铝合金热处理基础概念
钢材热处理知识:铝合金的热处理知识
钢材热处理知识:铝合⾦的热处理知识本站之前发表过⽂章:铝合⾦热处理特点与钢的热处理有哪些不同? ⼤家都说很好,今天我们再来详细的说说:铝合⾦的热处理知识点。
铸造铝合⾦的⾦相组织⽐变形铝合⾦的⾦相组织粗⼤,因⽽在热处理时也有所不同。
前者保温时间长,⼀般都在2h以上,⽽后者保温时间短,只要⼏⼗分钟。
因为⾦属型铸件、低压铸造件铸造铝合⾦的⾦相组织⽐变形铝合⾦的⾦相组织粗⼤,因⽽在热处理时也有所不同。
前者保温时间长,⼀般都在2h以上,⽽后者保温时间短,只要⼏⼗分钟。
因为⾦属型铸件、低压铸造件、差压铸造件是在⽐较⼤的冷却速度和压⼒下结晶凝固的,其结晶组织⽐⽯膏型、砂型铸造的铸件细很多,故其在热处理时的保温也短很多。
铸造铝合⾦与变形铝合⾦的另⼀不同点是壁厚不均匀,有异形⾯或内通道等复杂结构外形,为保证热处理时不变形或开裂,有时还要设计专⽤夹具予以保护,并且淬⽕介质的温度也⽐变形铝合⾦⾼,故⼀般多采⽤⼈⼯时效来缩短热处理周期和提⾼铸件的性能。
⼀、热处理的⽬的铝合⾦铸件热处理的⽬的是提⾼⼒学性能和耐腐蚀性能,稳定尺⼨,改善切削加⼯和焊接等加⼯性能。
因为许多铸态铝合⾦的机械性能不能满⾜使⽤要求,除Al-Si系的ZL102,Al-Mg系的ZL302和Al-Zn系的ZL401合⾦外,其余的铸造铝合⾦都要通过热处理来进⼀步提⾼铸件的机械性能和其它使⽤性能,具体有以下⼏个⽅⾯:1)消除由于铸件结构(如璧厚不均匀、转接处厚⼤)等原因使铸件在结晶凝固时因冷却速度不均匀所造成的内应⼒;2)提⾼合⾦的机械强度和硬度,改善⾦相组织,保证合⾦有⼀定的塑性和切削加⼯性能、焊接性能;3)稳定铸件的组织和尺⼨,防⽌和消除⾼温相变⽽使体积发⽣变化;4)消除晶间和成分偏析,使组织均匀化。
⼆、热处理⽅法1、退⽕处理退⽕处理的作⽤是消除铸件的铸造应⼒和机械加⼯引起的内应⼒,稳定加⼯件的外形和尺⼨,并使Al-Si系合⾦的部分Si结晶球状化,改善合⾦的塑性。
《铝合金热处理》课件
在建筑领域的应用
总结词
美观耐用、绿色环保
详细描述
铝合金在建筑领域的应用广泛,如铝合金门窗、幕墙等。通过热处理技术,可以提高铝合金的硬度和耐磨性,使 其更加美观耐用。同时,铝合金材料可回收利用,符合绿色环保的理念。
在电子产品领域的应用
总结词
精密制造、小型化趋势
详细描述
随着电子产品向小型化、精密化方向发展,铝合金热处理技术在电子产品制造中发挥着越来越重要的 作用。通过热处理技术,可以提高铝合金的精度和稳定性,满足电子产品对材料高精度和高稳定性的 要求。
固溶处理可以提高铝合金的塑性和韧性,改善其加工性能,同时为时效处理提供良 好的基的性能有重要影响,需要严格控制 。
时效处理
时效处理是将经过固溶处理的铝 合金在室温或加热到一定温度下 保温一定时间,使过饱和固溶体
分解,析出强化相的过程。
时效处理可以提高铝合金的强度 和硬度,改善其耐磨性和耐腐蚀
THANKS
感谢观看
详细描述
铝合金因其高强度、轻量化和耐腐蚀等特性,在航空航天领域被广泛使用。通 过热处理技术,可以进一步提高铝合金的性能,满足航空航天领域对材料高强 度和轻量化的严格要求。
在汽车工业领域的应用
总结词
大规模生产、节能减排
详细描述
汽车工业是铝合金热处理应用的重要领域,铝合金零件的大规模生产能够降低汽 车重量,从而减少能源消耗和排放。热处理技术能够提高铝合金的力学性能和耐 腐蚀性,使其在汽车制造中更具竞争力。
提高材料使用寿命
通过合理的热处理工艺,可以显 著提高铝合金的使用寿命,减少 维修和更换的频率,降低成本。
铝合金热处理的历史与发展
早期铝合金热处理
未来发展趋势
早期的铝合金热处理主要采用退火和 淬火等简单工艺,以改善材料的塑性 和硬度。
铝合金热处理基本形式
退火及淬火时效是铝合金的基本热处理形式。
退火是一种软化处理。
其目的是使合金在成分及组织上趋于均匀和稳定,消除加工硬化,恢复合金的塑性。
淬火时效则属强化热处理,目的是提高合金的强度,主要应用于可热处理强化的铝合金。
1退火根据生产需求的不同,铝合金退火分铸锭均匀化退火、坯料退火、中间退火及成品退火几种形式。
一、铸锭均匀化退火铸锭在快速冷凝及非平衡结晶条件,必然存在成分及组织上的不均匀,同时也存在很大的内应力。
为了改变这种状况,提高铸锭的热加工工艺性,一般需进行均匀化退火。
