用机械能守恒定律解连接体问题题

合集下载

机械能守恒弹簧能量和连接体问题

机械能守恒弹簧能量和连接体问题
长,求:
(1)当B的速度最大时,弹簧的伸长量; (2)B的最大速度.
[解析] (1)通过受力分析可知:当B的速度最大时,其加速度为 0,细绳上的拉力大小为F=4mgsin30°=2mg,此时弹簧处于伸长 状态,弹簧的伸长量为xA,满足
k xA=F-mg 则xA=
(2)开始时弹簧压缩的长度为:xB=
【举例应用】
物体从A到C的过程,由机械能守恒定律得:
由以上两式解得: A处的弹性势能为:
二、举例应用
4、如图所示,在倾角为θ的固定的光滑斜面上有 两个用轻质弹簧相连接的物块A 、B .它们的质量都为
m,弹簧的劲度系数为k , C为一固定挡板。系统处于静
止状态,开始时各段绳都处于伸直状态。现在挂钩上挂 一物体P,并从静止状态释放,已知它恰好使物体B离开 固定档板C, 但不继续上升(设斜面足够长和足够高)。 求:物体P的质量多大?
(1)物体C下降到速度最大时,地 面对B的支持力多大? (2)物体C下降的最大速度?
解析(1)C物体下降过程中,当C物体的加速度为0时,下落速 度最大, 对C: F=2.5mg
对A、B和弹簧整体:N=(2m+3m)g-F 则地面对B物体的支持力:N=2.5mg
(2)未加C时,A处于静止状态,设弹簧压缩量为x1 则有: 2mg=kx1 得 x1 =
做功的特点:与路径无关,只取决于初末状态弹簧形变量的 大小。这一点对于计算弹力的功和弹性势能的改变是非常重 要的,必须引起重视。
二、举例应用
1、如图所示,一轻质弹簧竖直放置,下端固定在水平面上, 上端处于a位置,当一重球放在弹簧上端静止时,弹簧上端 被压缩到b位置.现将重球(视为质点)从高于a位置的c位置 沿弹簧中轴线自由下落,弹簧被重球压缩到最低位置d.以 下关于重球运动过程的正确说法应是( ).

机械能守恒定律-连接体问题)

机械能守恒定律-连接体问题)
H A. 5
(mA+mB ) v 2 + mAg(H−h)= 2 mAgh = mB =
所以:
1 2 1 2

2H 4H B. 5 C. 5 1H DFra bibliotek3vh
mA v
2 5
2
mA
H
h =
机械能守恒定律应用
机械能守恒定律的表达形式:
1、E1=E2 ( E1、E2初末态机械能)
2、ΔEP减=ΔEK增 (减少等于增加量)
3、ΔEA减=ΔEB增(A机械能减少等于B增量)
例1 在光滑的水平桌面上有一质量为 M的小车,小车与绳的一端相连,绳子 的另一端通过光滑滑轮与一个质量为m 的砝码相连,砝码到地面的高度为h, 由静止释放砝码,则当其着地前的一 瞬间(小车未离开桌子)小车的速度 为多大?
L · 2
=
gL 2
1 2
mv 2
L 2
v
∴ v=

例3 一粗细均匀的U形管内装有同种液 体竖直放置,右管口用盖板A密闭一部 分气体,左管口开口,两液面高度差为 h,U形管中液柱总长为4h,现拿去盖板, 液柱开始流动,当两侧液面恰好相齐时, 右侧液面下降的速度大小为多少?A
h
解:根据机械能守恒定律得:
Mgh−mgh = 1 (M+m)v2 2
解得:
v=
1 2

2(M−m)gh M+m
(2)M触地,m做竖直上抛运动,机械能守恒:
mv2 = mgh´
∴ m上升的总高度: H = h+h´ = 2Mh M+m
练习:固定的三角形木块,倾角θ=30°, 一细线两端分别与物块A和B连接,A的质 量为4m,B的质量为m。开始时将B按在地 面上不动,然后放开手,让A沿斜面下滑而 B上升。物块A与斜面间无摩擦。设当A沿 斜面下滑S距离后,细线突然断了。求物块 B上升的最大高度H。

新高考物理机械能5-5 “机械能守恒定律中的连接体问题”面面观

 新高考物理机械能5-5 “机械能守恒定律中的连接体问题”面面观

[针对训练]
1.(多选)如图所示,有质量为 2m、m 的小滑块 P、Q,P 套在固定竖
直杆上,Q 放在水平地面上。P、Q 间通过铰链用长为 L 的刚性轻
杆连接,一轻弹簧左端与 Q 相连,右端固定在竖直杆上,弹簧水
平,α=30°时,弹簧处于原长。当 α=30°时,P 由静止释放,下降到最低点时 α
变为 60°,整个运动过程中,P、Q 始终在同一竖直平面内,弹簧在弹性限度内,
(1)求小球 m2 沿斜面上升的最大距离 s; (2)若已知细绳断开后小球 m1 沿碗的内侧上升的最大高度为R2,求mm12。(结 果保留两位有效数字) [解析] (1)设小球 m1 到达最低点 B 时,m1、m2 速度大小分别为 v1、v2 如图所示,由运动的合成与分解得 v1= 2v2
对 m1、m2 组成的系统由机械能守恒定律得 m1gR-m2gh=12m1v12+12m2v22
(1)分清两物体是速度大小相等,还是沿绳方向的分速度大小相等。 三点 (2)用好两物体的位移大小关系或竖直方向的高度变化关系。 提醒 (3)对于单个物体,一般绳上的力要做功,机械能不守恒;但对于绳
连接的系统,机械能则可能守恒。
[针对训练]
1.如图所示,物体 A 的质量为 M,圆环 B 的质量为 m,由绳子通过定滑轮
2.(多选)如图所示,水平地面上固定一足够长的光滑斜面,斜面顶
端有一光滑定滑轮,一轻绳跨过滑轮,绳两端分别连接小物块 A
和 B。已知斜面倾角 θ=30°,小物块 A 的质量为 m,小物块 B 的质量为 0.8m,
小物块 B 距离地面的高度为 h,小物块 A 距离定滑轮足够远。开始时,小物块 A
和小物块 B 位于同一水平面上,用手按住小物块 A,然后松手。则下列说法正

