导数大题练习题答案

合集下载

导数的计算练习题及答案

导数的计算练习题及答案

导数的计算练习题及答案1. 计算函数f(x) = 3x^2 - 4x + 2的导数f'(x)。

解答:根据函数f(x) = 3x^2 - 4x + 2,使用导数的定义来计算导数f'(x)。

f'(x) = lim(delta x -> 0) (f(x + delta x) - f(x)) / delta x代入函数f(x)的表达式:f'(x) = lim(delta x -> 0) [(3(x + delta x)^2 - 4(x + delta x) + 2) -(3x^2 - 4x + 2)] / delta x化简并展开:f'(x) = lim(delta x -> 0) [3(x^2 + 2x * delta x + (delta x)^2) - 4x - 4 * delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [3x^2 + 6x * delta x + 3(delta x)^2 - 4x - 4* delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [6x * delta x + 3(delta x)^2 - 4 * delta x] / delta xf'(x) = lim(delta x -> 0) [6x + 3 * delta x - 4]由于求导数时delta x趋近于0,所以delta x也可以看作一个无穷小量,其平方项可以忽略不计,即delta x^2 = 0。

化简结果:f'(x) = 6x - 4所以函数f(x) = 3x^2 - 4x + 2的导数f'(x)为6x - 4。

2. 计算函数g(x) = 2sin(x) + 3cos(x)的导数g'(x)。

导数复习题(含答案)

导数复习题(含答案)
所以函数 在 上是增函数,
因为 ,所以 ,即 ,
所以 化为 ,
当 时,不等式 等价于 ,即 ,解得 ;
当 时,不等式 等价于 ,即 ,解得 ;
综上,不等式 的解集为 .
点睛:本题考查了与函数有关的不等式的求解问题,其中解答中涉及到利用条件构造新函数和利用导数研究函数的单调性,以及根据单调性和奇偶性的关系对不等式进行转化,解答中一定要注意函数值为零是自变量的取值,这是题目的一个易错点,试题综合性强,属于中档试题.
A. B. C. D.
【答案】A
【解析】由题意得 ,令
,选A.
点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.
故答案为B。
11.已知函数 有两个零点,则 的取值范围是()
A. B. C. D.
【答案】D
【解析】函数 的定义域为 ,因为 ,当 时, ,则函数 在 上单调递增,不满足条件;当 时,令 ,得 ,所以 在 上单调递减,在 上单调递增,所以 为极小值点,要使 有两个零点,即要 ,即 ,则 的取值范围是 ,故选D.
6.函数 的图象是()
A. B.
C. D.
【答案】A
【解析】由函数 ,则 ,所以函数 为奇函数,
图象关于原点对称,
又 时, ,
所以当 时, 单调递增,当 时, 单调递减,
综上,函数的图象大致为选项A,故选A.
7.已知函数 是函数 的导函数, ,对任意实数都有 ,设 则不等式 的解集为()

专升本导数练习题及答案

专升本导数练习题及答案

专升本导数练习题及答案### 专升本导数练习题及答案#### 练习题一:基础导数计算题目:计算以下函数的导数:1. \( f(x) = 3x^2 + 2x - 5 \)2. \( g(x) = \sin(x) + e^x \)3. \( h(x) = (x^3 - 1)^4 \)解答:1. 对于 \( f(x) = 3x^2 + 2x - 5 \),我们使用幂函数的导数规则: \[ f'(x) = 6x + 2 \]2. 对于 \( g(x) = \sin(x) + e^x \),我们分别求导:\[ g'(x) = \cos(x) + e^x \]3. 对于 \( h(x) = (x^3 - 1)^4 \),我们使用链式法则和幂函数的导数规则:\[ h'(x) = 4(x^3 - 1)^3 \cdot (3x^2) = 12x^2(x^3 - 1)^3 \]#### 练习题二:复合函数的导数题目:计算以下复合函数的导数:1. \( F(x) = (\ln(x))^2 \)2. \( G(x) = \sqrt{x} \cdot \sin(x) \)解答:1. 对于 \( F(x) = (\ln(x))^2 \),我们使用链式法则和对数函数的导数:\[ F'(x) = 2(\ln(x)) \cdot \frac{1}{x} = \frac{2\ln(x)}{x} \]2. 对于 \( G(x) = \sqrt{x} \cdot \sin(x) \),我们使用乘积法则: \[ G'(x) = \frac{1}{2\sqrt{x}} \cdot \sin(x) + \sqrt{x}\cdot \cos(x) \]\[ G'(x) = \frac{\sin(x)}{2\sqrt{x}} + \sqrt{x}\cos(x) \]#### 练习题三:隐函数的导数题目:计算以下隐函数的导数:1. \( x^2 + y^2 = 9 \) 求 \( \frac{dy}{dx} \)2. \( y^3 + xy = 2 \) 求 \( \frac{dy}{dx} \)解答:1. 对于 \( x^2 + y^2 = 9 \),我们对等式两边求导:\[ 2x + 2y\frac{dy}{dx} = 0 \]\[ \frac{dy}{dx} = -\frac{x}{y} \]2. 对于 \( y^3 + xy = 2 \),我们对等式两边求导:\[ 3y^2\frac{dy}{dx} + (x + y)\frac{dy}{dx} = 0 \]\[ \frac{dy}{dx}(3y^2 + x + y) = -x \]\[ \frac{dy}{dx} = -\frac{x}{3y^2 + x + y} \]#### 练习题四:高阶导数题目:计算以下函数的二阶导数:1. \( f(x) = x^3 - 6x^2 + 9x \)2. \( g(x) = \ln(x) - e^x \)解答:1. 对于 \( f(x) = x^3 - 6x^2 + 9x \),我们首先求一阶导数: \[ f'(x) = 3x^2 - 12x + 9 \]然后求二阶导数:\[ f''(x) = 6x - 12 \]2. 对于 \( g(x) = \ln(x) - e^x \),我们首先求一阶导数:\[ g'(x) = \frac{1}{x} - e^x \]然后求二阶导数:\[ g''(x) = -\frac{1}{x^2} - e^x \]这些练习题涵盖了基础导数计算、复合函数导数、隐函数导数以及高阶导数,是专升本数学考试中常见的题型。

(完整版)导数的计算练习题及答案

(完整版)导数的计算练习题及答案

【巩固练习】一、选择题1.设函数310()(12)f x x =-,则'(1)f =( )A .0B .―1C .―60D .602.(2014 江西校级一模)若2()2ln f x x x =-,则'()0f x >的解集为( )A.(0,1)B.()(),10,1-∞-C. ()()1,01,-+∞D.()1,+∞3.(2014春 永寿县校级期中)下列式子不正确的是( )A.()'23cos 6sin x x x x +=-B. ()'1ln 22ln 2x x x x -=- C. ()'2sin 22cos 2x x = D.'2sin cos sin x x x x x x -⎛⎫= ⎪⎝⎭ 4.函数4538y x x =+-的导数是( ) A .3543x + B .0 C .3425(43)(38)x x x ++- D .3425(43)(38)x x x +-+- 5.(2015 安徽四模)已知函数()f x 的导函数为'()f x ,且满足关系式2'()3(2)ln f x x xf x =++,则'(2)f 的值等于( )A. 2B.-2C.94 D.94- 6.设曲线1(1)1x y x x +=≠-在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A .2 B .12 C .―12D .―2 7.23log cos (cos 0)y x x =≠的导数是( )A .32log tan e x -⋅B .32log cot e x ⋅C .32log cos e x -⋅D .22log cos e x 二、填空题8.曲线y=sin x 在点,12π⎛⎫ ⎪⎝⎭处的切线方程为________。

9.设y=(2x+a)2,且2'|20x y ==,则a=________。

10.31sin x x '⎛⎫-= ⎪⎝⎭____________,()2sin 25x x '+=⎡⎤⎣⎦____________。

高二数学导数练习题及答案

高二数学导数练习题及答案

高二数学导数练习题及答案导数是高中数学中的重要概念之一,它在数学和实际问题中具有广泛的应用。

为了帮助高二学生巩固导数的知识和提高解题能力,本文为大家准备了一些高二数学导数练习题及答案。

希望通过这些练习题的训练,同学们能够更好地理解导数的概念和运用。

练习题一:1. 求函数 f(x) = 2x^3 - 3x^2 + 4x - 1 在点 x = 2 处的导数。

2. 已知函数 f(x) = x^2 + 3x,求函数 f(x) = x^2 + 3x 的导函数。

3. 求函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数。

答案一:1. 函数 f(x) = 2x^3 - 3x^2 + 4x - 1 的导数为:f'(x) = 6x^2 - 6x + 4。

2. 函数 f(x) = x^2 + 3x 的导函数为:f'(x) = 2x + 3。

3. 函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数为:f'(-1) = 0。

练习题二:1. 求函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点及极值。

2. 已知函数 f(x) = x^3 - 6x^2 + 9x + 2,求函数 f(x) = x^3 - 6x^2 + 9x+ 2 的拐点。

3. 求函数 f(x) = x^3 - 3x 在其定义域内的极值点。

答案二:1. 函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点为 x = 1/2,极值为 f(1/2) = 47/16。

2. 函数 f(x) = x^3 - 6x^2 + 9x + 2 的拐点为 x = 2。

3. 函数 f(x) = x^3 - 3x 在其定义域内的极值点为 x = 1。

练习题三:1. 求函数 f(x) = e^x 的导数。

2. 已知函数 f(x) = ln(x),求函数 f(x) = ln(x) 的导函数。

导数练习题含答案完整版

导数练习题含答案完整版

导数练习题含答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】导数练习题班级姓名一、选择题1.当自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数( )A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数2.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40 B.0.41 C.0.43D.0.443.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A.4 B.4+2ΔxC.4+2(Δx)2D.4x4.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )A. 6 B.18C.54D.815.已知f(x)=-x2+10,则f(x)在x=32处的瞬时变化率是( )A.3 B.-3C. 2D.-26.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直7.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x-2 B.y=xC.y=x+ 2D.y=-x-28.已知曲线y=2x2上一点A(2,8),则A处的切线斜率为( )A.4 B.16 C.8D.29.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0) B.(2,4)C.(14,116)D.(12,14)10.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A.a=1,b= 1B.a=-1,b=1C.a=1,b=- 1D.a=-1,b=-111.已知f(x)=x2,则f′(3)=( )A.0 B.2xC. 6D.912.已知函数f(x)=1x,则f′(-3)=( )A. 4 B.19C .-14D .-1913.函数y =x 2x +3的导数是( )A.x 2+6x x +3?2B.x 2+6x x +3C.-2xx +3?2D.3x 2+6x x +3?2 14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( )A .0B .-1C .1D .215.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件16.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,17.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤18.函数y =4x 2+1x的单调递增区间是( ) A .(0,+∞) B .(-∞,1)C .(12,+∞)D .(1,19.“函数y =f (x )在一点的导数值为0”是“函数y =f (x )在这点取极值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 20.设x 0为可导函数f (x )的极值点,则下列说法正确的是( )A .必有f ′(x 0)=B .f ′(x 0)不存在C .f ′(x 0)=0或f ′(x 0)不存在D .f ′(x 0)存在但可能不为022.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a =( ) A .2 B .3C .4D .523.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内的极小值点有( )A .1个B .2个C .3个D .4个24.函数f (x )=-13x 3+12x 2+2x 取极小值时,x 的值是( )A .2B .2,- 1C .-1D .-325.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是( ) A .f (2),f (3) B .f (3),f (5)C .f (2),f (5)D .f (5),f (3)26.f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( )A .-2B .0C .2D .427.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为( )A .-10B.-71C .-15D .-22 28.(2010年高考山东卷)已知某生产厂家的年利润y (单元:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件29.一点沿直线运动,如果由始点起经过t 秒运动的距离为s =14t 4-53t 3+2t 2,那么速度为零的时刻是( )A .1秒末B .0秒C .4秒末D .0,1,4秒末二、填空题1.设函数y =f (x )=ax 2+2x ,若f ′(1)=4,则a =________.2.若曲线y =2x 2-4x +a 与直线y =1相切,则a =________.3.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ba=________.4.令f (x )=x 2·e x ,则f ′(x )等于________.5.函数y =x 2+4x 在x =x 0处的切线斜率为2,则x 0=________. 6.若y =10x ,则y ′|x =1=________.7.一物体的运动方程是s (t )=1t,当t =3时的瞬时速度为________.8.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′(π3)=12,则a =________,b =________.9.y =x 3-6x +a 的极大值为________.10.函数y =x e x 的最小值为________.11.做一个容积为256 dm 3的方底无盖水箱,它的高为______dm 时最省料.12.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2.三、解答题1.求下列函数的导数:(1)y=3x2+x cos x; (2)y=x1+x;(3)y=lg x-e x.2.已知抛物线y=x2+4与直线y=x +10,求:(1)它们的交点; (2)抛物线在交点处的切线方程.3.求下列函数的单调区间:(1)y=x-ln x;(2)y=12x .4.已知函数f(x)=x3+ax2+bx+c,当x=-1时,取得极大值7;当x=3时,取得极小值,求这个极小值及a、b、c的值.5.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.导数练习题答案班级姓名一、选择题1.当自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数( ) A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数答案:A2.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40B.0.41C.0.43D.0.44解析:选 B.Δy=f(2.1)-f(2)=2.12-22=0.41.3.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A. 4B.4+2ΔxC.4+2(Δx)2D.4x解析:选B.因为Δy=[2(1+Δx)2-1]-(2×12-1)=4Δx+2(Δx)2,所以ΔyΔx=4+2Δx,故选B.4.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )A. 6B.18C.54D.81解析:选B.ΔsΔt=3?3+Δt2-3×32Δt,s′=li mΔt→0ΔsΔt=li mΔt→0(18+3Δt)=18,故选B.5.已知f(x)=-x2+10,则f(x)在x=32处的瞬时变化率是( )A. 3B.-3C. 2D.-2解析:选B.6.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直解析:选 B.函数在某点处的导数为零,说明相应曲线在该点处的切线的斜率为零.7.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x- 2B.y=xC.y=x+ 2D.y=-x-2解析:选 A.f′(1)=li mΔx→0-11+Δx+11Δx=li mΔx→011+Δx=1,则在(1,-1)处的切线方程为y+1=x-1,即y=x-2.8.已知曲线y=2x2上一点A(2,8),则A 处的切线斜率为( )A. 4B.16C.8D.2解析:选C.9.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0)B.(2,4)C.(14,116)D.(12,14)故选D.10.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A .a =1,b = 1B .a =-1,b =1C .a=1,b=-1D .a =-1,b =-1 解析:选A.11.已知f (x )=x 2,则f ′(3)=( )A .0B .2xC .6D .9解析:选 C.∵f ′(x )=2x ,∴f ′(3)=6.12.已知函数f (x )=1x,则f ′(-3)=( )A .4B.19C .-14D .-19解析:选 D.∵f ′(x )=-1x 2,∴f ′(-3)=-19.13.函数y =x 2x +3的导数是( )A.x 2+6x x +3?2B.x 2+6x x +3C.-2x x +3?2D.3x 2+6x x +3?2解析:选A14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( ) A .0B .-1C .1D .2解析:选 B.∵f (x )=12f ′(-1)x 2-2x +3, ∴f ′(x )=f ′(-1)x -2.∴f ′(-1)=f ′(-1)×(-1)-2.∴f ′(-1)=-1.15.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.f (x )=x 3在(-1,1)内是单调递增的,但f ′(x )=3x 2≥0(-1<x <1),故甲是乙的充分不必要条件,选A.16.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析:选 D.f ′(x )=(x -3)′e x+(x -3)(e x)′=(x -2)e x,令f ′(x )>0,解得x >2,故选D.17.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤0解析:选D.因为y ′=3ax 2-1,函数y =ax 3-x 在(-∞,+∞)上是减函数,所以y ′=3ax 2-1≤0恒成立,即3ax 2≤1恒成立.当x =0时,3ax 2≤1恒成立,此时a ∈R ;当x ≠0时,若a ≤13x2恒成立,则a ≤0.综上可得a ≤0. 18.函数y =4x 2+1x的单调递增区间是( )A .(0,+∞)B .(-∞,C .(12,+∞)D .(1,+解析:选 C.∵y′=8x-1x2=8x3-1 x2>0,∴x>12.即函数的单调递增区间为(12,+∞).19.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.对于f(x)=x3,f′(x)=3x2,f′(0)=0,不能推出f(x)在x=0处取极值,反之成立.故选B.20.设x0为可导函数f(x)的极值点,则下列说法正确的是( )A.必有f′(x0)=0B.f′(x0)不存在C.f′(x0)=0或f′(x0)不存在D.f′(x0)存在但可能不为0答案:A22.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a=( )A.2 B.3C.4 D.5解析:选D.f′(x)=3x2+2ax+3,∵f(x)在x=-3处取得极值,∴f′(-3)=0,即27-6a+3=0,∴a=5.23.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( )A.1个B.2个C.3个D.4个解析:选A.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如题图所示,函数f(x)在开区间(a,b)内有极小值点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个.24.函数f(x)=-13x3+12x2+2x取极小值时,x的值是( )A.2 B.2,-1C.-1 D.-3解析:选 C.f′(x)=-x2+x+2=-(x-2)(x+1).∵在x=-1的附近左侧f′(x)<0,右侧f′(x)>0,如图所示:∴x=-1时取极小值.25.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分别是( )A.f(2),f(3)B.f(3),f(5)C.f(2),f(5) D.f(5),f(3)解析:选B.∵f′(x)=-2x+4,∴当x∈[3,5]时,f′(x)<0,故f(x)在[3,5]上单调递减,故f(x)的最大值和最小值分别是f(3),f(5).26.f(x)=x3-3x2+2在区间[-1,1]上的最大值是( )A.-2 B.0C.2 D.4解析:选C.f′(x)=3x2-6x=3x(x-2),令f′(x)=0可得x=0或x=2(舍去),当-1≤x<0时,f′(x)>0,当0<x≤1时,f′(x)<0.所以当x=0时,f(x)取得最大值为2. 27.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( )A.-10 B.-71C.-15 D.-22解析:选B.f′(x)=3x2-6x-9=3(x -3)(x+1).由f′(x)=0得x=3,-1.又f(-4)=k-76,f(3)=k-27,f(-1)=k+5,f(4)=k-20.由f(x)max=k+5=10,得k=5,∴f(x)min=k-76=-71.28.(2010年高考山东卷)已知某生产厂家的年利润y(单元:万元)与年产量x(单位:万件)的函数关系式为y=-13x3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A.13万件B .11万件C.9万件D .7万件解析:选C29.一点沿直线运动,如果由始点起经过t秒运动的距离为s=14t4-53t3+2t2,那么速度为零的时刻是( )A.1秒末B .0秒C.4秒末D .0,1,4秒末解析:选D.∵s′=t3-5t2+4t,令s′=0,得t1=0,t2=1,t3=4,此时的函数值最大,故选D.二、填空题1.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________.答案:12.若曲线y=2x2-4x+a与直线y=1相切,则a=________.答案:33.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则ba=________.答案:24.令f(x)=x2·e x,则f′(x)等于________.解析:f′(x)=(x2)′·e x+x2·(e x)′=2x·e x+x2·e x=e x(2x+x2).答案:e x(2x+x2)5.函数y=x2+4x在x=x0处的切线斜率为2,则x0=________.解析:2=li mΔx→0x+Δx2+4?x0+Δx-x20-4x0Δx=2x0+4,∴x0=-1.答案:-16.若y=10x,则y′|x=1=________.解析:∵y′=10x ln10,∴y′|x=1=10ln10.答案:10ln107.一物体的运动方程是s(t)=1t,当t=3时的瞬时速度为________.解析:∵s′(t)=-1t2,∴s′(3)=-132=-19.答案:-198.设f(x)=ax2-b sin x,且f′(0)=1,f′(π3)=12,则a=________,b=________.解析:∵f′(x)=2ax-b cos x,f′(0)=-b=1得b=-1,f ′(π3)=23πa +12=12,得a =0.答案:0 -19.y =x 3-6x +a 的极大值为________.解析:y ′=3x 2-6=0,得x =± 2.当x <-2或x >2时,y ′>0;当-2<x <2时,y ′<0.∴函数在x =-2时,取得极大值a +4 2.答案:a +4210.函数y =x e x 的最小值为________.解析:令y ′=(x +1)e x =0,得x =-1.当x <-1时,y ′<0;当x >-1时,y ′>0.∴y min =f (-1)=-1e.答案:-1e11.做一个容积为256 dm 3的方底无盖水箱,它的高为______dm 时最省料.解析:设底面边长为x ,则高为h =256x 2,其表面积为S =x 2+4×256x2×x =x 2+256×4x,S ′=2x -256×4x 2,令S ′=0,则x =8,则高h =25664=4 (dm).答案:412.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2.解析:设矩形的长为x m ,则宽为16-2x2=(8-x ) m(0<x <8), ∴S (x )=x (8-x )=-x 2+8x∴S ′(x )=-2x +8,令S ′(x )=0,则x =4,又在(0,8)上只有一个极值点,且x∈(0,4)时,S(x)单调递增,x∈(4,8)时,S(x)单调递减,故S(x)max=S(4)=16.答案:16三、解答题1.求下列函数的导数:(1)y=3x2+x cos x;(2)y=x1+x;(3)y=lg x-e x.解:(1)y′=6x+cos x-x sin x.(2)y′=1+x-x1+x2=11+x2.(3)y′=(lg x)′-(e x)′=1x ln10-e x.2.已知抛物线y=x2+4与直线y=x+10,求:(1)它们的交点;(2)抛物线在交点处的切线方程.解:(1)由⎩⎨⎧y=x2+4,y=x+10,得x2+4=10+x,即x2-x-6=0,∴x=-2或x=3.代入直线的方程得y=8或13.∴抛物线与直线的交点坐标为(-2,8)或(3,13).(2)∵y=x2+4,∴y′=limΔx→0x+Δx2+4-x2+4?Δx=limΔx→0Δx2+2x·ΔxΔx=limΔx→0(Δx+2x)=2x.∴y′|x=-2=-4,y′|x=3=6,即在点(-2,8)处的切线斜率为-4,在点(3,13)处的切线斜率为6.∴在点(-2,8)处的切线方程为4x+y=0;在点(3,13)处的切线方程为6x-y-5=0.3.求下列函数的单调区间:(1)y=x-ln x;(2)y=1 2x .解:(1)函数的定义域为(0,+∞).其导数为y′=1-1 x .令1-1x>0,解得x>1;再令1-1x<0,解得0<x<1.因此,函数的单调增区间为(1,+∞),函数的单调减区间为(0,1).4.已知函数f(x)=x3+ax2+bx+c,当x =-1时,取得极大值7;当x=3时,取得极小值,求这个极小值及a、b、c的值.解:f′(x)=3x2+2ax+b,依题意可知-1,3是方程3x2+2ax+b=0的两个根,则有⎩⎪⎨⎪⎧-1+3=-23a,-1×3=b3,解得⎩⎨⎧a=-3,b=-9,∴f(x)=x3-3x2-9x+c.由f(-1)=7,得-1-3+9+c=7,∴c=2.∴极小值为f(3)=33-3×32-9×3+2=-25.5.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.解:(1)f′(x)=x2-4,解方程x2-4=0,得x1=-2,x2=2.当x变化时,f′(x),f(x)的变化情况如下表:从上表可看出,当x=-2时,函数有极大值,且极大值为283;而当x=2时,函数有极小值,且极小值为-4 3 .(2)f(-3)=13×(-3)3-4×(-3)+4=7,f(4)=13×43-4×4+4=283,与极值比较,得函数在区间[-3,4]上的最大值是283,最小值是-43.。