为促使原子扩散,均匀化退火应选择较高的退火温度,但不得超过合金中低熔点共晶熔点,一般均匀化退火温度低于该熔点5~40℃,退火时间多在12~24h之间。
二、坯料退火坯料退火是指压力加工过程中第一次冷变形前的退火。
目的是为了使坯料得到平衡组织和具有最大的塑性变形能力。
例如,铝合金热轧板坯的轧制终了温度为280~330℃,在室温快速冷却后,加工硬化现象不能完全消除。
特别是热处理强化的铝合金,在快冷后,再结晶过程未能结束,过饱和固溶体也未及彻底分解,仍保留一部分加工硬化和淬火效应。
不经退火直接进行冷轧是有困难的,因此需进行坯料退火。
对于非热处理强化的铝合金,如LF3,退火温度为370~470℃,保温1.5~2.5H后空冷,用于冷拉伸管加工的坯料、退火温度应适当高一些,可选上限温度。
对于可热处理强化的铝合金,如LY11及LY12,坯料退火温度为390~450℃,保温1~3H,随后在炉中以不大于30℃/h的速度冷却到270℃以下再出炉空冷。
三、中间退火中间退火是指冷变形工序之间的退火,其目的是为了消除加工硬化,以利于继续冷加工变形。
一般来说,经过坯料退火后的材料,在承受45~85%的冷变形后,如不进行中间退火而继续冷加工将会发生困难。
中间退火的工艺制度基本上与坯料退火相同。
根据对冷变形程度的要求,中间退火可分为完全退火(总变形量ε≈60~70%),简单退火(ε≤50%)和轻微退火(ε≈30~40%)三种。
热处理中的铝合金热处理技术
热处理中的铝合金热处理技术铝合金是一种广泛应用的轻质高强度材料,其优良的性能使得它被广泛应用于航空、航天、汽车、电子等领域。
在生产过程中,对铝合金进行热处理是常用的工艺,通过热处理可以改变其组织结构和机械性能,进而满足不同需求。
本文将介绍铝合金的热处理技术。
1. 铝合金热处理的概念和作用热处理是指将材料加热到一定温度,保温一段时间,然后冷却到室温的一种材料改性工艺。
铝合金的热处理是指对铝及其合金材料进行的一系列加热、保温和冷却等工艺,通过控制工艺参数,改变其组织结构和性能。
铝合金热处理的主要作用有以下几个方面:1)改善铝合金的力学性能,可以提高抗拉强度、屈服强度、延伸率等指标;2)改变材料的内应力状态,降低脆性和应力腐蚀敏感性;3)调整铝合金的组织结构和晶粒尺寸,改善其铸造、加工性能,使得材料更易于加工和成形。
2. 铝合金热处理的分类热处理工艺分为多种,不同的铝合金材料需要采用不同的热处理工艺,主要有以下几种:1)时效处理:主要用于4XXX系和6XXX系铝合金,将材料在较高的温度下保温一定时间,使材料的硬度和强度提高,并增加抗腐蚀性能;2)固溶处理:主要用于2XXX系和7XXX系铝合金,将材料加热到一定温度,然后快速冷却,使其大部分溶解,形成均匀的固溶组织,从而提高材料的强度和塑性;3)回火处理:主要用于7XXX系铝合金,将材料固溶后,进行一定时间的保温,再快速冷却,可以综合地提高材料的强度和韧性;4)再结晶退火:主要用于变形加工后的铝合金,通过加热处理,使铝合金恢复原有的晶粒结构,进而提高铝合金的延展性和塑性。
3. 铝合金热处理的工艺参数铝合金热处理的工艺参数包括加热温度、保温时间、冷却速率等,不同参数的选择会影响铝合金的性能。
常用的工艺参数如下:1)加热温度:加热温度是影响铝合金热处理的重要因素。
通常情况下,加热温度不宜过高,以避免铝合金的固溶温度过高,导致铝合金熔化或溶解度下降;2)保温时间:保温时间是指材料在加热后达到一定温度后,并保持在该温度下的时间。
铝合金热处理工艺
铝合金热处理工艺1. 引言铝合金是一种重要的构件材料,在航空工业、汽车工业以及建筑领域有广泛的应用。
热处理是铝合金加工过程中不可或缺的步骤,通过控制合金材料的加热和冷却过程,可以改善其力学性能、耐蚀性能和热稳定性。
本文将介绍铝合金热处理工艺的基本原理、常用方法以及工艺参数的选择与控制。
2. 铝合金热处理原理铝合金热处理的基本原理是通过加热和冷却过程改变合金材料的晶体结构和组织,从而调控其力学性能。
主要包括以下几个步骤:2.1 固溶处理固溶处理是铝合金热处理的首要步骤,其目的是将合金材料中的固溶体中的溶质原子溶解到基体中,形成均匀的固溶体溶液。
固溶处理温度和时间的选择对于合金材料的性能具有重要影响。
2.2 冷却速率控制冷却速率控制是热处理过程中的关键步骤之一,它可以影响到合金材料的析出相、晶粒尺寸和组织结构。
通常通过调整冷却介质的性质和冷却方法来控制冷却速率。
