《整式的加减》单元测试卷

合集下载

七年级数学上册《第二章整式的加减》单元测试卷-含答案(人教版)

七年级数学上册《第二章整式的加减》单元测试卷-含答案(人教版)

七年级数学上册《第二章整式的加减》单元测试卷-含答案(人教版)一、单选题1.单项式32πx yz -的系数和次数分别是( )A .-2,6B . -2π,5C .-2,7D .-2π ,62.多项式233321x y x y --是( )A .二次三项式B .三次二项式C .四次三项式D .五次三项式3.下列语句错误的是( )A .数字0也是单项式B .单项式a -的系数与次数都是1C .12xy 是二次单项式 D .25m n 与22nm -是同类项4.下列化简结果正确的是( )A .-4a-a=-3aB .6x 2-2x 2=4C .6x 2y-6yx 2=0D .3x 2+2x 2=5x 45.下列说法正确的是( )A .25xy 的系数是5-B .单项式a 的系数为1、次数是0C .2325a b 的次数是6D .1xy x +-是二次三项式6.若关于x ,y 的多项式()223x axy bx y +---不含二次项,则a b -的值为( )A .0B .-2C .2D .-17.关于多项式3x 2﹣y ﹣3xy 3+x 5﹣1,下列说法错误的是( )A .这个多项式是五次五项式B .常数项是﹣1C .四次项的系数是3D .按x 降幂排列为x 5+3x 2﹣3xy 3﹣y ﹣18.下列各组中的两项,属于同类项的是( )A .32x -与2x -B .12ab -与18baC .2x y 与2xy -D .4m 与4mn9.若一个多项式减去223a b -等于222a b +,则这个多项式是( )A .222a b -+B .222a b -C .222a b -D .222a b --二、填空题10.3227x y -的系数是 .11.若2m a b 与323n a b --是同类项,则m n +的值为 . 12.多项式233223xy x x y -+-的次数为 .13.一个多项式与2210x x --+的和是32x -,则这个多项式为 .三、解答题14.已知关于x 的多项式32322325mx x x x x nx -+-+-不含三次项和一次项,求n m 的值. 15.先化简,再求值:223252372x x x x ⎡⎤⎛⎫----⎪⎢⎥⎝⎭⎣⎦,其中2x =-. 四、综合题16.在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,并且a 是多项式﹣2x 2﹣4x+1的一次项系数,b 是数轴上最小的正整数,单项式-12x 2y 4的次数为c. (1)a = ,b = ,c = . (2)请你画出数轴,并把点A ,B ,C 表示在数轴上; (3)请你通过计算说明线段AB 与AC 之间的数量关系.17.已知整式 ()()3123a x x a ---+ .(1)若它是关于 x 的一次式,求 a 的值并写出常数项; (2)若它是关于 x 的三次二项式,求 a 的值并写出最高次项.18.计算:一个整式A 与多项式x2-x-1的和是多项式-2x2-3x+4.(1)请你求出整式A ; (2)当x=2时求整式A 的值19.已知多项式-3x m+1y 3+x 3y-3x 4-1是五次四项式,单项式3x 3n y 2的次数与这个多项式的次数相同.(1)求m ,n 的值.(2)把这个多项式按x 降幂排列.参考答案与解析1.【答案】B【解析】【解答】解:单项式32πx yz -的数字因数是2π-,所有字母的指数的和为3115++=所以该单项式的系数和次数分别是:2π-和5. 故答案为:B .【分析】根据单项式的系数和次数的定义逐项判断即可。