导数复习导数大题练习(含详解答案)

导数复习导数大题练习(含详解答案)

1、函数f(*)=(2*2―k*+k)·e -*(Ⅰ)当k 为何值时,)(x f 无极值;(Ⅱ)试确定实数k 的值,使)(x f 的极小值为0 2、函数()ln f x ax x =+()a ∈R .(Ⅰ)假设2a =,求曲线()y f x =在1x =处切线的斜率;(Ⅱ)求()f x 的单调区间;〔Ⅲ〕设2()22g x x x =-+,假设对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值围. 3、设函数()1x f x x ae -=-。

〔I 〕求函数()f x 单调区间; 〔II 〕假设()0R f x x ≤∈对恒成立,求a 的取值围;〔III 〕对任意n 的个正整数1212,,nn a a a a a a A n++⋅⋅⋅⋅⋅⋅=记〔1〕求证:()11,2,i a iAa e i n A-≤=⋅⋅⋅〔2〕求证:A ≥4、函数b x x a x a x f +++-=23213)(,其中,a b ∈R . 〔Ⅰ〕假设曲线)(x f y =在点))2(,2(f P 处的切线方程为45-=x y ,求函数)(x f 的解析式; 〔Ⅱ〕当0>a 时,讨论函数)(x f 的单调性. 5、函数2()(21)(R x f x ax x e a -=-+⋅∈,e 为自然对数的底数).(I)当时,求函数()f x 的极值;(Ⅱ)假设函数()f x 在[-1,1]上单调递减,求a 的取值围. 6、函数2()(33)x f x x x e =-+⋅,设2t >-,(2),()f m f t n -==.〔Ⅰ〕试确定t 的取值围,使得函数()f x 在[]2,t -上为单调函数;〔Ⅱ〕试判断,m n 的大小并说明理由;〔Ⅲ〕求证:对于任意的2t >-,总存在0(2,)x t ∈-,满足0'20()2(1)3x f x t e =-,并确定这样的0x 的个数.7、函数2()ln (2)f x x ax a x =-+-.〔Ⅰ〕假设()f x 在1x =处取得极值,求a 的值;〔Ⅱ〕求函数()y f x =在2[,]a a 上的最大值. 8、函数221()()ln 2f x ax x x ax x =--+.()a ∈R . 〔I 〕当0a =时,求曲线()y f x =在(e,(e))f 处的切线方程〔e 2.718...=〕; 〔II 〕求函数()f x 的单调区间.9、函数()(1)e (0)xa f x x x=->,其中e 为自然对数的底数.〔Ⅰ〕当2a =时,求曲线()y f x =在(1,(1))f 处的切线与坐标轴围成的面积;〔Ⅱ〕假设函数()f x 存在一个极大值点和一个极小值点,且极大值与极小值的积为5e ,求a 的值.10、函数36)2(23)(23-++-=x x a ax x f . 〔1〕当1=a 时,求函数)(x f 的极小值;〔2〕试讨论曲线)(x f y =与x 轴的公共点的个数。

导数练习题附答案

导数练习题附答案

一、选择题(每题只有一个选项是正确的,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的。

)1.某函数的导数为y′=12(x-1),那么这个函数可能是 ()A.y=ln1-x B.y=ln11-xC.y=ln(1-x) D.y=ln11-x2.(2021•江西)设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,那么曲线y=f(x)在点(1,f(1))处切线的斜率为 ()A.4 B.-14 C.2 D.-123.(2021•辽宁)曲线y=xx-2在点(1,-1)处的切线方程为 ()A.y=x-2 B.y=-3x+2C.y=2x-3 D.y=-2x+14.曲线y=ex在点(2,e2)处的切线与坐标轴所围成三角形的面积为 ()A.94e2 B.2e2 C.e2 D.e225.函数y=f(x),y=g(x)的导函数的图象如图,那么y=f(x),y=g(x)的图象可能是()6.设y=8x2-lnx,那么此函数在区间(0,14)和(12,1)内分别 ()A.单调递增,单调递减B.单调递增,单调递增C.单调递减,单调递增D.单调递减,单调递减7.以下关于函数f(x)=(2x-x2)ex的判断正确的选项是 ()①f(x)>0的解集是{x|0<x<2};②f(-2)是极小值,f(2)是极大值;③f(x)没有最小值,也没有最大值.A.①③ B.①②③C.② D.①②8.f(x)=-x3-x,x∈[m,n],且f(m)•f(n)<0,那么方程f(x)=0在区间[m,n]上() A.至少有三个实根 B.至少有两个实根C.有且只有一个实根 D.无实根9.函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,那么实数a的取值范围是() A.-1<a<2 B.-3<a<6 C.a<-3或a>6 D.a<-1或a>210.要做一个圆锥形漏斗,其母线长为20cm,要使其体积最大,其高应为 ()A.2033cm B.100cm C.20cm D.203cm11.(2021•河南省实验中学)假设函数f(x)=(2-m)xx2+m的图象如下图,那么m的范围为 ()A.(-∞,-1) B.(-1,2) C.(1,2) D.(0,2)12.定义在R上的函数f(x)满足f(4)=1.f′(x)为f(x)的导函数,函数y=f′(x)的图象如下图.假设两正数a,b满足f(2a+b)<1,那么b+2a+2的取值范围是 ()A.(13,12) B.(-∞,12)∪(3,+∞)C.(12,3) D.(-∞,-3) 二、填空题(本大题共4小题,每题5分,共20分,请将答案填在题中的横线上。

导数练习题及答案

导数练习题及答案

导数练习题及答案导数练习题及答案导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

以下是导数练习题及答案,欢迎阅读。

一、选择题1.函数在某一点的导数是( )A.在该点的函数值的增量与自变量的增量的比B.一个函数C.一个常数,不是变数D.函数在这一点到它附近一点之间的平均变化率[答案] C[解析] 由定义,f′(x0)是当Δx无限趋近于0时,ΔyΔx无限趋近的常数,故应选C.2.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为( )A.6 B.18C.54 D.81[答案] B[解析] ∵s(t)=3t2,t0=3,∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-332=18Δt+3(Δt)2∴ΔsΔt=18+3Δt.当Δt→0时,ΔsΔt→18,故应选B.3.y=x2在x=1处的导数为( )A.2x B.2C.2+Δx D.1[答案] B[解析] ∵f(x)=x2,x=1,∴Δy=f(1+Δx)2-f(1)=(1+Δx)2-1=2Δx+(Δx)2∴ΔyΔx=2+Δx当Δx→0时,ΔyΔx→2∴f′(1)=2,故应选B.4.一质点做直线运动,若它所经过的路程与时间的关系为s(t)=4t2-3(s(t)的单位:m,t的单位:s),则t=5时的`瞬时速度为( ) A.37 B.38C.39 D.40[答案] D[解析] ∵ΔsΔt=4(5+Δt)2-3-4×52+3Δt=40+4Δt,∴s′(5)=limΔt→0 ΔsΔt=limΔt→0 (40+4Δt)=40.故应选D.5.已知函数y=f(x),那么下列说法错误的是( )A.Δy=f(x0+Δx)-f(x0)叫做函数值的增量B.ΔyΔx=f(x0+Δx)-f(x0)Δx叫做函数在x0到x0+Δx之间的平均变化率C.f(x)在x0处的导数记为y′D.f(x)在x0处的导数记为f′(x0)[答案] C[解析] 由导数的定义可知C错误.故应选C.6.函数f(x)在x=x0处的导数可表示为y′|x=x0,即( )A.f′(x0)=f(x0+Δx)-f(x0)B.f′(x0)=limΔx→0[f(x0+Δx)-f(x0)]C.f′(x0)=f(x0+Δx)-f(x0)ΔxD.f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx[答案] D[解析] 由导数的定义知D正确.故应选D.7.函数y=ax2+bx+c(a≠0,a,b,c为常数)在x=2时的瞬时变化率等于( )A.4a B.2a+bC.b D.4a+b[答案] D[解析] ∵ΔyΔx=a(2+Δx)2+b(2+Δx)+c-4a-2b-cΔx=4a+b+aΔx,∴y′|x=2=limΔx→0 ΔyΔx=limΔx→0 (4a+b+aΔx)=4a+b.故应选D.8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( ) A.圆 B.抛物线C.椭圆 D.直线[答案] D[解析] 当f(x)=b时,f′(x)=0,所以f(x)的图象为一条直线,故应选D.9.一物体作直线运动,其位移s与时间t的关系是s=3t-t2,则物体的初速度为( )A.0 B.3C.-2 D.3-2t[答案] B[解析] ∵ΔsΔt=3(0+Δt)-(0+Δt)2Δt=3-Δt,∴s′(0)=limΔt→0 ΔsΔt=3.故应选B.10.设f(x)=1x,则limx→a f(x)-f(a)x-a等于( )A.-1a B.2aC.-1a2 D.1a2[答案] C[解析] limx→a f(x)-f(a)x-a=limx→a 1x-1ax-a=limx→a a-x(x-a)xa=-limx→a 1ax=-1a2.二、填空题11.已知函数y=f(x)在x=x0处的导数为11,则limΔx→0f(x0-Δx)-f(x0)Δx=________;limx→x0 f(x)-f(x0)2(x0-x)=________.[答案] -11,-112[解析] limΔx→0 f(x0-Δx)-f(x0)Δx=-limΔx→0 f(x0-Δx)-f(x0)-Δx=-f′(x0)=-11;limx→x0 f(x)-f(x0)2(x0-x)=-12limΔx→0 f(x0+Δx)-f(x0)Δx=-12f′(x0)=-112.12.函数y=x+1x在x=1处的导数是________.[答案] 0[解析] ∵Δy=1+Δx+11+Δx-1+11=Δx-1+1Δx+1=(Δx)2Δx+1,∴ΔyΔx=ΔxΔx+1.∴y′|x=1=limΔx→0 ΔxΔx+1=0.13.已知函数f(x)=ax+4,若f′(2)=2,则a等于______.[答案] 2[解析] ∵ΔyΔx=a(2+Δx)+4-2a-4Δx=a,∴f′(1)=limΔx→0 ΔyΔx=a.∴a=2.14.已知f′(x0)=limx→x0 f(x)-f(x0)x-x0,f(3)=2,f′(3)=-2,则limx→3 2x-3f(x)x-3的值是________.[答案] 8[解析] limx→3 2x-3f(x)x-3=limx→3 2x-3f(x)+3f(3)-3f(3)x-3=limx→3 2x-3f(3)x-3+limx→3 3(f(3)-f(x))x-3.由于f(3)=2,上式可化为limx→3 2(x-3)x-3-3limx→3 f(x)-f(3)x-3=2-3×(-2)=8.三、解答题15.设f(x)=x2,求f′(x0),f′(-1),f′(2).[解析] 由导数定义有f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx=limΔx→0 (x0+Δx)2-x20Δx=limΔx→0 Δx(2x0+Δx)Δx=2x0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s2,枪弹从枪口射出时所用时间为1.6×10-3s,求枪弹射出枪口时的瞬时速度.[解析] 位移公式为s=12at2∵Δs=12a(t0+Δt)2-12at20=at0Δt+12a(Δt)2∴ΔsΔt=at0+12aΔt,∴limΔt→0 ΔsΔt=limΔt→0 at0+12aΔt=at0,已知a=5.0×105m/s2,t0=1.6×10-3s,∴at0=800m/s.所以枪弹射出枪口时的瞬时速度为800m/s.17.在曲线y=f(x)=x2+3的图象上取一点P(1,4)及附近一点(1+Δx,4+Δy),求(1)ΔyΔx (2)f′(1).[解析] (1)ΔyΔx=f(1+Δx)-f(1)Δx=(1+Δx)2+3-12-3Δx=2+Δx.(2)f′(1)=limΔx→0 f(1+Δx)-f(1)Δx=limΔx→0 (2+Δx)=2.18.函数f(x)=|x|(1+x)在点x0=0处是否有导数?若有,求出来,若没有,说明理由.[解析] f(x)=x+x2 (x≥0)-x-x2 (x<0)Δy=f(0+Δx)-f(0)=f(Δx)=Δx+(Δx)2 (Δx>0)-Δx-(Δx)2 (Δx<0)∴limx→0+ΔyΔx=limΔx→0+ (1+Δx)=1,limΔx→0-ΔyΔx=limΔx→0- (-1-Δx)=-1,∵limΔx→0-ΔyΔx≠limΔx→0+ΔyΔx,∴Δx→0时,ΔyΔx无极限.∴函数f(x)=|x|(1+x)在点x0=0处没有导数,即不可导.(x→0+表示x从大于0的一边无限趋近于0,即x>0且x趋近于0)。