用机械能守恒定律解决连接体问题

用机械能守恒定律解决连接体问题

用机械能守恒定律解决连接体问题1.首先分析多个物体组成的系统所受的外力是否只有重力或弹力做功,内力是否造成了机械能与其他形式能的转化,从而判断系统机械能是否守恒.2.若系统机械能守恒,则机械能从一个物体转移到另一个物体,ΔE 1=-ΔE 2,一个物体机械能增加,则一定有另一个物体机械能减少.例1 如图1所示,左侧为一个半径为R 的半球形的碗固定在水平桌面上,碗口水平,O 点为球心,碗的内表面及碗口光滑.右侧是一个固定光滑斜面,斜面足够长,倾角θ=30°.一根不可伸长的不计质量的细绳跨在碗口及光滑斜面顶端的光滑定滑轮两端上,绳的两端分别系有可视为质点的小球m 1和m 2,且m 1>m 2.开始时m 1恰在碗口水平直径右端A 处,m 2在斜面上且距离斜面顶端足够远,此时连接两球的细绳与斜面平行且恰好伸直.当m 1由静止释放运动到圆心O 的正下方B 点时细绳突然断开,不计细绳断开瞬间的能量损失.图1(1)求小球m 2沿斜面上升的最大距离s ;(2)若已知细绳断开后小球m 1沿碗的内侧上升的最大高度为R 2,求m 1m 2.(结果保留两位有效数字) 当m 1由静止释放运动到圆心O 的正下方B 点时细绳突然断开.答案 (1)2(2+1)m 12m 1+m 2R (2)1.9 解析 (1)设重力加速度为g ,小球m 1到达最低点B 时,m 1、m 2速度大小分别为v 1、v 2 如图所示,由运动的合成与分解得v 1=2v 2对m 1、m 2组成的系统由机械能守恒定律得m 1gR -m 2gh =12m 1v 12+12m 2v 22 h =2R sin 30°联立以上三式得v 1= 22m 1-2m 22m 1+m 2gR ,v 2= 2m 1-2m 22m 1+m 2gR 设细绳断开后m 2沿斜面上升的距离为s ′,对m 2由机械能守恒定律得m 2gs ′sin 30°=12m 2v 22 小球m 2沿斜面上升的最大距离s =2R +s ′ 联立以上两式并代入v 2得s =⎝⎛⎭⎪⎫2+2m 1-2m 22m 1+m 2R =2(2+1)m 12m 1+m 2R (2)对m 1由机械能守恒定律得: 12m 1v 12=m 1g R 2代入v 1得m 1m 2=22+12≈1.9.。

绳连接体机械能守恒问题例题

绳连接体机械能守恒问题例题

绳连接体机械能守恒问题例题
以下是绳连接体机械能守恒问题的例题:
例1:
轻绳一端通过光滑的定滑轮与物块P连接,另一端与套在光滑竖直杆上的圆环Q 连接,Q从静止释放后,上升一定距离到达与定滑轮等高处,则在此过程中()。

A. 任意时刻P、Q两物体的速度大小满足vP<vQ
B. 任意时刻Q受到的拉力大小与P的重力大小相等
C. 物块P和圆环Q组成的系统机械能守恒
D. 当Q上升到与滑轮等高时,它的机械能最大
例2:
1、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一小球a和b。

a球质量为m,静置于水平地面上;b球质量为3m,用手托住,高度为h,此时轻绳刚好拉紧。

现将b球释放,则b球着地瞬间a球的速度大小为( )。

A. gh
B. 2gh
C. gh/2
D. 2gh 答案A 在b球落地前,a、b两球组成的系统机械能守恒,且a、b两球速度大小相等,设为v,根据机械能守恒定律有:
3mgh=mgh+1/2(3m+m)v^2,解得:v=gh,故A正确。

解析:对于例1,在P和Q组成的系统中,只有重力和拉力做功,满足机械能守恒的条件。

同时,由于轻绳的拉力是变力,它们在运动过程中速度会变化,但沿绳方向的分速度大小相等,因此P和Q的速度大小不等。

当Q上升到与滑轮等高时,它的机械能不是最大的。

因此,正确答案为C。

对于例2,在b球落地前,a、b两球组成的系统机械能守恒,且a、b两球速度大小相等。

根据机械能守恒定律可以求出a球的速度大小为gh。

因此,正确答案为A。

机械能守恒定律在轻绳连接体中的应用

机械能守恒定律在轻绳连接体中的应用

机械能守恒定律在轻绳连接体中的应用一、连接体物体系统的机械能守恒两个或两个以上的物体通过细绳或轻杆或弹簧联系在一起,系统仅在重力作用下运动,对系统中某一个物体来说机械能不守恒,但整个系统与外界无能量交换,机械能仅在系统内物体间转移或转化,所以系统机械能守恒。

二、系统机械能守恒的常用表达式三、绳连接的物体系统机械能守恒如图所示的两物体组成的系统,释放B而使A、B运动的过程中,A、B的速度均沿绳子方向,在相等时间内A、B运动的路程相等,A、B的速率也相等。

但有些问题中两物体的速率并不相等,这时就需要先进行运动的合成与分解找出两物体运动速度之间的关系。

【题型1】如图所示,质量分别为3kg和5kg的物体A、B,用足够长的轻绳连接跨在一个光滑轻质定滑轮两侧,轻绳正好拉直,且A物体底面与地接触,B物体距地面0.8m,不计空气阻力,求:(1)放开B物体,当B物体着地时A物体的速度大小;(2)B物体着地后(不反弹)A物体还能上升多高.(g取10m/s2)【题型2】一半径为R的半圆形竖直圆柱面,用轻质不可伸长的细绳连接的A、B两球悬挂在圆柱面边缘两侧,A球质量为B球质量的2倍,现将A球从圆柱边缘处由静止释放,如图所示.已知A球始终不离开圆柱内表面,且细绳足够长,若不计一切摩擦,求:A球沿圆柱内表面滑至最低点时速度的大小.【题型3】如图所示,跨过同一高度处的定滑轮的细线连接着质量相同的物体A 和B ,A 套在光滑水平杆上,定滑轮离水平杆的高度h =0.2 m ,开始时让连着A 的细线与水平杆的夹角θ1=37°,由静止释放B ,当细线与水平杆的夹角θ2=53°时,A 的速度为多大?在以后的运动过程中,A 所获得的最大速度为多大?(设B 不会碰到水平杆,sin 37°=0.6,sin 53°=0.8,取g =10 m/s 2)针对训练1.有一竖直放置的“T”形架,表面光滑,滑块A 、B 分别套在水平杆与竖直杆上,A 、B 用一根不可伸长的轻细绳相连,A 、B 质量相等,且可看做质点,如图所示,开始时细绳水平伸直,A 、B 静止。

新高考物理机械能5-5 “机械能守恒定律中的连接体问题”面面观同步练

 新高考物理机械能5-5 “机械能守恒定律中的连接体问题”面面观同步练

第五章机械能(五)“机械能守恒定律中的连接体问题”面面观1.(2022·重庆高三模拟)一质量不计的直角形支架两端分别连接质量为m和2m的小球A和B。

支架的两直角边长度分别为2l和l,支架可绕固定轴O在竖直平面内无摩擦转动,如图所示。

开始时OA边处于水平位置,由静止释放,重力加速度为g,则()A.A球的最大速度为2glB.A球的速度最大时,两小球的总重力势能最小C.A球第一次转动到与竖直方向的夹角为45°时,A球的速度大小为8(2+1)gl3D.A、B两球的最大速度之比v A∶v B=3∶12.(多选)如图所示,固定于地面、倾角为θ的光滑斜面上有一轻质弹簧,轻质弹簧一端与固定于斜面底端的挡板C连接,另一端与物块A连接,物块A上方放置有另一物块B,物块A、B的质量均为m且不粘连,整个系统在沿斜面向下的外力F作用下处于静止状态。

某一时刻将力F撤去,在弹簧将A、B弹出过程中,若A、B能够分离,重力加速度为g。

则下列叙述正确的是()A.A、B刚分离的瞬间,两物块速度达到最大B.A、B刚分离的瞬间,A的加速度大小为g sin θC.从撤去力F到A、B分离的过程中,A物块的机械能一直增加D.从撤去力F到A、B分离的过程中,A、B物块和弹簧构成的系统机械能守恒3.(多选)如图所示,由长为L的轻杆构成的等边三角形支架位于竖直平面内,其中两个端点分别固定质量均为m的小球A、B,系统可绕O点在竖直面内转动,初始位置OA水平。