【数学测试6套】新人教版初中数学七年级上册第2章《整式加减》单元测试卷(答案).doc

【数学测试6套】新人教版初中数学七年级上册第2章《整式加减》单元测试卷(答案).doc

人教版初中数学七年级上册第二章《整式的加减》单元测试一、选一选,看完四个选项再做决定! 1.下列各式:1+-x ,3+π,29>,y x y x +-,ab S 21=,其中代数式的个数是( ) A. 5B. 4C. 3D. 22. 以下代数式书写规范的是( )A. 2)(÷+b aB.y 56C. x 311D. y x +厘米3. 在下列各组的两个式子中,是同类项的是( )A. abc ab 32与B.222121mn n m 与 C. 0与21- D. 3与c4. 下列合并同类项中,正确的是( )A. xy y x 633=+B. 332532a a a =+C. 033=-nm mnD. 257=-x x5. 下列各式,正确的是( )A. 6)6(--=--x xB. )(b a b a +-=+-C. )6(530x x -=-D. 243)8(3-=-x x6. 图1的面积用代数式表示是( )A. bc ab +B. )((c a d d b c -+-C. )(d b c ad -+D. cd ab -7. 已知222653z y x A ++=,222822z y x B --=,222352y x z C --=,则C B A ++的值为( )A. 0B. 2xC. 2yD. 2z8. 当x =2时,下列代数式中与代数式12+x 的值相等的是( )A. 21x -B. 13+xC. 23x x -D. 12+x9. 已知做某件工作,每个人的工效相同,m 个人做n 天可完成,如果增加a 人,则完成工作所需天数为( ) A.am mn+B. a n -C. a nn +D. a n +10.按下面图2所示的程序计算,若开始输入的数为x =3,则最后输出的结果是( )abcd图1图2A. 6B. 21C. 156D. 231二、填一填,要相信自己的能力!11.今年小明m 岁,去年小明__________岁,8年后小明__________岁.12.一个长方形的宽为a cm ,长比宽的2倍少1cm ,这个长方形的长是______cm . 13.代数式x y y x -+-2312是________________________三项的和,它们的系数分别是__________________.14. 合并同类项:a a 83-=__________,a a a ---=___________.15.设x 表示一个数,用代数式表示“比这个数的平方小3的数”是_________. 16.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为________________.17.53是一两位数,个位数字是3,十位数字是5,可将53写成5×10+3. 如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的代数式表示这个两位数是______________. 18. 化简:)]2([b a ---=___________. 19. 观察下列各式:121312⨯+=⨯ 222422⨯+=⨯ 323532⨯+=⨯ ……请你将猜想到的规律用自然数n (n ≥1)表示出来__________________. 20.用黑白两种颜色的正六边形地面砖按如图3所示的规律,拼成若干个图案:第1个 第2个 第3个(1)第4个图案中有白色地面砖 块; (2)第n 个图案中有白色地面砖 块. 三、做一做,要注意认真审题! 21.计算:(每小题4分,共12分)(1) 233323)3()2(2a a a a a +-+-++(2) 2222224)()3(8)4(5b a b a ab ab b a ab +-+--+-+(3) )58()37(z y z y ---(4) )6(4)2(322-++--xy x xy x22.(8分)一个多项式减去6142-+x x ,小明错误的当成了加法计算,从而得到结果是322+-x x ,请问正确的结果是多少?23.(9分)某市出租车收费标准是:起步价10元,3千米后每千米2元,某乘客乘坐了x人教版七年级上册第2章《整式的加减》单元检测卷一、选择题1.下列说法正确的是( )A .3不是单项式B .x 3y 2没有系数C .-18是一次一项式 D .-14xy 3是单项式2.下列说法错误的是( ) A .x 是单项式 B .3x 4是四次单项式 C .的系数是D .x 3﹣xy 2+2y 3是三次多项式3.下列选项中的单项式,与 2xy 是同类项的是( )A. 2x 2y 2B. 2xC. xyD. 2y 4.下列各式计算结果正确的是( )A. a+a=a 2B. (a ﹣1)2=a 2﹣1C. a•a=a 2D. (3a )3=9a 2 5.-(a 2-b 3+c 4)去括号后为( )A .-a 2-b 3+c 4B .-a 2+b 3+c 4C .-a 2-b 3-c 4D .-a 2+b 3-c 46.若﹣3x 2m y 3与2x 4y n 的和是一个单项式,则|m ﹣n |的值是( ) A .0B .1C .7D .﹣17.下列说法中,正确的是()A. 2不是单项式B. ﹣ab2的系数是﹣1,次数是3C. 6πx3的系数是6D. ﹣2x2y/3的系数是﹣28.一个多项式加上3x2y-3xy2得x3-3x2y,则这个多项式是()A. x3+3xy2B. x3-3xy2C. x3-6x2y+3xy2D. x3-6x2y-3x2y9.下列各项中,去括号正确的是()A.x2-2(2x-y+2)=x2-4x-2y+4B.-3(m+n)-mn=-3m+3n-mnC.-(5x-3y)+4(2xy-y2)=-5x+3y+8xy-4y2D.ab-5(-a+3)=ab+5a-310.将2(x+y)+3(x+y)﹣4(x+y)合并同类项,得()A.x+y B.﹣x+y C.﹣x﹣y D.x﹣y11.关于多项式﹣3x2y3﹣2x3y2﹣y/2 ﹣3,下列说法正确的是()A. 它是三次四项式B. 它是关于字母y的降幂排列C. 它的一次项是y/2D. 3x2y3与﹣2x3y2是同类项12.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A. 393B. 397C. 401D. 405二、填空题13.用代数式表示“a的平方的6倍与3的差”为__________.14.“x2的3倍与y的倒数的和”,用代数式表示为.15.去括号:-[a-(b-c)]=________.16.观察下列各式:x+1,x2+4,x3+9,x4+16,x5+25,…按此规律写出第n个式子是________ 17.设A,B,C表示整式,且A-B=3x2-2x+1,B-C=4-2x2,则C-A=__________.18.观察下列等式:(1+2)2-4×1=12+4,(2+2)2-4×2=22+4,(3+2)2-4×3=32+4,(4+2)2-4×4=42+4,…,则第n个等式是________.三、解答题19.化简:(1)2x-5y-3x+y(2)20.先化简再求值(1)-(9x3-4x2+5)-(-3-8x3+3x2),其中x=-2;(2)5xy﹣[x2+4xy﹣y2﹣(x2+2xy﹣2y2)]其中,.21.已知多项式2x2+my-12与多项式nx2-3y+6的差中不含有x,y,求m+n+mn的值.22.已知A=x2﹣2xy,B=y2+3xy.(1)求2A﹣3B?(2)若A﹣B+C=0,试求C?(3)若x=﹣2,y=﹣3时,求2A﹣B+C的值?23.观察下列算式:①1×3﹣22=﹣1②2×4﹣32=﹣1③3×5﹣42=﹣1(1)请你安照以上规律写出第四个算式:________;(2)这个规律用含n(n为正整数,n≥1)的等式表达为:________;(3)你认为(2)中所写的等式一定成立吗?说明理由.24.某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?25.小明做一道数学题:“已知两个多项式A,B,A=……,B=x2+3x-2,计算2A+B的值.”小明误把“2A+B”看成“A+2B”,求得的结果为5x2-2x+3,请求出2A+B的正确结果.答案一、1.D.2 C.3. C. 4.C. 5.D.6 B.7. B 8. C9.C10. A.11. B 12. B二、13.6a2-3.14.33x2+.15.-a+b-c 16.x n+n217.-x2+2x-518.(n+2)2-4n=n2+4三、19.(1)解:2x-5y-3x+y =(2-3)x+(-5+1)y=-x-4y(2)解:2(a+2b)-3(a-3b) =2a+4b-3a+9b=(2-3)a+(4+9)b=-a+13b20. (1)解:原式= = .当时,原式=. -6(2)解:原式=3xy-y2 ,当x=-2, y=-3时,原式=9 .21.解:由题意得(2x2+my-12)-(nx2-3y+6)=(2-n)x2+(m+3)y-18,因为差中不含有x,y,所以2-n=0,m+3=0,所以n=2,m=-3,故m+n+mn=-3+2+(-3)×2=-7.22.(1)∵A=x2﹣2xy,B=y2+3xy,∴2A﹣3B=2(x2﹣2xy)﹣3(y2+3xy)=2x2﹣4xy﹣3y2﹣9xy=2x2﹣13xy﹣3y2;(2)∵A﹣B+C=0,∴C=B﹣A=(y2+3xy)﹣(x2﹣2xy)=y2+3xy﹣x2+2xy=y2+5xy﹣x2;(3)∵A=x2﹣2xy,B=y2+3xy,C=y2+5xy﹣x2,∴2A﹣B+C=2(x2﹣2xy)﹣(y2+3xy)+(y2+5xy﹣x2)=2x2﹣4xy﹣y2﹣3xy+y2+5xy﹣x2=x2﹣2xy,当x=﹣2,y=﹣3,原式=4﹣2×6=﹣8.23.(1)④4×6﹣52=﹣1(2)(2n ﹣1)(2n+1)﹣(2n )2=﹣1(3)解:左边=(2n ﹣1)(2n+1)﹣(2n )2=4n 2﹣1﹣4n 2=﹣1 所以(2)中所写的等式一定成立 24..(1)m +2(n ﹣1).(2)①当m =20,n =25时,m +2(n ﹣1)=20+2×(25﹣1)=68(个); ②m +m +2+m +2×2+…+m +2×(25﹣1)=25m +600.当m =20时,25m +600=25×20+600=1 100(人).解:(1)第一排有m 个座位,后边的每一排比前一排多两个座位,第n 排有m +2(n ﹣1)=2n +m ﹣2(个);(2)当m =20时,25排:2×25+20﹣2=68(个);(3)25排最多可以容纳:(20+68)×25÷2=88×25÷2=1100(位) 25.解:由题意得,A =5x 2-2x +3-2(x 2+3x -2)=5x 2-2x +3-2x 2-6x +4=3x 2-8x +7. 所以2A +B =2(3x 2-8x +7)+(x 2+3x -2)=6x 2-16x +人教版初中数学七年级上册第2章《整式的加减》单元同步检测试题一、选择题(每小题3分,共18分) 1. 在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个C .7个D .8个 2.计算3a 3+a 3,结果正确的是( ) A .3a 6B .3a 3C .4a 6D .4a 33.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( ) A . 6 B . -6 C . 12 D . -124.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( ) A .-2 B .25. 若x =1时,ax 3+bx +7式子的值为2033,则当x =﹣1时,式子ax 3+bx +7的值为( ) A .2018 B .2019 C .﹣2019 D .﹣20186. 据市统计局发布:2018年我市有效发明专利数比2017年增长12.5%.