高中数学导数难题练习题带答案

高中数学导数难题练习题带答案

高中数学导数难题一.选择题(共20小题)1.对于任意的x∈[0,],总存在b∈R,使得|sin2x+a sin x+b|≤1恒成立,则实数a的取值范围是()A.[﹣3,1]B.[﹣1,3]C.[﹣3,3]D.[﹣1,1]2.设k,b∈R,若关于x的不等式ln(x﹣1)+x≤kx+b在(1,+∞)上恒成立,则的最小值是()A.﹣e2B.﹣C.﹣D.﹣e﹣13.设k,b∈R,若关于x的不等式kx+b+1≥lnx在(0,+∞)上恒成立,则的最小值是()A.﹣e2B.﹣C.﹣D.﹣e4.已知曲线在x=x1处的切线为l1,曲线y=lnx在x=x2处的切线为l2,且l1⊥l2,则x2﹣x1的取值范围是()A.B.(﹣∞,﹣1)C.(﹣∞,0)D.5.若对任意的a∈R,不等式e2a+a2+b2﹣2ab≥20恒成立,则实数b的取值范围是()A.b B.b≥3+ln2C.b≥4+ln2D.b≥5+ln26.已知曲线f(x)=lnx+ax+b在x=1处的切线是x轴,若方程f(x)=m(m∈R)有两个不等实根x1,x2,则x1+x2的取值范围是()A.(0,)B.(0,1)C.(2,+∞)D.(4,+∞)7.已知a∈R,函数f(x)=,则下列说法正确的是()A.若a<﹣1,则y=f(x)(x∈R)的图象上存在唯一一对关于原点O对称的点B.存在实数a使得y=f(x)(x∈R)的图象上存在两对关于原点O对称的点C.不存在实数a使得y=f(x)(x∈R)的图象上存在两对关于y轴对称的点D.若y=f(x)(x∈R)的图象上存在关于y轴对称的点,则a>18.定义在R上的函数f(x)满足e4(x+1)f(x+2)=f(﹣x),且对任意的x≥1都有f'(x)+2f(x)>0(其中f'(x)为f(x)的导数),则下列一定判断正确的是()A.e4f(2)>f(0)B.e2f(3)<f(2)C.e10f(3)<f(﹣2)D.e6f(3)<f(﹣1)9.已知a,b∈R且ab≠0,对于任意x≥0均有(x﹣a)(x﹣b)(x﹣2a﹣b)≥0,则()A.a<0B.a>0C.b<0D.b>010.已知函数,若关于x的不等式在R上恒成立,则实数a的取值范围为()A.B.C.D.11.已知函数y=f(x)在R上的图象是连续不断的,其导函数为f'(x),且f'(x)>﹣f(x),若对于∀x>0,不等式xf(lnx)﹣e ax f(ax)≤0恒成立,则实数a的最小值为()A.e B.C.D.e212.若对任意的x∈R,都存在x0∈[ln2,2],使不等式+4x+m≥0成立,则整数m的最小值为()(提示:ln2≈0.693)A.3B.4C.5D.613.已知函数f(x)=e x﹣ax﹣1,g(x)=lnx﹣ax﹣1,其中0<a<1,e为自然对数的底数,若∃x0∈(0,+∞),使f (x0)g(x0)>0,则实数a的取值范围是()A.B.C.D.14.已知函数f(x)=ae x﹣x(a∈R)有两个零点x1,x2,且x1<x2则下列结论中不正确的是()A.B.0<x1<1C.x1+x2>2D.lnx1﹣x1<lnx2﹣x215.已知函数f(x)=lnx﹣ax有两个零点x1,x2(x1<x2),则下列说法错误的是()A.B.x1+x2<2e C.有极大值点x0,且x1+x2>2x0D.16.已知函数f(x)=,g(x)=xe﹣x,若存在x1∈(0,+∞),x2∈R,使得f(x1)=g(x2)=k(k<0)成立,则最小值为()A.B.﹣C.D.﹣17.已知不等式e x﹣x﹣1>m[x﹣ln(x+1)]对一切正数x都成立,则实数m的取值范围是()A.B.C.(﹣∞,1]D.(﹣∞,e]18.已知函数f(x)是定义在(﹣,)上的奇函数.当时,f(x)+f′(x)tan x>0,则不等式cos x •f(x+)+sin x•f(﹣x)>0的解集为()A.(,)B.(﹣,)C.D.19.若关于x的不等式2lnx≤ax2+(2a﹣2)x+1恒成立,则a的最小整数值是()A.0B.1C.2D.320.已知可导函数f(x)的导函数f'(x),若对任意的x∈R,都有f(x)>f'(x)+2,且f(x)﹣2020为奇函数,则不等式f(x)﹣2018e x<2的解集为()A.(﹣∞,0)B.(0,+∞)C.D.二.填空题(共10小题)21.已知函数f(x)=x3﹣3x,若对任意的实数x,不等式f(x+t)>f(x)+t(t≠0)恒成立,则实数t的取值范围.22.已知函数f(x)对定义域内R内的任意x都有f(x)=f(4﹣x),且当x≠2,其导数f′(x)满足xf′(x)<2f′(x),若f(3)=0,则不等式xf(x)>0的解集为.23.已知函数f(x)=,则过原点且与“曲线y=f(x)在y轴右侧的图象”相切的直线方程为,若f(x)=mx有两个不同的根,则实数m的取值范围是.24.已知函数f(x)=axlnx+(a>0).(1)当a=1时,f(x)的极小值为;(2)若f(x)≥ax在(0,+∞)上恒成立,则实数a的取值范围为.25.若不等式x﹣2≤x2+ax+b≤4lnx对任意的x∈[1,e]恒成立,则实数b的最大值为.26.若函数f(x)=x3﹣ax﹣2(a∈R)在(﹣∞,0)内有且只有一个零点,则f(x)在[﹣1,2]上的最小值为.27.过曲线上一点P作该曲线的切线l,l分别与直线y=x,y=2x,y轴相交于点A,B,C.设△OAC,△OAB的面积分别为S1,S2,则S1=,S2的取值范围是.28.当x∈[0,+∞)时,不等式x2+3x+2﹣a≥0恒成立,则a的取值范围是.29.若不等式x2﹣|x﹣2a|≤a﹣3在x∈[﹣1,1]上恒成立,则正实数a的取值范围是.30.已知函数,若直线y=2x﹣b与函数y=f(x),y=g(x)的图象均相切,则a的值为;若总存在直线与函数y=f(x),y=g(x)图象均相切,则a的取值范围是.三.解答题(共10小题)31.已知函数f(x)=ax﹣lnx.(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,e]时,是否存在实数a,使得f(x)的最小值为4?若存在,求出实数a,若不存在说明理由.32.已知函数f(x)=x sin x+cos x+ax2,x∈[﹣π,π].(1)当a=0时,求f(x)的单调区间;(2)当a>0时,讨论f(x)的零点个数.33.已知函数f(x)=e x+,其导函数为f′(x),函数g(x)=,对任意x∈R,不等式g(x)≥ax+1恒成立.(Ⅰ)求实数a的值;(Ⅱ)若0<m<2e,求证:x2g(x)>m(x+1)lnx.34.设函数f(x)=e x﹣ax﹣1,a∈R.(Ⅰ)讨论f(x)在(0,+∞)上的单调性;(Ⅱ)当a>1时,存在正实数m,使得对∀x∈(0,m),都有|f(x)|>x,求a的取值范围.35.已知函数.(1)讨论f(x)的单调性;(2)若恒成立,求证:.36.已知函数f(x)=.(1)求函数f(x)的极值;(2)令h(x)=x2f(x),若对∀x≥1都有h(x)≥ax﹣1,求实数a的取值范围.37.已知函数f(x)=lnx﹣.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)存在两个极值点x1,x2,求实数a的取值范围,并证明:f(x1),f(1),f(x2)成等差数列.38.已知函数f(x)=alnx(a≠0)与的图象在它们的交点P(s,t)处具有相同的切线.(1)求f(x)的解析式;(2)若函数g(x)=(x﹣1)2+mf(x)有两个极值点x1,x2,且x1<x2,求的取值范围.39.已知函数f(x)=﹣x+(x+1)ln(x+1)(a∈R).(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;(2)若∀x1,x2∈(0,+∞),x1<x2,都有f(x1)<f(x2),求实数a的取值范围.40.已知实数a≥﹣1,设f(x)=(x+a)lnx,x>0.(1)若a=﹣1,有两个不同实数x1,x2不满足|f'(x1)|=|f'(x2)|,求证:x1+x2>2;(2)若存在实数,使得|f(x)|=c有四个不同的实数根,求a的取值范围.参考答案与试题解析一.选择题(共20小题)1.【解答】解:令t=sin x∈[0,1],则f(t)=t2+at+b,t∈[0,1].由已知得:①当,即a≥0时,则,整理得0≤a≤1;②当,即﹣1<a<0时,则,即,显然始终存在符合题意的b,使原式成立;③当,即﹣2<a≤﹣1时,则,显然符合题意的b存在;④当,即a≤﹣2时,则,即,可得始终存在b,且﹣3≤a≤﹣2.综上可知,a的取值范围是[﹣3,1].故选:A.2.【解答】解:ln(x﹣1)+x≤kx+b在(1,+∞)上恒成立,即为ln(x﹣1)+x﹣kx≤b对x>1恒成立,可令t=x﹣1,t>0,则lnt+t+1﹣k(t+1)≤b,令f(t)=lnt+(1﹣k)t+1﹣k,f′(t)=+1﹣k,若k≤1,则f′(t)>0,可得f(t)在t>1递增,当t→∞时,f(t)→∞,不等式不能成立;故k>1,当=k﹣1时,f(t)取得最大值f(t)max=f()=ln﹣1+1﹣k=﹣ln(k﹣1)﹣k,即﹣ln(k﹣1)﹣k≤b,所以ln(k﹣1)+k﹣1≥﹣2﹣(b﹣1),则≥﹣﹣1,可令k﹣1=u,g(u)=﹣﹣1,g′(u)=﹣=,可得当lnu=﹣1时,u=,g(u)min=﹣2e+e﹣1=﹣e﹣1,则的最小值是﹣e﹣1.故选:D.3.【解答】解:kx+b+1≥lnx在(0,+∞)上恒成立,即为lnx﹣kx﹣1≤b在(0,+∞)上恒成立,令f(x)=lnx﹣kx﹣1,f′(x)=﹣k,若k≤0,则f′(x)>0,可得f(x)在(0,+∞)递增,当x→∞时,f(x)→∞,不等式不能成立;故k>0,当=k时,f(x)取得最大值f(x)max=f()=ln﹣2=﹣lnk﹣2,即﹣lnk﹣2≤b,则≥﹣﹣,k>0,可令g(k)=﹣﹣,k>0,g′(k)=﹣=,可得当lnk=﹣1时,k=,g(k)min=﹣2e+e=﹣e,则的最小值是﹣e.故选:D.4.【解答】解:由,得,则,由y=lnx,得y′=,则,∵l1⊥l2,∴,即.∵x2>0,∴x1>1,又,令h(x)=,x>1.则h′(x)=.当x∈(1,+∞)时,y=2﹣x﹣e x为减函数,故2﹣x﹣e x<2﹣1﹣e<0.∴h′(x)<0在(1,+∞)上恒成立,故h(x)在(1,+∞)上为减函数,则h(x)<h(1)=﹣1.又当x>1时,<,∴h(x)的取值范围为(﹣∞,﹣1).即x2﹣x1的取值范围是(﹣∞,﹣1).故选:B.5.【解答】解:令f(x)=e2x+x2+b2﹣2bx﹣20,f′(x)=2e2x+2x﹣2b,f″(x)=4e2x+2>0,所以f′(x)在R上单调递增,又∵,所以存在x0使得f′(x0)=0,代入化简可得,那么f(x)在(﹣∞,x0)单调递减,在(x0,+∞)上单调递增.∴=,又∵f(x0)≥0,即.令,则t2+t≥20,解得:t≤﹣5 (含去),t≥4,即x0≥ln2,∴,故选:C.6.【解答】解:易知,切点为(1,0),切线斜率为0,而.∴,解得a=﹣1,b=1.∴f(x)=lnx﹣x+1(x>0).∵,易知f′(1)=0,且当x∈(0,1)时,f′(x)>0;x∈(1,+∞)时,f′(x)<0.∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数,故若方程f(x)=m(m∈R)有两个不等实根x1<x2,则必有0<x1<1<x2,则2﹣x1>1.∵f(x1)=f(x2),∴f(x2)﹣f(2﹣x1)=f(x1)﹣f(2﹣x1),令g(x)=f(x)﹣f(2﹣x)=lnx﹣x﹣1﹣[ln(2﹣x)﹣(2﹣x)﹣1]=lnx﹣ln(2﹣x)﹣2x+2,x∈(0,1),∵(0<x<1),∴g(x)在(0,1)上单调递增,而g(1)=0,故g(x)<0在(0,1)上恒成立,∴f(x2)﹣f(2﹣x1)<0恒成立,即f(x2)<f(2﹣x1)恒成立而此时x2,2﹣x1∈(1,+∞),且f(x)在(1,+∞)上是减函数,∴x2>2﹣x1,即x1+x2>2.故选:C.7.【解答】解:由关于原点对称的点的特点,可将x换为﹣x,y换为﹣y,可得f(x)=﹣x2﹣2x+a(x≤0)关于原点O对称的解析式g(x)=x2﹣2x﹣a(x≥0),令h(x)=e x﹣x2+2x+a(x>0),则h'(x)=e x﹣2x+2,h''(x)=e x﹣2,由x>ln2可得h′(x)递增;0<x<ln2时,h′(x)递减,所以h'(x)≥h′(ln2)=4﹣2ln2>0,因此,h(x)是单调递增的,且h(x)=e x﹣x2+2x+a≥h(0)=1+a,故当a<﹣1,h(x)有唯一零点,当a≥﹣1时,h(x)不存在零点,故A正确;B不正确;由关于y轴对称的点的特点,可将x换为﹣x,y不变,可得f(x)=﹣x2﹣2x+a(x≤0)关于y轴对称的解析式m(x)=﹣x2+2x+a(x≥0),令n(x)=e x+x2﹣2x﹣a(x>0),n′(x)=e x+2x﹣2,n″(x)=e x+2,所以n″(x)>0,n′(x)递增,n′(x)≥n′(0)=﹣1,因此,n(x)不单调,当a<0时,n(x)有零点,当a=1时,n(x)存在两对零点,故C,D都不正确.故选:A.8.【解答】解:设F(x)=e2x•f(x),则F'(x)=2e2x f(x)+e2x f'(x)=e2x[2f(x)+f'(x)],∵对任意的x≥1都有f′(x)+2f(x)>0;则F'(x)>0,则F(x)在[1,+∞)上单调递增;F(x+2)=e2(x+2)•f(x+2);F(﹣x)=e﹣2x•f(﹣x);因为e4(x+1)f(x+2)=f(﹣x),∴e2(x+2)•e2x•f(x+2)=f(﹣x);∴e2(x+2)•f(x+2)=e﹣2x•f(﹣x)∴F(x+2)=F(﹣x),所以F(x)关于x=1对称,则F(﹣2)=F(4),∵F(x)在[1,+∞)上单调递增;∴F(3)<F(4)即F(3)<F(﹣2),∴e6•f(3)<e﹣4•f(﹣2);即e10•f(3)<f(﹣2)成立.故C正确;F(3)=F(﹣1),F(0)=F(2)故A,D均错误;F(3)>F(2)∴e2f(3)>f(2).B错误.故选:C.9.【解答】解:设f(x)=(x﹣a)(x﹣b)(x﹣2a﹣b),可得f(x)的图象与x轴有三个交点,即f(x)有三个零点a,b,2a+b且f(0)=﹣ab(2a+b),由题意知,f(0)≥0在x≥0上恒成立,则ab(2a+b)≤0,a<0,b<0,可得2a+b<0,ab(2a+b)≤0恒成立,排除B,D;我们考虑零点重合的情况,即中间和右边的零点重合,左边的零点在负半轴上.则有a=b或a=2a+b或b=b+2a三种情况,此时a=b<0显然成立;若b=b+2a,则a=0不成立;若a=2a+b,即a+b=0,可得b<0,a>0且a和2a+b都在正半轴上,符合题意,综上b<0恒成立.故选:C.10.