由静止释放,重力加速度为g,不计一切摩擦及空气阻力。

则()A.系统在运动过程中机械能守恒B.B球运动至最低点时,系统重力势能最小C.A球运动至最低点过程中,动能一直在增大D.摆动过程中,小球B的最大动能为34mgL4.如图所示,长为2L 的轻弹簧AB 两端等高地固定在竖直墙面上,弹簧刚好处于原长,现在其中点O 处轻轻地挂上一个质量为m的物体P 后,物体向下运动,当它运动到最低点时,弹簧与竖直方向的夹角为θ,重力加速度为g ,下列说法正确的是( )A .向下运动的过程中,物体的加速度先增大后减小B .向下运动的过程中,物体的机械能先增大后减小C .物体在最低点时,弹簧的弹性势能为mgL tan θD .物体在最低点时,弹簧中的弹力为mg 2cos θ5.(多选)如图所示,半径为R 的光滑圆环固定在竖直面内,质量均为m 的A 、B 两球用轻杆连接套在圆环上。

机械能守恒在模型中的应用

机械能守恒在模型中的应用

机械能守恒在模型中的应用(一)连绳模型【例1】 如图所示,甲、乙两个物体的质量分别为m 甲和m 乙(m 乙>m 甲),用细绳连接跨在半径为R 的光滑半圆柱的两端,连接体由图示位置从静止开始运动,当甲到达半圆柱体顶端时对圆柱体的压力为多大?解析:设甲到达半圆柱体顶部时,二者的速度的大小为v ,以半圆柱顶部为零势能面,由机械能守恒定律可得-(m 乙+m 甲)gR =12(m 乙+m 甲)v 2-m 乙g ⎝⎛⎭⎫R +π2R ① 或以半圆柱底部为零势能面,由机械能守恒定律有0=m 甲gR +12(m 乙+m 甲)v 2-m 乙g ·π2R (与上式一样,可见零势能面的选取与解题无关,可视问题方便灵活选择零势能面)设甲到达顶部时对圆柱体的压力为F N ,以甲为受力分析对象,则m 甲g -F N =m 甲v 2R ② 联立①②两式可得F N =m 甲g ⎣⎢⎡⎦⎥⎤3m 甲-π-1 m 乙m 乙+m 甲. 由牛顿第三定律对圆柱体压力 F N ′=F N =m 甲g ⎣⎢⎡⎦⎥⎤3m 甲-π-1 m 乙m 乙+m 甲 点评:此类问题要认清物体的运动过程,注意物体运动到最高点或最低点时速度的隐含条件及认清两者的速度关系。

(二)连杆模型【例2】如图所示,两个质量分别为m 和2m 的小球a 和b ,之间用一长为2l 的轻杆连接,杆在绕中点O 的水平轴无摩擦转动。

今使杆处于水平位置,然后无初速释放,在杆转到竖直位置的过程中,求:(1)杆在竖直位置时,两球速度的大小(2)杆对b 球做的功【解析】(1)以a 、b 和地球组成的系统为研究对象,以轻杆的水平位置为零势能面,由机械能守恒定律得:0= (mv a 2/2+mgl ) + (2mv b 2/2 – 2mgl ) ①由圆周运动规律得:v a =v b =lw=v ②①②结合解得:32gl =υ(2)对b 球,由动能定理得:W F +2mgl=2mv 2/2 -0综合(1)结果解得:W F = -4mgl/3。

机械能守恒定律及其应用连接体

机械能守恒定律及其应用连接体

机械能守恒定律及其应用
例2.
• 如图,质量分别为m和2m的两个小球A和B,中间用轻 质杆相连,在杆的中点O处有一固定转动轴,把杆置于 水平位置后释放,在B球顺时针摆动到最低位置的过 BC 程中( ) A.B球的重力势能减少,动能增加,B球和地球 组成的系统机械能守恒 B.A球的重力势能增加,动能也增加,A球和地 球组成的系统机械能不守恒 C.A球、B球和地球组成的系统机械能守恒 D.A球、B球和地球组成的系统机械不守恒
有时可选全过程,而有时则必须将全过程分解成几 个阶段,然后再分别应用机械能守恒定律求解.
机械能守恒定律及其应用
三、机械能守恒定律的常用的表达形式:
1、 E1=E2 ( E1、E2表示系统的初、末态时的机械能)
2、 Δ EK=−ΔEP (系统动能的增加量等于系统势能的减少量) 3、 Δ EA=−ΔEB (若把系统分为A、B两部分,A部分的机械能的 增量等于B部分机械能的减少量)
机械能守恒定律及其应用
例3.
• 如图所示,一固定的偰形木块,其斜面的倾角 思考1:为什么A下滑而B上升? θ=30о,另一边与地面垂直,顶上有一定滑轮.一柔软的 细线跨过定滑轮 ,两端分别与物块A、B连接,A的质 思考2:绳子断裂前,如何选取研究对象? 量为4m,B的质量为m,开始时将B按在地面上不 动,然后放开手,让 A沿斜面下滑而 B上升. 物块A 思考3:绳子断裂后, B物体做什么运动? 与斜面间无摩擦.设当A沿斜面下滑距离s后,细线 突然断了,求物块B上升的最大距离H
(1)v mM
( 2) M 3
机械能守恒定律及其应用
例6.
如图所示,半径为R的1/4圆弧支架竖直放置,圆弧边缘C 思考1:m1和m2的速度大小是否相同,为什么? 处有一小定滑轮,一轻绳两端系着质量分别为m1与m2 的物体 ,挂在定滑轮两边 ,且m1>m2,开始时m1、m2均静 思考2: m1能够到达A点的条件是什么? 止,m1、m2可视为质点,不计一切摩擦. (1)求m1经过圆弧最低点A时的速度. (2)为使m1能到达A点,m1与m2之间必 须满足什么关系?

