染料废水脱色处理工艺

合集下载

染料废水脱色方法

染料废水脱色方法

染料废水脱色方法1 引言(Introduction)随着经济的快速发展,我国已成为染料生产大国,但随之而来产生了大量的染料废水.除了大量残留的染料外,染料废水中还含有其他有毒有害成分,如重金属离子.因此,染料废水具有成分复杂、色度、浓度高、难生物降解、水量水质变化大等特点,成为较难处理的工业废水之一。

孔雀绿是常见的三苯基甲烷类染料之一,常作为丝织品、毛织品、棉布等的染色剂.虽然孔雀绿具有高毒性、致突变性和较强的生物毒性等特性,但因其成本低廉、杀菌效果显著,因此,目前仍被广泛应用在纺织和水产养殖业.重金属通常应用于纺织染料工业的不同生产过程中,因此,染料废水中存在各种不同浓度的重金属,其中,Cr(Ⅵ)的含量最高,而Cu(Ⅱ)次之.研究发现,极少量的重金属离子就能产生明显的中毒反应,且通过食物链被较高级的生物成倍地富集在体内,且会使生物体内的酶、蛋白质等失活,同时它无法被微生物降解,最终累积在器官中,严重损害着人体健康和生态环境。

染料废水中残留染料与重金属离子经常并存,这种复合污染具有更高的生物、细胞毒性。

染料脱色一般分为物理化学法和生物法,物化法使用方便、见效快,但成本高、二次污染严重;生物法运行费用低,处理效果显著且不会造成二次污染,是环境友好的处理方法,因而受到广泛关注。

但重金属通过影响微生物体内酶的生成或酶的活性抑制微生物对染料的降解。

因此,如何提高染料与重金属构成的复合污染中染料的生物降解效率成为该类废水处理的难点之一.EDTA(乙二胺四乙酸二钠)是一种常见的鳌合剂,生成的络合物在中性或碱性条件下稳定系数非常大.在一般情况下,这些螯合物的配合比都是1:1(鞠峰等, 2011).EDTA与配位离子形成环状结构,金属离子取代配位原子上的氢而进入鳌合环中,使金属离子钝化,降低其毒害作用。

