《三角形中的几何计算》课件

合集下载

人教新课标A版必修5第一章解三角形1.2第2课时 三角形中的几何计算课件

人教新课标A版必修5第一章解三角形1.2第2课时 三角形中的几何计算课件


3sinA+π6≤

30<A<
3
.
当A=π3时,即△ABC为等边三角形时取等号,
所以sin A+sin B的最大值为 3.
题点四:多边形面积问题 4.已知圆内接四边形ABCD的边长AB=2,BC=6,CD=DA
=4,求四边形ABCD的面积S. 解:如图,连接BD,则S=S△ABD+S△CBD =12AB·ADsin A+12BC·CDsin C. ∵A+C=180°,∴sin A=sin C, ∴S=12sin A(AB·AD+BC·CD)=16sin A. 在△ABD中,由余弦定理得
(2)求sin A+sin B的最大值. 解:(1)由题意可知
1 2absin
C=
43×2abcos
C.
所以tan C= 3.
因为0<C<π,所以C=π3.
(2)由(1)知sin A+sin B=sin A+sinπ-A-π3
=sin A+sin23π-A
=sin
A+
ห้องสมุดไป่ตู้
3 2 cos
A+12sin
A
(√ )
(2)三角形中已知三边无法求其面积
(×)
(3)在三角形中已知两边和一角就能求三角形的面积 ( √ ) 解析:(1)正确,S=12absin C适合求任意三角形的面积.
(2)错误.已知三边可利用余弦定理求角的余弦值,再求得正
弦值,进而求面积.
(3)正确.已知两边和两边的夹角可直接求得面积,已知两边
=a2-c2 b2
=左边,
所以a2-c2 b2=sinsiAn-CB.
与三角形有关的综合问题 题点一:与三角形面积有关的综合问题 1.在△ABC 中,角 A,B,C 的对边分别为 a,b,c.

5_2.2三角形中的几何计算

5_2.2三角形中的几何计算

2. △ABC的周长是20,面积是 10 3 ,
A=600,则BC的长度是(
A.5 B.6 C.7
)
D.8
3.在△ABC中,a,b,c分别为角A,B,C所 a b 的取值范围是 对的边,则 . c
4.在△ABC中,AB=2,BC=3,AC= 则△ABC外接圆的半径R=
7 ,
.
5.在△ABC中,求证:
2 2 2
2 R sin A 2 R sin B sin A sin B
2.三角形的面积公式 ① S 1 底 高
1 1 1 ② S ab sin C bc sin A ac sin B 2 2 2
2
③ S
pr
1 [其中p= (a b c ), r为内切圆半径] 2
2.在△ABC中,已知面积 S
则角C=______ 6
2
4 3
3.锐角△ABC中,B=2A,则b/a的取值范 围是( A ) A.(-2,2)
C.( 2 ,2)
B.(0,2)
D.( 2, 3 )
4.若三角形中有一角为600,夹这个角的 两边的边长分别是8和5,则它的内切圆 7 3 . 及外接圆半径分别等于 3和
3
三角形的综合问题 1.在△ABC中,角A,B,C的对边a,b,c,
a b sin( A B ) 证明: 2 c sin C
2 2
注:和差化积
2.已知圆内接四边形ABCD的边长分 别为AB=2,BC=6,CD=DA=4,求四边 形ABCD的面积.
答案: 3 8
3.(09湖北)在锐角△ABC中,a,b,c分别为 角A,B,C所对的边,且 3a 2c sin A
abc ④ S 4R