假定2019年的年增长率保持不变,2017年和2019年我市有效发明专利分别为a 万件和b 万件,则( ) A .b =(1+12.5%×2)a B .b =(1+12.5%)2a C .b =(1+12.5%)×2 a D .b =12.5%×2 a二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________.10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2019的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和三、(13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1. 16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n +2-5x 2-n +6是关于x 的三次多项式,求代数式n 3-2n +3的值. 19.已知A =2x 2+xy +3y -1,B =x 2-xy . (1)若(x +2)2+|y -3|=0,求A -2B 的值;(2)若A -2B 的值与y 的取值无关,求x 的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a 元,学生每人b 元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a 、b 的式子表示)?并计算当a =300,b =200时的旅游费用. 五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2,当a=1,b=2时,求A ﹣2B+3C 的值(先化简再求值).22.阅读材料:“如果代数式5a +3b 的值为-4,那么代数式2(a +b )+4(2a +b )的值是多少?”我们可以这样来解:原式=2a +2b +8a +4b =10a +6b .把式子5a +3b =-4两边同乘以2,得10a +6b =-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2019的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案:一、选择题1.B2.D3.D4.A5.C6.B二、填空题7.﹣238.111a+809.-810.111.2c-a-b解析:由图可知a<c<0<b,∴a-c<0,b-c>0,∴原式=c-a-(b -c)=c-a-b+c=2c-a-b.故答案为2c-a-b.12.-4解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a+b=a+b+c,解得c=-4,a+b+c=b+c+6,解得a=6,∴数据从左到右依次为-4、6、b、-4、6、b、-4、6、-2.由题意易得第9个数与第6个数相同,即b=-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4.三、解答题13.解:解:(1)原式=4a;(3分)(2)原式=3a﹣2﹣3a+15=13;(6分)14.解:2(x-3y)-(2y-x)=2x-6y-2y+x=3x-8y.(6分)15.解:原式=-9y+6x2+3y-2x2=4x2-6y.(3分)当x=2,y=-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A ,∴A =2(a 2b +ab 2)+(a 2b -2ab 2)-ab 2=3a 2b -ab 2,(5分)∴捂住的多项式为3a 2b -ab 2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy +3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2,∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52. 22.解:(1)∵a 2+a =0,∴a 2+a +2019=0+2019=2019.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分)(3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(人教版七年级上册数学第二章整式加减单元检测卷一、选择题:(每小题3分共30分)1.单项式 的系数和次数分别是( ) A.B.C.D.2.下列语句中错误的是( )A .单项式﹣a 的系数与次数都是1B .12xy 是二次单项式 C .﹣23ab 的系数是﹣23D .数字0也是单项式 3.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元D. 万元4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3B .6C .﹣3D .05.下列运算结果正确的是( ) A .33(2)6x x =B .33x x x ÷=C .325x x x ? D .23x x x +=6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.87.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .69.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( ) A.P +Q 是关于x 的八次多项式 B.P -Q 是关于x 的二次多项式 C.P +Q 是关于x 的五次多项式D.P Q 是关于x 的十五次多项式10.为庆祝六一儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图:按照上面的规律,摆 个“金鱼”需用火柴棒的根数为( ) A. 根B. 根C. 根D. 根二、填空题:(每小题3分共18分)11.3个连续奇数中,n 为最大的奇数,则这3个数的和为_________.12.单项式235πx y -的系数是____________13.已知a-b=-10,c+d=3,则(a+d )-(b-c )=______.14.已知一个多项式与3x 2+9x +2的和等于3x 2+4x -3,则此多项式是______. 15.已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+b a =102×b a符合前面式子的规律,则a+b=_____.16.如图,是用火柴棒摆出的一系列三角形图案,按这种方式摆下去,当每边上摆n 根火柴棒时,共需要摆__________根火柴棒.三、解答题:(共72分)17.先化简,再求值:22225(3)2(7)a b ab a b ab ---,其中1a =-,1b =.18.已知, , ,求 ,并确定当 时, 的值.19.探索规律:用棋子按如图所示的方式摆正方形.① ② ③……(1)按图示规律填写下表:(2)按照这种方式摆下去,摆第20个正方形需要多少个棋子? (3)按照这种方式摆下去,摆第n 个正方形需要多少个棋子?20.已知m 是最大的负整数,且212m y a b ++-与33x a b 是同类项,求代数式222223639x xy y mx mxy my -+-+-的值.21.化简或计算:( ) ; ( ) . ( ) ; ( ).22.(1)化简 :()()222252423-+-+-a b ab c c a b ab;(2)先化简,再求值:2212322232a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭;其中 a = -2 ,b = 3223.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示)24.、两仓库分别有水泥吨和吨,、两工地分别需要水泥吨和吨.已知从、仓库到、工地的运价如下表:(1)若从仓库运到工地的水泥为吨,则用含的代数式表示从仓库运到工地的水泥为_____吨,从仓库将水泥运到工地的运输费用为______元;(2)求把全部水泥从、两仓库运到、两工地的总运输费(用含的代数式表示并化简);(3)如果从仓库运到工地的水泥为吨时,那么总运输费为多少元?第二章整式的加减一、选择题:(每小题3分共30分)1.单项式的系数和次数分别是()A. B. C. D.【答案】C解:单项式 的系数是 ,次数=2+1+3=6. 故选:C .2.下列语句中错误的是( )A .单项式﹣a 的系数与次数都是1B .12xy 是二次单项式 C .﹣23ab 的系数是﹣23D .数字0也是单项式 【答案】A解A 、单项式﹣a 的系数是﹣1,次数是1,故此选项错误,符合题意;B 、12xy 是二次单项式,正确,不合题意; C 、﹣23ab 系数是﹣23,正确,不合题意;D 、数字0也是单项式,正确,不合题意; 故选:A .3.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元 D. 万元【答案】C解:由题意得3月份的产值为 万元,4月份的产值为 万元. 故选:C . 4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3 B .6C .﹣3D .0【答案】D解由题意可得,2x ﹣1=5,3y =9,解得x =3,y =3,所以x ﹣y =3﹣3=0,故选:D . 5.下列运算结果正确的是( ) A .33(2)6x x = B .33x x x ÷=C .325x x x ? D .23x x x +=【答案】C解:A 、33(2)8x x =,故该选项计算错误;B 、331x x ÷=,故该选项计算错误;C 、325x x x ?,故该选项计算正确;D 、x 和x 2不是同类项,不能合并,故该选项计算错误; 故选:C .6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8【答案】C解∵两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b), ∴b−a=b+空白面积−(a+空白面积)=大正六边形−小正六边形=16−9=7. 故选:C.7.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c【答案】C解根据数轴得: 0c b a <<<,且a b c <<,0a b ∴->,0c a -<,b+c 0<,则原式=a-b+a-c+b+c+c-a=a+c , 所以C 选项是正确的.8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .6【答案】B解原式22262351x ax y bx x y =+-+-+++,()()222a+347x b x y =-+++,代数式的值与x 的取值无关 ,()()22=0a+3=0b ∴-,, b=1a=-3∴, ,当b=1,a=-3时 , a+2b=-3+2=-1, 所以B 选项是正确的.9.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( ) A.P +Q 是关于x 的八次多项式 B.P -Q 是关于x 的二次多项式 C.P +Q 是关于x 的五次多项式 D.P Q 是关于x 的十五次多项式【答案】C解A. 两式相加只能为5次多项式,故本选项错误; B 、P−Q人教版七年级上册数学第二章整式加减单元检测卷一、选择题:(每小题3分共30分)1.单项式 的系数和次数分别是( ) A.B.C.D.2.下列语句中错误的是( )A .单项式﹣a 的系数与次数都是1B .12xy 是二次单项式 C .