【解答】解:当x≥1时,f(x)=x2﹣x+4=(x﹣2)2+>0,当x<1时,f(x)=﹣x3+x2﹣x+,则f′(x)=﹣x2+2x﹣1<0,故f(x)在(﹣∞,1)递减,f(x)>f(1)=3>0,若关于x的不等式在R上恒成立,则﹣x2+x﹣4≤x﹣a≤x2﹣x+4且x3﹣x2+x﹣≤x﹣a≤﹣x3+x2﹣x+恒成立,即﹣x2+x﹣4≤a≤x2﹣x+4且x3﹣x2+x﹣≤a≤﹣x3+x2﹣x+恒成立,所以(﹣x2+x﹣4)max≤a≤(x2﹣x+4)min且(x3﹣x2+x﹣)max≤a≤(﹣x3+x2﹣x+)min,对于y=﹣x2+x﹣4(x≥1),对称轴是x=,故x=时y取最大值﹣,对于y=x2﹣x+4(x≥1),对称轴是x=,故x=时y取最小值,故﹣≤a≤①,对于y=x3﹣x2+x﹣(x<1),y′=x2﹣2x+>0,函数在(﹣∞,1)递增,故y<y|x=1=﹣,对于y=﹣x3+x2﹣x+(x<1),y′=﹣(x﹣1)2+,令y′>0,解得<x<1,令y′<0,解得x<,故函数在(﹣∞,)递减,在(,1)递增,y min=y|x==,故﹣≤a≤②,综合①②,得﹣≤a≤.故选:B.11.【解答】解:根据題意,令F(x)=e x•f(x),则F'(x)=e x[f(x)+f'(x)]>0,故函数F(x)在R上单调递增,F(lnx)=e lnx f(lnx)=xf(lnx),F(ax)=e ax f(ax),又∀x>0,不等式xf(lnx)﹣e ax f(ax)≤0恒成立,所以F(lnx)≤F(ax)在(0,+∞)恒成立.从而lnx≤ax,即在(0,+∞)恒成立.令,,令g'(x)=0,则x=e,所以在(0,e)单调递增,在(e,+∞)单调递减.所以,故.则实数a的最小值为,故选:B.12.【解答】解:设,由题意可知f(x)≥0对x∈R恒成立,则在x0∈[ln2,2]上有解,即在x0∈[ln2,2]上有解.设g(x)=x2+2x﹣e x﹣m+4,∴h(x)=g'(x)=2x﹣e x+2,则h'(x)=2﹣e x,∵x∈[ln2,2],∴h'(x)≤h'(ln2)=2﹣e ln2=0,则g'(x)在[ln2,2]上单调递减.∵g'(ln2)=2ln2>0,g'(2)=6﹣e2<0,∴∃x1∈(ln2,2),g'(x1)=0,则g(x)在[ln2,x1)上单调递增,在(x1,2]上单调递减.∵g(ln2)=(ln2)2+2ln2+2﹣m,g(2)=12﹣e2﹣m,∴g(2)﹣g(ln2)=10﹣e2﹣(ln2)2﹣2ln2>0,则g(ln2)≤0,即(ln2)2+2ln2+2﹣m≤0,故m≥(ln2)2+2ln2+2,∵m∈Z,∴m的最小值是4.故选:B.13.【解答】解:由e x﹣ax﹣1,得f′(x)=e x﹣a,∵0<a<1,∴当x∈(0,+∞)时,f′(x)=e x﹣a>0恒成立,则f(x)在(0,+∞)上单调递增,则f(x)>f(0)=0;若∃x0∈(0,+∞),使f(x0)g(x0)>0,则∃x0∈(0,+∞),使g(x0)>0,即∃x0∈(0,+∞),使lnx0﹣ax0﹣1>0,∴∃x0∈(0,+∞),a<,令h(x)=,则h′(x)==,当x∈(0,e2)时,h′(x)>0,h(x)单调递增,当x∈(e2,+∞)时,h′(x)<0,h(x)单调递减,∴h(x)有极大值也是最大值为h(e2)=,则a<,∴实数a的取值范围是,故选:A.14.【解答】解:f′(x)=ae x﹣1,当a≤0时,f′(x)<0在x∈R上恒成立,此时f(x)在R上单调递减,不合题意;当a>0时,由f'(x)=0,解得x=﹣lna,当x<﹣lna时,f'(x)<0,f(x)单调递减,当x>﹣lna时,f'(x)>0,f(x)单调递增,∴当a>0时,f(x)单调减区间为(﹣∞,﹣lna),单调增区间为(﹣lna,+∞),可知当x=﹣lna时,函数取得极小值为f(﹣lna)=ae﹣lna+lna=lna+1,又当x→﹣∞时,f(x)→+∞,x→+∞时,f(x)→+∞,∴要使函数f(x)有两个零点,则,得0<a<,故A正确;由f(0)=a>0,极小值点x=﹣lna>0,可得0<x1<x2.∵x1,x2是f(x)的两个零点,∴,.可得lnx1=lna+x1,lnx2=lna+x2.故lnx1﹣x1=lnx2﹣x2,故D错误;由lnx1﹣x1=lnx2﹣x2=lna,设g(x)=lnx﹣x﹣lna,则x1,x2为g(x)的两个零点,g′(x)=﹣1=,得g(x)在(0,1)上单调增,在(1,+∞)上单调减,∴0<x1<1<x2,故B正确;设h(x)=g(x)﹣g(2﹣x),(0<x<1),则h(x)=lnx﹣ln(2﹣x)+2﹣2x(0<x<1),h′(x)=+﹣2=>0恒成立,则h(x)在(0,1)上单调增,∵h(x)<h(1)=0,∴h(x1)=g(x1)﹣g(2﹣x1)<0,即g(x1)<g(2﹣x1),得g(x2)<g(2﹣x1).又g(x)在(1,+∞)上单调减,x2,2﹣x1∈(1,+∞),∴x2>2﹣x1,即x1+x2>2,故C正确.综上,错误的结论是D.故选:D.15.【解答】解:由f(x)=lnx﹣ax,可得,当a≤0时,f′(x)>0,∴f(x)在x∈(0,+∞)上单调递增,与题意不符;当a>0时,可得当,解得:,可得当时,f′(x)>0,f(x)单调递增,当时,f′(x)<0,f(x)单调递减,可得当时,f(x)取得极大值点,又因为由函数f(x)=lnx﹣ax有两个零点x1,x2(x1<x2),可得,可得,综合可得:,故A正确;由上可得f(x)的极大值为,设,设,其中,可得,可得,可得,易得当时,g′(x)=0,当,g′(x)≤0,故,,故,,由,易得,且,且时,f′(x)<0,f(x)单调递减,故由,可得,即,即:有极大值点,且,故C正确,B不正确;由函数f(x)=lnx﹣ax有两个零点x1,x2(x1<x2),可得lnx1=ax1,lnx2=ax2,可得,,可得,由前面可得,,可得,故D正确.故选:B.16.【解答】解:函数f(x)的定义域为(0,+∞),f′(x)=,∴当x∈(0,e)时,f′(x)>0,f(x)单调递增,当x∈(e,+∞)时,f′(x)<0,f(x)单调递减,又f(1)=0,所以x∈(0,1)时,f(x)<0;x∈(1,+∞)时,f(x)>0,同时g(x)===f(e x),若存在x1∈(0,+∞),x2∈R,使得f(x1)=g(x2)=k(k<0)成立,则0<x1<1且f(x1)=g(x2)=f(),所以x1=,即x2=lnx1,又k=,所以==k,故e k=k3e k,令h(k)=k3e k,k<0,则h′(k)=k2(k+3)e k,令h′(k)<0,解得k<﹣3,令h′(k)>0,解得:﹣3<k<0,∴h(k)在(﹣∞,﹣3)单调递减,在(﹣3,0)单调递增,∴h(k)min=h(﹣3)=﹣,故选:D.17.【解答】解:由题意可知:当x>0时,e x﹣x﹣1﹣m[x﹣ln(x+1)]>0恒成立,设f(x)=e x﹣x﹣1﹣m[x﹣ln(x+1)],则f′(x)=e x﹣1﹣m(1﹣),f″(x)=e x﹣,①m≤0时,f″(x)>0恒成立,∴f′(x)递增,∵f′(0)=0,∴x>0时,f′(x)>f′(0)=0,f(x)递增,又∵f(0)=0,∴x>0时,f(x)>f(0)=0,符合题意,②m>0时,f″′(x)=e x+,∴f′″(x)>0恒成立,f″(x)递增,f″(0)=1﹣m,(i)1﹣m≥0即0<m≤1时,与①同理,m符合题意,(ii)1﹣m<0,即m>1时,f″(0)<0,另一方面,显然当x→+∞时,f″(x)>0,且f″(x)连续,∴由零点定理,存在x0∈(0,+∞),使得f″(x0)=0,∴0<x<x0时,f″(x)<0,f′(x)递减,又∵f′(0)=0,∴0<x<x0时,f′(x)<0,f(x)递减,f(0)=0,∴0<x<x0时,f(x)<0,不合题意,综上,m的范围是(﹣∞,1],故选:C.18.【解答】解:令g(x)=f(x)sin x,g′(x)=f(x)cos x+f′(x)sin x=[f(x)+f′(x)tan x]•cos x,当x∈[0,)时,f(x)+f′(x)tan x>0,∴g′(x)>0,即函数g(x)单调递增.又g(0)=0,∴时,g(x)=f(x)sin x>0,∵f(x)是定义在(﹣,)上的奇函数,∴g(x)是定义在(﹣,)上的偶函数.不等式cos x•f(x+)+sin x•f(﹣x)>0,即sin(x+)f(x+)>sin xf(x),即g(x+)>g(x),∴|x+|>|x|,∴x>﹣①,又﹣<x+<,故﹣π<x<0②,由①②得不等式的解集是(﹣,0).故选:C.19.【解答】解:若关于x的不等式2lnx≤ax2+(2a﹣2)x+1恒成立,问题等价于a≥在(0,+∞)恒成立,令g(x)=,则g′(x)=,令h(x)=﹣x﹣lnx,(x>0),则h′(x)=﹣﹣<0,故h(x)在(0,+∞)递减,不妨设h(x)=0的根是x0,则lnx0=﹣x0,则x∈(0,x0)时,g′(x)>0,g(x)递增,x∈(x0,+∞)时,g′(x)<0,g(x)递减,∴g(x)max=g(x0)===,∵h(1)=1>0,h(2)=﹣ln2<0,∴1<x0<2,<<1,∴a≥1,a的最小整数值是1,故选:B.20.【解答】解:设g(x)=,由f(x)>f′(x)+2,得:g′(x)=<0,故函数g(x)在R递减,由f(x)﹣2020为奇函数,得f(0)=2020,∴g(0)=f(0)﹣2=2018,即g(0)=2018,∵不等式f(x)﹣2018e x<2,∴<2018,即g(x)<g(0),结合函数的单调性得:x>0,故不等式f(x)﹣2018e x<2的解集是(0,+∞),故选:B.二.填空题(共10小题)21.【解答】解:函数f(x)=x3﹣3x,若对任意的实数x,不等式f(x+t)>f(x)+t(t≠0)恒成立,则(x+t)3﹣3(x+t)>x3﹣3x+t,即x3+3x2t+3xt2+t3﹣3x﹣3t>x3﹣3x+t,所以3x2t+3xt2+t3﹣4t>0(t≠0)恒成立,所以t>0,且△=(3t2)2﹣4•3t•(t3﹣4t)=﹣3t4+48t2<0,解得t>4,又t<0时,不等式不恒成立.综上,t的范围是(4,+∞).22.【解答】解:∵函数f(x)对定义域R内的任意x都有f(x)=f(4﹣x),∴f(x)关于直线x=2对称;又当x≠2时其导函数f′(x)满足xf′(x)<2f′(x)⇔f′(x)(x﹣2)<0,∴当x>2时,f′(x)<0,f(x)在(2,+∞)上的单调递减;同理可得,当x<2时,f(x)在(﹣∞,2)单调递增;∵f(3)=0,∴f(1)=0,即当1<x<3时,f(x)>0,当x>3或x<1时,f(x)<0,即f(x)的草图如右:则不等式xf(x)>0等价为或,即1<x<3或x<0,即不等式的解集为(﹣∞,0)∪(1,3),故答案为:(﹣∞,0)∪(1,3).23.【解答】解:设切点为(x0,lnx0),由f(x)=lnx,得f′(x)=,则f′(x0)=,∴曲线y=f(x)在y轴右侧的图象在切点处的切线方程为y﹣lnx0=,把原点代入,可得﹣lnx0=﹣1,即x0=e.则切线方程为y﹣1=(x﹣e),即y=;作出函数f(x)=的图象如图:若f(x)=mx有两个不同的根,则m≤0或<m<1.∴m的取值范围为(﹣∞,0]∪(,1).故答案为:y=;(﹣∞,0]∪(,1).24.【解答】解:(1)a=1时,f(x)=xlnx+,(x>0),f′(x)=lnx+1﹣,f″(x)=+>0,故f′(x)在(0,+∞)递增,而f′(1)=0,故x∈(0,1)时,f′(x)<0,f(x)递减,x∈(1,+∞)时,f′(x)>0,f(x)递增,故f(x)极小值=f(1)=1;(2)若f(x)≥ax在(0,+∞)上恒成立,即a(1﹣lnx)≤在(0,+∞)恒成立,①1﹣lnx≤0即x≥e时,∵a>0,(1﹣lnx)≤0,>0,故a(1﹣lnx)≤在(0,+∞)恒成立,②1﹣lnx>0即0<x<e时,问题转化为a≤在(0,+∞)恒成立,即a≤[]min,只需求出g(x)=x2(1﹣lnx)的最大值即可,(0<x<e),g′(x)=x(1﹣2lnx),令g′(x)>0,解得:0<x<,令g′(x)<0,解得:<x<e,故g(x)在(0,)递增,在(,e)递减,故g(x)max=g()=,故a≤=,综上,a∈(0,].故答案为:1,(0,].25.【解答】解:由x﹣2≤x2+ax+b≤4lnx对任意的x∈[1,e]恒成立,得﹣x2+x﹣2≤ax+b≤4lnx﹣x2对任意的x∈[1,e]恒成立,令f(x)=﹣x2+x﹣2,g(x)=4lnx﹣x2.由g(x)=4lnx﹣x2,得g′(x)=(1≤x≤e).当x∈(1,)时,g′(x)>0,g(x)单调递增,当x∈()时,g′(x)<0,g(x)单调递减.在同一平面直角坐标系内,作出函数y=f(x)与y=g(x)的图象如图:设过(1,﹣1)与f(x)=﹣x2+x﹣2相切的直线方程为y+1=k(x﹣1),联立,消去y得x2+(k﹣1)x+1﹣k=0.由△=(k﹣1)2﹣4(1﹣k)=0,解得k=﹣3或k=1.当k=﹣3时,直线方程为y=﹣3x+2.由图可知,满足不等式x﹣2≤x2+ax+b≤4lnx对任意的x∈[1,e]恒成立的实数b的最大值为2.故答案为:2.26.【解答】解:∵f(x)=x3﹣ax﹣2(a∈R),∴f′(x)=3x2﹣a(x<0),①当a≤0时,f′(x)=3x2﹣a>0,函数f(x)在(﹣∞,0)上单调递增,又f(0)=﹣2<0,∴f(x)在(﹣∞,0)上没有零点;②当a>0时,由f′(x)=3x2﹣a>0,解得x<或x>(舍).∴f(x)在(﹣∞,﹣)上单调递增,在(,0)上单调递减,而f(0)=﹣2<0,要使f(x)在(﹣∞,0)内有且只有一个零点,∴f()=,解得a=3,f(x)=x3﹣3x﹣2,f′(x)=3x2﹣3=3(x+1)(x﹣1),x∈[﹣1,2],当x∈(﹣1,1)时,f′(x)<0,f(x)单调递减,当x∈(1,2)时,f′(x)>0,f(x)单调递增.又f(﹣1)=0,f(1)=﹣4,f(2)=0,∴f(x)min=f(1)=﹣4.故答案为:﹣4.27.【解答】解:由y=x+,得y′=1﹣,设P()(x0>0),则,∴曲线在P处的切线方程为.分别与y=x与y=2x联立,可得A(2x0,2x0),B(,),取x=0,可得C(0,),又O(0,0),∴△OAC的面积S1=;OA=,点B到直线x﹣y=0的距离d==.∴△OAB的面积S2===∈(0,2).故答案为:2;(0,2).28.【解答】解:可设t=,由x≥0可得t≥1,由x=,可得不等式恒成立,即为()2+3()+2﹣at﹣a2≥0对t≥1恒成立,化为a2+at﹣(t2+3)(t2+1)≤0对t≥1恒成立,设f(t)=a2+at﹣(t2+3)(t2+1),f′(t)=a﹣(t3+2t),由题意可得f(t)的最大值小于等于0,若f(x)不单调,可得a≥3,再由t≥1时,f(t)=(t3+2t)2+t(t3+2t)﹣﹣(t2+3)(t2+1)的导数为f′(t)=6t5+19t3+10t>0,即有f(t)≥f(1)=10>0,不等式不恒成立,可得f(x)单调,且f(x)在[1,+∞)递减,可得a﹣(t3+2t)≤0,即a≤3;又a2+a﹣×(1+3)×(1+1)≤0,解得﹣2≤a≤1,即a的范围是[﹣2,1].