§2 三角形中的几何计算

§2  三角形中的几何计算

分析: 分析:四边形 OPDC 可以分成 ∆OPC 与 ∆PCD . S ∆OPC 可用
1 表示; OP ⋅ OC sin θ 表示; 而求 ∆PCD 的面积关键在于求出边长 2
PC, 中利用余弦定理即可求出; PC,在 ∆OPC 中利用余弦定理即可求出;至于面积最值 的获得,则可通过三角函数知识解决. 的获得,则可通过三角函数知识解决.
∴ sin(C + 30 ) = 1,∴ C + 30 = 90
,
∴ C = 60 ,故 A = 60
∴△ABC 为正三角形. ∴△ABC 为正三角形.
1.能够正确运用正弦定理、余弦定理等知识、 1.能够正确运用正弦定理、余弦定理等知识、方法解决 能够正确运用正弦定理 一些与测量以及几何计算有关的实际问题. 一些与测量以及几何计算有关的实际问题. 通过对全章知识的总结提高, 2. 通过对全章知识的总结提高,应系统深入地掌握本章 知识及典型问题的解决方法. 知识及典型问题的解决方法.
由正弦定理, 解: 由正弦定理, 2 sin B = sin A + sin C , 得
∵ B = 60 ,∴ A + C = 120 ,
代入上式, ∴ A = 120 − C 代入上式,得
2sin 60 = sin(120 − C ) + sin C
展开,整理得: 展开,整理得:
3 1 sin C + cos C = 1 2 2
余弦定理, 在 ∆ABC 中,由余弦定理,得
BC 2 = AB 2 + AC 2 − 2 AB ⋅ AC cos A ,
即 x 2 = (4 2) 2 + (17 − 2 x ) 2 − 2 × 4 2 × (17 − 2 x ) cos 45 .

人教a版必修五课件:解三角形-应用举例:三角形中的几何计算(54页)

人教a版必修五课件:解三角形-应用举例:三角形中的几何计算(54页)

人教A版· 数学· 必修5
进入导航
第一章 1.2 第3课时
系列丛书
课 堂 互 动 探 究
例 练 结 合 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·素 能 提 升
人教A版· 数学· 必修5
π 又0<A<π,故A= . 3
人教A版· 数学· 必修5
进入导航
第一章 1.2 第3课时
系列丛书
1 (2)△ABC的面积S=2bcsinA= 3,故bc=4. 而a2=b2+c2-2bccos A,故b2+c2=8. 解得b=c=2.
人教A版· 数学· 必修5
进入导航
第一章 1.2 第3课时
系列丛书
进入导航
第一章 1.2 第3课时
系列丛书
典例导悟
类型一 [例1] 三角形中的面积计算 (2012· 全国新课标卷)已知a,b,c分别为△
ABC三个内角A,B,C的对边,acos C+ 3 asin C-b-c =0. (1)求A; (2)若a=2,△ABC的面积为 3,求b,c.
人教A版· 数学· 必修5
1 1 1 (4)S=2absinC=2acsinB=_________. 2bcsinA
人教A版· 数学· 必修5
进入导航
第一章 1.2 第3课时
系列丛书
2.三角形中的计算、证明问题除正弦定理、余弦定理 外,常见的公式还有: (1)P=a+b+c(P为三角形的周长); (2)A+B+C=π; 1 (3)S= aha(ha表示a边上的高); 2 1 1 1 (4)S= absinC= acsinB= bcsinA; 2 2 2

2.2三角形中的几何计算课件(2013-2014年北师大版必修五)