2.3 时效处理时效处理是在固溶处理完成后,通过重新加热合金材料到一定温度并保持一段时间,使得合金中的析出物达到稳定状态。
时效处理可以进一步提高合金的强度和硬度。
3. 常用的铝合金热处理方法铝合金热处理方法种类繁多,常用的方法包括以下几种:3.1 溶解退火溶解退火是将铝合金加热到高温区,使固溶体中的溶质原子溶解于基体中,然后通过合适的冷却速度形成均匀的固溶体。
3.2 固溶处理固溶处理是将铝合金加热到固溶区,并在该温度下保持一段时间,使固溶体达到均匀溶解的状态。
固溶处理后的铝合金具有良好的可塑性和韧性。
3.3 加强时效处理加强时效处理是将铝合金在固溶处理后,重新加热到较低的温度并保持一定时间,以促使合金中的析出物形成并细化,从而提高其强度和硬度。
3.4 自然时效处理自然时效处理是将铝合金在固溶处理后,不进行额外的热处理,而是让其在室温下经过一定时间自行发生时效,适用于一些需要高韧性的应用。
4. 铝合金热处理工艺参数的选择与控制铝合金热处理工艺参数的选择与控制对最终的合金性能具有重要影响,以下是一些需要考虑的关键参数:4.1 加热温度加热温度是铝合金热处理中的关键参数之一,不同合金材料具有不同的加热温度范围,需要根据合金的性质和要求选择合适的加热温度。
铝合金热处理标准
铝合金热处理标准
铝合金热处理是一种重要的工艺,通过控制材料的加热、保温和冷却过程,可
以改善铝合金的力学性能和耐腐蚀性能。
铝合金热处理标准对于保证产品质量、提高材料性能至关重要。
在进行铝合金热处理时,需要严格按照相关标准进行操作,以确保产品达到预期的性能要求。
首先,铝合金热处理标准对材料的化学成分和物理性能提出了要求。
在进行热
处理之前,需要对铝合金材料的成分进行分析,确保其符合相关标准的要求。
同时,还需要对材料的硬度、强度、延展性等物理性能进行测试,以确定热处理参数和工艺。
其次,铝合金热处理标准规定了热处理工艺的具体要求。
包括加热温度、保温
时间、冷却方式等参数的控制,以及热处理设备的选择和使用。
在进行热处理过程中,需要严格按照标准规定的工艺要求进行操作,确保产品能够获得良好的力学性能和表面质量。
另外,铝合金热处理标准还对热处理后的产品进行了性能检测和评定的方法和
标准。
通过对产品的硬度、强度、延展性等性能进行测试,可以评定热处理效果是否符合要求,从而保证产品的质量和性能。
总的来说,铝合金热处理标准是保证铝合金制品质量的重要依据,对于生产和
使用铝合金制品的企业和个人都具有重要的指导意义。
只有严格按照标准要求进行操作,才能够获得优质的铝合金制品,提高产品的竞争力和市场占有率。
因此,在进行铝合金热处理时,务必要重视标准的遵守和执行,才能够获得满意的热处理效果和产品质量。
铝合金 热处理
铝合金热处理铝合金热处理铝合金是一种广泛应用于航空航天、汽车、建筑等领域的重要材料。
为了改善铝合金的性能和机械性能,通常需要进行热处理。
本文将介绍铝合金热处理的一些基本概念、方法和效果。
一、热处理的基本概念热处理是通过控制材料的加热和冷却过程,改变其组织结构和性能的一种方法。
在铝合金中,热处理主要是通过控制材料的加热温度、保温时间和冷却速率来实现的。
二、常见的铝合金热处理方法1. 固溶处理固溶处理是指将铝合金加热到固溶温度,使固溶体中的溶质完全溶解,然后通过快速冷却来获得均匀的固溶体。
固溶处理可以提高铝合金的强度和塑性,并改善其耐蚀性能。
2. 固溶时效处理固溶时效处理是在固溶处理的基础上,将材料保温一段时间,使固溶体中的溶质重新沉淀,形成细小的弥散相。
这种处理方法可以进一步提高铝合金的强度和硬度,同时保持较好的塑性。
3. 调质处理调质处理是指将固溶时效处理后的铝合金再次加热到一定温度,然后快速冷却。
这种处理方法可以消除固溶体中的残余溶质,进一步提高材料的硬度和强度。
三、铝合金热处理的效果通过适当的热处理方法,铝合金可以获得以下几个方面的改善:1. 强度提高:热处理可以通过形成细小的弥散相、消除残余溶质等方式提高铝合金的强度。
2. 硬度提高:热处理可以使铝合金的硬度增加,提高抗划伤和耐磨性能。
3. 耐腐蚀性能提高:热处理可以改善铝合金的耐腐蚀性能,使其更适用于恶劣环境下的使用。
4. 机械性能的综合改善:热处理可以综合改善铝合金的强度、硬度和塑性,使其具有更好的机械性能。
四、注意事项在进行铝合金热处理时,需要注意以下几个方面:1. 温度控制:热处理的温度要根据具体的合金成分和要求来确定,过高或过低的温度都会影响处理效果。