但目前关于采用环境中广泛存在的螯合剂减少与染料共存的重金属离子的毒性,提高染料降解效率的研究少有报道.根据之前的研究发现,某些微生物可能会将Cr(Ⅵ)还原成Cr(Ⅲ),因此,本研究拟采用EDTA降低Cr(Ⅵ)的毒性,从而提高Cr(Ⅵ)共存时微生物降解孔雀绿的效率.采用筛选出的高效好氧菌Burkholderia cepacia C09G降解孔雀绿,研究EDTA对重金属共存时降解孔雀绿的影响,同时优化EDTA鳌合Cr(Ⅵ)的最佳浓度.通过此研究以提高在重金属共存时染料的去除效率,为复杂废水的治理奠定一定的理论基础.2 材料与方法(Materials and methods)2.1 试剂与仪器试剂:葡萄糖、KH2PO4、Na2HPO4·2H2O、MgSO4、FeCl3·6H2O、KNO3、孔雀绿(MG)、K2CrO7、EDTA等均为分析纯.仪器:SKY-2102型立式双层恒温培养摇床、SPX-2508-Z型生化培养箱、722N 型可见光光度计、PHS-3C型精密pH计、AA-240型原子吸收光谱仪.2.2 试验菌种与培养基本试验所用菌种为Burkholderia cepacia C09G(B. Cepacia C09G).LB培养基:牛肉膏5 g·L-1,蛋白胨10 g·L-1,NaCl 10 g·L-1,分装在100 mL的三角烧瓶中,每瓶装量为30.0 mL,121 ℃灭菌15 min.降解培养基:葡萄糖6.0g·L-1,KH2PO4 1.8 g·L-1,Na2HPO4·12H2O 3.5 g·L-1,FeCl3·6H2O 0.01 g·L-1,MgSO4 0.1 g·L-1,KNO3 3.5 g·L-1,调节至pH 6.0,分装于250 mL 的三角烧瓶中,121 ℃灭菌15 min.2.3 试验方法2.3.1 菌液的制备将菌株B. Cepacia C09G接种到灭菌后的LB培养基中,于30 ℃、150 r·min-1的恒温振荡培养箱中培养至对数期,并将所得菌液转移至50.0 mL离心管中,7000 r·min-1离心10 min,弃除上清液,用无菌水稀释成菌悬液,4 ℃保存备用.2.3.2 MG和Cr(Ⅵ)去除试验将已算好体积的药品加入降解培养基中,每支玻璃离心管(无菌)中加入15.0 mL的降解培养液,再加入菌液(初始OD600=0.7,体积比6%),塞上棉花塞,放入摇床(150 r·min-1,30 ℃)培养0、12、24、36、48、60 h后分别测定OD600、MG和Cr(Ⅵ)浓度.上述每个试验均做3个平行,结果取其平均值,并计算标准偏差.2.4 生物量、MG及Cr(Ⅵ)的测定从恒温摇床中取出各时段的降解培养基,在最大吸收波长600 nm处用可见分光光度计测其吸光度,以波长600 nm处的光密度OD600表示细菌生长量.取上清液,孔雀绿(MG)采用分光光度计测定619 nm处最大吸收峰的吸光度值,以A619表示;利用原子吸收光谱仪测定溶液剩余Cr(Ⅵ)浓度.去除率R计算公式如下:(1)式中,C0表示初始时MG或Cr(Ⅵ)的浓度(mg·L-1);Ct表示t时MG或Cr(Ⅵ)的浓度(mg·L-1).2.5 表征扫描电子显微镜(SEM)观察:采用JSM-7500型扫描电子显微镜观察样品的表面形貌和微观形态;X射线能量色散谱(EDS)分析:利用与SEM联机的X射线能量散射仪分析样品表面的元素种类和含量;傅里叶变换红外光谱(FTIR)分析:采用Thermo Nicolet 5700红外光谱仪,获取试样的FTIR谱图,溴化钾压片,扫描范围为4000~400 cm-1;X射线光电子能谱(XPS)分析:采用VG ESCALAB 250型X 射线光电子能谱仪对吸附孔雀绿和Cr(Ⅵ)后的Burkholderia cepacia C09G进行分析.3 结果与讨论(Results and discussion)3.1 不同条件对孔雀绿降解过程的影响所有实验均用Burkholderia cepacia C09G降解0.1 mmol·L-1孔雀绿,仅加入孔雀绿的为空白实验,其他实验再分别加入0.5 mmol·L-1 Cr(Ⅵ)、0.5 mmol·L-1 EDTA,以及同时加入0.5 mmol·L-1 Cr(Ⅵ)和0.5 mmol·L-1 EDTA,放入摇床中好氧培养0、12、24、36、48、60 h后取出测定OD600、A619、Cr 浓度.3.1.1 OD600如图 1所示,在空白实验中(没有重金属Cr(Ⅵ)或者EDTA存在的条件下),即仅加入0.1 mmol·L-1的孔雀绿(MG)时,B. Cepacia C09G在前36 h快速生长,OD600接近了0.7,而后因为MG基本降解完,缺乏营养物质生物量增长缓慢,60 h后最终OD600值为0.78;仅加入0.5 mmol·L-1 Cr(Ⅵ),对微生物的生长有很强的抑制作用,生物量很低,仅为0.15;仅加入0.5 mmol·L-1 EDTA,毒性虽然比Cr(Ⅵ)更小,但仍有一定的抑制作用,60 h时OD600为0.31.据报道,EDTA和EDTA-Metal对土壤微生物都是有毒的(Grcman et al., 2001).当同时添了EDTA和Cr(Ⅵ)时,OD600为0.42,大于单独加入Cr(Ⅵ)或者EDTA时,说明其生物毒性比单独加入Cr(Ⅵ)或EDTA有所降低,因此,可以推测EDTA可以有效降低Cr(Ⅵ)的毒性.图 1不同条件下孔雀绿(MG)的OD600值3.1.2 孔雀绿(MG)去除率图 2a为不同条件对孔雀绿的降解影响,在仅加入0.1 mmol·L-1 MG的情况下,MG在24 h的去除率达到96.2%;只添加0.5 mmol·L-1 Cr(Ⅵ),60 h时MG的去除率均为6.7%,单独添加0.5 mmol·L-1 EDTA时,60 h时MG的去除率为48.4%,说明Cr(Ⅵ)和EDTA均会抑制B. Cepacia C09G对孔雀绿的降解.同时添加EDTA和Cr(Ⅵ)时,60 h MG的去除率上升到18.8%,相对于单独加Cr(Ⅵ)的降解率有所提高,可以看出,EDTA确实可以有效地降低Cr(Ⅵ)的抑制作用,从而提高对孔雀绿的降解效率.也有研究证实,加入EDTA可以降低5 μmol·L-1 Cd、Cu和Zn对细菌Escherichia coli的毒性(Campbell et al., 2000).图 2不同条件下孔雀绿降解率(a)和Cr去除率(b)3.1.3 Cr去除率图 2b为离心后的降解培养基中总Cr浓度,可能是由于EDTA可以有效螯合Cr,因此,减少了B. Cepacia C09G吸附Cr的效率,去除率从25.7%降低到15.2%.3.2 0.5 mmol·L-1 EDTA螯合的最佳Cr浓度将菌株C09G加入初始Cr(Ⅵ)浓度分别为0.5、0.6、0.7、0.8、0.9 mmol·L-1,EDTA浓度为0.5 mmol·L-1,MG浓度为0.1 mmol·L-1的降解培养基中,放入摇床中好氧培养0、12、24、36、48、60 h后取出测定OD600、A619、Cr的浓度.3.2.1 OD600如图 3a所示,随着加入Cr(Ⅵ)浓度的升高,生物量OD600先升高后降低,加入Cr(Ⅵ)浓度为0.7 mmol·L-1时达到最高.在加入的Cr(Ⅵ)浓度分别为0.5、0.6、0.7、0.8、0.9 mmol·L-1时,60 h时OD600分别为0.45、0.55、0.72、0.62、0.43,微生物生长良好,因此,EDTA可适度地降低Cr的毒性.但总的来说,Cr单独存在,或者与EDTA形成螯合物,对微生物都是有毒的,因而生物量都偏低.图 3不同初始Cr(Ⅵ)浓度下OD600值(a)、孔雀绿降解率(b)和Cr去除率(c)3.2.2 孔雀绿(MG)去除率由图 3b可知,除Cr(Ⅵ)浓度为0.7、0.8 mmol·L-1外,其余Cr(Ⅵ)浓度条件下的MG降解并不理想,均小于20%;而Cr(Ⅵ)初始浓度为0.7 mmol·L-1时,MG的去除率为35.3%,当浓度增加到0.8 mmol·L-1时,MG的降解率下降到了30.7%.因此,确定0.5 mmol·L-1 EDTA存在下,螯合的最佳Cr(Ⅵ)浓度为0.7 mmol·L-1. EDTA和重金属的螯合比例一般为1:1(鞠峰等, 2011),Cr(Ⅵ)以阴离子存在,不能和EDTA螯合,但根据报道,Cr(Ⅵ)会被微生物还原成Cr(Ⅲ)(甘莉等, 2014).因此推测,部分Cr(Ⅵ)会被微生物还原成Cr(Ⅲ),被还原的Cr(Ⅲ)跟EDTA螯合,减少了毒性.EDTA或者Cr(Ⅵ)过量,MG去除率都会降低.3.2.3 Cr去除率如图 3c所示,Cr(Ⅵ)初始浓度分别为0.5、0.6、0.7、0.8、0.9 mmol·L-1时,总Cr的去除率分别为15.8%、21.6%、24.6%、21.8%、20.9%.Cr去除率随着加入的Cr(Ⅵ)浓度增加而增加,当Cr(Ⅵ)为0.7 mmol·L-1时Cr去除率最高,之后开始下降,但降低幅度很小.可能是因为高浓度的Cr传质效果更好,因而更易于被微生物富集.相对于无EDTA存在情况下,B. Cepacia C09G对Cr吸附率略有下降,但在最佳的螯合浓度下,由于减少了Cr的毒性,增加了生物量,使得吸附率有所提高.但总的来说,在EDTA存在条件下,B. Cepacia C09G对Cr 吸附能力均较低.3.3 降解过程的表征3.3.1 XPS为了检测Cr(Ⅵ)价态变化,采用X射线光电子能谱(XPS)分析吸附孔雀绿和Cr(Ⅵ)后的Burkholderia cepacia C09G,图 4是菌体表面Cr的2p轨道核心区域的XPS光谱图及其拟合曲线.可以看出,Cr2p1/2的结合能在584.0 eV处,而Cr2p3/2的结合能在577.4 eV处,可知两个能值与Cr(Ⅲ)的结合能相对应,这说明在菌体表面应该存在Cr(Ⅲ),而吸附前,培养基中只有Cr(Ⅵ),因此,推测培养基中Cr(Ⅵ)在Burkholderia cepacia C09G的作用下被吸附到其表面后,利用菌体内的还原酶,Cr(Ⅵ)被还原为Cr(Ⅲ).其他文献也有类似报道,细菌可利用细胞NADH作为还原剂,在好氧或厌氧状态下,将高毒性的Cr(Ⅵ)直接还原成低毒的Cr(Ⅲ)(Lira-Silva et al., 2011),如利用Burkholderia vietnamiensis C09V同时去除结晶紫和Cr(Ⅵ)时,该菌在降解结晶紫的同时将Cr(Ⅵ)还原成Cr(Ⅲ)(甘莉等, 2014).图 4吸附后Burkholderia cepacia C09G的Cr2p能谱图3.3.2 SEM由图 5a可知,当溶液中只有孔雀绿存在时,B. Cepacia C09G细胞形态几乎没有破损,细胞表面完整圆滑饱满、生长良好.当孔雀绿溶液中加入0.5 mmol·L-1 EDTA时,细胞形态有些略微的损伤(图 5b).当加入Cr(Ⅵ)后,微生物细胞表面严重受损,细胞表面凹凸不平且变得干瘪(图 5c).如图 5d所示,同时加入0.5 mmol·L-1 EDTA和0.5 mmol·L-1 Cr(Ⅵ)后,与只加EDTA相比,对细胞形态影响相对较小,与不加EDTA与Cr(Ⅵ)的细胞形态相比虽然能维持较完整的细胞形态,还是有略微损伤.从图 5中可以看出,EDTA与Cr(Ⅵ)都能破坏细胞的结构,从而降低微生物的活性,同时加入EDTA和Cr(Ⅵ)后,EDTA减少了Cr(Ⅵ)对B. Cepacia C09G的毒性.图 5降解后Burkholderia cepacia的SEM图(10000×)(a.0.1 mmol·L-1 MG, b. 0.1 mmol·L-1 MG+0.5 mmol·L-1 EDTA, c. 0.1 mmol·L-1 MG+0.5 mmol·L-1 Cr(Ⅵ), d.0.1 mmol·L-1 MG+0.5 mmol·L-1 EDTA+0.5 mmol·L-1 Cr(Ⅵ))3.3.3 EDS通过EDS确定菌株B. Cepacia C09G生物吸附MG、Cr(Ⅵ)或者EDTA后菌株局部所含元素,从图 6中可以看出,图中均含有C、K、O、Na、P,这些元素主要是来自于微生物自身;此外,图 6b和6c中还含有Cr,这表明菌株有效地吸附了Cr,来源于溶液中加入的K2Cr2O7.图 6b和6c中分别在0.48、5.40和5.96 keV 处出现峰,显示存在Cr元素,这就证明了C09G菌在去除孔雀绿的同时也可以吸附Cr.而且在图 6c与6b的对比中可以看出,当加入了EDTA后,Cr的含量明显减少,从0.59%降低到0.37%,说明EDTA相比于菌株对Cr的亲和力更强.图 6降解后Burkholderia cepacia的EDS图(a. 0.1 mmol·L-1 MG, b. 0.1 mmol·L-1 MG+0.5 mmol·L-1Cr(Ⅵ), c.0.1 mmol·L-1 MG+0.5 mmol·L-1 EDTA+0.5mmol·L-1 Cr(Ⅵ))3.3.4 FTIR图 7为菌株B. Cepacia C09G吸附孔雀绿及孔雀绿和Cr(Ⅵ)后的FTIR光谱图.由图 7可知,2939~2927 cm-1处的峰是—CH、—CH2及—CH3的不对称振动峰,在1655 cm-1和1546 cm-1处出现由氨基酸I的—NH2与氨基酸II的—COOH 形成的—NH/CO的伸缩振动吸收峰,1408~1405 cm-1处分别为孔雀绿及降解产物芳环上的C=C的伸缩振动峰和O—H的弯曲振动峰.图 7b相比于图 7a,在2452 cm-1和845 cm-1处的峰消失,1070 cm-1处峰的产生是由于氨基酸的—NH转变为C=N共轭键.这说明菌株C09G的去除过程主要是—OH、—COOH、—NH2、—NH/CO 等官能团与Cr相互作用(Nandi et al., 2009).图 7菌株B. Cepacia C09G吸附孔雀绿(a)及孔雀绿和Cr(Ⅵ) (b)后的FTIR光谱图4 结论(Conclusions)1) 0.1 mmol·L-1孔雀绿单独存在条件下,24 h的生物降解率达到96.2%;然而,在0.5 mmol·L-1 Cr(Ⅵ)共存时,60 h的降解率仅为6.7%;当加入0.5 mmol·L-1 EDTA螯合剂后,60 h时孔雀绿的降解率提高到18.8%.说明Cr(Ⅵ)、EDTA都会抑制孔雀绿的降解,加入0.5 mmol·L-1 EDTA螯合Cr后,可显著降低Cr的毒性.具体联系污水宝或参见更多相关技术文档。

