘石、赤铜和木炭粉混合加强热,制得外观似金子的黄铜(铜锌合金),现取一定量含少量木炭粉的黄铜粉末样品,测定其中铜、锌的质量比,设计如下实验流程和装置。
⑴气体X是___________________。
⑵步骤Ⅱ中,若通过测定铜的质量来确定黄铜中铜、锌的质量比,简述从黄铜中分离出铜的实验操作。
⑶步骤Ⅱ中,若不测定铜的质量,某同学认为,结合上图提供的装置进行实验,即使装置气密性不良,也能达到实验目的,写出实验过程中需测量的数据。
25、(6分)设计下列实验装置,先用氢氧化钙溶液验证氢氧化钠溶液能与二氧化碳反应,再验证氢氧化钙溶液能与稀盐酸反应(装置气密性良好,实验前K1、K2处于关闭状态)
⑴B中导管不能插到瓶底,说明原因。
⑵写出完成上述实验的操作及预期现象。
⑶实验后观察到A中溶液无色且有白色沉淀存在,写出A中溶质组成可能存在的几种情况。
四、计算题(本题6分)
26、在一定质量的氯酸钾中加入15.8g高锰酸钾,充分混合后加热至完全反应,共制得氧气6.4g。
⑴根据化学方程式计算,15.8g高锰酸钾完全反应,生成氧气的质量。
⑵制得氧气中的氧元素占原混合物中氧元素的质量分数。
(计算结果保留到0.1%)。