2. 保温时间:保温时间的长短也会对处理效果产生影响,需要根据具体情况进行合理控制。
3. 冷却速率:冷却速率对于处理后的组织和性能也有重要影响,需要选择合适的冷却方法和速率。
4. 处理工艺:不同的合金和要求可能需要不同的处理工艺,需要根据实际情况进行选择和优化。
铝合金T热处理状态的解释
T是指热处理状态
T0:固溶热处理后,经自然时效再通过冷加工的状态;适用于经冷加工提高强度的产品。
T1:由高温成形过程冷却,然后自然时效至基本稳定的状态;适用于经冷加工提高强度的产品。
T2:由高温成型过程冷却,经冷加工后自然时效至基本稳定的状态;适用于由高温成型过程冷却后,进行冷加工或矫直、矫平以提高强度的产品。
T3:固溶热处理后进行冷加工,再经自然时效至基本稳定的状态;适用于在固溶热处理后,进行冷加工,或矫直、矫平以提高强度的产品。
T4:固溶热处理后自然时效至基本稳定的状态;适用于固溶热处理后,不再进行冷加工(可进行矫直、矫平,但不影响力学性能极限)的产品。
T5:由高温成型过程中冷却,然后进行人工时效的状态;适用于由高温成型过程冷却后,不经过冷加工(可进行矫直、矫平,但不影响力学性能极限),予以人工时效的产品。
T6:固溶热处理后进行人工时效的状态;适用于固溶热处理后,不再进行冷加工(可进行矫直、矫平,但不影响力学性能极限)的产品。
T7:固溶热处理后进行过时效的状态;适用于固溶热处理后,为获取某些重要我,在人工时效时,强度在时效曲线上越过了最高峰点的产品。
T8:固溶热处理后经冷加工,然后进行人工时效的状态;适用于经冷加工或矫直、矫平以提高强度的产品
T9:固溶热处理后人工时效,然后进行冷加工的状态;适用于经冷加工提高强度的产品。
T10:由高温成形过程冷却后,进行冷加工,然后人工时效的状态;适用于经冷加工或矫直、矫平以提高强度的产品
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。
公共基础知识热处理工艺基础知识概述
《热处理工艺基础知识概述》一、引言热处理工艺作为材料加工领域中的一项关键技术,在提高材料性能、延长使用寿命、改善加工工艺等方面发挥着至关重要的作用。
从古代的简单金属加工到现代的高科技材料处理,热处理工艺经历了漫长的发展历程。
本文将对热处理工艺的基础知识进行全面综合的概述,包括基本概念、核心理论、发展历程、重要实践以及未来趋势等方面,旨在为读者提供一个系统而深入的了解。
二、基本概念1. 定义热处理是指将材料加热到一定温度,保温一段时间,然后以适当的速度冷却,以改变材料的组织结构和性能的工艺过程。
通过热处理,可以改善材料的硬度、强度、韧性、耐磨性、耐腐蚀性等性能,满足不同工程应用的要求。
2. 分类热处理工艺主要分为普通热处理和表面热处理两大类。
普通热处理包括退火、正火、淬火和回火;表面热处理包括表面淬火和化学热处理。
(1)退火:将材料加热到适当温度,保温一段时间,然后缓慢冷却。
退火的目的是降低材料的硬度,改善切削加工性能,消除残余应力,稳定尺寸等。
(2)正火:将材料加热到临界温度以上,保温一段时间,然后在空气中冷却。
正火的目的与退火相似,但冷却速度较快,得到的组织比退火的更细,强度和硬度也较高。
(3)淬火:将材料加热到临界温度以上,保温一段时间,然后快速冷却。
淬火的目的是提高材料的硬度和强度,但淬火后材料的脆性增加,需要进行回火处理。
(4)回火:将淬火后的材料加热到适当温度,保温一段时间,然后冷却。
回火的目的是降低材料的脆性,提高韧性和塑性,稳定组织和尺寸。
(5)表面淬火:通过快速加热材料表面,使其达到淬火温度,然后迅速冷却,使表面获得高硬度,而心部仍保持较好的韧性。
(6)化学热处理:将材料置于一定的化学介质中加热,使介质中的某些元素渗入材料表面,改变材料的化学成分和组织结构,从而提高材料的表面性能。
三、核心理论1. 相变理论热处理过程中,材料的组织结构会发生相变。
相变是指物质从一种相转变为另一种相的过程。
铝合金热处理标准
铝合金热处理标准铝合金是一种轻质、高强度的金属材料,广泛应用于航空航天、汽车制造、建筑等领域。
然而,铝合金的热处理对其性能和用途至关重要。
本文将介绍铝合金热处理的标准及相关知识。
首先,铝合金的热处理标准主要包括时效硬化、固溶处理和淬火。