四种印染废水处理方法

四种印染废水处理方法

四种印染废水处理方法纺织工业进展重要拦阻之一是环保节能问题,环保的重要问题是废水处理,而约80%纺织废水来自于印染行业。

作为工业废水重要来源之一的纺织印染废水,其处理难度较大,不易处理,本文简要介绍四种印染废水处理方法,详见下文。

一、物理法(1)栅栏法:用于去除废水中纱头、布块等漂物和悬浮物。

重要有格栅和格网、筛网等。

(2)调整池:由于纺织印染废水水质水量变化大,必需设调整池,一般当废水量5000ffd时,调整池停留时间为4h;废水量2000t/d时,调整池停留时间为5h~6h;废水量小于1000ffd时,调整池停留时间为7h~8h。

(3)沉淀池:印染废水的悬浮粒小,故不经其它(如化学)预处理时,不宜直接进行沉淀处理,沉淀池又分平流式、竖流式和辐流式,其中前者应用多。

(4)过滤法:在印染废水中接受的过滤多是快滤池,即在重力作用下,水以6m/h12m/h的速度通过滤池完成过滤过程。

二、化学处理法(1)中和法:在印染废水中,该法只能调整废水pH值,不能去除废水中污染物,在用生物处理法时,应把握其进入生物处理设备前pH值在6—9之间。

(2)混凝法:用化学药剂使废水中大量染料、洗涤剂等微粒子结合成大粒子去除,印染废水处理中需用的混凝剂有碱式氯化铝、聚丙烯酰胺、硫酸铝、明矾、三氯化铁等。

(3)气浮法:印染废水中含大量有机胶体微粒、呈乳状的各种油脂等,这些杂质经混凝形成的絮体颗粒小、重量轻、沉淀性能差,可接受气浮法将其分别;目前在印染废水整治中,气浮法有取代沉淀法的趋势,是印染废水的一种重要处理方法。

在印染废水中气浮处理重要接受加压溶气气浮法。

(4)电解法:该法脱色效果好,对直接染料、媒体染料、硫化染料、分散染料等印染废水,脱色率在90%以上,对酸性染料废水,脱色率在70%以上。

该法缺点:电耗及电材料耗量大,需直流电源,适宜于小量废水处理。

(5)吸附法:吸附法对印染废水的COD、BOB色去除特别有效,由于活性炭吸附投资较大,一般不优先考虑,近年来有泥煤、硅藻土、高岭土等活性多孔材料代替活性炭进行吸附的,对印染废水宜选用过滤孔发达的活性吸附材料。

毕业设计——印染废水处理

毕业设计——印染废水处理

6000m3/d某厂印染废水处理工艺设计1绪论我国是纺织印染业的第一大国,而纺织印染业又是工业废水排放大户,印染厂每加工100m2织物,产生废水量3-5m3,故由此而造成的生态及经济损失是不可计量的,所以解决印染水污染问题势在必行。

在我国,印染废水是当前最主要的水体污染源之一。

由于这类废水成分相当复杂,往往含多种有机染料并且毒性强,色度深,PI1值波动大,难降解,组分变化大,且水量大,浓度高,所以一直是工业废水处理的难点,也是急需解决的问题之一。