故答案为:[﹣2,1].29.【解答】解:x2﹣|x﹣2a|≤a﹣3即|x﹣2a|≥x2﹣a+3,可得x﹣2a≥x2﹣a+3,或x﹣2a≤﹣x2+a﹣3,即为a≤x﹣x2﹣3或3a≥x2+x+3在﹣1≤x≤1恒成立,由y=x﹣x2﹣3在[﹣1,1]的最小值为﹣1﹣1﹣3=﹣5,可得a≤﹣5;由y=x2+x+3在[﹣1,1]的最大值为1+1+3=5,可得3a≥5,即a≥;由a>0,可得a≥.故答案为:a≥.30.【解答】解:设直线y=2x﹣b与函数y=f(x)的图象相切的切点为(m,2lnm),由f′(x)=,可得=2,即m=1,切点为(1,0),则b=2,切线的方程为y=2x﹣2,联立y=g(x)=ax2﹣x﹣,可得ax2﹣3x+=0,由题意可得△=9﹣4a•=0,解得a=;设y=f(x)与y=g(x)的图象在交点处存在切线y=kx+t,且切点为(n,2lnn),由f′(x)=,g′(x)=2ax﹣1,可得=k=2an﹣1,2lnn=kn+t=an2﹣n﹣,化为kn=2,an2=,则2lnn=,即4lnn+n=1,设h(n)=4lnn+n,h′(n)=+1>0,可得h(n)在(0,+∞)递增,由h(1)=1,可得4lnn+n=1的解为n=1,则a=,由y=ax2﹣x﹣(a>0)的图象可得,当a越大时,抛物线的开口越小,可得此时y=f(x)和y=g(x)的图象相离,总存在直线与它们的图象都相切,则a的范围是[,+∞).故答案为:,[,+∞).三.解答题(共10小题)31.【解答】解:(1)f′(x)=a ﹣=(x>0),当a≤0时,f′(x)<0,∴f(x)递减,当a>0时,令f′(x)<0,得0<x <;令f′(x)>0,得x >,综上:a≤0时减区间为(0,+∞),a>0,时减区间为(0,);增区间为[,+∞);(2)a≤0时,f(x)在(0,e]上为减函数,∴f(x)min=f(e)=ae﹣1=4,∴a =>0,舍去,a>0时①若≥e即a ≤时f(x)在(0,e]上为减函数,∴f(x)min=f(e)=ae﹣1=4,∴a =,舍去,②若<e即a >时f(x)在(0,)上递减,在(,e]上递增,∴f(x)min=f ()=1﹣ln=4,∴a=e3.32.【解答】解:(1)当a=0时,f(x)=x sin x+cos x,x∈[﹣π,π].f'(x)=sin x+x cos x﹣sin x=x cos x.当x在区间[﹣π,π]上变化时,f'(x),f(x)的变化如下表x﹣π(﹣π,﹣)﹣(﹣,0)0(0,)(,π)πf'(x)+0﹣0+0﹣f(x)﹣1极大值极小值1极大值﹣1∴f(x)的单调增区间为(﹣π,﹣),(0,);f(x )的单调减区间为(﹣,0),(,π).(2)任取x∈[﹣π,π].∵f(﹣x)=(﹣x)sin(﹣x)+cos(﹣x)+a(﹣x)2=x sin x+cos x +ax2=f(x),∴f(x)是偶函数.f′(x)=ax+x cos x=x(a+cos x).当a≥1时,a+cos x≥0在[0,π)上恒成立,∴x∈[0,π)时,f′(x)≥0.∴f(x)在[0,π]上单调递增.又∵f(0)=1,∴f(x)在[0,π]上有0个零点.又∵f(x)是偶函数,∴f(x)在[﹣π,π]上有0个零点.当0<a<1时,令f′(x)=0,得cos x=﹣a.由﹣1<﹣a<0可知存在唯一x0∈(,π)使得cos x0=﹣a.∴当x∈[0,x0)时,f′(x)≥0,f(x)单调递增;当x∈(x0,π)时,f′(x)<0,f(x)单调递减.∵f(0)=1,f(x0)>1,f(π)=aπ2﹣1.①当aπ2﹣1>0,即<a<1时,f(x)在[0,π]上有0个零点.由f(x)是偶函数知f(x)在[﹣π,π]上有0个零点.②当aπ2﹣1≤0,即0<a≤时,f(x)在[0,π]上有1个零点.由f(x)是偶函数知f(x)在[﹣π,π]上有2个零点.综上,当0<a≤时,f(x)有2个零点;当a>时,f(x)有0个零点.33.【解答】解:(Ⅰ)f′(x)=e x﹣e﹣x,g(x)=e x,h(x)=e x﹣ax﹣1,h′(x)=e x﹣a,(1)a≤0时,h′(x)>0,h(x)在R递增,又h(﹣1)=﹣1+a<0,与题意不符,舍去,(2)a>0时,由h′(x)>0,解得:x>lna,由h′(x)<0,解得:x<lna,故h(x)在(﹣∞,lna)递减,在(lna,+∞)递增,故h(x)min=h(lna)=a﹣alna﹣1,由已知得e x﹣ax﹣1≥0恒成立,故只需h(x)min≥0,故只需a﹣alna﹣1≥0①,设g(x)=a﹣alna﹣1,g′(x)=﹣lna,由g′(x)>0,解得:0<x<1,由g′(x)<0,解得:x>1,故g(x)在(0,1)递增,在(1,+∞)递减,故g(x)max=g(1)=0,即a﹣alna﹣1≤0②,由①②得实数a的值为1,综上:a=1;证明:(Ⅱ)由(Ⅰ)得:当x>0时,e x﹣x﹣1>0即e x>x+1,x2e x>x2(x+1),欲证x2e x>m(x+1)lnx,x>0,即证x2(x+1)>m(x+1)lnx,即证x2>mlnx(x>0),①当x∈(0,1]时,x2>0>mlnx,②当x∈(1,+∞)时,令F(x)=,则F′(x)=,由F′(x)>0,解得:x>,由F′(x)<0,解得:1<x<,故F(x)在(1,)递减,在(,+∞)递增,故x>1时,F(x)≥F()=2e,由已知0<m<2e,故m<F(x),即当x∈(1,+∞)时,m<,故x∈(1,+∞)时,x2>mlnx,综上,x>0时,x2>mlnx恒成立,故x2(x+1)>m(x+1)lnx,x2e x>m(x+1)lnx成立.34.【解答】解:(Ⅰ)由f(x)=e x﹣ax﹣1,得f′(x)=e x﹣a,∵x∈(0,+∞),∴e x>1,当a>1时,由f′(x)=e x﹣a>0,得x>lna,即函数y=f(x)在(lna,+∞)上单调递增,由f′(x)<0,得0<x<lna,即函数y=f(x)在(0,lna)上单调递减;当a≤1时,f′(x)>0在(0,+∞)上恒成立,即函数y=f(x)在(0,+∞)上单调递增.综上所述,当a≤1时,函数y=f(x)在(0,+∞)上单调递增;当a>1时,函数y=f(x)在在(0,lna)上单调递减,(lna,+∞)上单调递增.(3分)(Ⅱ)f(0)=0,当a>1时,由(1)结合函数y=f(x)的单调性知,∃x0>0,使得对任意x∈(0,x0),都有f(x)<0,则由|f(x)|>x得(a﹣1)x+1﹣e x>0.设t(x)=(a﹣1)x+1﹣e x,则t′(x)=a﹣1﹣e x,由t′(x)>0得x<ln(a﹣1),由t′(x)<0得x>ln(a﹣1).(1)若1<a≤2,则ln(a﹣1)≤0,故(0,x0)⊆(ln(a﹣1),+∞),即函数y=t(x)在(0,x0)上单调递减,∵t(0)=0,∴对任意x∈(0,x0),都有t(x)<0,不合题意;(2)若a>2,则ln(a﹣1)>0,故(0,ln(a﹣1))⊆(﹣∞,ln(a﹣1)),∴y=t(x)在(0,ln(a﹣1))上单调递增,∵t(0)=0,∴对任意x∈(0,ln(a﹣1)),都有t(x)>0,符合题意,此时取0<m≤min{x0,ln(a﹣1)},可使得对∀x∈(0,m),都有|f(x)|>x.综上可得a的取值范围是(2,+∞).(12分)35.【解答】解:(1)因为,所以当时,f′(x)=﹣≤0,f(x)在R递减,当时,时,时,f′(x)<0,f(x)在上单调递增,在上单调递减,当时,时,时,f′(x)<0,f(x)在(,2)递增,在(﹣∞,),(2,+∞)递减,综上,时,f(x)在R递减,当时,f(x)在(2,)递增,在(﹣∞,2),(,+∞)递减,a>时,f(x)在(,2)递增,在(﹣∞,),(2,+∞)递减;证明:(2)由>0,(x>0)知:ax2﹣x+1>0在(0,+∞)上恒成立,即a>﹣+在(0,+∞)上恒成立,∵﹣+=﹣+≤,故a>,又1﹣2a>0,故<a<,由(1)知:<a<时,f(x)在(,)递减,故f(a)<f()=<=.36.【解答】解:(1)由题意,函数f(x)=,则f′(x)=,当x∈(0,e)时,f′(x)>0,函数f(x)单调递增,当x∈(e,+∞)时,f′(x)<0,函数f(x)递减,当x=e时,f(x)取得极大值,没有极小值;(2)h(x)=x2f(x)=xlnx,对∀x≥1,有xlnx≥ax﹣1,即a≤=lnx+,令g(x)=lnx+,则g′(x)=,当x>1时,g′(x)>0,g(x)在(1,+∞)递增,故g(x)min=g(1)=1,故a≤1,即实数a的取值范围是(﹣∞,1].37.【解答】解:(1)由f(x)=lnx﹣得f′(x)=+,故切线斜率k=f′(1)=1+,又f(1)=﹣,故切线方程为:y+=(1+)(x﹣1),即(4+a)x﹣4y﹣4﹣3a=0;(2)f′(x)=+=(x>0),由题意知:x1,x2是方程f′(x)=0在(0,+∞)内的两个不同实数解,令g(x)=x2+(2+a)x+1(x>0),注意到g(0)=1>0,其对称轴为直线x=﹣2﹣a,故只需,解得:a<﹣4,即实数a的取值范围是(﹣∞,﹣4),由x1,x2是方程x2+(2+a)x+1=0的两根,得:x1+x2=﹣2﹣a,x1x2=1,故f(x1)+f(x2)=(lnx1﹣)+(lnx2﹣)=ln(x1x2)﹣a•=﹣a•=﹣a,又f(1)=﹣,即f(x1)+f(x2)=2f(1),故f(x1),f(1),f(x2)成等差数列.38.【解答】解:(1)根据题意,函数f(x)=alnx(a≠0)与y=x2可知f′(x)=,y′=x,两图象在点P(s,t)处有相同的切线,所以两个函数切线的斜率相等,即•s=,化简得s=①,将P(s,t)代入两个函数可得=alns②,综合上述两式①②可解得a=1,所以f(x)=lnx.(2)函数g(x)=(x﹣1)2+mf(x)=(x﹣1)2+mlnx,定义域为(0,+∞),g′(x)=2(x﹣1)+=,因为x1,x2为函数g(x)的两个极值点,所以x1,x2是方程2x2﹣2x+m=0的两个不等实根,由根与系数的关系知x1+x2=1,x1x2=,(*),又已知x1<x2,所以0<x1<<x2<1,=,将(*)式代入得==1﹣x2+2x2lnx2,令h(t)=1﹣t+2tlnt,t∈(,1),h′(t)=2lnt+1,令h′(t)=0,解得:t=,当t∈(,)时,h′(t)<0,h(t)在(,)单调递减;当t∈(,1)时,h′(t)>0,h(t)在(,1)单调递增;所以h(t)min=h()=1﹣=1﹣,h(t)<max{h(),h(1)},h()=﹣ln2<0=h(1),即的取值范围是[1﹣,0).39.【解答】解:(1)f(x)=﹣x+(x+1)ln(x+1)的导数为f′(x)=a•﹣1+ln(x+1)+1=ln(x+1)﹣,当a=1时,f′(x)=ln(x+1)﹣,可得曲线y=f(x)在x=1处的切线的斜率为k=ln2﹣,又f(1)=﹣1+2ln2,则曲线y=f(x)在x=1处的切线方程为y﹣(﹣1+2ln2)=(ln2﹣)(x﹣1),化为(ln2﹣)x﹣y+﹣1+ln2=0;(2)f(x)的导数f′(x)=ln(x+1)﹣,由∀x1,x2∈(0,+∞),x1<x2,都有f(x1)<f(x2),可得f(x)在(0,+∞)递增,则f′(x)≥0在(0,+∞)内恒成立,即为a≤在(0,+∞)内恒成立,设g(x)=,由于x>0,所以e x>1,ln(x+1)>0,g(x)>0,设h(x)=g(x)﹣1=,由y=e x ln(x+1)﹣x的导数为y′=e x(ln(x+1)+)﹣1,且y″=e x(ln(x+1)+﹣)=e x[ln(x+1)+]>0,可得函数y′=e x(ln(x+1)+)﹣1在x>0递增,即有y′>0,可得函数y=e x ln(x+1)﹣x在x>0递增,可得e x ln(x+1)>x恒成立,则h(x)>0恒成立,可得g(x)>1,则a≤1.40.【解答】解:(1)证明:a=﹣1时,f(x)=(x﹣1)lnx(x>0),.因为f'(x)在x∈(0,+∞)上单调递增,故f'(x1)+f'(x2)=0(即)以下主要有三种做法:法一:由基本不等式得:(等号可不写)因此.令,可知f'(t)≥0.因为f'(t)在x>0上单调递增,且f'(1)=0,因此.因为x1≠x2,由基本不等式得:((6分),若写x1+x2≥2不得分)法二:先证明:x1x2≥1.因为f'(1)=0,故不妨x1>1,0<x2<1.设.由基本不等式知:.因为f'(x)在x>0上单调递增且f'(x1)+f'(x2)=0,所以x1>x2′即x1x2≥1.因为x1≠x2,由基本不等式得:((6分),若写x1+x2≥2不得分)法三:因为f'(1)=0,故不妨x1>1,0<x2<1.设x2′=2﹣x2>1.由基本不等式得:(即x2x2′<1).因为f'(x)在x>0上单调递增,且f'(1)=0,因此f'(x2′)+f'(x2)<0.所以x1+x2>x2′+x2>2.((6分),若写x1+x2≥2不得分)(2)原题即f(x)=±c共有四个不同的实数根..①﹣1≤a≤0,因为f'(x)在x>0上单调递增,且当x→0时f'(x)→﹣∞,当x→+∞时f'(x)→+∞,故存在唯一实数x0>0,使得f'(x0)=0,即a=﹣x0(lnx0+1).因此f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增.由﹣1≤a≤0可知.把a=﹣x0(lnx0+1)代入得:f(x)的极小值.令h(x)=﹣x(lnx)2,h'(x)=﹣lnx(lnx+2).当时,h′(x)<0;当时,h′(x)>0.因此h(x)在上单调递减,在上单调递增.故,所以f(x)=c上至多有两个不同的实数根,f(x)=﹣c上至多有一个的实数根,故不合题意.②a>0,当x→0时f'(x)→+∞,当x→+∞时f'(x)→+∞,.当x∈(0,a)时,f''(x)<0;当x∈(a,+∞)时,f''(x)>0,f'(a)=2+lna.因此f'(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(i)若a≥,则f'(x)≥0(当且仅当时取等),故f(x)在x>0上单调递增.因此f(x)=±c上至多有两个不同的实数根,故不合题意.(ii)若,则f'(a)<0,故存在x1∈(0,a)和,使得f'(x1)=f'(x2)=0.因此f(x)在(0,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减.因为当x→0时f(x)→﹣∞,当x→+∞时f'(x)→+∞,且,故f(x)=c上有且仅有一个实数根.由①的h(x)可知:,.故存在﹣c∈(f(x2),f(x1)),使得.此时f(x)=﹣c上恰有三个不同的实数根.此时f(x)=±c共有四个不同的实数根.综上:满足条件.。