时效硬化是指在固溶处理后,将合金在较低的温度下保温一段时间,通过析出细小的析出相颗粒来提高合金的硬度和强度。
固溶处理是将合金加热至固溶温度,使合金中的溶解相完全溶解,然后迅速冷却到室温。
淬火是指将固溶处理后的合金快速冷却,以获得高强度和硬度。
其次,铝合金热处理的温度控制非常关键。
不同种类的铝合金对应不同的固溶温度和时效温度,温度控制的不当将导致合金的性能下降甚至失效。
因此,在进行热处理时,必须严格按照标准要求进行温度控制,以确保合金的性能达到设计要求。
另外,热处理过程中的冷却速度也需要严格控制。
过快或过慢的冷却速度都会对合金的性能产生不利影响。
合金的淬火速度要根据具体合金的性能要求进行合理选择,以确保合金在热处理后能够达到设计要求的硬度和强度。
最后,热处理过程中的环境条件也需要重视。
合金的热处理通常在控制气氛炉或真空炉中进行,以避免合金表面的氧化和污染。
此外,热处理过程中还需要注意处理工艺中的气氛气体成分和气氛气氛流速等因素,以确保合金表面的质量和性能。
综上所述,铝合金热处理标准涉及到时效硬化、固溶处理、淬火等多个方面,温度、冷却速度和环境条件都对合金的性能产生重要影响。
只有严格按照标准要求进行热处理,才能确保铝合金的性能达到设计要求,从而保证其在各个领域的应用安全可靠。
铝合金热处理t1至t6
铝合金热处理t1至t6引言铝合金热处理是制造业中常用的一种工艺,通过热处理可以改善铝合金的力学性能和耐腐蚀性能,提高产品的质量和使用寿命。
本文将介绍铝合金热处理过程中的六个阶段,即t1至t6,并详细探讨每个阶段的目的、方法和影响因素。
t1阶段:固溶处理目的固溶处理是铝合金热处理过程中的第一个阶段,其主要目的是使合金中的硬质相(例如硬化相、析出相等)溶解到基体中,从而达到均匀固溶的目的。
方法固溶处理是在固溶温度下进行的,一般为合金的固相区域。
固溶处理常用的方法有两种:急冷和慢冷。
急冷可以增加固溶度,但可能引起变形和内应力;慢冷可以减轻变形和内应力,但固溶度较低。
影响因素固溶处理的效果受到多种因素的影响,包括固溶温度、固溶时间和冷却速度等。
较高的固溶温度和适当的固溶时间可以增加溶解度,而较快的冷却速度可以提高合金的强度。
t2阶段:淬火处理目的淬火处理是铝合金热处理过程中的第二个阶段,其主要目的是通过快速冷却使合金中的溶质迅速固溶,以增加合金的硬度和强度。
淬火处理一般使用水或其他冷却介质进行。
通过快速冷却,合金中的溶质无法析出形成稳定的析出相,从而增加合金的强度。
影响因素淬火处理的效果受到多种因素的影响,包括冷却介质的选择、冷却速度和冷却时间等。
适当选择冷却介质、控制冷却速度和冷却时间可以获得理想的淬火效果。
t3阶段:弥散处理目的弥散处理是铝合金热处理过程中的第三个阶段,其主要目的是通过合金的再固溶使其组织由固溶相+重析出相变为固溶相+细小析出相,从而提高合金的强度和耐磨性。
方法弥散处理一般在较低的温度下进行,通过再固溶使合金中的析出相变得更加细小、均匀。
影响因素弥散处理的效果受到多种因素的影响,包括再固溶温度、再固溶时间和再固溶速率等。
适当选择再固溶温度和控制再固溶时间和速率可以获得理想的弥散处理效果。
t4阶段:时效处理目的时效处理是铝合金热处理过程中的第四个阶段,其主要目的是通过在适当温度下保持合金一定时间,使析出相成熟和再结晶,从而提高合金的强度和韧性。
铝的热处理
铝的热处理铝合金铸件的热处理是指按某一热处理规范,控制加热温度、保温时间和冷却速度,改变合金的组织,其主要目的是:提高力学性能,增强耐腐蚀性能,改善加工性能,获得尺寸的稳定性。
铝合金铸件的热处理工艺可以分为如下四类:1。
退火处理将铝合金铸件加热到较高的温度,一般约为300 ℃左右,保温一定的时间后,随炉冷却到室温的工艺称为退火。
在退火过程中固溶体发生分解,第二相质点发生聚集,可以消除铸件的内应力,稳定铸件尺寸,减少变形,增大铸件的塑性。
2。
固溶处理把铸件加热到尽可能高的温度,接近于共晶体的熔点,在该温度下保持足够长的时间,并随后快速冷却,使强化组元最大限度的溶解,这种高温状态被固定保存到室温,该过程称为固溶处理。
固溶处理可以提高铸件的强度和塑性,改善合金的耐腐蚀性能。
固溶处理的效果主要取决于下列三个因素:(1)固溶处理温度。
温度越高,强化元素溶解速度越快,强化效果越好。
一般加热温度的上限低于合金开始过烧温度,而加热温度的下限应使强化组元尽可能多地溶入固溶体中。