为此,国内外对印染废水的处理技术进行了广泛的研究。

1.1印染废水来源及水质特性印染废水主要来源于印染加工的四个工序:预处理、染色、印花、整理。

预处理阶段排出退浆废水、煮炼废水、漂白废水和丝光废水,染色工序排出印染废水、印花废水和皂液废水,整理工序则排出整理废水。

印染废水是以上各类废水的混合废水,或除漂白废水以外的综合废水。

印染废水的水质随采用的纤维种类和加工工艺的不同而异,污染物组分差异很大。

一般印染废水,pH值为6-10,COD:为400-1000mg/L,色度为100-400倍,SS为100-200mg/L。

但当印染工艺及采用的纤维种类和加工工艺变化后,废水水质将有较大变化[1]。

总体来说,纺织印染废水的特点如下:(l)色度大,有机物含量高,除含染料和助剂等污染物外,还含有大量的浆料,废水粘性大。

(2)COD变化大,高时可达2000-3000mg/L,BOD也高达200-300mg/L。

5(3)碱性大,如硫化染料和还原染料废水PH值可达10以上。

(4)染料品种多,可生化性较差。

(5)由于加工品种及产量经常变化,导致水温水量较大变化。

1.2印染废水的治理技术目前,国内的印染废水处理手段以生化法为主,有的还将化学法与之串联。

国外也是基本如此。

由于近年来化纤织物的发展和印染后整理技术的进步,使PVA浆料、新型助剂等难生化降解有机物大量进入印染废水,给处理增加了难度。

染料废水脱色方法

染料废水脱色方法

染料废水主要来源于染料及染料中间体生产行业,由各种产品和中间体结晶的母液、生产过程中流失的物料及冲刷地面的污水等组成。

由于染料生产品种多,并朝着抗光解、抗氧化、抗生物氧化方向发展,从而使染料废水处理难度加大。

染料废水的处理难点:一是COD高,而BOD/COD值较小,可生化性差;二是色度高,且组分复杂。

COD的去除与脱色有相关性,但脱色问题困难更大。

染料的颜色取决于其分子结构。

按Wiff发色基团学说,染料分子的发色体中不饱和共轭链与含有供电子基或吸收电子基的基团相连,另一端与电性相反的基团相连。

化合物分子吸收了一定波长的光量子的能量后,发生极化并产生偶极矩,使价电子在不同能级间跃迁而形成不同的颜色。

一般来说,染料分子结构中共轭链越长,颜色越深;苯环增加,颜色加深;分子量增加,特别是共轭双键数增加,颜色加深。

从理论上讲,多种物理化学方法和生物方法都可以用于染料废水的脱色处理,如絮凝沉淀、吸附、离子交换、超滤、渗析、化学氧化、光氧化、电解及生物处理方法。

考虑到工业效率与处理成本,目前工业上常用的方法有絮凝沉淀(气浮)、电解、氧化、吸附、生物降解等方法。

1.絮凝沉淀(气浮)法在染料废水中投加铝、铁盐等絮凝剂,使其水解形成带高电荷的羟基化合物,它们对水中憎水性染料分子如硫化染料、还原染料、分散染料(如直接耐晒翠蓝GL、分散红玉S-2G FL等)的混凝效果较好,PAC投加量在100~150mg/L时,即可取得90%以上的脱色效率。

而对酸性染料、活性染料,特别是对小分子量、单偶氮键、含有数个磺酸基的水溶性染料的混凝脱色效率较差。

高价金属盐的电中和作用可降低染料粒子的ζ电位,但取得最佳效果并不需要降为0。

混凝过程的吸附架桥作用是明显的,该过程并不改变染料的分子结构。

硫酸亚铁对带-SO-3、-OH、-NH2、-X等基团的染料分子也具有较好的混凝脱色效果,这主要是由于Fe2+可以与上述基团的未共用电子对发生络合反应而形成大分子螯合物,降低了水溶性,在染料废水中呈胶体状态,进而通过硫酸亚铁水解产物的混凝作用被去除。

印染废水处理方法及工艺流程

印染废水处理方法及工艺流程

印染废水处理方法及工艺流程印染废水的处理方法主要分为物理法、化学法和生物法三种。

物理法包括格栅筛网、调节、沉淀、气浮、过滤和膜技术等;化学法包括中和、混凝、电解、氧化、吸附和消毒等;生物法则包括厌氧生物法、好氧生物法和兼氧生物法。

目前国内的印染废水处理主要以生物法为主,辅以物理法和化学法。

然而,近年来难生化降解有机物的大量进入印染废水,给处理增加了困难。

新型染料、PAV浆料和新型助剂等难以被普通微生物利用,使得原有的生物处理系统COD去除率大都下降到50%左右甚至更低。

此外,PAV等化学浆料造成的COD占印染废水总COD的比例相当大,但是它们很难被普通微生物所利用,使其去除率只有20%~30%。

为了解决这些问题,国内外开展了一些研究工作,主要是新的生物处理工艺和高效专门细菌以及新型化学药剂的探索和应用研究。

印染废水处理单元的选择需要考虑废水的水质和水量变化情况。

对于水量变化大的废水,调节池应考虑停留时间长些,但是如果后续处理单元为水解酸化或厌氧处理时,调节时不应采用曝气方式搅拌混合。

对于含疏水性染料较多的废水,混凝反应工艺应放在生化前面,以去除不溶性染料物质,减轻后续生物处理的负荷。

混凝药剂可根据染料性质选用碱式氯化铝(PAC)或硫酸亚铁(FeSO4)等,混凝反应方式采用机械搅拌易于调整水力条件,保证反应充分,反应时间应在25~30min 之间。

在考虑脱色效应时,应把反应时间再适当延长。

对于原水pH值高的废水,通常使用H2S04或HCl中和。

为了节省药剂用量,可在调节以后进行中和。

如果采用烟道气中和,则应考虑脱硫及除灰。

4) 沉淀(气浮):为了分离物化投药反应,可以考虑沉淀。

由于污泥量大,优先考虑辐流沉淀池,竖流沉淀池适用于小水量。

当有地皮可利用时,平流沉淀池采用吸泥方式时也可采用。

当投药量大时,泥量也大,辐流池可能会引起异重流,新颖地周边进出水沉淀池可克服这一缺点。

如果废水中表面活性剂含量高,可以选择气浮法。

印染废水深度处理及回用技术

印染废水深度处理及回用技术

印染废水深度处理及回用技术我国是一个水资源匮乏的国家,水资源人均占有量仅为世界水资源人均占有量的1/而且分布不均、利用率低。

随着社会经济发展,水的需求量不断增加,水资源短缺和社会经济发展的矛盾更加突出,开展废水深度处理及回用对缓解我国水资源的紧张形势十分必要。

印染行业是我国的工业用水大户和废水排放大户。

据不完全统计,我国印染废水的排放量约为3X106~4X106m3∕d,约占整个工业废水排放量的35%,但回用率却不到10%(1)。

对印染废水进行深度处理,提高废水回用率,这对缓解水资源危机、维持印染行业的可持续发展都有重大的现实意义和经济意义。

1国内印染废水处理及回用现状我国对印染废水回用已有较多的研究,从目前研究及应用的情况来看主要有以下特点:(1)回用技术大多处于试验研究阶段,多为小试和中试,实际工程应用较少,且水的回用率较低,一般不超过50%,主要回用于对水质要求不高的前道工序,缺乏有利于提高回用水水质及回用率的高效技术的推广应用。