﹣23ab 的系数是﹣23D .数字0也是单项式 3.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元 D. 万元4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3B .6C .﹣3D .05.下列运算结果正确的是( ) A .33(2)6x x =B .33x x x ÷=C .325x x x ? D .23x x x +=6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.87.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .69.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( ) A.P +Q 是关于x 的八次多项式 B.P -Q 是关于x 的二次多项式 C.P +Q 是关于x 的五次多项式D.P Q 是关于x 的十五次多项式10.为庆祝六一儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图:按照上面的规律,摆 个“金鱼”需用火柴棒的根数为( ) A. 根B. 根C. 根D. 根二、填空题:(每小题3分共18分)11.3个连续奇数中,n 为最大的奇数,则这3个数的和为_________.12.单项式235πx y -的系数是____________13.已知a-b=-10,c+d=3,则(a+d )-(b-c )=______.14.已知一个多项式与3x 2+9x +2的和等于3x 2+4x -3,则此多项式是______. 15.已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+b a =102×b a符合前面式子的规律,则a+b=_____.16.如图,是用火柴棒摆出的一系列三角形图案,按这种方式摆下去,当每边上摆n 根火柴棒时,共需要摆__________根火柴棒.三、解答题:(共72分)17.先化简,再求值:22225(3)2(7)a b ab a b ab ---,其中1a =-,1b =.18.已知, , ,求 ,并确定当 时, 的值.19.探索规律:用棋子按如图所示的方式摆正方形.① ② ③……(1)按图示规律填写下表:(2)按照这种方式摆下去,摆第20个正方形需要多少个棋子? (3)按照这种方式摆下去,摆第n 个正方形需要多少个棋子?20.已知m 是最大的负整数,且212m y a b ++-与33x a b 是同类项,求代数式222223639x xy y mx mxy my -+-+-的值.21.化简或计算:( ) ; ( ) . ( ) ; ( ).22.(1)化简 :()()222252423-+-+-a b ab c c a b ab;(2)先化简,再求值:2212322232a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭;其中 a = -2 ,b = 3223.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示)24.、两仓库分别有水泥吨和吨,、两工地分别需要水泥吨和吨.已知从、仓库到、工地的运价如下表:(1)若从仓库运到工地的水泥为吨,则用含的代数式表示从仓库运到工地的水泥为_____吨,从仓库将水泥运到工地的运输费用为______元;(2)求把全部水泥从、两仓库运到、两工地的总运输费(用含的代数式表示并化简);(3)如果从仓库运到工地的水泥为吨时,那么总运输费为多少元?第二章整式的加减一、选择题:(每小题3分共30分)1.单项式的系数和次数分别是()A. B. C. D.【答案】C解:单项式的系数是,次数=2+1+3=6.故选:C.2.下列语句中错误的是( )A .单项式﹣a 的系数与次数都是1B .12xy 是二次单项式 C .﹣23ab 的系数是﹣23D .数字0也是单项式 【答案】A解A 、单项式﹣a 的系数是﹣1,次数是1,故此选项错误,符合题意;B 、12xy 是二次单项式,正确,不合题意; C 、﹣23ab 系数是﹣23,正确,不合题意;D 、数字0也是单项式,正确,不合题意; 故选:A .3.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元 D. 万元【答案】C解:由题意得3月份的产值为 万元,4月份的产值为 万元. 故选:C . 4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3 B .6C .﹣3D .0【答案】D解由题意可得,2x ﹣1=5,3y =9,解得x =3,y =3,所以x ﹣y =3﹣3=0,故选:D . 5.下列运算结果正确的是( ) A .33(2)6x x = B .33x x x ÷= C .325x x x ? D .23x x x +=【答案】C解:A 、33(2)8x x =,故该选项计算错误;B 、331x x ÷=,故该选项计算错误;C 、325x x x ?,故该选项计算正确;D 、x 和x 2不是同类项,不能合并,故该选项计算错误;故选:C .6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8【答案】C解∵两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b), ∴b−a=b+空白面积−(a+空白面积)=大正六边形−小正六边形=16−9=7. 故选:C.7.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c【答案】C解根据数轴得: 0c b a <<<,且a b c <<,0a b ∴->,0c a -<,b+c 0<,则原式=a-b+a-c+b+c+c-a=a+c , 所以C 选项是正确的.8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0 B .1- C .2或2-D .6【答案】B解原式22262351x ax y bx x y =+-+-+++,()()222a+347x b x y =-+++,代数式的值与x 的取值无关 ,()()22=0a+3=0b ∴-,, b=1a=-3∴, ,当b=1,a=-3时 , a+2b=-3+2=-1, 所以B 选项是正确的.9.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( ) A.P +Q 是关于x 的八次多项式 B.P -Q 是关于x 的二次多项式 C.P +Q 是关于x 的五次多项式 D.P Q 是关于x 的十五次多项式【答案】C解A. 两式相加只能为5次多项式,故本选项错误; B 、P−Q人教版数学七年级上册第2章《整式的加减》单元检测试题及答案一、选择题(每小题3分,共18分) 1.计算3a 3+a 3,结果正确的是( )A .3a 6B .3a 3C .4a 6D .4a 32.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( ) A . 6 B . -6 C . 12 D . -123.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( )A .-2B .2 4.下列运算正确的是( )A .-2(3x-1)=-6x-1B .-2(3x-1)=-6x+1C .-2(3x-1)=-6x+2D .-2(3x-1)=-6x-2 5.化简a+a 的结果为( )A .2B .a 2C .2a 2D .2a 6.在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个 C .7个D .8个二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________.10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2016的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是_________.三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1.16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n+2-5x2-n+6是关于x的三次多项式,求代数式n3-2n+3的值.19.已知A=2x2+xy+3y-1,B=x2-xy.(1)若(x+2)2+|y-3|=0,求A-2B的值;(2)若A-2B的值与y的取值无关,求x的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a、b 的式子表示)?并计算当a=300,b=200时的旅游费用.五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值(先化简再求值).22.阅读材料:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘以2,得10a+6b=-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2017的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案:一、选择题1.D2.D3.A4.C5.D6.B二、填空题7.﹣2 3 8.111a +80 9.-8 10.111.2c -a -b 解析:由图可知a <c <0<b ,∴a -c <0,b -c >0,∴原式=c -a -(b -c )=c -a -b +c =2c -a -b .故答案为2c -a -b .12.-4 解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a +b =a +b +c ,解得c =-4,a +b +c =b +c +6,解得a =6,∴数据从左到右依次为-4、6、b 、-4、6、b 、-4、6、-2.由题意易得第9个数与第6个数相同,即b =-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4. 三、解答题 13.解:解:(1)原式=4a ;(3分)(2)原式=3a ﹣2﹣3a+15=13;(6分)14.解:2(x -3y )-(2y -x )=2x -6y -2y +x =3x -8y .(6分) 15.解:原式=-9y +6x 2+3y -2x 2=4x 2-6y .(3分)当x =2,y =-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A ,∴A =2(a 2b +ab 2)+(a 2b -2ab 2)-ab 2=3a 2b -ab 2,(5分)∴捂住的多项式为3a 2b -ab 2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy +3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2,∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52. 22.解:(1)∵a 2+a =0,∴a 2+a +2017=0+2017=2017.(3分)(2)∵a-b=-3,∴3(a-b)-a+b+5=3×(-3)-(-3)+5=-1.(6分)(3)∵a2+2ab=-2,ab-b2=-4,∴2a2+5ab-b2=2a2+4ab+ab-b2=2×(-2)+(-4)=-8.(9分)。