为了获得最好的固溶强化效果,而又不便合金过烧,有时采用分级加热的办法,即在低熔点共晶温度下保温,使组元扩散溶解后,低熔点共晶不存在,再升到更高的温度进行保温和淬火。
固溶处理时,还应当注意加热的升温速度不宜过快,以免铸件发生变形和局部聚集的低熔点组织熔化而产生过烧。
固溶热处理的悴火转移时间应尽可能地短,一般应不大于15s,以免合金元素的扩散析出而降低合金的性能。
(2)保温时间。
保温时间是由强化元素的溶解速度来决定的,这取决于合金的种类、成分、组织、铸造方法和铸件的形状及壁厚。
铸造铝合金的保温时间比变形铝合金要长得多,通常由试验确定,一般的砂型铸件比同类型的金属型铸件要延长20%-25% 。
(3)冷却速度。
淬火时给予铸件的冷却速度越大,使固溶体自高温状态保存下来的过饱和度也越高,从而使铸件获得高的力学性能,但同时所形成的内应力也越大,使铸件变形的可能性也越大。
铝合金热处理方式及其要求
铝合金热处理方式及其要求简介本文旨在介绍铝合金的热处理方式及其要求。
铝合金热处理是一种常见的工艺,通过控制材料的热处理条件,可以改变其组织结构和性能。
下面将介绍几种常见的铝合金热处理方式及其要求。
固溶处理固溶处理是铝合金热处理的基本方式之一。
在固溶处理中,铝合金经过加热至固溶温度,并保持一段时间,使合金中的固溶元素溶解到铝基体中。
固溶处理的要求如下:- 温度:固溶温度应根据具体的合金种类来确定,一般在合金的相图中可以找到合适的固溶温度范围。
- 时间:固溶时间应足够长,以确保固溶元素均匀地溶解到基体中。
- 冷却:经过固溶处理后,应迅速冷却合金,以固定固溶元素的分布。
淬火处理淬火是铝合金热处理的另一种方式。
在淬火处理中,合金在固溶处理后,迅速冷却至室温,以形成固溶元素的高浓度固溶体。
淬火处理的要求如下:- 冷却速度:淬火过程中的冷却速度应快到足以形成高浓度固溶体,一般可以采用水淬或气体淬的方式。
- 固溶处理:淬火处理前需要进行固溶处理,以使固溶元素溶解到铝基体中。
- 残余应力:淬火处理可能导致合金内部的残余应力,需要进行适当的退火或回火处理以缓解应力。
强化处理强化处理是通过对铝合金进行固溶处理和人工时效处理来改变其性能的一种方式。
强化处理的要求如下:- 固溶处理:首先进行固溶处理,让固溶元素均匀地溶解到铝基体中。
- 人工时效:经过固溶处理后,合金需要进行一定时间的时效处理,以使固溶元素在基体中析出细小而均匀的析出相,以提高材料的强度和硬度。
- 温度和时效时间:具体的温度和时效时间应根据具体合金种类来确定,一般通过实验和经验来确定最佳条件。
总结铝合金热处理是一种常见的工艺,通过控制材料的热处理条件,可以改变其组织结构和性能。
本文介绍了铝合金的三种常见热处理方式:固溶处理、淬火处理和强化处理,并对其要求进行了说明。
在进行铝合金热处理时,需要根据具体的合金种类和要求来确定合适的处理方式和条件,以获得理想的材料性能。
铝合金热处理状态与硬度的关系
铝合金热处理状态与硬度的关系铝合金热处理是一种常见的改善铝合金性能的方法,通过控制材料的加热和冷却过程,可以使铝合金的硬度得到提高。
本文将从热处理的基本原理、常见的热处理方法以及热处理状态与硬度之间的关系进行探讨。
我们来了解一下铝合金热处理的基本原理。
热处理是指在一定的温度范围内对材料进行加热、保温和冷却的过程,以改变材料的组织结构和性能。
对于铝合金来说,热处理主要是通过固溶处理和时效处理来实现的。
固溶处理是指将铝合金加热至固溶温度,使固溶体中的溶质原子溶解到基体中,然后快速冷却,形成固溶体。
固溶处理可以提高铝合金的强度和硬度,但对其耐腐蚀性能有一定的影响。
时效处理是指将固溶体加热至一定的温度,保温一段时间后冷却,通过析出相的形成和生长来改善材料的性能。
时效处理可以进一步提高铝合金的强度和硬度,同时还能提高其耐腐蚀性能和韧性。
常见的铝合金热处理方法有T4、T5、T6等。
T4处理是指将铝合金加热至固溶温度后迅速冷却,然后进行自然时效;T5处理是在T4处理的基础上进行人工时效;T6处理是在T4处理的基础上先进行人工时效,然后再进行自然时效。
这些处理方法的选择将根据不同的铝合金材料和要求的性能来决定。
热处理状态与硬度之间存在一定的关系。
一般来说,经过固溶处理后的铝合金硬度较低,但强度较高。
经过时效处理后,铝合金的硬度会得到提高,同时其强度和韧性也会有所增加。
不同的热处理状态对应着不同的硬度值。