(2)回用处理主要是对印染废水在达标处理的基础上进一步进行处理,达到回用水水质标准。

处理工艺主要采用混凝、吸附、过滤和氧化等技术,其中对去除盐度和硬度的关键技术研究较少。

(3)由于现有技术水平的限制,印染废水大量回用对生产及废水处理系统会带来一系列问题,包括有机污染物和无机盐的积累。

目前对废水长期回用的水质问题及对水处理系统的影响研究不多,特别是无机盐的积累问题基本没有涉及。

2印染废水深度处理回用技术及工艺印染废水深度处理主要对常规二级处理系统出水进行处理,去除的污染物主要是色度、COD和盐度(电导率)等,使出水水质满足生产工艺要求。

印染工艺和产品质量要求不同,对回用水的水质要求也不同。

因此,我国尚没有统一的印染废水回用水水质标准。

根据行业经验,水质指标都必须控制在用水指标之内。

因此,纺织印染业对回用水水质的要求远远高于城市生活杂用水的水质要求。

2.1深度处理单元技术2.1.1吸附处理技术将废水通过由吸附剂组成的滤床,污染物质被吸附在多孔物质表面上或被过滤除去。

活性炭对染料废水的脱色研究

活性炭对染料废水的脱色研究

Aciae ab n De oo iain o y a tw tr t td C r o c lr t fD eW se ae v z o
Zh n np Ha ehu , ha g Ch ny n a g Ru u, o W i i Z n u a g
( ol eo n i n n l c n e& E ie, , o g u nvr t, h ,. 2 12 ,C ia C lg fE vr met i c e o aS e g n n e n D n H aU iesy S  ̄ Si 0 6 0 hn ) i g i
加 染料 去 除 率 , 而碱 性 条 件 下相 反 。 高 初 始 浓 度 的 染料 体 系 中 , 大 盐 离子 强 度 能 增加 染 料 去 除 率 , 初 始 浓 增 低 度 的 粢料 体 系 中相 反 。 关键词 : 活性 炭 吸 附 ; 性 蓝 染料 ;H; 离子 活 p 盐 中 图分 类 号 :7 3 1 X 0 . 文献标识码 : A
目前关于废水 中去 除染料有很 多的方法, 例如 凝 固法 , 沉降 法 , 超滤 法 , 臭氧 处理 , 氧化 法和反 向渗 透 法等 。然而 吸 附法相 比于其 它传 统 方 法来 说 , 因 为其具有容易施用, 设计简单 , 高效率 , 操作简便 , 在 高浓度下 也能 去除 染料 等 优点 , 认 为是 一 种 很 优 被 越 的方法 J 。活性炭 由于高 的 吸附性 能被广 泛地 用 作有 机化合 物的 吸附材料 。
分别 用 0 5M 硝 酸 和 05 M 氢 氧化 钠 改变 溶 液 的 . . p H值从 20~1. , 持 活性蓝 初 始 浓度 05mM, . 00 保 .
活性炭 用 量 0 2 , 液体 积 10 m 和温 度为 .0 g 溶 0 l 积, 平均孔径, 表面官能团等采用标准分析方法进行 2 ℃ 。 5 了分析和测试。活性蓝染料的酸度常数采用 电位滴 为考察不周浓度盐对吸附的影响 , 分别设置两 定进行标定。研究了溶液的 p , H 阴离子强度对活性 组实 验 : 炭吸 附活性蓝 染料 的影 响。 ( ) 0 0 、. 、.5 0 20 2 、. 、.50 1 将 .50 10 1 、. 、.50 30 3 、. 40 4 、 . M 的 N 2O 、.5 0 5 as 4分 别 加 人 到 p =70和 H . 1 实验部分 1. 00的 0 1m 染 料 溶 液 中 , 入 0 2g的活性 炭 . M 加 . 1 1 试剂与 仪器 . 进 行 吸附实验 。 吸附剂 活性炭 购买 自上海 活性炭 厂 。密度 和孔 ( ) 0 0 、 . 、.5 0 2 0 2 、. 、.5 2 将 .5 0 10 1 、 . 、. 5 0 3 03 、 隙率 分别是 06 /m。 04 .4ge 和 . 。各 种元 素的含 量为 0404 、. 的 N 2O 分 别 加 入 到 0 1m 和 . 、.505M aS , . M C= 65 , 65 ,H=12 ( / . 附质 活 1m 染料 溶液 中 , 8. % O= .% . % w w) 吸 M 加入 02g活性 炭进 行 活性 蓝 的 . 性蓝 由上 海染料 化工 厂供应 。 吸附实验 。两 种浓度 的染料溶 液 的 p H均为 70 .。 1 2 实验过 程 . 2 结 果 与 讨 论 实验在 2 0m 5 l的锥 形 烧瓶 中进 行 , 10 m , 将 0 l 定初始浓度的活性蓝溶液放置其 中, 然后将颗粒 2 1染料性 质 . 活性蓝 的 p a的 测 定 使 用 标 准 电 位 滴 定 J K 。 大 小为 2 0 5 一 O , 量 为 02 40 质 .0 g的 活性 炭 添加 进每 个烧 瓶 中 , 将 烧 瓶 密封并 放 置 于 恒温 振 根据 酸碱性质 , 料 能 在适 宜 的 酸 溶 液或 碱 溶液 中 并 染 动器 中 , 到 反应 达 到平 衡 。为了避 免 活性 炭 粉 屑 被滴定。p a 直 K 是通过 p H和染 料缓冲强度 ( p M H一 ) H 对分析的干扰 , 所有溶液浓度在分析之前都进行过 1 计 算 得 来 。见 图 1为 不 同 p 下 的染 料 缓 冲 强 滤处理 。活性 蓝在 吸 附前后 的浓度采用 紫外 可见 分 度 , 以看 出该 染 料 的 p a值 等 于 5 5 可 i c . 。见 表 1总 光 光度计 进行 测量 。每 个实验 在同种条 件下 都将 进 结 了活性 蓝染 料 的性 质 以及 其分子 中极 性官 能 团的 数 目。 行两遍 , 取平均值进行计算 。

浅谈光Fenton方法处理印染废水

浅谈光Fenton方法处理印染废水

浅谈光 Fenton方法处理印染废水【前言】纺织技术的发展导致了印染废水的成分日趋发杂,也给治理技术造成一定的困难。

本文利用自制的光反应器,联合UV和Fenton试剂进行橙黄II的降解实验,通过紫外分光光度计对橙黄II溶液浓度进行监测,对影响实验的各个因素进行研究进而确定出最佳的反应条件。

【关键词】:印染废水脱色影响1 印染废水的来源及特点随着我国纺织工业的发展,大量染料及新型助剂的应用,随之而来的印染工业废水的排放迅猛增加,对水体的污染也日益严重。