人教版七年级数学上册《第二章整式的加减》单元测试卷(附答案)

人教版七年级数学上册《第二章整式的加减》单元测试卷(附答案)

人教版七年级数学上册《第二章整式的加减》单元测试卷(附答案)一、单选题(每题3分,共24分) 1.下列代数式书写规范的是( )A .22x yB .2m n ÷C . 5a ⨯D .213a 2.多项式22325xy xy -+的次数及最高次项的系数分别是( )A .3,-3B .2,-3C .5,-3D .3,33.若单项式242ab c -3的系数、次数分别是m 、n ,则( ) A .m=23,n=6 B .-m=23,n=6 C .m=23,n=7 D .-m=23,n=7 4.下列说法中,不正确...的是( ) A .13xy - 是整式 B .22+R R ππ是二次二项式C .多项式233a b ab --的三次项的系数为3- D .263+1x x -的项有 26 3 1x x -,, 5.若2110x +=,则42x +=( )A .19B .20C .21D .226.已知25x y -+=,则23(2)6125x y x y --+-的值是( )A .40B .100C .20-D .57.若12m x y -与2n x y 的和仍是单项式,则m n 的值( )A .3B .6C .8D .98.当1x =时,代数式334ax bx -+的值为7,则当=1x -时,这个式子的值为( )A .7B .6C .2D .1二、填空题(每题3分,共24分) 9.单项式235x yz π-的系数是 10.已知320a b -++=,则2+a b = .11.一个两位数的个位数字为m ,十位数字为n ,则这两位数表示为 .12.多项式25323ab a π+-的次数是 .三、解答题(共72分)17.化简:(1)3245a a +--;(2)()()22235x x +--;(3)()()22643241m m m m --+-+.18.先化简,再求值:()()22222825a b ab a b ab a b -+----,其中1a =-和13b =.19.有理数a ,b ,c 在数轴上的位置如图,化简a c a b c b -++--.20.若关于,x y 的多项式:2223332m m m m x y mx y nx y x y m n ----++-++,化简后是四次三项式,求m n +的值.21.如果关于x ,y 的单项式2m ax y 与235m bx y -的次数相同.(1)求m 的值.(2)若23250m m ax y bx y +=﹣且0xy ≠,求20132(25)m a b ++的值.22.已知22321A a ab a =+--和21B a ab =-+-.(1)若1a =-,15b =求()432A A B --的值. (2)若2A B +的值与a 的取值无关,求b 的值.23.如图,某公园有一块长为()21a -米,宽为a 米的长方形土地(一边靠着墙),现将三面留出宽都是x 米的小路,余下部分设计成花圃进行美化,并用篱笆把不靠墙的三边围起来.(1)用代数式表示所用篱笆的总长度;(2)6,3a x ==米,若篱笆的造价为60元/米,请计算全部篱笆的造价.24.如图是一所住宅的建筑平面图(图中长度单位:米).(1)用式子表示这所住宅的建筑面积.x 时,试计算该住宅的面积.(2)当6参考答案: 1.A2.A3.D4.C5.B6.B7.C8.D9.35π-10.1-11.10n m +/10m n + 12.3/三13.23x - -114.202315.()21826m y x ++ 16.1017.(1)3a --(2)231x +(3)2882m m --18.218ab -,2 19.2a -20.421.(1)3m =(2)022.(1)2-(2)25b =23.(1)()662a x --米;(2)篱全部篱笆的造价是960元24.(1)()22218m x x ++(2)266m。

人教版七年级上册第2章《整式的加减》单元测试卷(含答案)

人教版七年级上册第2章《整式的加减》单元测试卷(含答案)