高中力学中的机械能守恒定律有哪些典型例题

高中力学中的机械能守恒定律有哪些典型例题

高中力学中的机械能守恒定律有哪些典型例题在高中力学的学习中,机械能守恒定律是一个非常重要的知识点。

它不仅在解决物理问题时经常用到,也是理解能量转化和守恒的关键。

下面,我们就来一起探讨一些机械能守恒定律的典型例题。

例题一:自由落体运动一个质量为 m 的物体从高度为 h 的地方自由下落,忽略空气阻力,求物体下落至地面时的速度 v。

解析:在自由落体运动中,物体只受到重力的作用,重力势能逐渐转化为动能。

初始时刻,物体的机械能为重力势能 mgh,下落至地面时,物体的机械能为动能 1/2mv²。

因为机械能守恒,所以有 mgh =1/2mv²,解得 v =√2gh 。

这个例题是机械能守恒定律的最基本应用之一,它清晰地展示了重力势能如何转化为动能。

例题二:竖直上抛运动一个质量为 m 的物体以初速度 v₀竖直上抛,忽略空气阻力,求物体上升的最大高度 h。

解析:物体竖直上抛时,动能逐渐转化为重力势能。

在初始时刻,物体的机械能为动能 1/2mv₀²,当物体上升到最大高度时,速度为 0,机械能为重力势能 mgh。

由于机械能守恒,所以 1/2mv₀²= mgh,解得 h = v₀²/ 2g 。

这个例题与自由落体运动相反,是动能转化为重力势能的过程。

例题三:光滑斜面运动一个质量为 m 的物体从光滑斜面的顶端由静止开始下滑,斜面的高度为 h,斜面的长度为 L,求物体滑到底端时的速度 v。

解析:物体在斜面上运动时,重力势能转化为动能。

初始时刻,物体的机械能为重力势能 mgh,滑到底端时,物体的机械能为动能1/2mv²。

因为斜面光滑,没有摩擦力做功,机械能守恒。

根据几何关系,物体下落的高度 h 与斜面长度 L 和斜面倾角θ 有关,h =Lsinθ。

所以mgh = 1/2mv²,解得 v =√2gh =√2gLsinθ 。

这个例题展示了在斜面这种常见的情境中机械能守恒定律的应用。

连接体机械能守恒问题的分析技巧

连接体机械能守恒问题的分析技巧

连接体机械能守恒问题的分析技巧1.对连接体,一般用“转化法”和“转移法”来判断其机械能是否守恒.2.注意寻找用绳或杆相连接的物体间的速度关系和位移关系.3.列机械能守恒方程时,可选用ΔE k =-ΔE p 的形式.例题1.如图1,可视为质点的小球A 、B 用不可伸长的细软轻线连接,跨过固定在地面上、半径为R 的光滑圆柱,A 的质量为B 的两倍.当B 位于地面时,A 恰与圆柱轴心等高.将A 由静止释放,B 上升的最大高度是( )图1A .2RB.5R 3C.4R 3D.2R 3答案 C解析 设A 球刚落地时两球速度大小为v ,根据机械能守恒定律2mgR -mgR =12(2m +m )v 2得v 2=23gR ,B 球继续上升的高度h =v 22g =R 3,B 球上升的最大高度为h +R =43R . 2.(多选)如图2,滑块a 、b 的质量均为m ,a 套在固定竖直杆上,与光滑水平地面相距h ,b 放在地面上.a 、b 通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a 、b 可视为质点,重力加速度大小为g .则( )图2A .a 落地前,轻杆对b 一直做正功B .a 落地时速度大小为2ghC .a 下落过程中,其加速度大小始终不大于gD .a 落地前,当a 的机械能最小时,b 对地面的压力大小为mg答案 BD解析 滑块b 的初速度为零,末速度也为零,所以轻杆对b 先做正功,后做负功,选项A 错误;以滑块a 、b 及轻杆为研究对象,系统的机械能守恒,当a 刚落地时,b 的速度为零,则mgh =12m v a 2+0,即v a =2gh ,选项B 正确;a 、b 的先后受力分析如图甲、乙所示.由a 的受力情况可知,a 下落过程中,其加速度大小先小于g 后大于g ,选项C 错误;当a 落地前b 的加速度为零(即轻杆对b 的作用力为零)时,b 的机械能最大,a 的机械能最小,这时b 受重力、支持力,且F N b =mg ,由牛顿第三定律可知,b 对地面的压力大小为mg ,选项D 正确.。

微专题32 机械能守恒定律在连接体问题中的应用-2025版高中物理微专题

微专题32  机械能守恒定律在连接体问题中的应用-2025版高中物理微专题

微专题32机械能守恒定律在连接体问题中的应用【核心要点提示】机械能守恒定律理解的三种形式:1.守恒观点(1)表达式:E k1+E p1=E k2+E p2或E1=E2.(2)意义:系统初状态的机械能等于末状态的机械能.(3)注意:要先选取零势能参考平面,并且在整个过程中必须选取同一个零势能参考平面.2.转化观点(1)表达式:ΔE k=-ΔE p.(2)意义:系统的机械能守恒时,系统增加(或减少)的动能等于系统减少(或增加)的势能.3.转移观点(1)表达式:ΔE A增=ΔE B减.(2)意义:若系统由A、B两部分组成,当系统的机械能守恒时,则A部分机械能的增加量等于B部分机械能的减少量.【微专题训练】类型一:速率相等的连接体模型1.如图所示的两物体组成的系统,当释放B而使A、B运动的过程中,A、B的速度均沿绳子方向,在相等时间内A、B运动的路程相等,则A、B的速率相等。

2.判断系统的机械能是否守恒不从做功角度判断,而从能量转化的角度判断,即:如果系统中只有动能和势能相互转化,系统的机械能守恒。

这类题目的典型特点是系统不受摩擦力作用。

(2017·福建八县一中联考)(多选)如图所示,倾角为30°、高为L的固定斜面底端与水平面平滑相连,质量分别为3m、m的两个小球A、B用一根长为L的轻绳连接,A球置于斜面顶端。

现由静止释放A、B两球,B球与弧形挡板碰撞过程时间极短,无机械能损失,且碰后只能沿斜面下滑,两球最终均滑到水平面上。

已知重力加速度为g,不计一切摩擦,则(ABD)A.A球刚滑至水平面上时的速度大小为5gL2B.B球刚滑至水平面上时的速度大小为32gLC.两小球在水平面上不可能相撞D.在A球沿斜面下滑的过程中,轻绳对B球先做正功,后不做功[解析]从A球开始下滑到A球落地的过程中,系统的机械能守恒,A球到达水平面上时B球在斜面的中点上,则有3mgL-mg L2=12(4m)v2,解得v=5gL2,故A正确;A球滑到水平面后,A球的速度不再变化,而B球速度继续增大,此时轻绳对B球不再有力的作用,对B球由机械能守恒可知mg 12L=12mv′2-12mv2,解得B球最终滑到水平面上时速度v′=32gL,故B正确;B球滑到水平面上,由于B球的速度大于A球的速度,故两球最终一定会相撞,故C错误;由题意可知,开始时,B球动能增加,轻绳对B球做正功,当A球沿斜面下滑一半距离后,A、B球一起沿斜面下滑,速度和加速度均相等,故轻绳无拉力,轻绳不再做功,故D正确。

专题动能定理和机械能守恒定律综合应用连接体问题和链条问题(原卷版)

专题动能定理和机械能守恒定律综合应用连接体问题和链条问题(原卷版)

9 专题:动能定理和机械能守恒定律综合应用连接体和链条问题[学习目标]1.知道动能定理与机械能守恒定律的区别,体会二者在解题时的方法异同2.能灵活运用动能定理和机械能守恒定律解决综合题目.3.会分析多个物体组成系统的机械能守恒问题.4.会分析处理链条类机械能守恒问题一、机械能的变化量ΔE与其他力做功的关系质量为m的物块在竖直向上的恒力F的作用下由静止向上加速运动了h,此过程恒力F做功多少,物块机械能变化了多少?(空气阻力不计,重力加速度为g)二、多物体组成的系统机械能守恒问题1.当动能、势能仅在系统内相互转化或转移,则系统的机械能守恒.2.机械能守恒定律表达式的选取技巧①当研究对象为单个物体时,可优先考虑应用表达式E k1+E p1=E k2+E p2或ΔE k=-ΔE p来求解.②当研究对象为两个物体组成的系统时:a.若两个物体的重力势能都在减小(或增加),动能都在增加(或减小),可优先考虑应用表达式ΔE k=-ΔE p来求解.b.若A物体的机械能增加,B物体的机械能减少,可优先考虑用表达式ΔE A=-ΔE B来求解.c.从机械能的转化角度来看,系统中一个物体某一类型机械能的减少量等于系统中其他类型机械能的增加量,可用ΔE减=ΔE增来列式.d.注意寻找连接各物体间的速度关系的连接物,如绳子、杆或者其他物体,然后在寻找几个物体间的速度关系和位移关系。