印染废水是我国目前危害大、难处理的工业废水之一,主要来自印染加工过程中所有工序产生的综合废水。

包括印染工序中的预处理排放的退浆、煮炼、漂白、丝光废水;染色排放的染色废水;印花排放的皂洗废水和印花废水以及整理阶段排放的整理废水。

印染废水成分复杂,主要以芳烃和杂环化合物为母体,并带有显色基团和极性基团,其特点是废水量庞大、色度大、有机物含量高、水质变化无常、难降解等,由于印染废水成分复杂,单一处理方法往往不能达到理想的处理效果,在实际应用中大多采用几种方法的组合来完成对印染废水的彻底处理【1】。

2 印染废水主要处理技术印染废水的处理方法主要有物理法、化学法和生物法。

物理法主要原理是吸附作用,利用活性炭、硅藻土和煤渣等多孔物质的粉末或颗粒与废水混合,使污染物质被吸附在多孔物质表面上或被过滤除去。

吸附技术特别适合低浓度印染废水的深度处理,在工艺上具有投资小,方法简便易行,成本较低的优点【2】。

在实际应用中要重点考虑吸附剂的选择及二次污染的问题。

化学法主要有化学混凝法、化学氧化法和电化学法。

化学混凝法虽然操作流程简单,但是对亲水性染料治理效果差,且运行费用也高,二次污泥治理也困难。

化学氧化法主要将废水中的无机物和有机物通过化学反应被氧化成无毒物质从而达到治理的目的。

其中应用较多的臭氧氧化法,臭氧氧化法的优点在于氧化能力强、去除污染物的效果显著,处理后的废水中的剩余臭氧易分解,不产生二次污染【3】。

印染废水的处理方法和工艺流程图

印染废水的处理方法和工艺流程图

印染废水的处理方法及工艺流程目前,国内的印染废水处理手段以生物法为主,辅以物理法与化学法。

由于近年来化纤织物的发展和印染后整理技术的进步,使新型染料、PAV浆料、新型助剂等难生化降解有机物大量进入印染废水,给处理增加了难度。

原有的生物处理系统COD去除率大都由原来的70%下降到50%左右,甚至更低。

色度的去除是印染废水处理的一大难题,旧的生化法在脱色方面一直不能令人满意。

此外,PAV等化学浆料造成的COD占印染废水总COD的比例相当大,但由于它们很难被普通微生物所利用而使其去除率只有20%~30%。

针对上述问题,国内外都开展了一些研究工作,主要是新的生物处理工艺和高效专门细菌以及新型化学药剂的探索和应用研究。

其中具有代表性的有:厌氧-好氧生物处理工艺、高效脱色菌和PVA降解菌的筛选与应用研究、光降解技术研究、高效脱色混凝剂的研制等。

1、印染废水常用处理技术印染废水的常用处理方法可分为物理法、化学法与生物法三类。

物理法主要有格栅与筛网、调节、沉淀、气浮、过滤、膜技术等,化学法有中和、混凝、电解、氧化、吸附、消毒等,生物法有厌氧生物法、好氧生物法、兼氧生物法。

2、印染废水处理单元的选择系列(1)调节:对水质水量变化大的废水,调节池应考虑停留时间长些。

一般情况下后续处理单元为水解酸化或厌氧处理时,调节时不应采用曝气方式搅拌混合。

(2)混凝反应:废水中含疏水性染料较多时,混凝反应工艺放在生化前面,以去除不溶性染料物质,减轻后续生物处理的负荷。

混凝药剂可根据染料性质选用碱式氯化铝(PAC)、硫酸亚铁(FeSO4)等,混凝反应方式采用机械搅拌易于调整水力条件,保证反应充分,反应时间应在25~30min之间。

考虑脱色效应时,应把反应时间再适当延长。

(3)中和:原水pH值高时通常用H2S04或HCl中和,为节省药剂用量,可在调节以后。

如采用烟道气中和,应考虑脱硫及除灰。

(4)沉淀(气浮):分离物化投药反应由于污泥量大,应优先考虑沉淀〔斜管沉淀易堵不宜采用),通常的辐流沉淀池适用于大水量、竖流沉淀池适用于小水量,当有地皮可利用时,平流沉淀池采用吸泥方式时也可采用。

印染废水的处理

印染废水的处理

印染废水的处理摘要:目前纺织行业的环境污染主要来自于其生产过程的污水、废气和噪声。

从这三个方面介绍了中国近几年纺织业对环境的污染。

印染废水是我国目前主要的有害、难处理工业废水之一,其特点是废水量大、水质复杂、有机物浓度高、难生物降解、色深、水质变化快而无规律等特点,其中尤以染料的污染最为严重,其残存的染料组分即使浓度很低,也会造成水体透光率降低,导致生态环境的破坏。

因此,如何促进印染行业的可持续发展,保证其经济发展与环境保护的“双赢”,是我国纺织印染行业必须解决的难题。

因此,根据印染废水的来源不同,重点对印染废水的处理方法以及技术进行了归纳和总结。

并建议解决印染废水污染问题应坚持改革工艺,从源头减少污染物排放和积极治理所排放污水,并加强印染污水处理站的绿化带面积。

关键词:纺织印染;环境问题;药剂选用;印染废水处理工艺流程引言:印染纺织工业是我国传统的支柱产业,包括纺织、印染、化纤、服装和纺织专用设备制造等5个部分。

随着染料纺织工业的迅速发展,我国的印染业也进入了高速发展期,设备和技术水平明显提升,生产工艺和设备不断更新换代,印染企业尤其是民营印染企业发展十分迅速。

印染废水已成为水质环境的重要污染之一。

印染废水具有水量大、有机污染物含量高、色度深、碱性大、水质变化大等特点,属难处理的工业废水。

一、纺织行业存在的主要环境问题(一)废水纺织废水主要包括印染废水、化纤生产废水、洗毛废水、麻脱胶废水和化纤浆粕废水五种。

印染废水是纺织工业的主要污染源。

另外,传统的印染加工过程会产生大量的有毒污水,加工后废水中一些有毒染料或加工助剂附着在织物上,对人体健康有直接影响。

(二)废气纺织行业的废气主要来自行业内的锅炉,这些锅炉绝大多数以煤(包括一部分原煤)为燃料,这些煤含有一定量的硫,在燃烧过程中排放出大量的燃烧废气、二氧化硫和烟尘,严重污染了环境。

(三)噪声噪声污染是纺织行业尤其是棉纺织行业目前存在的比较严重的问题之一,棉纺织厂由于大量使用有梭织机,厂内噪声达90~106 dB(A),而人耳对噪声的最大允许值仅为85 dB(A)。

脱色处理方法介绍(doc 6页)

脱色处理方法介绍(doc 6页)