例如,对于6061铝合金,经过T4处理后,其硬度约为60HB;经过T6处理后,其硬度可达95HB左右。
可见,经过热处理后,铝合金的硬度可以得到显著提高,适用于对强度和硬度要求较高的应用领域。
需要注意的是,热处理并不是一种万能的方法,对于不同的铝合金材料和要求的性能,选择适当的热处理方法才能得到理想的效果。
同时,在实际应用中,热处理过程中的加热温度、保温时间和冷却速度等参数也需要严格控制,以确保热处理效果的稳定性和一致性。
铝及铝合金热处理工艺讲解学习
铝及铝合金热处理工艺1. 铝及铝合金热处理工艺1.1 铝及铝合金热处理的作用将铝及铝合金材料加热到一定的温度并保温一定时间以获得预期的产品组织和性能。
1.2 铝及铝合金热处理的主要方法及其基本作用原理 1.2.1 铝及铝合金热处理的分类(见图1)图1 铝及铝合金热处理分类1.2.2 铝及铝合金热处理基本作用原理(1) 退火:产品加热到一定温度并保温到一定时间后以一定的冷却速度冷却到室温。
通过原子扩散、迁移,使之组织更加均匀、稳定、,内应力消除,可大大提高材料的塑性,但强度会降低。
①铸锭均匀化退火:在高温下长期保温,然后以一定速度(高、中、低、慢)冷却,使铸锭化学成分、组织与性能均匀化,可提高材料塑性20%左右,降低挤压力20%左右,提高挤压速度15%左右,同时使材料表面处理质量提高。
②中间退火:又称局部退火或工序间退火,是为了提高材料的塑性,消除材料内部加工应力,在较低的温度下保温较短的时间,以利于续继加工或获得某种性能的组合。
③完全退火:又称成品退火,是在较高温度下,保温一定时间,以获得完全再结晶状态下的软化组织,具有最好的塑性和较低的强度。
(2)固溶淬火处理:将可热处理强化的铝合金材料加热到较高的温度并保持一定的时间,使材料中的第二相或其它可溶成分充分溶解到铝基体中,形成过饱和固溶体,然后以快冷的方法将这种过饱和固溶体保持到室温,它是一种不稳定的状态,因处于高能位状态,溶质原子随时有析出的可能。
但此时材料塑性较高,可进行冷加工或矫直工序。
①在线淬火:对于一些淬火敏感性不高的合金材料,可利用挤压时高温进行固溶,然后用空冷(T5)或用水雾冷却(T6)进行淬火以获得一定的组织和性能。
②离线淬火:对于一些淬火敏感性高的合金材料必须在专门的热处理炉中重新加热到较高的温度并保温一定时间,然后以不大于15秒的转移时间淬入水中或油中,以获得一定的组织和性能,根据设备不同可分为盐浴淬火、空气淬火、立式淬火、卧式淬火。
铝合金热处理技术
铝合金热处理技术哎呀,说起铝合金热处理技术,这可真是个技术活儿,不是随便哪个人都能搞定的。
我有个哥们儿,他可是个行家,专门搞这个的。
上次去他那儿,我亲眼见识了一回,那过程,真是让人大开眼界。
首先,咱们得知道,铝合金这玩意儿,它不是铁,也不是钢,它是一种轻质的金属,用在飞机、汽车、自行车上,哪儿哪儿都有。
但是,这玩意儿要想用得好,就得经过热处理,不然性能就上不去。
我那哥们儿,他先给我展示了一块铝合金材料,那玩意儿看起来跟普通的铝差不多,但是他说,这可是经过特殊处理的,里面掺了点儿别的金属,比如铜啊、镁啊、硅啊,这些金属能让铝合金的性能更上一层楼。
接下来,他就开始给我演示热处理的过程。
首先,他把那块铝合金材料放到了一个大炉子里,那炉子温度可高了,得有好几百摄氏度。
他说,这叫“固溶处理”,就是让那些掺进去的金属元素和铝充分混合,形成一种均匀的合金结构。
等那块铝合金在炉子里待了一段时间后,他把它拿出来,放到水里冷却。
这叫“淬火”,目的是让合金快速冷却,形成一种叫做“马氏体”的结构,这种结构硬度高,强度大。
然后,他又把那块铝合金放到了一个温度稍微低一点的炉子里,这叫“时效处理”。
这个过程可以让那些在淬火过程中形成的马氏体变得更加稳定,进一步提高合金的性能。
整个过程下来,我看得目瞪口呆,这热处理技术,真是门大学问。
我那哥们儿说,这还只是基础,根据不同的应用需求,热处理的工艺还会有所不同,比如温度、时间、冷却方式等等,都得精确控制。
最后,他给我展示了处理后的铝合金,那玩意儿看起来跟处理前差不多,但是他说,这玩意儿的性能可是天差地别。
我拿起来一掂量,确实感觉不一样,手感更扎实,更有分量。
所以啊,这铝合金热处理技术,真是个精细活儿,不是随便哪个人都能搞定的。
我那哥们儿,他可是个高手,我对他佩服得五体投地。
下次有机会,我还得去他那儿,好好学学这门技术。
铝合金热处理
何谓热处理?