3.对于关联物体的机械能守恒问题,应注意寻找用绳或杆相连接的物体间的速度关系、位移与高度变化量Δh 的关系.三、连接体问题解题思路与技巧1.不含弹簧的系统机械能守恒问题①对多个物体组成的系统,要注意判断物体运动过程中系统的机械能是否守恒.一般情况为:不计空气阻力和一切摩擦,系统的机械能守恒.②注意寻找用绳或杆相连接的物体间的速度关系和位移关系.③多个物体组成的系统,应用机械能守恒时,先确定系统中哪些能量增加、哪些能量减少,再用ΔE增=ΔE减(系统内一部分增加的机械能和另一部分减少的机械能相等)解决问题.2.含弹簧的系统机械能守恒问题①通过其他能量求弹性势能,根据机械能守恒,列出方程,代入其他能量的数值求解.②对同一弹簧,弹性势能的大小由弹簧的形变量决定,弹簧伸长量和压缩量相等时,弹簧弹性势能相等.③物体运动的位移与弹簧的形变量或形变量的变化量有关.知识点一:动能定理和机械能守恒定律的比较动能定理和机械能守恒定律,都可以用来求能量或速度,但侧重不同,动能定理解决物体运动,尤其计算对该物体的做功时较简单,机械能守恒定律解决系统问题往往较简单,两者的灵活选择可以简化运算过程.【探究重点】【例题精讲】1.(2022届·河北省唐山市高三上学期期末)如图所示,一劲度系数为k的轻弹簧左端固定在竖直墙壁上,右端连接置于粗糙水平面的物块。

连接体的机械能守恒

连接体的机械能守恒

连接体的机械能守恒问题(基础好的学生可参考)典例、如图所示,左侧竖直墙面上固定不计为R=0.3m的光滑半圆环,右侧竖直墙面上与圆环的圆心O等高处固定一光滑直杆.质量为m a=100g的小球a套在半圆环上,质量为m b=36g的滑块b套在直杆上,二者之间用长为l=0.4m的轻杆通过两铰链连接.现将a从圆环的最高处由静止释放,使a沿圆环自由下滑,不计一切摩擦,a、b均视为质点,重力加速度g=10m/s2.求:(1)小球a滑到与圆心O等高的P点时的向心力大小;(2)小球a从P点下滑至杆与圆环相切的Q点的过程中,杆对滑块b做的功.分析(1)不计一切摩擦,a沿圆环自由下滑的过程中,a、b及杆组成的系统机械能守恒,由机械能守恒定律求出小球a滑到与圆心O等高的P点时的速度,再由向心力公式求解.(2)小球a从P点下滑至杆与圆环相切的Q点的过程中,根据杆不可伸长和缩短,两球沿杆的速度相等列式,得到两球速度关系式,再结合机械能守恒定律求出b球此时的速度,即可由动能定理求得杆对b球做的功.解:(1)当a滑到与O同高度P点时,a的速度v沿圆环切向向下,b的速度为零,由机械能守恒定律可得:m a gR=1/2m a v2;对小球a受力分析,由牛顿第二定律可得:F=mav2/R=2m a g=2N(2)杆与圆相切时,如图所示,a的速度沿杆方向,设此时b的速度为v b,根据杆不可伸长和缩短,有:v a=v b cosθ由几何关系可得:cosθ=0.8在图中,球a下降的高度h=Rcosθa、b系统机械能守恒,则有:m a gh=1/2m a v a2+1/2m b v b2-1/2m a v2;对滑块b,由动能定理得:W=1/2M b V b2=0.1944J答:(1)小球a滑到与圆心O等高的P点时的向心力大小是2N;(2)小球a从P点下滑至杆与圆环相切的Q点的过程中,杆对滑块b做的功是0.1944J.。