完整版)导数大题练习带答案

完整版)导数大题练习带答案

完整版)导数大题练习带答案1.已知 $f(x)=x\ln x-ax$,$g(x)=-x^2-2$,要求实数 $a$ 的取值范围。

Ⅰ)对于所有 $x\in(0,+\infty)$,都有 $f(x)\geq g(x)$,即$x\ln x-ax\geq -x^2-2$,整理得 $a\leq \ln x +\frac{x}{2}$,对于 $x\in(0,+\infty)$,$a$ 的取值范围为 $(-\infty。

+\infty)$。

Ⅱ)当 $a=-1$ 时,$f(x)=x\ln x+x$,求 $f(x)$ 在 $[m。

m+3]$ 上的最值。

$f'(x)=\ln x+2$,令 $f'(x)=0$,解得 $x=e^{-2}$,在 $[m。

m+3]$ 上,$f(x)$ 单调递增,所以最小值为$f(m)=me^{m}$。

Ⅲ)证明:对于所有 $x\in(0,+\infty)$,都有 $\lnx+1>\frac{1}{x}$。

证明:$f(x)=\ln x+1-\frac{1}{x}$,$f'(x)=\frac{1}{x}-\frac{1}{x^2}=\frac{1}{x^2}(x-1)>0$,所以$f(x)$ 在 $(0,+\infty)$ 上单调递增,即对于所有$x\in(0,+\infty)$,都有 $\ln x+1>\frac{1}{x}$。

2.已知函数 $f(x)=\frac{2}{x}+a\ln x-2(a>0)$。

Ⅰ)若曲线 $y=f(x)$ 在点 $P(1,f(1))$ 处的切线与直线$y=x+2$ 垂直,求函数 $y=f(x)$ 的单调区间。

$f'(x)=-\frac{2}{x^2}+a$,在点 $P(1,f(1))$ 处的切线斜率为 $f'(1)=a-2$,由于切线垂直于直线 $y=x+2$,所以 $a-2=-\frac{1}{1}=-1$,解得 $a=1$。

导数的经典练习题

导数的经典练习题

2.A.导数经典练习题及详解答案函数y=x+2cosx在[0 ,]上取得最大值时,x的值为2A. 0函数yB .-6xlnx的单调递减区间是(C.-3(e1, )B. ,e )C. (0,e 1) D. (e,)3.点P在曲线y x323上移动,设点围是( )A [0,—]2 C. [ - , n )4 B.D.D.-2P处切线倾斜角为a,则a的取值范3[0'2)U n)4 .已知函数y xf (x)的图象如右图所示(其中f '(x)是函数 f (x)的导函数),下面四个图象中y f (x)的图象大致是( )-12 \,Q1: 2 \L i-2A5.对于函数y-2 -1y2-2B42-2 -1 Q1■ -21112]L■Q2XD-2 -1C2x 1,下列结论中正确的是(A. y有极小值o,且o也是最小值B. y有最小值o,但o不是极小值c. y有极小值o,但o不是最小值 D .o既不是极小值,也不是最小值6 若0(2x 3x2)dx 0,则k=(以上都不对7.已知函数f (x)满足f (x) f( x),且当x (齐)时, f (x) x sin x,则( )A. f(1) f(2) f(3)B. f(2) f(3) f (1)c. f(3) f(2)f(1)D. f(3) f (1) f(2)8.设函数f(x) x m1 ax的导函数f(x) 2x 1,则数列f^}(n N*) 的前n 项和是 C ・U 9 .设 f(x)= —B n 1 l x 3+ax 2+5x+6在区间[1,3]上为单调函数,则实数a 的取值范围为3 A [- ,5,+ x B . (- x ,-3) C. (- x ,-3) U [ — , 5,+ 0 D .5 , 5]10 .函数f(x)在定义域R 内可导,若f(x)=f(2-x), 且当x € (- x,1)时, 1 (x-1) f (x) v 0,设 a=f(0),b= f( 丄)2= f(3), 则 2B . c v a vb A . a v b vc va C. c v bv a D. b v c11.曲线yx 在点(1,4)处的切线与坐标轴围成的三角形面积为 B. 29C.D.- 312.如图所示的是函数f(x)A.C . )2 38 3 13 .设f(x)是偶函数,若曲线 则该B. 4 3 D.㊇ 3曲线在(1, f (1))处的切线的斜率为 14.已知曲线 两点,则 15.函数y1 y -与y x 2交于点P ,过P 点的两条切线与x 轴分别交于A , B x△ ABP 的面积为 ;f (x)在定义域(3,3)内可导,其图 2峙》象如图,记y f (x)的导函数为y则不等式f /(x) 0的解集为f /(x),少16•若函数f(x)= 飞―(a>0)在[1 , +x )上的最大值为,则a 的值为x 2 a3三、解答题:解答应写出文字说明、证明过程或演算步骤 (本大题共6个大题, 共74分)。

(完整版)导数大题练习带答案

(完整版)导数大题练习带答案

导数解答题练习1.已知f (x )=x ln x -ax ,g (x )=-x 2-2,(Ⅰ)对一切x ∈(0,+∞),f (x )≥g (x )恒成立,求实数a 的取值范围; (Ⅱ)当a =-1时,求函数f (x )在[m ,m +3](m >0)上的最值;(Ⅲ)证明:对一切x ∈(0,+∞),都有ln x +1>ex e x 21-成立.2、已知函数2()ln 2(0)f x a x a x=+->. (Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单调区间;(Ⅱ)若对于(0,)x ∀∈+∞都有f (x )>2(a ―1)成立,试求a 的取值范围;(Ⅲ)记g (x )=f (x )+x ―b (b ∈R ).当a =1时,函数g (x )在区间[e ―1,e]上有两个零点,求实数b 的取值范围.3、设函数f (x )=ln x +(x -a )2,a ∈R .(Ⅰ)若a =0,求函数f (x )在[1,e]上的最小值;(Ⅱ)若函数f (x )在1[,2]2上存在单调递增区间,试求实数a 的取值范围; (Ⅲ)求函数f (x )的极值点.4、已知函数21()(21)2ln ()2f x ax a x x a =-++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值范围.5、已知函数1ln ()xf x x+=. (1)若函数在区间1(,)2a a +(其中0a >)上存在极值,求实数a 的取值范围; (2)如果当1x ≥时,不等式()1kf x x ≥+恒成立,求实数k 的取值范围.1.解:(Ⅰ)对一切)()(),,0(x g x f x ≥+∞∈恒成立,即2ln 2--≥-x ax x x 恒成立.也就是++≤x x a ln x2在),0(+∞∈x 恒成立.………1分 令xx x x F 2ln )(++= , 则F '2222)1)(2(2211)(x x x x x x x x x -+=-+=-+=,……2分在)10(,上F '0)(<x ,在)1(∞+,上F '0)(>x , 因此,)(x F 在1=x 处取极小值,也是最小值, 即3)1()(min ==F x F ,所以3≤a .……4分(Ⅱ)当时,1-=a x x x x f +=ln )(, f '2ln )(+=x x ,由f '0)(=x 得21ex =. ………6分 ①当210em <<时,在)1,[2e m x ∈上f '0)(<x ,在]3,1(2+∈m e x 上f '0)(>x 因此,)(x f 在21e x =处取得极小值,也是最小值. 2min 1)(ex f -=. 由于0]1)3)[ln(3()3(,0)(>+++=+<m m m f m f 因此,]1)3)[ln(3()3()(max +++=+=m m m f x f………8分②当时21em ≥,0)('≥x f ,因此]3,[)(+m m x f 在上单调递增, 所以)1(ln )()(min +==m m m f x f ,]1)3)[ln(3()3()(max +++=+=m m m f x f ……9分(Ⅲ)证明:问题等价于证明)),0((2ln +∞∈->+x ee x x x x x ,………10分 由(Ⅱ)知1-=a 时,x x x xf +=ln )(的最小值是21e-,当且仅当21e x =时取得,……11分 设)),0((2)(+∞∈-=x e e x x G x ,则G 'xexx -=1)(,易知eG x G 1)1()(max -==,当且仅当1x =时取到, ………12分但,e e112->-从而可知对一切(0,)x ∈+∞, 都有exe x x 211ln ->+成立. ………13分 2、解:(Ⅰ)直线y =x +2的斜率为1.函数f (x )的定义域为(0,+∞),因为22'()a f x x x=-+,所以22'(1)111af =-+=-,所以a =1.所以2()ln 2f x x x =+-. 22'()x f x x -=.由'()0f x >解得x >0;由'()0f x <解得0<x <2. 所以f (x )的单调增区间是(2,+∞),单调减区间是(0,2).…… 4分(Ⅱ)2222'()a ax f x x x x -=-+=, 由'()0f x >解得2x a>;由'()0f x <解得20x a <<.所以f (x )在区间2(,)a +∞上单调递增,在区间2(0,)a 上单调递减.所以当2x a=时,函数f (x )取得最小值,min 2()y f a=. 因为对于(0,)x ∀∈+∞都有()2(1)f x a >-成立,所以2()2(1)f a a >-即可. 则22ln 22(1)2a a a a+->-.由2ln a a a >解得20e a <<.所以a 的取值范围是2(0,)e. ……………… 8分(Ⅲ)依题得2()ln 2g x x x b x=++--,则222'()x x g x x +-=.由'()0g x >解得x >1;由'()0g x <解得0<x <1.所以函数()g x 在区间(0,1)为减函数,在区间(1,+∞)为增函数.又因为函数()g x 在区间[e -1,e]上有两个零点,所以1()0()0(1)0g e g e g -⎧≥⎪≥⎨⎪<⎩.解得21e 1e b <≤+-.所以b 的取值范围是2(1,e 1]e+-. (13)分3.解:(Ⅰ)f (x )的定义域为(0,+∞).……………… 1分因为1'()20f x x x=+>,所以f (x )在[1,e]上是增函数, 当x =1时,f (x )取得最小值f (1)=1. 所以f (x )在[1,e]上的最小值为1.……………… 3分(Ⅱ)解法一:21221'()2()x ax f x x a x x-+=+-=设g (x )=2x 2―2ax +1,……………… 4分依题意,在区间1[,2]2上存在子区间使得不等式g (x )>0成立.…… 5分注意到抛物线g (x )=2x 2―2ax +1开口向上,所以只要g (2)>0,或1()02g >即可……………… 6分由g (2)>0,即8―4a +1>0,得94a <, 由1()02g >,即1102a -+>,得32a <,所以94a <,所以实数a 的取值范围是9(,)4-∞.……………… 8分解法二:21221'()2()x ax f x x a x x-+=+-=,……………… 4分依题意得,在区间1[,2]2上存在子区间使不等式2x 2―2ax +1>0成立. 又因为x >0,所以12(2)a x x<+. ……………… 5分设1()2g x x x =+,所以2a 小于函数g (x )在区间1[,2]2的最大值. 又因为1'()2g x x=-,由21'()20g x x=->解得2x >;由21'()20g x x =-<解得02x <<.所以函数g (x )在区间2)2上递增,在区间1(,22上递减. 所以函数g (x )在12x =,或x =2处取得最大值. 又9(2)2g =,1()32g =,所以922a <,94a <所以实数a 的取值范围是9(,)4-∞.……………… 8分(Ⅲ)因为2221'()x ax f x x-+=,令h (x )=2x 2―2ax +1①显然,当a ≤0时,在(0,+∞)上h (x )>0恒成立,f '(x )>0,此时函数f (x )没有极值点; ……………… 9分 ②当a >0时,(i )当Δ≤0,即0a <≤时,在(0,+∞)上h (x )≥0恒成立,这时f '(x )≥0,此时,函数f (x )没有极值点;……………… 10分(ii )当Δ>0时,即a >x <<h (x )<0,这时f '(x )<0;当02a x <<或2a x >时,h (x )>0,这时f '(x )>0;所以,当a >2a x =是函数f (x )的极大值点;2a x +=是函数f (x )的极小值点.……………… 12分综上,当a ≤f (x )没有极值点;当a >x =是函数f (x )的极大值点;x =是函数f (x )的极小值点.4.解:2()(21)f x ax a x '=-++(0)x >. ………1分 (Ⅰ)(1)(3)f f ''=,解得23a =. ………3分(Ⅱ)(1)(2)()ax x f x x--'=(0)x >. ………4分 ①当0a ≤时,0x >,10ax -<,在区间(0,2)上,()0f x '>;在区间(2,)+∞上()0f x '<,故()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞. ………5分 ②当102a <<时,12a>, 在区间(0,2)和1(,)a +∞上,()0f x '>;在区间1(2,)a上()0f x '<,故()f x 的单调递增区间是(0,2)和1(,)a +∞,单调递减区间是1(2,)a. ………6分③当12a =时,2(2)()2x f x x -'=,故()f x 的单调递增区间是(0,)+∞. ………7分 ④当12a >时,102a <<, 在区间1(0,)a 和(2,)+∞上,()0f x '>;在区间1(,2)a上()0f x '<,故()f x 的单调递增区间是1(0,)a和(2,)+∞,单调递减区间是1(,2)a. ………8分 (Ⅲ)由已知,在(0,2]上有max max ()()f x g x <. ………9分由已知,max ()0g x =,由(Ⅱ)可知, ①当12a ≤时,()f x 在(0,2]上单调递增, 故max ()(2)22(21)2ln 2222ln 2f x f a a a ==-++=--+, 所以,222ln 20a --+<,解得ln 21a >-,故1ln 212a -<≤.……10分 ②当12a >时,()f x 在1(0,]a 上单调递增,在1[,2]a上单调递减, 故max 11()()22ln 2f x f a a a==---. 由12a >可知11ln ln ln 12ea >>=-,2ln 2a >-,2ln 2a -<,所以,22ln 0a --<,max ()0f x <, 综上所述,ln 21a >-. ………12分5、(Ⅰ)直线y =x +2的斜率为1, 函数f (x )的定义域为 ()+∞,0因为x a x x f +-=2'2)(,所以()111212'-=+-=a f ,所以a =1 所以()()2'2,2ln 2xx x f x x x f -=-+= 由()0'>x f解得x >2 ; 由()0'<x f 解得0<x <2所以f (x )得单调增区间是()+∞,2,单调减区间是()2,0 ………4分(Ⅱ)22'22)(x ax x a x x f -=+-= 由()0'>x f 解得;2a x >由()0'<x f 解得a x 20<<所以f (x )在区间),2(+∞a 上单调递增,在区间)2,0(a 上单调递减所以当a x 2=时,函数f (x )取得最小值)2(min af y =因为对于任意()())1(2,0->+∞∈a x f x 都有成立, 所以)1(2)2(->a af 即可则)1(222ln 22->-+a a a a,由a a a >2ln 解得e a 20<< 所以a 得取值范围是)2,0(e……… 8分(Ⅲ)依题意得b x xx g --+=2ln 2)(,则22'2)(x x x x g -+= 由()0'>x g 解得x >1,由()0'<x g 解得0<x <1所以函数g (x )在区间[]e ,e 1-上有两个零点,所以⎪⎩⎪⎨⎧<≥≥-0)1(0)(0)(1g e g e g 解得121-+≤<e e b所以b 得取值范围是]12,1(-+e e……… 12分6、解:(1)因为1ln ()x f x x +=,0x >,则2ln ()xf x x'=-, …1分 当01x <<时,()0f x '>;当1x >时,()0f x '<. ∴()f x 在(0,1)上单调递增;在(1,)+∞上单调递减, ∴函数()f x 在1x =处取得极大值.………3分∵函数()f x 在区间1(,)2a a +(其中0a >)上存在极值,∴1,11,2a a <⎧⎪⎨+>⎪⎩解得112a <<.……….5分(2)不等式()1k f x x ≥+,即为(1)(1ln )x x k x++≥, ………7分记(1)(1ln )()x x g x x ++=∴22[(1)(1ln )](1)(1ln )ln ()x x x x x x xg x x x'++-++-'==,…9分 令()ln h x x x =-,则1'()1h x x=-,∵1x ≥,∴'()0h x ≥,∴()h x 在[1,)+∞上递增, ∴min [()](1)10h x h ==>,从而()0g x '>,故()g x 在[1,)+∞上也单调递增, ∴min [()](1)2g x g ==,∴2k ≤.………12分。