2.2三角形中的几何计算课件(2013-2014年北师大版必修五)
课前探究学习 课堂讲练互动
题型三
三角形中的综合问题
【例3】(本题满分 12 分)在△ABC 中,角 A、B、C 所对的边分别 3 为 a,b,c,设 S 为△ABC 的面积,满足 S= (a2+b2-c2). 4 (1)求角C的大小; (2)求sin A+sin B的最大值. 审题指导 本题考查了余弦定理、三角形面积公式、三角 恒等变换等基础知识,同时考查了三角运算求解能力.
π C.A,B,C≠ 2
课前探究学习
课堂讲练互动
题型一
计算三角形的面积
B, 且其对边分别为 a, 【例1】 已知角 A, C 为△ABC 的三个内角, 1 b,c,若 cos Bcos C-sin Bsin C= . 2 (1)求角 A; (2)若 a=2 3,b+c=4,求△ABC 的面积.
由 sin 2A=sin 2B 得到 2A=2B, 而忘证了 2A=π -2B,造成错选 A;由 sin 2A=sin 2B 得 2A=2B 或 2A=π π -2B,即 A=B 或 A+B= ,但看成了等腰直角三角形,错 2 选 B.前者是正弦函数值相等两角关系不清;后者是对“或” 的理解不深入或读题不认真.
3 1 =sin A+ cos A+ sin A 2 2 =
π 3sinA+ ≤ 6 2π 30<A< (9 3
分)
课前探究学习
课堂讲练互动
π 当 A= 时,即△ABC 为等边三角形时取等号(11 分) 3 所以 sin A+sin B 的最大值为 3.(12 分)
课前探究学习 课堂讲练互动
2 2 2 1 × + 3 2 3
题型二 计算线段的长度
【例2】 如图,在△ABC中,已知, B=45°,D是BC边上的一点, AD=5,AC=7,DC=3,求AB 的长. [思路探索] 解答本题可先由余弦定理求cos C,然后由 同角三角关系求出sin C,最后由正弦定理求出AB的长.

2三角形中的几何计算、解三角形的实际应用举例.

2三角形中的几何计算、解三角形的实际应用举例.
第8课时 三角形中的几何计算、 解三角形的实际应用举例
工具
第三章 三角函数
栏目导引
工具
第三章 三角函数
栏目导引
1.仰角和俯角 在视线和水平线所成的角中,视线在水平线上方 的角叫仰角,在 水平线 下方 的角叫俯角(如图①).
2.方位角
从指北方向顺时针转到目标方向线的水平角,如B点的方位角为
α(如图②).
某单位在抗雪救灾中,需要在 A、B 两地之间架设高压电线,测 量人员在相距 6 000 m 的 C、D 两地(A、B、C、D 在同一平面上),测得 ∠ACD=45°,∠ADC=75°,∠BCD=30°,∠BDC=15°(如图),假如考 虑到电线的自然下垂和施工损耗等原因,实际所需电线长度大约应该是 A、B 距离的 1.2 倍,问施工单位至少应该准备多长的电线?(参考数据:
栏目导引
3.点 B 在点 A 的东偏北 60°方向距 A 为 1 km 的地方,点 C 在点 A 的北偏西 30°方向且距 A 为 2 km 的地方,则 B、C 间的距离为( )
A. 3 km
B. 5 km
C. 7 km
D. 2 km
解析: 由题意知∠BAC=60°,AB=1,AC=2 ∴BC2=AB2+AC2-2AB·AC·cos∠BAC =1+4-2×2×1×cos 60°=3. ∴BC= 3.
工具
第三章 三角函数
栏目导引
5.如图,为了测量河的宽度,在一岸边选定两点A,B望对岸的标 记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则这条河的宽 度为________m.
工具
第三章 三角函数
栏目导引
解析: 如图,在△ABC中,过C作CD⊥AB于D点,则CD为所求 宽度,在△ABC中,

§2 三角形中的几何计算

§2  三角形中的几何计算

(10 分) (12 分)
栏目,c 间的关系,再利用余弦定理,是本题关键.
栏目 导引
第二章 解三角形
判断(正确的打“√”,错误的打“×”) (1)三角形的面积公式适用于所有的三角形.( √ ) (2)已知三角形两边及其夹角不能求出其面积.( × ) (3)已知三角形的两内角及一边不能求出它的面积.( × )
栏目 导引
第二章 解三角形
在△ABC 中,若 a=7,b=3,c=8,则△ABC 的面积等于
栏目 导引
第二章 解三角形
(2)由 S△ABC=12acsin B= 3,得 ac=4. 又 b2=a2+c2+ac=(a+c)2-ac=16. 所以 a+c=2 5,所以△ABC 的周长为 4+2 5.
栏目 导引
第二章 解三角形
解三角形综合问题的策略 (1)三角形中的综合应用问题常常把正弦定理、余弦定理、三角 形面积公式、三角恒等变形等知识联系在一起,要注意选择合 适的方法、知识进行求解. (2)解三角形常与向量、三角函数及三角恒等变形等知识综合考 查,解答此类题目,首先要正确应用所学知识“翻译”题目条 件,然后要根据题目条件和要求选择正弦或余弦定理求解.
2.在△ABC 中,A,B,C 是三角形的三内角, a,b,c 是三内角对应的三边,已知 b2+c2-a2=bc.若 a= 13, 且△ABC 的面积为 3 3,求 b+c 的值. 解:cos A=b2+2cb2c-a2=2bbcc=12, 又 A 为三角形内角, 所以 A=π3.
栏目 导引
第二章 解三角形