巧用机械能守恒定律求解连接体问题

巧用机械能守恒定律求解连接体问题

高中生·高考指导文"汪志杰若干个物体通过一定的方式连接在一起,就构成了连接体,其连接方式一般是通过细绳、轻杆或轻弹簧等物体来实现的.连接体问题涉及多个物体,具有较强的综合性,是力学中能力考查的重要内容,在高考中也经常出现.连接体问题的解题关键是寻找连接体之间的内在联系.解决连接体问题的有效方法,除常用的整体法与隔离法外,还可利用机械能守恒定律求解.一、轻绳连接模型解答此类问题应注意:连接体运动过程中,与绳子连接的物体沿着绳子方向的速度大小一定相等;轻绳内部张力处处相等,且与运动状态无关.因此,此类模型中的单个物体机械能一般不守恒,但系统机械能守恒.例1如图1所示,质量分别为m和M的物块A和B用不可伸长的细绳连接,A放在倾角为α的固定斜面上,B能沿杆在竖直方向上自由滑动.杆到滑轮中心的距离为L,开始时将B抬高到使细绳水平.求当B由静止开始下落h时的速度.(滑轮和绳的质量及各种摩擦均不计)解析设B下降h时速度为v1,此时A上升的速度为v2,沿斜面上升的距离为s.选A、B和地球组成的系统为研究对象,由于系统在运动过程中只有重力做功,系统机械能守恒,其重力势能的减少量等于其动能的增加量,即有Mgh-mgs·sinα=12Mv21+12mv22.①由于B下落,使杆与滑轮之间的一段绳子既沿其自身方向运动,又绕滑轮转动,故v1可分解为图2所示的两个分速度.由图2知v2=v1cosθ=v1·hL2+h2!.②由几何关系知s=L2+h2!-L.③联立①、②、③三式可解得v1=2(L2+h2)[Mgh-mgsinα(L2+h2!-L)]ML2+(M+m)h2!.小结若系统内的物体通过不可伸长的轻绳相连接,则系统的机械能守恒.本题还需结合相关物体的速度关系式才能求解.例2如图3所示,质量均为m的小球A、B、C,用两条长均为L的细线相连,置于高为h的光滑水平桌面上.L>h,A球由静止状态从桌面边缘落下.若A球、B球下落着地后均不再反弹,则C球离开桌面边缘时的速度大小是多少?(不计摩擦)解析本题的物理过程如下:A球下落带动B球和C球运动.A球着地前瞬间,A、B、C三球速率相等,且B、C两球均在桌面上.因A球着地后不反弹,故A、B两球间细线松弛,B球继续运动并下落,带动小球C,在B球着地前瞬间,B、C两球速率相等.故本题的物理过程应划分为两个阶段:第一个阶段,从A球开始下落到A球着地瞬间;第二个阶段,从A球着地后到B球着地瞬间.在第一个阶段,选三个球及地球为系统,根据机械能守恒定律有mgh=12×3m×v21.①在第二个阶段,选B、C两球及地球为系统,根据机械能守恒定律有mgh=12×2m×v22-12×2m×v21.②由①、②解得v2=15gh!3.小结要重视对物体运动过程的分析,明确运动过程中有无机械能和其他形式能量之间的转换,对有能量形式转换的部分不能应用机械能守恒定律.二、轻杆连接模型由于轻杆不可伸长和压缩,所以沿杆方向速度相同.若轻杆一端固定,则杆转动时,杆上各点具有相同的角速度.求解此类问题需注意重力势能为零的位置的选择及重力势能的变化.例3如图4所示,一轻杆上有质量均为m的小球a和b,轻杆可绕O点在竖直平面内自由转动,Oa=ab=L.将杆拉成水平后,由静止开始释放,求轻杆转动到竖直方向时a、b两球的速度.◎高考题库◎巧用机械能守恒定律求解连接体问题51高中生·高考指导解析设杆转到竖直方向时,a、b的速度大小分别为va、vb,规定b球到达的最低点所在的水平面为零势面,由机械能守恒定律得mgL+mg·2L=12mv2a+12mv2b.又vb=2va,由此可得va=30gL!5,vb=2530gL!.小结此题易误认为a、b两小球在下摆过程中各自机械能守恒,而事实上重力和轻杆对a、b均做功,并使其机械能不守恒,但是a、b组成的系统与外界没有能量交换,系统机械能还是守恒的.例4如图5所示,长为l的轻质杆两端有质量均为m的两个相同的小球A和B,A靠在竖直墙壁上,B与地面接触,两处均不计摩擦.开始时杆与水平面成60°角,放手后A下滑、B右滑.当杆与水平夹角θ为多大时,A刚好脱离墙壁?此时B球速度为多大?解析设A刚好脱离墙壁时A、B的速度分别为vA、vB,A下滑、B右滑的过程中,系统机械能守恒,有mgl(sin60°-sinθ)=12mv2A+12mv2B.①又A下滑、B右滑的过程中,两小球沿杆方向的速度相同,即vAsinθ=vBcosθ.②由①、②两式解得vB=2gl(sin60°-sinθ)sin2θ!.③令a=2sin60°-2sinθ,b=sinθ,c=sinθ,则a+b+c=3!.因为a+b+c3≥abc3!,所以当a=b=c时,abc有最大值,此时vB=glabc!有最大值.由2sin60°-2sinθ=sinθ解得sinθ=3!3,则θ=arcsin3!3.将sinθ=3!3代入③式得vB=133!gl!.此时A受墙壁的水平作用力减小到零,刚好脱离竖直墙壁.故当θ=arcsin3!3时,A刚好脱离竖直墙壁,此时vB=133!gl!.小结运用机械能守恒定律,应注意研究对象的选取和定律守恒的条件.本题中A下滑、B右滑的过程中,整个系统机械能守恒,但是系统的某一部分的机械能并不守恒.意识到A、B组成的系统机械能守恒并找出A、B之间的速度关系是解本题的关键.三、轻弹簧连接模型求解此类问题的关键在于分析物体的运动过程,认清弹簧的状态及不同能量之间的转化关系.由两个(或两个以上)物体与弹簧组成的系统,应注意弹簧伸长或压缩到最大程度时弹簧两端连接的物体具有相同的速度,弹簧处于自然长度时弹性势能最小(为零)等隐含条件.例5如图6所示,质量为m1的物体A经一轻质弹簧与其正下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A上方的一段绳沿竖直方向.在挂钩上挂一质量为m3的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升.若将C换成另一个质量为(m1+m3)的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地面时D的速度的大小是多少?(重力加速度为g)解析开始时,A、B静止,设弹簧压缩量为x1,有kx1=m1g.①挂上C并释放后,C向下运动,A向上运动.设B刚要离地时弹簧伸长量为x2,有kx2=m2g.②B不再上升,表示此时A和C的速度为零,C已降到最低点.根据机械能守恒定律,与初始状态相比,弹簧弹性势能的增加量为$E=m3g(x1+x2)-m1g(x1+x2).③C换成D后,当B刚离地时弹簧弹性势能的增量与前一次相同,由能量关系得12(m1+m3)v2+12m1v2=(m1+m3)g(x1+x2)-m1g(x1+x2)-$E.④由③、④两式得12(2m1+m3)v2=m1g(x1+x2).⑤由①、②、⑤三式得v=2m1(m1+m2)g2(2m1+m3)k!.小结此题考查的知识点有胡克定律、共点力作用下物体的平衡、机械能守恒定律及其应用,其难点是系统弹性势能的增加量的计算和隐含条件(两种情况下弹簧弹性势能的增加量相等)的挖掘.四、轻盘连接模型求解这类问题应注意在运动过程中各个物体之间角速度和线速度的关系.例6如图7所示,半径为r、质量不计的圆盘盘面与地面垂直,◎高考题库◎52圆心处有一个垂直于盘面的光滑水平固定轴O,在盘的最右边固定一个质量为m的小球A,在O点的正下方离O点r2处固定一个质量也为m的小球B.放开盘,让其自由转动,求:(1)A转到最低点时的线速度是多少?(2)在转动过程中半径OA向左偏离竖直方向的最大角度是多少?解析(1)该系统在自由转动过程中,只有重力做功,机械能守恒.设A球转到最低点时的线速度为vA,此时B球的线速度为vB,则根据机械能守恒定律可得mgr-mg·12r=12mv2A+12mv2B.由圆周运动的知识可知vA=2vB.由上述两式可求得vA=255gr!.设在转动过程中半径OA向左偏离竖直方向的最大角度为θ(如图8所示),则由机械能守恒定律可得32mgr=mgr(1-cosθ)+mgr(1+12sinθ),易求得θ=arcsin35.五、轻支架连接模型求解这类问题应注意在运动过程中各个物体之间的角速度、线速度的关系和重力势能为零的位置的选择.例7如图9所示,长度相同的三根轻杆构成一个正三角形支架,在A处固定质量为2m的小球,B处固定质量为m的小球,支架悬挂在O点,可绕过O点并与支架所在平面相垂直的固定轴转动.开始时OB与水平面垂直,放手后开始运动,在不计任何阻力的情况下,下列说法正确的是A.A球到达最低点时速度为零B.A球机械能减少量等于B球机械能增加量C.B球向左摆动所能达到的最高位置应高于A球开始运动时的高度D.当支架从左向右回摆时,A球一定能回到起始高度解析对三角支架和A、B球组成的系统,在支架摆动过程中只有重力做功,遵守机械能守恒定律.支架向左摆动时,A球的机械能减少,B球的机械能增加.根据机械能守恒定律可知B、D正确.设三角支架的边长为l,当A球摆到最低点时,B球向左到达A球开始运动时的高度.因摆动中A、B两球角速度ω相同,由v=ωr可知,A、B两球的线速度大小也相同,设为v.由机械能守恒定律得2mglcos60°-mglcos60°=12×2m×v2+12mv2,解得v=gl3!≠0.由于B球到达A球开始运动时的高度时,A、B两球都有一定的速度v,两球还要继续向左摆动,使B球所能达到的最高位置高于A球开始运动时的高度,所以选项A错,选项C对.选B、C、D.小结对系统的机械能守恒,可依照题目采用适当的守恒形式.本题判断B、D选项采用的是“系统一部分机械能的减少量等于另一部分机械能的增加量”形式,即!EA=!EB;在判断A、C选项时,又采用了“系统重力势能的减少量等于系统动能的增加量”形式,即!Ek=!Ep.一般在初、末态总机械能不易简单写出,而机械能的增加或减少部分又较明显时,利用!EA=!EB或!Ek=!Ep求解会更简便些.从上面各例可以看出,在用机械能守恒定律解连接体问题时,要注意下面几个问题:1.准确地选取系统.应用机械能守恒定律必须准确地选择系统.系统选择得当,机械能守恒;系统选择不得当,机械能不守恒.当研究一个问题涉及到的不是一个物体而是两个或两个以上的物体时,应具有整体意识,将不同的物体组成系统,这样往往会化繁为简、化难为易.2.选取具体的物理过程.在运用机械能守恒定律解题时必须选取具体的物理过程,确定初、末状态.选取物理过程必须遵循两个基本原则:一要符合求解要求,二要尽量使求解过程简化.有时可选全过程,而有时则必须将全过程分解成几个阶段,然后再分别应用机械能守恒定律求解.同时,要重视对物体运动过程的分析,把握守恒条件,明确哪些运动过程中系统机械能守恒.3.灵活选取机械能守恒定律的不同表达式来解题.在运用机械能守恒定律Ek1+Ep1=Ek2+Ep2时,必须选取零势面,而且在分析同一问题时只能选取同一零势面.在某些机械能守恒的问题中,运用Ek1+Ep1=Ek2+Ep2求解不太方便,而运用!Ek+!Ep=0则较为简单.运用!Ek+!Ep=0求解的一个特点是不必选取零势面,只要弄清楚过程中物体重力势能的变化即可.4.对相互关联的多个物体构成的连接体问题一定要搞清各物体速度之间的关系.(责任编校/冯宪xyx12121@yahoo.com.cn)◎高考题库◎53高中生·高考指导。