人教版七年级上册第2章《整式的加减》单元测试卷满分100分姓名:___________班级:___________学号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.下列整式中,单项式是()A.3a+1B.C.3a D.x=12.代数式1﹣的意义是()A.1与x的差的倒数B.1与x的倒数的差C.x的倒数与1的差D.1与1除以x的商3.下列说法正确的是()A.整式就是多项式B.π是单项式C.x4+2x3是七次二项次D.是单项式4.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y25.下列运算正确的是()A.4m﹣m=3B.a3﹣a2=a C.2xy﹣yx=xy D.a2b﹣ab2=06.去括号1﹣(a﹣b)=()A.1﹣a+b B.1+a﹣b C.1﹣a﹣b D.1+a+b7.以下各组多项式按字母a降幂排列的是()A.3a﹣7a2+2﹣a3B.﹣7a2+3a+2﹣a3C.﹣a3+3a+2﹣7a2D.﹣a3﹣7a2+3a+28.李老师用长为6a的铁丝做了一个长方形教具,其中一边长为b﹣a,则另一边的长为()A.7a﹣b B.2a﹣b C.4a﹣b D.8a﹣2b9.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定10.已知a﹣b=3,c+d=2,则(a﹣d)﹣2(b﹣c)+(b+3d)的值为()A.7B.5C.1D.﹣5二.填空题(共6小题,满分24分,每小题4分)11.单项式的系数是m,多项式a2b+2ab﹣3的次数是n,则m+n=.12.若3x n y3和﹣x2y m是同类项,则n﹣m=.13.去括号7x3﹣[3x2﹣(x+1)]=.14.“直播带货”是今年的热词.某“爱心助农”直播间推出特产甜瓜,定价8元/千克,并规定直播期间一次下单超过5千克时,可享受九折优惠.李叔叔在直播期间购买此种甜瓜m千克(m>5),则他共需支付元.(用含m的代数式表示)15.若x2+3x=2,则代数式2x2+6x﹣4的值为.16.若多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,则m=.三.解答题(共7小题,满分46分)17.(6分)把下列各代数式填在相应的大括号里.(只需填序号)(1)x﹣7,(2),(3)4ab,(4),(5)5﹣,(6)y,(7),(8)x+,(9),(10)x2++1,(11),(12)8a3x,(13)﹣1单项式集合{};多项式集合{};整式集合{}.18.(6分)合并同类项(1)3a+2a﹣7a (2)﹣4x2y+8xy2﹣9x2y﹣21xy2.19.(6分)如果关于x的多项式x4﹣(a﹣1)x3+5x2﹣(b+1)x﹣1不含x3项和x项,求a,b的值.20.(6分)先化简,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.21.(7分)学完了《整式的加减》后,小刚与小强玩起了数字游戏:小刚对小强说:你任意写一个两位数,满足十位数字比个位数字大2;然后交换十位数字与个位数字,得到一个新的两位数;最后用其中较大的两位数减去较小的两位数.我就能知道这个差是多少.你知道这是为什么吗?这个差是多少呢?22.(7分)已知A=a2﹣2b2+2ab﹣3,B=2a2﹣b2﹣ab﹣(1)求2(A+B)﹣3(2A﹣B)的值(结果用化简后的a、b的式子表示);(2)当a=﹣,b=0时,求(1)中式子的值.23.(8分)某国际化学校实行小班制教学,七年级四个班共有学生(6m﹣3n)人,一班有学生m人,二班人数比一班人数的两倍少n人,三班人数比二班人数的一半多12人.(1)求三班的学生人数(用含m,n的式子表示);(2)求四班的学生人数(用含m,n的式子表示);(3)若四个班共有学生120人,求二班比三班多的学生人数?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、3a+1是多项式,故此选项不合题意;B、是分式,故此选项不合题意;C、3a是单项式,符合题意;D、x=1是方程,故此选项不合题意.故选:C.2.解:由代数式的定义得,代数式1﹣表示1与x的倒数的差,故B答案正确.故选:B.3.解:A、根据整式的概念可知,单项式和多项式统称为整式,故A错误;B、π是单项式,故B正确;C、x4+2x3是4次二项式,故C错误;D、是多项式,故D错误.故选:B.4.解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.5.解:(A)原式=3m,故A错误;(B)原式=a3﹣a2,故B错误;(D)原式=a2b﹣ab2,故D错误;故选:C.6.解:1﹣(a﹣b)=1﹣a+b,故选:A.7.解:多项式按字母a降幂排列的是﹣a3﹣7a2+3a+2.故选:D.8.解:另一边长=3a﹣(b﹣a)=3a﹣b+a=4a﹣b.故选:C.9.解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.10.解:原式=a﹣d﹣2b+2c+b+3d=(a﹣b)+2(c+d),当a﹣b=3,c+d=2时,原式=3+4=7,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵单项式的系数是m,∴m=﹣,∵多项式a2b+2ab﹣3的次数是n,∴n=3,则m+n=3﹣=.故答案为:.12.解:根据题意可得:n=2,m=3,∴n﹣m=2﹣3=﹣1.故答案为:﹣1.13.解:7x3﹣[3x2﹣(x+1)]=7x3﹣(3x2﹣x﹣1)=7x3﹣3x2+x+1.故答案为:7x3﹣3x2+x+1.14.解:由题意得:8×0.9m=7.2m,则他共需支付7.2m元.故答案为:7.2m.15.解:2x2+6x﹣4=2(x2+3x)﹣4把x2+3x=2代入上式,得原式=2×2﹣4=0故答案为016.解:3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值=3mx2﹣x2+4x﹣2+4x2﹣4x+5=(3m+3)x2+3,∵多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,∴3m+3=0,∴m=﹣1,故答案为:﹣1.三.解答题(共7小题,满分46分)17.解:单项式有:,4ab,y,8a3x,﹣1;多项式有:x﹣7,x+,,x2++1;整式有:x﹣7,,4ab,y,x+,,x2++1,8a3x,﹣1.故答案为:(2)(3)(6)(12)(13);(1)(8)(9)(10);(1)(2)(3)(6)(8)(9)(10)(12)(13).18.解:(1)原式=(3+2﹣7)a=﹣2a;(2)原式=(﹣4﹣9)x2y+(8﹣21)xy2=﹣13x2y﹣13xy2.19.解:根据题意得﹣(a﹣1)=0,﹣(b+1)=0,解得a=1,b=﹣1.20.解:原式=4xy﹣[x2+5xy﹣y2﹣2x2﹣6xy+y2]=4xy﹣[﹣x2﹣xy]=x2+5xy,当x=﹣1,y=2时,原式=x2+5xy=(﹣1)2+5×(﹣1)×2=﹣9.21.解:设原来的十位数,十位数字为x,则个位数字为:(x﹣2),故两位数是:10x+x﹣2=11x﹣2,交换十位数字与个位数字,得到的十位数是:10(x﹣2)+x=11x﹣20,故11x﹣2﹣(11x﹣20)=18,即较大的两位数减去较小的两位数的差为18.22.解:(1)2(A+B)﹣3(2A﹣B)=2A+2B﹣6A+3B=﹣4A+5B=﹣4(a2﹣2b2+2ab﹣3)+5(2a2﹣b2﹣ab﹣)=﹣4a2+8b2﹣8ab+12+10a2﹣5b2﹣2ab﹣1=6a2+3b2﹣10ab+11;(2)∵a=﹣,b=0,∴6a2+3b2﹣10ab+11=6×+11=12.23.解:(1)一班人数为:m人.二班人数为:(2m﹣n)人.三班人数为:人;(2)四班人数为:==;(3)由题意可得:6m﹣3n=120,则2m﹣n=40,故二班比三班多的学生数为:===20﹣12=8(人)答:二班比三班多8人.。

人教版数学七年级上册:第2章 整式的加减 单元测试卷(含答案)

人教版数学七年级上册:第2章 整式的加减  单元测试卷(含答案)