由于染料生产品种多,并朝着抗光解、抗氧化、抗生物氧化方向发展,从而使染料废水处理难度加大。

染料废水处理难点:一是COD高,而BOD/COD值小,可生化性差;二是色度高,而成分复杂。

三是水质水量不稳定,排放具有间歇性。

印染废水的处理目标一般是COD的去除与脱色,但脱色问题难度更大。

3.脱色处理方法3.1 物理方法3.1.1吸附法吸附法是利用多孔性的固体物质,使废水中的一种或多种物质被吸附在固体表面而去除的方法。

吸附脱色技术是依靠吸附剂的吸附作用来脱除染料分子的。

吸附按其作用力可分为物理吸附、化学吸附和离子交换吸附三种。

目前用于吸附脱色的吸附剂主要是靠物理吸附, 但离子交换纤维、改性膨润土等也有化学吸附作用。

常用的吸附剂包括可再生吸附剂如活性炭、离子交换纤维等和不可再生吸附剂如各种天然矿物(膨润土、硅藻土)、工业废料(煤渣、粉煤灰) 及天然废料(木炭、锯屑) 等。

传统的吸附剂是活性碳,活性炭具有较高的比表面积(500- 600 m2/g),它只对阳离子染料、直接染料、酸性染料、活性染料等水溶性染料具有较好的吸附性能。

活性炭去除水中溶解性有机物(分子量不超过400)非常有效,但它不能去除水中的胶体疏水性染料。

若废水BOD5> 500mg/L,则采用吸附法是不经济的。

膨润土作为水处理中的吸附剂和絮凝剂,已被广泛用于印染废水脱色领域,近年来制成多种复合膨润土、VS型纤维和聚苯乙烯基阳离子交换纤维等,具有物理吸附和离子交换功能,且比表面大、离子交换速度快,易再生,对难处理的阳离子染料废水有很好的脱色效果,有些改性的膨润土的脱色效果甚至高于活性炭[4];某些集吸附与絮凝性能为一体的吸附剂如硅藻土复合净水剂也已开发;用电厂粉煤灰制成具有絮凝性能的改性粉煤灰,对疏水性和亲水性染料废水均具有很高的脱色率;另外工业废料(如煤渣、粉煤灰等)、天然废料(如木炭、木屑等)、植物秸秆(如玉米棒等)均对印染废水具有一定的吸附作用。

印染废水处理技术工艺+5个典型案例

印染废水处理技术工艺+5个典型案例

印染废水处理技术工艺+5个典型案例所属行业: 水处理关键词:印染废水工业废水有机污染物印染废水是指棉、毛、麻、丝、化纤或混纺产品在预处理、染色、印花和整理等过程中所排出的废水。

印染行业是纺织工业用水量较大的行业,水作为媒介参与整个印染加工过程。

1.印染废水水质水量特点由于印染过程中工艺繁复,且需投放种类繁多的染料、浆料、助剂等化学品,因此印染废水具有水量大、有机污染物含量高、色度深、碱性大、水质变化大等特点,属难处理的工业废水。

1印染废水污染物的种类和来源废水中含有染料、浆料、助剂、油剂、酸碱、纤维杂质、砂类物质、无机盐等。

染料结构中硝基和胺基化合物及铜、铬、锌、砷等重金属元素具有较大的生物毒性,严重污染环境。

下面介绍一下印染废水污染物种类和来源。

染料及特点印染工艺中主要是染色,而染色的过程就离不开五颜六色的染料,染料是印染废水污染物的主要来源之一,染料种类繁多,生物可降解程度也各不相同。

下表总结各种染料的特点。

助剂及种类助剂是印染废水的另一主要来源,助剂主要包括表面活性剂、金属络合剂、还原剂、氧化剂、分散剂、树脂整理剂和染色载体等;按用途分为以下类别:润湿剂和渗透剂类;乳化剂和分散剂类;起泡剂和消泡剂类;金属络合剂类;匀染剂、染色载体和固色剂类;还原剂、拔染剂、防染剂和剥色剂类;粘合剂和增稠剂类;柔软剂和防水剂类,上浆硬挺整理剂类,树脂整理剂荧光增白剂类;防静电类,阻燃整理类;羊毛防缩和防蛀类,防霉防臭整理剂类,防油易去污类。

印染废水中含有少量油剂,主要来自煮炼废水和整理工序废水,含量少,对水质影响不大。

所属行业: 水处理关键词:印染废水工业废水有机污染物 2印染废水的来源和水量水质特点印染废水不单单产生于染色过程中,印染过程分多个工序,每一道工序都要排出废水,预处理阶段(包括烧毛、退浆、煮炼、漂白、丝光等工序)要排出退浆废水、煮炼废水、漂白废水和丝光废水,染色工序排出染色废水,印花工序排出印花废水和皂液废水,整理工序则排出整理废水。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