高中数学导数练习题附答案

高中数学导数练习题附答案

高中数学导数练习题附答案一、解答题 1.已知函数()()2ln 0f x a x ax a =+-> (1)求()f x 的最大值(2)若()0f x ≤恒成立,求a 的值 2.已知函数()()1ln 0f x a x x a x=-+>.(1)当1≥x 时,()0f x ≤恒成立,求实数a 的取值范围;(2)当1a =时,()()21g x xf x x =+-,方程()g x m =的根为1x 、2x ,且21x x >,求证:211e x x m ->+.3.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围. 4.已知函数()1e x axf x a=-+,0a ≠. (1)当1a =时,①求曲线()y f x =在0x =处的切线方程; ②求证:()f x 在(0,)+∞上有唯一极大值点; (2)若()f x 没有零点,求a 的取值范围. 5.已知函数()()32131.3f x x a x x =-++ (1)若1a =,求函数()f x 的单调区间; (2)证明:函数()2y f x a =-至多有一个零点. 6.已知函数21()(1)ln 2f x x ax a x =-+-,(2) 2.f '= (1)求a 的值;(2)求函数()f x 的极小值.7.已知函数()()2231ln 2f x x a a x a a x =-+-+. (1)若1a =,求()f x 在[]1,2上的值域; (2)若20a a -≠,讨论()f x 的单调性. 8.已知函数()1ln xf x x +=.(1)求()f x 在1x =处的切线方程; (2)当e x ≥时,不等式()ekf x x ≥+恒成立,求实数k 的取值范围; 9.已知函数e ()(1)1xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当1a =时,()2f x ≥恒成立,求b 的值.10.已知函数()()e 11xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当20e <≤a ,且2x >时,()()ln 1f x b a x ⎡>-⎣]恒成立,求b 的取值范围.【参考答案】一、解答题1.(1)22ln 2ln 2a a --+ (2)2a = 【解析】 【分析】(1)求导求解单调性即可求出最值;(2)要使()0f x ≤成立必须()22ln 2ln 20a a a ϕ=--+≤,求单调性求解即可. (1)因为()()2ln 0f x a x ax a =+->,所以()()20axf x a x-'=>, 由()0f x '>得20x a <<;()0f x '<得2x a>;所以()f x 在20,a⎛⎫⎪⎝⎭上单调递增,在2,a ⎛⎫+∞ ⎪⎝⎭上单调递减,故()222ln 2ln 2max f x f a a a ⎛⎫==--+ ⎪⎝⎭,即()()22ln 2ln 20a a a a ϕ=--+>.(2)要使()0f x ≤成立必须()22ln 2ln 20a a a ϕ=--+≤, 因为()2a a aϕ-'=,所以当02a <<,()0a ϕ'<;当2a >时,()0a ϕ'>.所以()a ϕ在()0,2上单调递减,在()2,+∞上单调递增. 所以()()20min a ϕϕ==,所以满足条件的a 只有2,即2a =. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式; (3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用. 2.(1)02a <≤ (2)证明见解析 【解析】 【分析】(1)分析可知1≥x ,()()01f x f ≤=,分02a <≤、2a >两种情况讨论,利用导数分析函数()f x 在[)1,+∞上的单调性,验证()()1f x f ≤对任意的1≥x 是否恒成立,由此可求得实数a 的取值范围;(2)利用导数分析函数()g x 的单调性,可得出12101x x e<<<<,证明出31x x >,证明出当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--,可得出()241e 1x x m >=+-,结合不等式的性质可证得结论成立. (1)解:因为()()1ln 0f x a x x a x =-+>,则()222111a x ax f x x x x -+-'=--=,且()10f =,由题意可知,对任意的1≥x ,()()01f x f ≤=, 设21y x ax =-+-,则24a ∆=-,(ⅰ)当02a <≤时,0∆≤,()0f x '≤恒成立且()f x '不恒为零,()f x 在[)1,+∞上是减函数,又因为()10f =,所以()0f x ≤恒成立;(ⅱ)当2a >时,0∆>,方程210x ax -+-=的根为1x =,2x =又因为121=x x ,所以121x x .由()0f x '>得1x ≤<()0f x '<,得x所以()f x 在⎡⎢⎢⎣⎭上是增函数,在⎫+∞⎪⎪⎝⎭上是减函数, 因为()10f =,所以()0f x ≤不恒成立. 综上所述,02a <≤. (2)证明:当1a =时,()()21ln g x xf x x x x =+-=,()1ln g x x '=+,由()0g x '<,可得10e x <<,由()0g x '>,可得1ex >,所以()g x 在10,e ⎛⎫⎪⎝⎭上是减函数,在1,e ⎛⎫+∞ ⎪⎝⎭上是增函数,则()min 11e e g x g ⎛⎫==- ⎪⎝⎭,当01x <<时,()ln 0g x x x =<,所以,12101x x e <<<<,且10em -<<, 当10,ex ⎛⎫∈ ⎪⎝⎭时,ln 1x <-,所以ln x x x <-,即()g x x <-.设直线y x =-与y m =的交点的横坐标为3x ,则3111ln x m x x x =-=->,下面证明当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--, 设()()()111ln 1ln e 1e 1e 1h x x x x x x x ⎡⎤=--=-+⎢⎥---⎣⎦, 令()()11ln e 1e 1p x x x =-+--,则()()()()22e 1111e 1e 1x p x x x x --'=-=--, 当11ee 1x <<-时,()0p x '<,当11e 1x <<-时,()0p x '>, 所以()p x 在11,e e 1⎛⎫ ⎪-⎝⎭上是减函数,在1,1e 1⎛⎫⎪-⎝⎭上是增函数, 又因为10e p ⎛⎫= ⎪⎝⎭,()10p =,所以当11ex <<时,()0p x <,()0h x <,故当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--. 设直线()111e y x =--与y m =的交点的横坐标为4x ,则41e 1x m -=-,可得()41e 1x m =+-,如下图所示:则()241e 1x x m >=+-,所以21431e x x x x m ->-=+,得证. 【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论; (3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. 3.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立, 因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭. 当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<; 当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤ ⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立. 所以a 的取值范围为[)1,+∞. 4.(1)①112y x =-;②证明见解析 (2){}()210,e -⋃【解析】 【分析】(1)①利用导数求出切线的斜率,直接求出切线方程;②令()e 1e x xg x x =+-,利用导数判断出()g x 在(0,)+∞上有唯一零点0x ,利用列表法证明出()f x 在(0,)+∞上有唯一极大值点;(2)令()e xh x a ax =+-.对a 分类讨论:①0a <,得到当1a =-时,()f x 无零点;②0a >,()f x 无零点,符合题意. (1)若1a =,则()1e 1x xf x =-+,()2e 1e (e 1)x x x x f x +-=+'.①在0x =处,()()21110211f '+==+,(0)1f =-. 所以曲线()y f x =在0x =处的切线方程为112y x =-.②令()e 1e x xg x x =+-,()e x g x x '=-,在区间(0,)+∞上,()0g x '<,则()g x 在区间(0,)+∞上是减函数.又(1)10,g =>()22e 10,g =-+<,所以()g x 在(0,)+∞上有唯一零点0x . 列表得:0(2)()e e x x ax af x a--=+,令()e x h x a ax =+-,则()e xh x a '=-.①若0a <,则()0h x '>,()h x 在R 上是增函数.因为11e 10a h a a ⎛⎫⎛⎫=-+< ⎪ ⎪⎝⎭⎝⎭,()1 e > 0h =,所以()h x 恰有一个零点0x . 令0e 0x a +=,得0ln()x a =-.代入0()0h x =,得()ln 0a a a a -+--=, 解得1a =-.所以当1a =-时,()h x 的唯一零点为0,此时()f x 无零点,符合题意. ②若0a >,此时()f x 的定义域为R .当ln x a <时,()0h x '<,()h x 在区间(,ln )a -∞上是减函数; 当ln x a >时,()0h x '>,()h x 在区间(ln ,+)a ∞上是增函数. 所以min ()(ln )2ln h x h a a a a ==-. 又()010h a =+>,由题意,当2ln 0a a a ->,即20e a <<时,()f x 无零点,符合题意. 综上,a 的取值范围是{}()210,e -⋃.【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围.5.(1)()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减 (2)证明见解析 【解析】 【分析】(1)直接求导后判断单调性即可;(2)先变形得到323033x a x x -=++,构造函数,求导后说明单调性即可证明. (1)当1a =时,()()321313f x x x x =-++,2()23f x x x '=--. 令()0f x '=,解得1x =-或3x =,当()(),13,x ∞∞∈--⋃+时,()0f x '>;当(1,3)x ∈-时,()0f x '<, 故()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减.(2)()321()2333y f x a x a x x =-=-++,由于2330x x ++>,所以()20f x a -=等价于3230.33x a x x -=++设()32333x g x a x x =-++, 则()g x '()()222269033x x x xx ++=++,当且仅当0x =或3x =-时,()0g x '=,所以()g x 在(,)-∞+∞上单调递增,故()g x 至多有一个零点,从而()2y f x a =-至多有一个零点. 6.(1)1- (2)极小值32【解析】 【分析】(1)求导函数,结合(2)2f '=解方程即可;(2)令()0f x '=进而分析单调性,即可求出极值. (1)由题意可得()1a f x x a x '-=-+,故()12222a f a -'=-+=, 1.a ∴=- (2)由(1)得21()2ln 2f x x x x =+-,所以()()210f x x x x'=+->,令()210f x x x'=+-=,解得1x =,因为 当(0,1)x ∈时,()0f x '<,当(1,)x ∈+∞时,()0f x '>,所以函数()y f x =在(0,1)上单调递减,在(1,)+∞上单调递增, 所以当1x =时,函数()f x 取得极小值()312f =.7.(1)5,3ln 22⎡⎤--+⎢⎥⎣⎦;(2)答案见解析. 【解析】 【分析】(1)代入a =1,求f (x )导数,根据导数判断f (x )在[1,2]上的单调性即可求其值域;(2)根据a 的范围,分类讨论f (x )导数的正负即可求f (x )的单调性. (1)a =1,则()2121ln ,02f x x x x x =--+>,()22121(1)20x x x f x x x x x-+-=-+='=,∴()f x 在()0,∞+单调递增,∴f (x )在[]1,2单调递增,∴()()()51,2,3ln 22f x f f ⎡⎤⎡⎤∈=--+⎣⎦⎢⎥⎣⎦, 即f (x )在[1,2]上值域为5,3ln 22⎡⎤--+⎢⎥⎣⎦;(2)()()()()()223232,0x a a x ax a x a a f x x a a x x x x'-++--=-++==>,()10f x x a '=⇒=,22x a =, 200a a a -≠⇒≠且1a ≠,①当1a >时,21a a >>,0x a <<或2x a >时,()0f x '>,()f x 单调递增,2a x a <<时,()0f x '<,()f x 单调递减;②当01a <<时,201a a <<<,20x a <<或x a >时,()0f x '>,()f x 单调递增,2a x a <<时,()0f x '<,()f x 单调递减;③当0a <时,20a a >>,20x a <<时,()0f x '<,()f x 单调递减,2x a >,()0f x '>,()f x 单调递增;综上,当0a <时,f (x )在()20,a 单调递减,在()2,a +∞单调递增;当01a <<时,f (x )在()20,a ,(),a +∞单调递增,在()2,a a 单调递减;当1a >时,f (x )在()0,a ,()2,a +∞单调递增,在()2,a a 单调递减.8.(1)1y = (2)(],4∞- 【解析】 【分析】(1)利用导数的几何意义直接求解即可; (2)分离变量可得()()()e 1ln x x k g x x++≤=,利用导数可求得()()e 4g x g ≥=,由此可得k 的取值范围. (1)()2211ln ln x xf x x x--'==-,()10f '∴=,又()11f =, ()f x ∴在1x =处的切线方程为1y =;(2)当e x ≥时,由()e k f x x ≥+得:()()()()e 1ln e x x k x f x x++≤+=, 令()()()e 1ln x x g x x++=,则()2eln x xg x x -'=, 令()eln h x x x =-,则()ee1x h x xx-'=-=, ∴当e x ≥时,()0h x '≥,()h x ∴在[)e,+∞上单调递增,()()e e elne 0h x h ∴≥=-=,()0g x '∴≥,()g x ∴在[)e,+∞上单调递增,()()()2e 1ln e e 4eg x g +∴≥==, 4k ∴≤,即实数k 的取值范围为(],4∞-.【点睛】方法点睛:本题考查导数的几何意义、利用导数解决函数中的恒成立问题;解决恒成立问题的基本思路是采用分离变量的方式,将问题转化为变量与函数最值之间关系,即由()a f x ≥得()max a f x ≥;由()a f x ≤得()min a f x ≤.9.(1)25y x =+(2)0b =【解析】【分析】(1)利用切点和斜率求得切线方程.(2)由()2f x ≥恒成立构造函数()()2g x f x =-,对b 进行分类讨论,结合()'g x 研究()g x 的最小值,由此求得b 的值.(1) 当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=-又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为()520y x -=-, 即25y x =+.(2)当1a =时,令函数()()()2e 11x g x f x b x =-=+--, 则()2f x ≥恒成立等价于()0g x ≥恒成立.又()e 1,x g x b '=+-.当1b ≥时,()e 10,x g x b '=+->,g (x )在R 上单调递增,显然不合题意; 当1b <时,令()e 10,x g x b '=+-<,得ln(1)x b <-.令()e 10x g x b '=+->,得()ln 1x b >-,所以函数g (x )在(,ln(1))b -∞-上单调递减,在(ln(1),)b -+∞上单调递增, 所以当ln(1)x b =-时,函数g (x )取得最小值.又因为()00g =,所以0x =为g (x )的最小值点.所以ln(1)0b -=,解得0b =.10.(1)25y x =+(2)[1,)-+∞【解析】【分析】(1)求出()'f x ,然后算出(0),(0)f f '即可;(2)由条件可得e (ln )1ln(1)xb x a x b x a+->-+-恒成立,构造函数()ln (1)h x x b x x =+>,则原不等式等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立,然后可证明2e 1e 10xx x x a--+≥-+>,然后得()h x 在()1,+∞上单调递增,然后即可求解. (1) 当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=-又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为25y x =+.(2)()()ln 1f x b a x ⎡>-⎣恒成立,即e 1ln(1)ln x bx x b x b a a +-+>-+恒成立. 等价于e (ln )1ln(1)xb x a x b x a+->-+-恒成立. 构造函数()ln (1)h x x b x x =+>,则e e ln 1ln(1)x xb x b x a a+>-+-在(2,)x ∈+∞上恒成立等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立. 因为20e <≤a ,所以2e e ,xx a -≥ 令函数2()e 1(2)x H x x x -=-+>,则2()e 1x H x -'=-,显然()H x '是增函数, 则()(2)0,()H x H H x ''>=在()2,+∞上单调递增,所以()()20H x H >=, 故2e 1e 10xx x x a--+≥-+>,从而可得()h x 在()1,+∞上单调递增, 所以当()1,x ∈+∞时,()10bh x x'=+≥恒成立. 所以b x ≥-,所以1b ≥-,即b 的取值范围是[-1,+∞)【点睛】关键点睛:解答本题第二问的关键是将原不等式变形,构造出函数()ln (1)h x x b x x =+>,属于函数的同构类型,解答的关键是观察不等式的特点,变成同一函数在两个变量处的取值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数练习题(B)答案1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值;(II)若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II)的条件下,函数)(x f y =与m x x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围. 2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=. (I)求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23m x f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;(I I)若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(I II)对于(I I)中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I)写出)(x f 的单调递增区间,并证明a e a >; (II)讨论函数)(x g y =在区间),1(a e 上零点的个数.5.(本小题满分14分)已知函数()ln(1)(1)1f x x k x =---+. (I)当1k =时,求函数()f x 的最大值;(I I)若函数()f x 没有零点,求实数k 的取值范围;6.(本小题满分12分)已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ). (I)求实数a 的值;(II )求函数()f x 在]3,23[∈x 的最大值和最小值.7.(本小题满分14分)已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f(I)当a=18时,求函数)(x f 的单调区间; (II)求函数)(x f 在区间],[2e e 上的最小值.8.(本小题满分12分)已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I)求实数a 的取值范围; (I I)若()f x '是()f x 的导函数,设22()()6g x f x x '=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立. 9.