第二章《整式的加减》单元测试(满分:150分时间:120分钟) 一、选择题(每小题4分,共40分)1.下列各式中不是单项式的是( )A.a3B.-15C.0 D.3a2.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费( )A.(3a+4b)元 B.(4a+3b)元C.4(a+b)元 D.3(a+b)元3.-[a-(b-c)]去括号正确的是( )A.-a-b+c B.-a+b-cC.-a-b-c D.-a+b+c4.多项式xy2+xy+1是( )A.二次二项式 B.二次三项式C.三次二项式 D.三次三项式5.下列运算中,正确的是( )A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b-3ba2=0 D.5a2-4a2=16.若-x3y a与x b y是同类项,则a+b的值为( )A.2 B.3 C.4 D.57.若A=3x2-4y2,B=-y2-2x2+1,则A-B等于( )A.x2-5y2+1 B.x2-3y2+1C.5x2-3y2-1 D.5x2-3y2+18.已知x-3y=-3,则5-x+3y的值为( )A.0 B.2 C.5 D.89.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.此空格的地方被钢笔水弄污了,那么空格中的一项是( )A.-xy B.xy C.-7xy D.7xy10.如图,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个长方形,(不重复无缝隙),则长方形的长为( )A .2 cmB .2a cmC .4a cmD .(2a -2)cm二、填空题(每小题3分,共30分) 11.计算:2x +x =____________.12.单项式-2xy25的系数是____________,次数是____________.13.任写一个与-12a 2b 是同类项的单项式:____________.14.将多项式1-ab 2+a 3b -13a 2按字母a 降幂排列是________________.15.一个长方形的长为2a +3b ,宽为a +b ,则此长方形的周长为____________. 16.若式子mx 2+y 2-5x 2+5的值与字母x 的取值无关,则m 的值为____________. 17.某种商品原价是m 元,第一次降价打八折,第二次降价每件又减15元,第二次降价后每件的售价是____________元.18.一个多项式与2x 2-xy +3y 2的和是-2xy +x 2-y 2,则这个多项式是________________. 19.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________________.20.观察图形,则第n 个图形中三角形的个数为____________(用含n 的式子表示).三、(本大题12分) 21.(1)计算:①(3a 2+1)-(4a 3-3a 2); ②6a 2-[(5ab +a 2)+2ab];(2)先化简,再求值:2(x +x 2y)-23(6x 2y +3x)-y ,其中x =1,y =3.四、(本大题12分)22.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的12还多1岁,求这三名同学的年龄的和.五、(本大题14分)23.小明在计算一种多项式减去2a 2+a -5的差时,因忘了对两个多项式用括号括起来,因此减式后面的两项没有变号,结果得到的差是a 2+3a -1.据此你能求出这个多项A 式吗?这两个多项式的差应该是多少?六、(本大题14分)24.如图所示,将面积为a 2的小正方形和面积为b 2的大正方形放在同一水平面上(b >a >0).(1)用a ,b 表示阴影部分的面积;(2)计算当a =3,b =5时,阴影部分的面积.七、(本大题12分)25.阅读材料:我们知道,4x+2x-x=(4+2-1)x=5x,类似地,我们把(a+b)看成一个整体,则4(a +b)+2(a+b)-(a+b)=(4+2-1)(a+b)=5(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a-b)看成一个整体,合并3(a-b)2-7(a-b)2+2(a-b)2的结果是____________;A.-6(a-b)2 B.6(a-b)2C.-2(a-b)2 D.2(a-b)2(2)已知x2+2y=5,求3x2+6y-21的值;拓广探索:(3)已知a-2b=3,2b-c=-5,c-d=10,求(a-c)+(2b-d)-(2b-c)的值.八、(本大题16分)26.某校团委组织了有奖征文活动,并设立了一、二、三等奖,根据设奖情况买了50件奖品,其二等奖奖品的件数比一等奖奖品的件数的2倍少10,各种奖品的单价如下表所示:如果计划一等奖奖品买x件,买50件奖品的费用是y元.(1)先填表,再用含x的式子表示y,并化简;(2)若一等奖奖品买10件,则共花费多少?参考答案:11.3x 12. 52-3 13. a 2b(答案不唯一) 14.1ab -a 31-b a 223+ 15.6a+8b 16.517. (0.8m-15) 18. -x 2-xy-4y 219.-b+c+a 20.4n21.①原式=3a 2+1-4a 3+3a 2=-4a+6a 2+1.②原式=6a 2-5ab-2ab=5a 2-7ab (2)原式=2x+2x 2y-4x 2y-2x-y=-2x 2y-y当x=1,y=3时,原式=-2×12×3-3=922. 因为小红的年龄比小明的年龄的2倍少4岁,所以小红的年龄为(2m-4)岁, 又因为小华的年龄比小红的年龄的21还多1岁, 所以小华的年龄为[21(2m-4)+1]岁, 则这三名同学的年龄的和为:m+(2m-4)+[21(2m-4)+1]=m+2m-4+(m-2+1)=4m-5(岁), 答:这三名同学的年龄的和是(4m-5)岁23.根据题意,得A=a 2+3a-1+2a 2-a+5=3a 2+2a+4.这两个多项式的差应该是(3a 2+2a+4)-(2a 2+a-5)=3a 2+2a+4-2a 2-a+5=a 2+a+9.24.(1)阴影部分的面积为21b 2+21a(a+b). (2)当a=3,b=5时,21b 2+21a(a+b)=21×25+21×3×(3+5)=249,即阴影部分的面积为249.25.(1)C(2)因为x2+2y=5,所以原式=3(x2+2y)-21=15-21=-6(3)因为a-2b=3,2b-c=-5,c-d=10,所以原式=a-c+2b-d-2b+c=a-d=a-2b+2b-c+c-d=(a-2b)+(2b-c)+(c-d)=3-5+10=826.(1)2x-10 60-3x依题意,得y=12x+10(2x-10)+5(60-3x)=12x+20x-100+300-15x=17x+200(2)当x=10时,17x+200=17×10+200=370.答:若一等奖奖品买10件,共花费370元。

人教版七年级数学上册《第二章 整式的加减》单元测试卷-含参考答案

人教版七年级数学上册《第二章 整式的加减》单元测试卷-含参考答案

人教版七年级数学上册《第二章整式的加减》单元测试卷-含参考答案一、选择题1.下列多项式中,是二次三项式的是()A.-x2-y3B.x3-y3C.x2+2xy+y2D.x+y+72.下列各式:−15a2b2,12x−1,−25,1x,x−y2,a2−2ab,其中单项式的个数有()A.1个B.2个C.3个D.4个3.下列各组式子中,是同类项的为()A.2a与2b B.a2b与2ab2C.2ab与−3ba D.3a2b与a2bc 4.下列说法正确的是()A.4a3b的次数是3 B.多项式x2−1是二次三项式C.2a+b−1的各项分别为2a,b,1 D.−3ab2的系数是−35.下列各组中的两个项不属于...同类项的是()A.3x2y和−2x2y B.−xy和2yx C.-1和114D.a2和326.多项式x2−3kxy−3y2+13xy−8合并同类项后不含xy项,则k的值是()A.13B.16C.19D.07.下列计算正确的是()A.3a+2b=5ab B.5y2−2y=3yC.a+6a=6a2D.m2n−2nm2=−nm28.若2x2−3xy−1−(−x2−7xy+2)=Ax2−Bxy+C,则A,B,C的值分别为()A.3,4,3 B.1,10,1 C.3,4,-3 D.3,-4二、填空题9.若单项式−3ab的次数是.10.多项式3x2+x−22中的常数项是.11.计算-x2+ 2x2的结果是.12.若2x3y2和−x m y2是同类项,则m的值是.13.多项式2x3−5x2+x−1与多项式3x3+(2m−1)x2−5x+3的和不含x2项,则m=.三、解答题14.计算:(1)(x2﹣x+4)+(2x﹣4+3x2);(2)6ab﹣2a2b2+4+3ab2﹣(2+6ab﹣2a2b2).15.若关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是2,求m2+n3的值.16.先化简,再求值.2(x3−2y2)−(x−2y)−(x−4y2+2x3),其中x=−2,y=3.17.先化简,再求值:已知和(1)化简.(2)当,时,求的值.18.小丽放学回家后准备完成下面的题目:化简,发现系数“□”印刷不清楚.(1)她把“□”猜成3,请你化简;(2)她妈妈说:你猜错了,我看到该题的标准答案是6.请通过计算说明题中“□”是几.参考答案1.C2.B3.C4.D5.D6.C7.D8.D9.210.-111.x212.313.314.解:(1)原式=x2﹣x+4+2x﹣4+3x2=4x2+x.(2)原式=6ab﹣2a2b2+4+3ab2﹣2﹣6ab+2a2b2=6ab﹣6ab﹣2a2b2+2a2b2+3ab2﹣2+4=3ab2+2.15.解:∵关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是3,∴m+1=2,﹣n=2,解得:m=1,n=﹣2,∴m2+n3=1﹣8=﹣7.16.解:原式=2x3−4y2−x+2y−x+4y2−2x3=−2x+2y当x=−2,y=3时,原式=−2×(−2)+2×3=4+6=10.17.(1)解:(2)解:把,代入得:18.(1)解:;(2)解:设“□”是a∵标准答案是6∴.解得.∴题中“□”是5。