染料废水脱色处理工艺
聚合氯化铝(PAC)是一种广泛使用的无机絮凝剂,印染废水经生化处理后色度往往难以达标,采用PAC 进行深度脱色处理效果较好, 但其存在用量大,水中残留铝对环境有害,形成的絮体结构松散,沉降性能欠佳,水力冲击下容易返浑等缺点〔1〕。目前改性硅藻土也常用于染料废水的脱色〔2〕,硅藻土廉价无毒,适应性强,但吸附性能与活性炭相比还有差距,且多呈粉体难以固液分离。采用改性硅藻土复配聚合氯化铝絮凝剂处理染料溶液, 可以获得结构密实的絮体,提高脱色效率,改善沉降性能,减少PAC用量从而减轻Al3+溶出对环境造成的危害, 由于硅藻土价格低廉,同时也可降低水处理成本。
1 实验部分
1.1 材料与仪器
材料:硅藻土,化学纯,质量分数(以Si 计)为88%;聚合氯化铝,质量分数(以Al2O3计)为10%。以上材料均来自常州友邦净水材料有限公司。商品活性艳红。
仪器:721 分光光度计,上海精密科学仪器有限公司;MY3000-6 智能型混凝试验搅拌仪,潜江梅宇仪器有限公司;pHS-3C 型酸度计,上海虹益仪器仪表有限公司。
1.2 硅藻土改性方法
将硅藻原土用0.1 mol/L 的稀HCl 溶液浸泡24 h,然后用去离子水冲洗、烘干,在450 ℃下焙烧1 h 至微呈粉红色,备用。
1.3 絮凝剂复配方法
将聚合氯化铝在85 ℃下烘0.5 h, 然后与改性硅藻土按照一定的质量比混合后反复研磨,即得复合絮凝剂。
1.4 脱色率测定
活性艳红浓度采用分光光度法在540 nm 波长处测定。
脱色率=(C0-C1)/C0×100%
式中:
C0———活性艳红初始质量浓度,mg/L;
C1———处理后活性艳红质量浓度,mg/L。
1.5 沉降性能测定
用沉降时间表征沉降快慢。沉降时间是指搅拌停止后,污泥和液面之间形成明显的分界面所需时间。絮体的紧密程度用污泥沉降比表征。将反应悬浊液倒入250 mL 量筒中静置1 h,测得污泥体积与原浑浊液体积之比即为沉降比。
2 结果与分析
2.1 不同药剂的脱色效果将改性硅藻土、PAC 及PAC+改性硅藻土复合絮凝剂(PAC 与改性硅藻
土质量比为5∶1)各0.5 g 分别投加到200 mL 质量浓度为70 mg/L 、pH 为9.7 的活性艳红溶液
中, 以250 r/min 的速度搅拌45 min,静置1 h 后取上清液测其浓度。不同药剂的脱色效果见表
1。
由表1 可知,在相同条件下,复合絮凝剂的处理效果最好,PAC 次之,改性硅藻土最差,沉降效
果也依此顺序下降。由于改性硅藻土吸附容量有限,加之呈粉体状,不易固液分离,导致其脱色率较
小。
硅藻土和PAC 复配使用,由于硅藻土具有较大的比表面积,可吸附活性艳红分子,也可作为
PAC 絮凝的“核”进而发生架桥吸附,同时硅藻土结构中的硅醇基水解致使表面带负电荷〔3〕,
对PAC 具有电中和脱稳作用,因此处理后上清液清亮透明,没有硅藻土悬浮微粒,生成的絮体较大,
沉降性能大大改善。
2.2 PAC 与改性硅藻土配比的影响
将PAC 与改性硅藻土以不同质量比混合研磨制得的复合絮凝剂0.5 g 投加到200 mL 质量浓
度为100 mg/L 、pH 为9.7 的活性艳红溶液中,以50 r/min 的速度搅拌15 min,静置1 h 后取上
清液测其浓度。PAC 与改性硅藻土配比对处理效果的影响见图1。
由图1 可知,随着m(PAC)∶m(改性硅藻土)的增大,脱色率随之增加,当比值超过5 时,脱色率
增幅并不明显,比值达到10 左右时,脱色率有下降的趋势。这是因为改性硅藻土主要起助凝剂的作
用,当其在复合絮凝剂中所占比例较大时, 发挥絮凝作用的PAC 的量不足,且硅藻土吸附容量较小
,
导致絮凝和吸附作用均不充分,脱色率不高,实验中观察到硅藻土颗粒单独于絮体先行沉降下来,
污泥体积较小。随着m(PAC)∶m(改性硅藻土)的提高,混凝、助凝以及吸附联合作用效果得到提高。
进一步增加PAC 的比例时,硅藻土的吸附助凝作用被削弱,脱色效果和污泥沉降性能都有下降趋势。实验结果表明,m(PAC)∶m(改性硅藻土)在5∶1 附近对活性艳红脱色效果最好,下述实验中复合
絮凝剂均采用该配比。
2.3 复合絮凝剂投加量的影响
将不同质量的复合絮凝剂分别投加到200 mL质量浓度为100 mg/L、pH 约为9.7 的活性艳红
溶液中,以50 r/min 的速度搅拌15 min,静置1 h 后取上清液测其浓度。复合絮凝剂投加量对处
理效果的影响见图2。
由图2 可知,随着复合絮凝剂投加量的增加,脱色率随之上升。当复合絮凝剂投加质量达到
0.5 g时,脱色率接近100%,进一步增大投加量,脱色率没有明显变化,当投加质量增加到1 g 以上时,脱色率明显下降。这是因为聚合氯化铝水解产物主要为Al(Ⅲ)多羟基络合物,可通过电中和使
污染物颗粒或胶体双电层压缩、ζ电位降低从而迅速脱稳,最终发生凝聚并沉降下来。如果加入过
量的聚合氯化铝,则污染物颗粒吸附过多的反离子,使所带电荷变号,相互排斥,产生再稳现象〔4〕。综合考虑,合适的复合絮凝剂投加质量浓度为2.5 g/L,下述实验均采用该投加量。
2.4 pH 的影响
将0.5 g 复合絮凝剂投加到200 mL 质量浓度为100 mg/L、不同pH 的活性艳红溶液中,以50 r/min的速度搅拌15 min,静置1 h 后取上清液测其浓度。pH 对处理效果的影响见图3。
由图3 可知,pH<8 时絮凝过程非常缓慢,随pH的增大,絮凝过程加快,絮体增大,脱色率随之增大,当pH 在10 左右时, 脱色效果最好, 进一步增大pH,脱色率呈下降趋势。聚合氯化铝水解产物有单体〔Al3+、Al(OH)2+、Al(OH)2+〕、二聚体〔Al2(OH)22+〕、聚十三铝〔AlO4Al12(OH)24
(H2O)127 +〕和高聚铝, 而Al13是最佳絮凝凝聚形态〔5〕。水解产物存在形式和表面所带电荷受pH 影响较大。在酸性条件下,Al(Ⅲ)多羟基络合物向单体Al3+形式转变,表面带正电荷,而在较强碱性条件下,其向Al(OH)4-形式转变,表面带负电荷, 因此絮凝形态分布及表面荷电性质有一个最佳pH 平衡点。本实验条件下,较适宜的pH范围为9~11。
2.5 初始浓度的影响
分别将0.5 g 和1.0 g 复合絮凝剂投加到200 mL、pH 为10 的不同浓度的活性艳红溶液中, 以50r/min 的速度搅拌15 min,静置1 h 后取上清液测其浓度。溶液初始浓度对处理效果的影响见图4。
由图4 可知, 复合絮凝剂投加质量为0.5 g 时,随溶液初始浓度的增加,脱色率呈下降趋势;当投加质量为1.0 g 时,在溶液初始质量浓度﹤300 mg/L 的范围内均有95%以上的脱色率,溶液初始质量浓度超过300 mg/L 以后,脱色率显著下降。这说明单位质量絮凝剂存在一最大絮凝量, 超过此范围处理效果下降。
2.6 反应时间的影响
将0.5 g 复合絮凝剂投加到200 mL 质量浓度为100 mg/L、pH 为10 的活性艳红溶液中, 以50 r/min的速度搅拌,经历不同的反应时间,静置1 h 后取上清液测其浓度。反应时间对处理效果的影响见图5。
由图5 可知,反应时间在20 min 左右时,脱色率达到最大,反应时间超过20 min 后脱色率略有下降,增加反应时间对处理效果几乎没有帮助。实验表明,该复合絮凝剂对活性艳红的吸附、絮凝和凝聚过程较迅速,这在实际水处理中是十分便利的。
2.7 搅拌强度的影响
将0.5 g 复合絮凝剂投加到200 mL 质量浓度为100 mg/L、pH 为10 的活性艳红溶液中,以不同的转速搅拌20 min,静置1 h 后取上清液测其浓度。搅拌强度对处理效果的影响见图6。
由图6 可知,搅拌强度较小时,脱色率较高,搅拌强度在50 r/min 左右时,脱色效果最好,搅拌强度超过150 r/min,脱色率明显下降。实验中亦观察到在慢搅情况下,形成的絮体较大,沉降较快;快搅情况下,形成的絮体较小,沉降较慢,这是因为水力条件对絮凝与凝聚行为影响很大。但搅拌速度太小,复合絮凝剂未能与污染物充分接触, 自然会影响脱色效果;搅拌速度过大,絮体易被打碎,影响絮团对污染物的架桥吸附及网捕作用,造成脱色率下降。

3 结论
改性硅藻土作为聚合氯化铝的助凝剂可明显提高对染料溶液的脱色率,大大提高污泥的沉降性能,在难生化降解印染废水的预处理中具有重要意义。当聚合氯化铝与改性硅藻土的质量比在
5~10 的范围内,废水的pH 在9~11 范围内时,复合絮凝剂对染料废水具有很好的脱色效果, 十分适合碱性印染废水的预处理。另外,15~20 min 的混凝时间在实际废水处理中是很容易接受的, 同时由于廉价无毒硅藻土的替代,减少了聚合氯化铝的用量,有助于降低混凝后出水残留铝的浓度, 减轻对环境的危害以及降低处理成本。

(文章来源:中国污水处理工程网)。

相关文档
最新文档