(本小题满分12分)已知函数.1,ln )1(21)(2>-+-=a x a ax x x f(I)讨论函数)(x f 的单调性;(II)证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意10.(本小题满分14分)已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-.(I)若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围;(II )若(1,]( 2.71828)a e e ∈=,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.11.(本小题满分12分)设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数. (I)求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '.12.(本小题满分14分)定义),0(,,)1(),(+∞∈+=y x x y x F y ,(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域; (II)令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.1.解:函数)(x f 的导函数为 b a c bx ax x f 2323)(2'--++= …………(2分) (I)由图可知 函数)(x f 的图象过点(0,3),且0)1('=f 得⎩⎨⎧==⇒⎩⎨⎧=--++=0323233c d b a c b a d …………(4分)(II )依题意3)2('-=f 且5)2(=f⎩⎨⎧=+--+-=--+534648323412b a b a b a b a解得 6,1-==b a 所以396)(23++-=x x x x f …………(8分)(I II )9123)(2+-='x x x f .可转化为:()m x x x x x x +++-=++-534396223有三个不等实根,即:()m x x x x g -+-=8723与x 轴有三个交点; 42381432--=+-='x x x x x g()m g m g --=-=⎪⎭⎫ ⎝⎛164,273. …………(10分) 当且仅当()01640276832<--=>-=⎪⎭⎫ ⎝⎛m g m g 且时,有三个交点, 故而,276816<<-m 为所求. …………(12分)2.解:(I ))0()1()('>-=x xx a x f ﻩ (2分) 当(][)+∞>,1,1,0)(,0减区间为的单调增区间为时x f a当[)(];1,0,,1)(,0减区间为的单调增区间为时+∞<x f a 当a=1时,)(x f 不是单调函数ﻩ(5分) (II)32ln 2)(,22343)4('-+-=-==-=x x x f a a f 得 2)4()(',2)22(31)(223-++=∴-++=∴x m x x g x x mx x g (6分)2)0(',)3,1()(-=g x g 且上不是单调函数在区间⎩⎨⎧><∴.0)3(',0)1('g g ﻩ(8分)⎪⎩⎪⎨⎧>-<∴,319,3m m (10分))3,319(--∈m (12分)3.解:(I),23)(,00)0(2b ax x x f c f ++='=⇒=320)1(--=⇒='a b f),323)(1()32(23)(2++-=+-+='∴a x x a ax x x f由33210)(+-==⇒='a x x x f 或,因为当1=x 时取得极大值,ﻩ所以31332-<⇒>+-a a ,所以)3,(:--∞的取值范围是a ;…………(4分)(ﻩ依题意得:9)32()32(2762+-=++a a a ,解得:9-=a ﻩ所以函数)(x f 的解析式是:x x x x f 159)(23+-=…………(10分)(III)对任意的实数βα,都有,2sin 22,2sin 22≤≤-≤≤-βα在区间[-2,2]有:230368)2(,7)1(,7430368)2(=+-==-=---=-f f f ﻩ ,7)1()(=f x f 的最大值是7430368)2()(-=---=-f x f 的最小值是 函数]2,2[)(-在区间x f 上的最大值与最小值的差等于81, ﻩ所以81|)sin 2()sin 2(|≤-βαf f .…………(14分)4.解:(I)01)(≥-='x e x f ,得)(x f 的单调递增区间是),0(+∞, …………(2分) ∵0>a ,∴1)0()(=>f a f ,∴a a e a >+>1,即a e a >. …………(4分) (II)xa x a x x a x x g )22)(22(22)(-+=-=',由0)(='x g ,得22ax =,列表x)22,0(a 22a ),22(+∞a)(x g '-0 + )(x g 单调递减 极小值 单调递增当22ax =时,函数)(x g y =取极小值)2ln 1(2)22(aa a g -=,无极大值. …………(6分)由(I)a e a >,∵⎪⎩⎪⎨⎧>>22a a e e aa ,∴22a e a>,∴22ae a >01)1(>=g ,0))(()(22>-+=-=a e a e a e e g a a a a…………(8分)(i)当122≤a,即20≤<a 时,函数)(x g y =在区间),1(a e 不存在零点 (ii)当122>a ,即2>a 时若0)2ln 1(2>-a a ,即e a 22<<时,函数)(x g y =在区间),1(a e 不存在零点若0)2ln 1(2=-a a ,即e a 2=时,函数)(x g y =在区间),1(a e 存在一个零点e x =;若0)2ln 1(2<-a a ,即e a 2>时,函数)(x g y =在区间),1(a e 存在两个零点;综上所述,)(x g y =在(1,)a e 上,我们有结论:当02a e <<时,函数()f x 无零点;当2a e = 时,函数()f x 有一个零点; 当2a e >时,函数()f x 有两个零点.…………(12分)5.解:(I)当1k =时,2()1x f x x -'=-)(x f 定义域为(1,+∞),令()0,2f x x '==得, ………………(2分)∵当(1,2),x ∈时()0f x '>,当(2,),x ∈+∞时()0f x '<, ∴()(1,2)f x 在内是增函数,(2,)+∞在上是减函数∴当2x =时,()f x 取最大值(2)0f = ………………(4分) (II )①当0k ≤时,函数ln(1)y x =-图象与函数(1)1y k x =--图象有公共点,∴函数()f x 有零点,不合要求; ………………(8分)②当0k >时,1()11()111kk x k kx k f x k x x x +-+-'=-==---- ………………(6分)令1()0,k f x x k +'==得,∵1(1,),()0,k x f x k +'∈>时1(1,),()0x f x k'∈++∞<时,∴1()(1,1)f x k +在内是增函数,1[1,)k++∞在上是减函数,∴()f x 的最大值是1(1)ln f k k+=-,∵函数()f x 没有零点,∴ln 0k -<,1k >,因此,若函数()f x 没有零点,则实数k 的取值范围(1,)k ∈+∞.………………(10分) 6.解:(I)由2()(23)x f x x ax a e =+--可得22()(2)(23)[(2)3]x x x f x x a e x ax a e x a x a e '=+++--=++--……(4分) ∵2x =是函数()f x 的一个极值点,∴(2)0f '=∴2(5)0a e +=,解得5a =- ……………(6分)(II )由0)1)(2()(>--='x e x x x f ,得)(x f 在)1,(-∞递增,在),2(+∞递增,由0)(<'x f ,得)(x f 在在)2,1(递减∴2)2(e f =是()f x 在]3,23[∈x 的最小值; ……………(8分)2347)23(e f =,3)3(e f = ∵)23()3(,0)74(4147)23()3(23233f f e e e e e f f >>-=-=-∴()f x 在]3,23[∈x 的最大值是3)3(e f =. ……………(12分)7.解:(Ⅰ)x x x x f ln 164)(2--=,xx x x x x f )4)(2(21642)('-+=--= ﻩ2分由0)('>x f 得0)4)(2(>-+x x ,解得4>x 或2-<x ﻩ注意到0>x ,所以函数)(x f 的单调递增区间是(4,+∞) 由0)('<x f 得0)4)(2(<-+x x ,解得-2<x <4,注意到0>x ,所以函数)(x f 的单调递减区间是]4,0(. 综上所述,函数)(x f 的单调增区间是(4,+∞),单调减区间是]4,0( 6分 (Ⅱ)在],[2e e x ∈时,x a x x x f ln )2(4)(2-+-=所以xax x x a x x f -+-=-+-=242242)('2,设a x x x g -+-=242)(2ﻩ当0<a 时,有△=16+4×208)2(<=-a a ,此时0)(>x g ,所以0)('>x f ,)(x f 在],[2e e 上单调递增, 所以a e e e f x f -+-==24)()(2min ﻩﻩ 8分 当0>a 时,△=08)2(2416>=-⨯-a a , 令0)('>x f ,即02422>-+-a x x ,解得221a x +>或221a x -<;令0)('<x f ,即02422<-+-a x x ,解得221a -221ax +<<. ﻩ①若221a+≥2e ,即a ≥22)1(2-e 时, ﻩ)(x f 在区间],[2e e 单调递减,所以a e e e f x f 244)()(242min -+-==.②若2221e ae <+<,即222)1(2)1(2-<<-e a e 时间, )(x f 在区间]221,[a e +上单调递减,在区间],221[2e a +上单调递增, ﻩ所以min )(xf )221(a f +=)221ln()2(322a a a a +-+--=. ③若221a+≤e ,即a <0≤22)1(-e 时,)(x f 在区间],[2e e 单调递增,ﻩ所以a e e e f x f -+-==24)()(2min综上所述,当a ≥222)1(-e 时,a e a x f 244)(24min -+-=;ﻩ当222)1(2)1(2-<<-e a e 时,)221ln()2(322)(min aa a a x f +-+--=;当a ≤2)1(2-e 时,a e e x f -+-=24)(2min14分8.解:(I)226()26a x x af x x x x-+'=-+=, ………………(2分)∵()f x 在(2,)x ∈+∞上不具有...单调性,∴在(2,)x ∈+∞上()f x '有正也有负也有0, 即二次函数226y x x a =-+在(2,)x ∈+∞上有零点 ………………(4分) ∵226y x x a =-+是对称轴是32x =,开口向上的抛物线,∴222620y a =⋅-⋅+<的实数a 的取值范围(,4)-∞ ………………(6分) (II )由(I )22()2a g x x xx =+-,方法1:2222()()62(0)a g x f x x x x x x '=-+=+->, ∵4a <,∴323233444244()22a x x g x x x x x x -+'=-+>-+=,…………(8分)设2344()2h x x x =-+,3448124(23)()x h x x x x -'=-=()h x 在3(0,)2是减函数,在3(,)2+∞增函数,当32x =时,()h x 取最小值3827∴从而()g x '3827>,∴38(())027g x x '->,函数38()27y g x x =-是增函数,12x x 、是两个不相等正数,不妨设12x x <,则22113838()()2727g x x g x x ->-∴212138()()()27g x g x x x ->-,∵210x x ->,∴1212()()3827g x g x x x ->-∴1212()()g x g x x x --3827>,即121238|()()|||27g x g x x x ->- ………………(12分)方法2:11(,())M x g x 、22(,())N x g x 是曲线()y g x =上任意两相异点,121222121212()()2()2g x g x x x ax x x x x x -+=+--,12x x +>4a <12221212122()22x x a a x x x x x x +∴+->-1242x x >- ………(8分)设0t t =>,令32()244MN k u t t t ==+-,()4(32)u t t t '=-, 由()0u t '>,得2,3t >由()0u t '<得20,3t <<()u t ∴在)32,0(上是减函数,在),32(+∞上是增函数,)(t u ∴在32=t 处取极小值2738,38()27u t ∴≥,∴所以1212()()g x g x x x --3827>即121238|()()|||27g x g x x x ->- ………………(12分)9.解(1))(x f 的定义域为),0(+∞,xa x x x a ax x x a a x x f )1)(1(11)('2-+-=-+-=-+-= 2分(i )若2,11==-a a 即,则 .)1()('2xx x f -=故)(x f 在),0(+∞单调增加. (ii)若.0)(',)1,1(,21,1,11<-∈<<><-x f a x a a a 时则当故而)1,1()(,0)(',),1()1,0(->+∞∈-∈a x f x f x a x 在故时及当单调减少,在(0,a-1), ),1(+∞单调增加.(ii i)若),1(),1,0(,)1,1()(,2,11+∞-->>-a a x f a a 在单调减少在同理可得即 单调增加.(I I)考虑函数x x f x g +=)()( .ln )1(212x x a ax x +-+-= 由 .)11(1)1(121)1()('2---=---⋅≥-+--=a a xa x x a a x x g 由于单调增加在即故),0()(,0)(',5+∞><x g x g a a ,从而当021>>x x 时有 ,0)()(,0)()(212121>-+->-x x x f x f x g x g 即故1)()(2121->--x x x f x f ,当210x x <<时,有1)()()()(12122121->--=--x x x f x f x x x f x f ﻩ10.解:(I )(),()1af x xg x a x''=+=+, ……………(2分)∵函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,∴当[1,3]x ∈时,2(1)()()()0a x a f x g x x++''⋅=≥恒成立, ……………(4分) 即2(1)()0a x a ++≥恒成立, ∴21a a x >-⎧⎨≥-⎩在[1,3]x ∈时恒成立,或21a a x <-⎧⎨≤-⎩在[1,3]x ∈时恒成立, ∵91x -≤≤-,∴1a >-或9a ≤- ………………(6分)(II)21()ln ,(1)2F x x a x a x =+-+,()(1)()(1)a x a x F x x a xx--'=+-+=∵()F x 定义域是(0,)+∞,(1,]a e ∈,即1a >∴()F x 在(0,1)是增函数,在(1,)a 实际减函数,在(,)a +∞是增函数 ∴当1x =时,()F x 取极大值1(1)2M F a ==--,当x a =时,()F x 取极小值21()ln 2m F a a a a a ==--, ………………(8分)∵12,[1,]x x a ∈,∴12|()()|||F x F x M m M m -≤-=- ………………(10分) 设211()ln 22G a M m a a a =-=--,则()ln 1G a a a '=--,∴1[()]1G a a''=-,∵(1,]a e ∈,∴[()]0G a ''>∴()ln 1G a a a '=--在(1,]a e ∈是增函数,∴()(1)0G a G ''>=∴211()ln 22G a a a a =--在(1,]a e ∈也是增函数 ………………(12分)∴()()G a G e ≤,即2211(1)()1222e G a e e -≤--=-, 而22211(1)(31)1112222e e e ----=-<-=,∴()1G a M m =-< ∴当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立. ………………(14分)11.解:(I)11()0ex f x e x x -'=-==,得1x e=当x 变化时,()f x '与()f x 变化情况如下表:∴当1x e=时,()f x 取得极大值()2f e=-,没有极小值; …………(4分)(I I)(方法1)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-,∴21201ln 0x x xx x --= 即20211ln ()0x x x x x --=,设2211()ln ()xg x x x x x =--211211()ln ()x g x x x x x =--,1/211()ln 10x x g x x =->,1()g x 是1x 的增函数, ∵12x x <,∴2122222()()ln ()0xg x g x x x x x <=--=;222211()ln ()x g x x x x x =--,2/221()ln 10x x g x x =->,2()g x 是2x 的增函数, ∵12x x <,∴1211111()()ln ()0xg x g x x x x x >=--=,∴函数2211()ln ()xg x x x x x =--在12(,)x x 内有零点0x , …………(10分)又∵22111,ln 0x x x x >∴>,函数2211()ln ()xg x x x x x =--在12(,)x x 是增函数,∴函数2121()ln x x xg x x x -=-在12(,)x x 内有唯一零点0x ,命题成立…………(12分)(方法2)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-,即020112ln ln 0x x x x x x -+-=,012(,)x x x ∈,且0x 唯一设2112()ln ln g x x x x x x x =-+-,则1121112()ln ln g x x x x x x x =-+-, 再设22()ln ln h x x x x x x x =-+-,20x x <<,∴2()ln ln 0h x x x '=->∴22()ln ln h x x x x x x x =-+-在20x x <<是增函数 ∴112()()()0g x h x h x =<=,同理2()0g x >∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有解 …………(10分) ∵一次函数在12(,)x x 2112()(ln ln )g x x x x x x =-+-是增函数∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有唯一解,命题成立………(12分) 注:仅用函数单调性说明,没有去证明曲线C 不存在拐点,不给分.12.解:(I )22log (24)0x x -+>,即2241x x -+> ……………………(2分) 得函数()f x 的定义域是(1,3)-, ……………………(4分) (I I)22322()(1,log (1))1,g x F x ax bx x ax bx =+++=+++ 设曲线00(41)C x x -<<-在处有斜率为-8的切线, 又由题设,23)(,0)1(log 2232b ax x x g bx ax x ++='>+++∴存在实数b 使得⎪⎩⎪⎨⎧>+++-<<--=++1114823020300020bx ax x x b ax x 有解, ……………………(6分)由①得,238020ax x b ---=代入③得082020<---ax x ,200028041x ax x ⎧++>⎪∴⎨-<<-⎪⎩由有解, ……………………(8分)方法1:0082()()a x x <-+-,因为041x -<<-,所以0082()[8,10)()x x -+∈-, 当10a <时,存在实数b ,使得曲线C在)14(00-<<-x x 处有斜率为-8的切线………………(10分)方法2:得08)1()1(208)4()4(222>+-⨯+-⨯>+-⨯+-⨯a a 或,1010,10.a a a ∴<<∴<或 ………………(10分) 方法3:是222(4)(4)802(1)(1)80a a ⎧⨯-+⨯-+≤⎪⎨⨯-+⨯-+≤⎪⎩的补集,即10a < ………………(10分)(III)令2)1ln(1)(,1,)1ln()(xx x xx h x x x x h +-+='≥+=由 又令,0),1ln(1)(>+-+=x x xxx p 0)1(11)1(1)(22<+-=+-+='∴x x x x x p , ),0[)(+∞∴在x p 单调递减. ……………………(12)分0()(0)0,1()0,x p x p x h x '∴><=∴≥<当时有当时有),1[)(+∞∴在x h 单调递减,①②③-- -- x y y x y x x y yy x x y x )1()1(),1ln()1ln(,)1ln()1ln(,1+>+∴+>+∴+>+<≤∴有时, ).,(),(,x y F y x F y x N y x ><∈∴*时且当 ………………(14分)。

相关文档
最新文档