高一物理弹簧和连接体问题

高一物理弹簧和连接体问题

1、如图所示,B物体的质量是A物体质量的1/2,
在不计摩擦阻力的情况下,A物体自H高处由静止开始
下落.以地面为参考平面,当物体A的动能与其势能相
等时,物体距地面的高度是( )
v
√ mAA.g(H5 H−Bh.)2=5H12(mC.A+4m5HB
D.H3
) v 2+
mAgh
=
1 2
mA v 2
vh
mB
mgh
=
1 2
mv2
物块B上升的最大高度: H=h+S
三式连立解得 H=1.2S
例3、长为L质量分布均匀的绳子,对称地悬挂在
轻小的定滑轮上,如图所示.轻轻地推动一下,让绳
子滑下,那么当绳子离开滑轮的瞬间,绳子的速度

.
解:由机械能守恒定律得:取初 态时绳子最下端为零势能参考面:
(绳子初态的机械能=绳子末态时的机械能)
m1
m2
复习精要
轻弹簧是一种理想化的物理模型,以轻质弹簧为载体, 设置复杂的物理情景,考查力的概念,物体的平衡, 牛顿定律的应用及能的转化与守恒,是高考命题的重 点,此类命题几乎每年高考卷面均有所见,,在高考复 习中应引起足够重视.
(一)弹簧类问题的分类
1、弹簧的瞬时问题 弹簧的两端都有其他物体或力的约束时, 使其发生形
三、机械能守恒定律的常用的表达形式:
1、E1=E2
( E1、E2表示系统的初、末态时的机械能)
2、 Δ EK=−ΔEP (系统动能的增加量等于系统势能的减少量)
3、 Δ EA=−ΔEB (系统由两个物体构成时,A的机械能的增量 等于B的机械能的减少量)
说明:
在运用机械能守恒定律时,必须选取 零势能参考面,而且在同一问题中必须选 取同一零势能参考面。但在某些机械能守 恒的问题中,运用式1 (E1=E2)求解不太方便, 而运用式2 (Δ EK=−ΔEP ) 、 3 (Δ EA=−ΔEB )较为简 单。运用式2、3的一个最大优点是不必选 取零势能参考面,只要弄清楚过程中物体 重力势能的变化即可。

机械能守恒连接体问题

机械能守恒连接体问题

机械能守恒连接体问题
机械能守恒连接体是一种受力学原理控制的机械系统,它可以提供传动功率、减少摩擦和
消耗更少的能量。

机械能守恒连接体一般由两个活动分支和一条连接轴组成,它具有很强
的钢筋混凝土构件,便于受力分析和施工操作。

机械能守恒连接体有助于实现机械能的守恒,控制机械动力的流动,有效的减少损耗。


械能守恒连接体的拓扑结构具有优化力学分析的能力,其定向应用与传动系统有关,它可
以减少摩擦力、减小结构抗力,使结构受力分布更加均匀化,消除结构过度向外射电现象,使结构更为安全紧凑。

此外,机械能守恒连接体还具有有效地抑制动态传动系统中出现的振动、噪声及局部热源
的能力,有效地减少因转矩流动而造成的失稳现象,具有较低的摩擦损失。

总的来说,机械能守恒连接体具备了优异的受力特性,具有高效的传动能力,能够有效地抑制摩擦及噪声,减少结构受力的不均匀性,极大的满足了机械系统的受力要求。

它的发
展前景非常广阔,可以有效地改善机械系统的效率及耐久性。

机械能守恒定律及其应用测试题及解析

机械能守恒定律及其应用测试题及解析

机械能守恒定律及其应用测试题及解析1.(2018·天津高考)滑雪运动深受人民群众喜爱。

某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB ,从滑道的A 点滑行到最低点B 的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB下滑过程中( )A .所受合外力始终为零B .所受摩擦力大小不变C .合外力做功一定为零D .机械能始终保持不变解析:选C 运动员从A 点滑到B 点的过程做匀速圆周运动,合外力指向圆心,不做功,故A 错误,C 正确。

如图所示,沿圆弧切线方向运动员受到的合力为零,即F f =mg sin α,下滑过程中α减小,sin α变小,故摩擦力F f 变小,故B 错误。

运动员下滑过程中动能不变,重力势能减小,则机械能减小,故D 错误。

2.(2019·内江一模)如图所示,弹性轻绳的一端套在手指上,另一端与弹力球连接,用手将弹力球以某一竖直向下的初速度向下抛出,抛出后手保持不动。

从球抛出瞬间至球第一次到达最低点的过程中(弹性轻绳始终在弹性限度内,空气阻力忽略不计),下列说法正确的是( )A .绳伸直以后,绳的拉力始终做负功,球的动能一直减小B .该过程中,手受到的绳的拉力先增大后减小C .该过程中,重力对球做的功大于球克服绳的拉力做的功D .在最低点时,球、绳和地球组成的系统势能最大解析:选D 绳伸直以后,绳的拉力始终做负功,但重力大于拉力时球的速度增大,故球的动能增大,当重力与拉力相等时球的速度最大,动能最大,继续向下,当重力小于拉力时球的速度减小,则球的动能减小,A 错误;该过程中,手受到绳的拉力一直增大,B 错误;由动能定理可得W G -W 克绳=0-12m v 02,该过程中重力对球做的功小于球克服绳的拉力做的功,C 错误;在最低点时,小球的动能为零,球、绳和地球组成的系统势能最大,D 正确。

3.[多选]如图所示,光滑长铁链由若干链节组成,全长为L ,圆形管状轨道半径为R ,L >2πR ,R 远大于一节铁链的高度和长度。

连接体的机械能守恒问题

连接体的机械能守恒问题

连接体的机械能守恒问题1.如图1所示,在倾角θ=30°的光滑固定斜面上,放有两个质量分别为1 kg 和2 kg 的可视为质点的小球A 和B ,两球之间用一根长L =0.2 m 的轻杆相连,小球B 距水平面的高度h =0.1 m .两球由静止开始下滑到光滑地面上,不计球与地面碰撞时的机械能损失,g 取10 m/s2.则下列说法中正确的是( )图1A .整个下滑过程中A 球机械能守恒B .整个下滑过程中B 球机械能守恒C .整个下滑过程中A 球机械能的增加量为23J D .整个下滑过程中B 球机械能的增加量为23J 答案 D解析 在下滑的整个过程中,只有重力对系统做功,系统的机械能守恒,但在B 球沿水平面滑行,而A 沿斜面滑行时,杆的弹力对A 、B 球做功,所以A 、B 球各自机械能不守恒,故A 、B 错误;根据系统机械能守恒得:m A g (h +L sin θ)+m B gh =12(m A +m B )v 2,解得:v =236 m/s ,系统下滑的整个过程中B 球机械能的增加量为12m B v 2-m B gh =23J ,故D 正确;A 球的机械能减少量为23J ,C 错误. 2.如图2所示,倾角为α的斜面A 被固定在水平面上,细线的一端固定于墙面,另一端跨过斜面顶端的小滑轮与物块B 相连,B 静止在斜面上.滑轮左侧的细线水平,右侧的细线与斜面平行.A 、B 的质量均为m ,撤去固定A 的装置后,A 、B 均做直线运动,不计一切摩擦,重力加速度为g .求:图2(1)A 固定不动时,A 对B 支持力的大小N ;(2)A 滑动的位移为x 时,B 的位移大小s ;(3)A 滑动的位移为x 时的速度大小v A . 答案 (1)mg cos α (2)2(1-cos α)·x(3) 2gx sin α3-2cos α解析 (1)支持力的大小N =mg cos α(2)如图所示,根据几何关系s x =x ·(1-cos α),s y =x ·sin α且s =s 2x +s 2y解得s =2(1-cos α)·x(3)B 的下降高度s y =x ·sin α根据机械能守恒定律mgs y =12m v A 2+12m v B 2 根据速度的定义得v A =x t ,v B =s t则v B =2(1-cos α)·v A解得v A = 2gx sin α3-2cos α.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