1-2

5
52=

55,sin
A=sin(B+∠ACB)
=sin Bcos ∠ACB+cos Bsin ∠ACB

2.2《三角形中的几何计算》课件(北师大版必修5)

2.2《三角形中的几何计算》课件(北师大版必修5)

3 cosA=0, 2
∴sin(A-30°)=0, ∴A=30°. 答案:30°
三、解答题(每题8分,共16分) 7.在锐角三角形中,边a、b是方程x2-2 3 x+2=0的两根,角 A、B满足:2sin(A+B)- 3 =0,求角C的度数,边c的长度 及△ABC的面积.
【解析】由2sin(A+B)∵△ABC为锐角三角形, ∴A+B=120°,C=60°,
8
【解析】选C.c2=a2+b2-2abcosC=9,c=3,B为最大角,
cosB=- 1 .
7
2.(2010·营口高二检测)已知△ABC中,AB= 3 ,AC=1,且
B=30°,则△ABC的周长等于(
(A)3+ 3 (B) 3 +1 (C)2+ 3 或 3 +1 (D)3+ 3 或2+ 3
)
【解析】选D.由余弦定理得,AC2=BC2+AB2-2AB·BCcosB, 即12=BC2+(
2ab
又0°<C<180°,所以C=45°.
二、填空题(每题4分,共8分)
5.在△ABC中,A=120°,a= 21 ,S△ABC= 3 ,则b=__________. 1 【解析】S= bcsin120°= 3 ,得bc=4 ①
2
又a2=b2+c2-2bccos120°=21,得b2+c2=17
4
(2)求sin(2A+C)的值.
【解题提示】
【解析】(1)由余弦定理得, AB2=AC2+BC2-2AC·BC·cosC =4+1-2×2×1× ∴AB= 2 .
3 =2, 4
9.(10分)半径为R的圆外接于△ABC,且2R(sin2A-sin2C)=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谢立良
正弦定理变式: ①a:b:c=sinA : sinB : sinC .
湖北省通山县第一中学
谢立良
正弦定理变式:
①a:b:c=sinA : sinB : sinC . a sinA a sinA b sinB ② = , = , = . b sinB c sinC c sinC
湖北省通山县第一中学
分析:由已知条件知A,O,B,M四点共圆,故所求 的OM为△OAB的外接圆直径.
湖北省通山县第一中学
谢立良
例1:如图所示,已知∠POQ=60°, M是∠POQ内的一点,它到两 边的距离分别为MA=2, MB=11, 求OM的长.
解:如图所示,连接AB. 由已知 条件得O,A,M,B都在以 OM为直径的圆周上. 又∵∠POQ=60°, ∴∠AMB=120°.
湖北省通山县第一中学
谢立良
解:如图所示,连接AB. 由已知 条件得O,A,M,B都在以 OM为直径的圆周上. 又∵∠POQ=60°, ∴∠AMB=120°.
在△ABM 中,由余弦定理得: AB 2=MA 2+MB 2-2MA ·MB cos120° 1 2 2 =2 +11 -2×2×11×(- )=147, 2 ∴AB =7 3. AB ·sin ∠OAM 7 3 由正弦定理得 OM = = =14. sin120° sin ∠AMB
谢立良
正弦定理变式:
①a:b:c=sinA : sinB : sinC . a sinA a sinA b sinB ② = , = , = . b sinB c sinC c sinC a+b+c a b c ③ = = = . sinA sinB sinC sinA+sinB+sinC
湖北省通山县第一中学
湖北省通山县第一中学
谢立良
正弦定理变式:
①a:b:c=sinA : sinB : sinC . a sinA a sinA b sinB ② = , = , = . b sinB c sinC c sinC a+b+c a b c ③ = = = . sinA sinB sinC sinA+sinB+sinC ④a=2RsinA,b=2RsinB,c=2RsinC. a b c ⑤sinA= ,sinB= ,sinC= . 2R 2R 2R ⑥A< B a< b 2RsinA< 2RsinB sinA< sinB .
解:如图,设 BD=x ,
湖北省通山县第一中学
谢立良
例 2:在△ABC 中,D 为 BC 边上一点,BC=3BD, AD= 2,∠ADB=135° .若 AC = 2AB,则 BD=________.
解:如图,设 BD=x , 在△ ABD 中,根据余弦定理, 得 AB2=AD2+BD2-2AD×BD× cos135° 2 =x +2x+2.
让习惯成就我们的优秀,让优秀成为我们的习惯
通山一中 谢立良
2018年1月2日星期二
湖北省通山县第一中学 谢立良
第一章
解三角形
1.1
正弦定理和余弦定理
1.1.1 正弦定理
湖北省通山县第一中学
谢立良
第一章
1.2.4
解三角形
1.1 正弦定理和余弦定理
三角形在的几何计算
湖北省通山县第一中学
谢立良
正弦定理
另: S ABC
1 1 1 ab sin C bc sin A ac sin B 2 2 2
湖北省通山县第一中学 谢立良例1:如图所示,已知∠POQ=60°, M是∠POQ内的一点,它到两 边的距离分别为MA=2, MB=11, 求OM的长.
湖北省通山县第一中学
谢立良
例1:如图所示,已知∠POQ=60°, M是∠POQ内的一点,它到两 边的距离分别为MA=2, MB=11, 求OM的长.
湖北省通山县第一中学 谢立良
例 2:在△ABC 中,D 为 BC 边上一点,BC=3BD, AD= 2,∠ADB=135° .若 AC = 2AB,则 BD=________.
例 2:在△ABC 中,D 为 BC 边上一点,BC=3BD, AD= 2,∠ADB=135° .若 AC = 2AB,则 BD=________.
湖北省通山县第一中学
谢立良
正弦定理变式:
①a:b:c=sinA : sinB : sinC . a sinA a sinA b sinB ② = , = , = . b sinB c sinC c sinC a+b+c a b c ③ = = = . sinA sinB sinC sinA+sinB+sinC ④a=2RsinA,b=2RsinB,c=2RsinC. a b c ⑤sinA= ,sinB= ,sinC= . 2R 2R 2R
a b c 2R sin A sin B sinC
余弦定理
(1)公式表达 (2)推论
a2=b2+c2-2bccosA ; b2=a2+c2-2accosB ; c2=a2+b2-2abcosC .
湖北省通山县第一中学
b2+c2-a2 cosA= ; 2bc 2 2 2 a + c - b cosB= ; 2ac 2 2 2 a + b - c cosC= . 2ab
谢立良
正弦定理变式:
①a:b:c=sinA : sinB : sinC . a sinA a sinA b sinB ② = , = , = . b sinB c sinC c sinC a+b+c a b c ③ = = = . sinA sinB sinC sinA+sinB+sinC ④a=2RsinA,b=2RsinB,c=2RsinC.
湖北省通山县第一中学
谢立良
正弦定理变式:
①a:b:c=sinA : sinB : sinC . a sinA a sinA b sinB ② = , = , = . b sinB c sinC c sinC a+b+c a b c ③ = = = . sinA sinB sinC sinA+sinB+sinC ④a=2RsinA,b=2RsinB,c=2RsinC. a b c ⑤sinA= ,sinB= ,sinC= . 2R 2R 2R ⑥A< B a< b 2RsinA< 2RsinB sinA< sinB .
相关文档
最新文档