图1:热处理曲线示意图
2019/7/20
热处理的作用
去除铸件的内应力 稳定尺寸 改善机械性能
2019/7/20
图2:二元合金相图
2019/7/20
2019/7/20
固溶体示意图
铝合金的一般相图
660
2019/7/20
10
0.5
3
2019/7/20
2019/7/20
加热:一般都是加热到相变温度以上,以获得高温 组织。
保温:使内外温度一致,保证显微组织转变完全。
冷却:随炉冷、空冷、水冷。
温度(℃)
L+α
L
α
α+β
Al 水冷
空冷Biblioteka 时间(t) 随炉冷2019/7/20
铝合金的主要热处理形式
铝合金的主要热处理形式是退火与淬火时效。
前者是一种软化处理,消除材料中的内应力 及加工硬化,使组织趋于平衡。 后者属于强化热处理,目的是提高合金的机 械强度。
要点:在不过热过烧条件下,T淬高些,保温t 长些。淬火冷却要保证不析出第二相。为了防止 淬火变形开裂,一般采用20~80℃水冷却
时效 工艺
温度:对一定合金,有最佳时效温度. 时间:在一定时效温度下,有最佳时效时间。 方式:单级和多级时效。高强合金常用分级时效
2019/7/20
常见的热处理缺陷
过烧 淬火变形与开裂 机械性能不合格 腐蚀氧化
2019/7/20
淬火(固溶处理)
将铝合金加热到固溶线以上保温一 段时间,使铝合金中的强化相溶入基体, 随后快冷,以抑制强化相在冷却过程中 重新析出,从而获得一种过饱和的以铝 为基的固溶体。淬火后铝合金的强度和 硬度不高,具有很好的塑性。
铝合金铸件热处理操作规程
1 定义及其目的热处理就是选用某一热处理规范,控制加热速度,升到某一相应温度下保温一定时间以一定的速度冷却,改变其合金组织。
其主要目的是:提高力学性能,增强耐腐性能,改善加工性能,获得尺寸的稳定性。
2 热处理工艺分类2.1 退火:2.1.1 定义:退火就是将铝合金铸件加热到较高温度(一般300℃左右),保温一定时间,随炉冷却到室温的工艺。
2.1.2 目的:消除内应力,稳定尺寸,减少变形,增大塑性。
2.2 固溶处理:2.2.1 定义:固溶处理就是把铸件加热到尽可能高的温度(接近于共晶的熔点),在该温度下保持足够长的时间,并随后快速冷却。
2.2.2 目的:提高铸件的强度和塑性,改善合金的耐腐蚀性能。
2.3 时效处理:2.3.1 定义:时效处理就是将铸件加热到某一温度,保温一定时间后出炉,在空气中缓慢冷却到室温的工艺。
2.3.2 分类:2.3.2.1 不完全人工时效:它是采用比较低的时效温度或较短的保温时间,目的是为了获得优良的综合力学性能,即比较高的强度,良好的塑性和韧性。
2.3.2.2 完全人工时效:它是采用较高的时效温度和较长的保温时间。
目的:获得最大的硬度,即得到最高的抗拉强度。
2.3.2.3 过时效:它是加热到更高温度下进行。
目的:得到好的抗应力腐蚀性能或比较稳定的组织和几何尺寸。
3 热处理状态代号及意义参见下表:表1 热处理状态代号、名称及特点4 热处理工艺参数参见表2:表2 常用铝合金(铝硅系)热处理规范注:表中未注明要求的,表示可通用于任何情况。
5 热处理操作要点:5.1 热处理用炉的准备:5.1.1 检查热处理用炉及辅助设备。
如供电系统、空气循环用风扇,自控仪表及热电偶插放位置是否正常、合格。
5.1.2 检查在正常工作条件下,炉膛各处温差是否在规定范围(±5℃)内。
5.1.3 起重设备是否正常、可靠。
5.2 装炉:5.2.1 待处理的铸件应按合金牌号、外廓尺寸、铸件壁厚及热处理规范进行分类。
铝合金热处理工艺简介
铝合金热处理工艺1铝合金热处理原理铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。
1.1铝合金热处理特点众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。
然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。
但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。
淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。
时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。
1.2铝合金时效强化原理铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。
目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。
铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。
这些在过饱和固溶体内的空位大多与溶质原子结合在一起。
由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。
硬化区的大小和数量取决于淬火温度与淬火冷却速度。
淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。
淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。
沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。
沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。
图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、鋁合金熱處理基礎概念
1.分類
純鋁─1000系
非熱處理合金鋁錳系合金─3000系
鋁矽系合金─4000系展伸材料鋁鎂系合金─5000系
鋁銅鎂系合金─2000系
熱處理合金鋁鎂矽系合金─6000系
鋁鋅鎂系合金─7000系
2.合金編號
目前通用的是美國鋁業協會〈Aluminium Association〉的編號。
茲舉例說明如下:
2.1第一位數:表示主要添加合金元素
1:純鋁
2:主要添加合金元素為銅
3:主要添加合金元素為錳或錳與鎂
4:主要添加合金元素為矽
5:主要添加合金元素為鎂
6:主要添加合金元素為矽與鎂
7:主要添加合金元素為鋅與鎂
8:不屬於上列合金系的新合金,如鋰元素
2.2第二位數:表示原合金中主要添加合金元素含量或雜質成分含量
經修改的合金
0:表原合金
1:表原合金經第一次修改
2:表原合金經第二次修改
2.3第三及四位數:
純鋁:表示原材料99.5 % 或99.7更高純度。
合金:表示個別合金的代號
〝-〞:後面的Hx或Tx表示加工硬化的狀態或熱處理狀態的煉度
符號
-Hx :表示非熱處理合金的煉度符號
-Tx :表示熱處理合金的煉度符號
二、鋁合金的熱處理
2.1煉度符號
若添加合金元素尚不足於完全符合要求,尚須藉冷加工、淬水、時效處理及軟化退火等熱處理,以獲取所需要的強度及性能。
這些處理的過程稱之為調質,調質的結果便是煉度。
2.2退火軟化處理
2.2.1目的:
展伸用材料包括壓延用材料,擠壓用材料及鍛造用材料,通常其製程序為:
熔鑄→熱加工→冷加工→材料成品
在熱加工或冷加工的過程中,材料發生加工硬化的情況,使強度變大或導致加工硬化加工性減低的情況。
為消除這些加工硬化,於冷加工前,中或後所施的熱處理即為退火軟化處理,其目的在使材料具有使用上所需要的加工程度。
部分軟化:僅消除部份加工硬化,處理溫度在再結晶溫度以下,實際溫度則視強度而定,處理溫度越高則強度越低。