mg
L · 4
=
gL 2
1 2
mv 2
L 4
v
∴ v=

解:由机械能守恒定律得:
(绳子减少的势能=绳子增加的动能)
1 2
· mg
L · 2
=
gL 2
1 2
mv 2
L 2
v
∴ v=

巩固练习
如图所示,一粗细均匀的U形管内装有同种液体 竖直放置,右管口用盖板A密闭一部分气体,左管 口开口,两液面高度差为h,U形管中液柱总长为4h, 现拿去盖板,液柱开始流动,当两侧液面恰好相齐 时,右侧液面下降的速度大小为多少? 分析 : 应用“割补”法: 液面相齐时等效于把右侧 中h/2的液柱移到左侧管中, ? 其减少的重力势能转变为 整个液柱的动能.
A
h/2
h
解:根据机械能守恒定律得:
mg· h/2 =
1 2
Mv2
h 2
设液体密度为ρ有:
m = M =
S· ρ
4h S · ρ
所以:
v=

gh 8
练习题: 1、如图所示,B物体的质量是A物体质量的1/2, 在不计摩擦阻力的情况下,A物体自H高处由静止开始 下落.以地面为参考平面,当物体A的动能与其势能相 v 等时,物体距地面的高度是( ) 2H 4H H H B. 5 C. 5 D.3 A. 5 1 2
用机械能守恒定律解 连接体问题
例1:如图示,在光滑的水平桌面上有一质量为M 的小车,小车与绳的一端相连,绳子的另一端通 过滑轮与一个质量为m的砝码相连,砝码到地面的 高度为h,由静释放砝码,则当其着地前的一瞬间 (小车末离开桌子)小车的速度为多大?
v
解:以M 、m为研究对象,在 m开始下落到刚要着地的过程 中机械能守恒,则: 1 mgh = 2 (M+m)v2
M
m
h
∴ v=

2mgh M+m
v
在用机械能守恒定律解连接体问题时,一 定要注意下面几个问题:
一、如何选取系统
应用机械能守恒定律必须准确的选择系统. 系统选择得当,机械能守恒;系统选择不得当, 机械能不守恒。 判断选定的研究系统是否机械能守恒,常用 方法: 1、做功的角度;2、能量的转化的角度。
在用机械能守恒定律解连接体问题时,一 定要注意下面几个问题:
2、 Δ EK=−ΔEP (系统动能的增加量等于系统势能的减少量) 3、 Δ EA=−ΔEB (系统由两个物体构成时,A的机械能的增量 等于B的机械能的减少量)
说明:
在运用机械能守恒定律时,必须选取 零势能参考面,而且在同一问题中必须选 取同一零势能参考面。但在某些机械能守 恒的问题中,运用式1 (E1=E2)求解不太方便, 而运用式2 (Δ EK=−ΔEP ) 、 3 (Δ EA=−ΔEB )较为简 单。运用式2、3的一个最大优点是不必选 取零势能参考面,只要弄清楚过程中物体 重力势能的变化即可。
S A
v
S B
h
v
30º
解:该题A、B组成的系统只有它们的重力做功,故系 统机械能守恒。 设物块A沿斜面下滑S距离时的速度为v,则有:
4mgs•sinθ-mgs
( 势能的减少量
1 (4m+m)v2 =2 = 动能的增加量 )
细线突然断的瞬间,物块B垂直上升的初速度为v, 此后B作竖直上抛运动。设继续上升的高度为h, 由机 械能守恒得
巩固练习
一根细绳绕过光滑的定滑轮,两端分别系住质 量为M和m的长方形物块,且M>m,开始时用手握 住M,使系统处于如图示状态。求(1)当M由静 止释放下落h高时的速度(h远小于半绳长,绳与 滑轮的质量不计)。(2)如果M下降h 刚好触地, 那么m上于M、 m构成的系统,只有 重力做功,由机械能守恒有:
(mA+mB ) v + mAg(H−h)= 2 mAgh = mB =
所以:
1 2 1 2

mA v
2 5
2
vh
mA
H
h =
练习题:
2、如图7-7-30所示,将一根长L=0.4 m 的金属链条拉直放在倾角θ=30°的光滑斜面上, 链条下端与斜面下边缘相齐,由静止释放后,当 链条刚好全部脱离斜面时,其速度大小为 __m/s. (g取10 m/s2)
mgh =
1 2
mv2
物块B上升的最大高度: H=h+S
三式连立解得 H=1.2S
例3、长为L质量分布均匀的绳子,对称地悬挂在 轻小的定滑轮上,如图所示.轻轻地推动一下,让绳 子滑下,那么当绳子离开滑轮的瞬间,绳子的速度 为 . 解:由机械能守恒定律得:取初 态时绳子最下端为零势能参考面:
(绳子初态的机械能=绳子末态时的机械能)
练习题:
3、如图光滑圆柱被固定在水平平台上,质量为m1的小 球甲用轻绳跨过圆柱与质量为m2的小球乙相连,开始 时让小球甲放在平台上,两边绳竖直,两球均从静止开 始运动,当甲上升到圆柱最高点时绳子突然断了,发现 甲球恰能做平抛运动,求甲、乙两球的质量关系
m1 m2
Mgh−mgh = 1 (M+m)v2 2
解得:
v=
1 2

2(M−m)gh M+m
(2)M触地,m做竖直上抛运动,机械能守恒:
mv2 = mgh´
∴ m上升的总高度: H = h+h´ = 2Mh M+m

例2.如图所示,一固定的三角形木块,其斜面 的倾角θ=30°,另一边与地面垂直,顶上有一 定滑轮。一柔软的细线跨过定滑轮,两端分别与 物块A和B连接,A的质量为4m,B的质量为m。 开始时将B按在地面上不动,然后放开手,让A 沿斜面下滑而B上升。物块A与斜面间无摩擦。 设当A沿斜面下滑S距离后,细线突然断了。求 物块B上升的最大高度H。
二、如何选取物理过程
选取物理过程必须遵循两个基本原则,一 要符合求解要求,二要尽量使求解过程简化。 有时可选全过程,而有时则必须将全过程 分解成几个阶段,然后再分别应用机械能守恒 定律求解
在用机械能守恒定律解连接体问题时,一 定要注意下面几个问题:
三、机械能守恒定律的常用的表达形式:
1、E1=E2 ( E1、E2表示系统的初、末态时的机械能)
相关文档
最新文档