整式的加减单元测试卷

整式的加减单元测试卷

整式的加减单元测试卷一、选择题(每题3分,共30分)1. 下列式子中,整式有()个。

x + 1,(1)/(x),π,- 2a,0,x^2-y^2A. 4B. 5C. 6D. 7.2. 单项式-3x^2y的系数和次数分别是()A. -3,2B. -3,3C. 3,3D. 3,2.3. 下列各组单项式中,是同类项的是()A. 2a^2b与2ab^2B. 3x与3x^2C. - 5xy^2与5y^2xD. -a与- 24. 化简3x - 2(x - y)的结果是()A. x - 2yB. x + 2yC. 5x - 2yD. x - y5. 一个多项式与x^2-2x + 1的和是3x - 2,则这个多项式为()A. -x^2+5x - 3B. -x^2+x - 1C. x^2-5x + 3D. x^2-x + 16. 若A = 3x^2-2x + 1,B = 5x^2-3x + 2,则A - B等于()A. -2x^2+x - 1B. -2x^2-x + 1C. 2x^2-x - 1D. 2x^2+x + 17. 当a = - 1,b = 2时,(a + b)(a - b)+b^2的值为()A. -1B. 1C. 3D. -3.8. 已知m - n = 100,x + y=-1,则代数式(n + x)-(m - y)的值是()A. -99B. -101C. 99D. 101.9. 若2x^m + 1y^2与-3x^3y^n - 1是同类项,则m + n的值是()A. 3B. 4C. 5D. 6.10. 若多项式2x^3-8x^2+x - 1与多项式3x^3+2mx^2-5x + 3相加后不含二次项,则m的值为()A. 2B. -2C. 4D. -4.二、填空题(每题3分,共18分)1. 单项式(2)/(3)π r^2的次数是_____。

2. 多项式3x^2y - 4xy^2+x^3-5y^3按y的降幂排列为_____。

人教版七年级数学上册《第二章整式的加减》单元测试卷(附带答案)

人教版七年级数学上册《第二章整式的加减》单元测试卷(附带答案)

人教版七年级数学上册《第二章整式的加减》单元测试卷(附带答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.单项式的系数和次数分别为()A.3,2 B.-3,2 C.,3 D.,32.代数式:0,3a,π与,1,﹣,+y,其中单项式的个数是()A.5 B.1 C.2 D.33.下列计算正确的是()A.B.C.D.4.化简的结果是()A.B.C.D.5.将多项式合并同类项后所得的结果是()A.二次二项式B.二次三项式C.一次二项式D.单项式6.已知A=a3﹣2ab2+1,B=a3+ab2﹣3a2b,则A+B的值()A.2a3﹣3ab2﹣3a2b+1 B.2a3+ab2﹣3a2b+1C.2a3+ab2+3a2b+1 D.2a3﹣ab2﹣3a2b+17.若单项式与是同类项,则的值为()A.9 B.8 C.6 D.58.多项式与多项式相加后,不含二次项,则常数m的值是()A.2 B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.化简:2(a+1)﹣a= .10.把多项式按x的升幂排列为.11.长方形的长是,宽是,则长方形的周长是.12.若多项式不含项,则 =13.某天数学课上,学习了整式的除法运算,放学后,小明回到家拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道三项式除法运算题:被除式的第二项中被钢笔水弄污了(还能看到前面的运算符号),你能算出被污染的内容是.三、解答题:(本题共5题,共45分)14.化简:15.先去括号,再合并同类项.(1)(2)16.先化简,再求值:,其中.17.已知和.(1)求;(2)若,求的值.18.小马虎做一道数学题,“已知两个多项式____,试求.”其中多项式的二次项系数印刷不清楚(1)小马虎看答案以后知道,请你替小马虎求出系数“”;(2)在(1)的基础上,小马虎已经将多项式正确求出,老师又给出了一个多项式,要求小马虎求出的结果.小马虎在求解时,误把“”看成“”,结果求出的答案为.请你替小马虎求出“”的正确答案.参考答案:1.D 2.A 3.D 4.D 5.D 6.D 7.A 8.B 9.a+210.11.12.213.14.解:原式;15.(1)解:原式=3a-4b+2a-1=5a-4b-1;(2)解:原式=10a-6b- +6b=10a-3a2.16.解:.当时,原式.17.(1)解:;(2)解:,解得,b=2由(1)知18.(1)-5(2)解:因为A+C=,A=-5x2-4x 所以C=+5x2+4x=6x2-3x-3所以A-C=(-5x2-4x)-(6x2-3x-3)=-5x2-4x-6x2+3x+3=-11x2-x+3.答:A-C的结果为-11x2-x+3。

整式的加减单元测试卷

整式的加减单元测试卷

整式的加减单元测试卷第一部分:选择题1. 根据题意,将下列有理数等式化简,得到的结果是()A. -9x^2 - 5x - 2B. -9x^2 + 5x + 2C. 9x^2 + 5x - 2D. 9x^2 - 5x + 22. 化简表达式:(3a^2 - 2a + 5) + (5a^2 + 3a - 1)。

A. 8a^2 + a + 4B. 8a^2 - 5a + 4C. 8a^2 + a - 4D. 8a^2 - 5a - 43. 下列哪个式子等于 (5x^2 + 3x - 2) - (2x^2 - 4x + 1)?A. 3x^2 + 7x - 3B. 3x^2 - 7x + 1C. 3x^2 + 7x - 1D. 3x^2 - 7x - 34. 缩写:(4x^2 - 5x + 2) + (-2x^2 + 4x - 1) 等于()。

A. 2x^2 - x + 3B. 2x^2 - x + 1C. 2x^2 - 9x + 3D. 2x^2 - 9x + 1第二部分:填空题1. 化简表达式:(7x^2 - 3x + 4) + (4x - 2x^2 + 5) = ______________。

2. 缩写:(6x^3 - 2x^2 + 3x) + (-4x^3 + 5x^2 - 2x) = ______________。

3. 下列哪个式子等于 (-7x^2 + 3x - 2) - (-2x^2 + 3x - 5)?4. 根据题意,将下列有理数等式化简,得到的结果是:(2x^2 + 3x -5) - (-3x^2 + 2x - 1) = ______________。

第三部分:解答题1. 将多项式 (3x^2 + 2x - 1) 和 (2x^2 - x + 3) 相加,并化简结果。

2. 求解:(4x^3 - 3x^2 + 2x - 1) - (-2x^3 - x^2 - 3x + 1)。

3. 将表达式 (5x^2 - 3x + 2) 和 (4x^2 - x + 1) 相减,并化简结果。

人教版七年级上册数学第2章《整式的加减》单元测试卷(Word版,含答案)

人教版七年级上册数学第2章《整式的加减》单元测试卷(Word版,含答案)

人教版七年级上册数学第2章《整式的加减》单元测试卷题号一二三 总分 19 2021 22 23 24分数一.选择题(每题3分,共30分) 1.下列关于多项式﹣3a 2b +ab ﹣2的说法中,正确的是( ) A .最高次数是5 B .最高次项是﹣3a 2b C .是二次三项式D .二次项系数是02.下列说法中,不正确的是( ) A .﹣ab 2c 的系数是﹣1,次数是4 B .﹣1是整式C .6x 2﹣3x +1的项是6x 2、﹣3x ,1D .2πR +πR 2是三次二项式3.如果单项式3a m b 2c 是6次单项式,那么m 的值是( ) A .2B .3C .4D .54.若代数式2x |m |﹣(m +3)x +7是关于x 的三次二项式,那么m 的值为( ) A .﹣3B .3C .±3D .05、已知a ﹣b=3,c+d=2,则(b+c )﹣(a ﹣d )的值为( ) A 、1 B 、-1 C 、-5 D 、56、多项式1+2xy ﹣3xy 2的次数及最高次项的系数分别是( ) A 、3,﹣3 B 、2,﹣3 C 、5,﹣3 D 、2,37.当2x =时,多项式35ax bx -+的值是4,求当2x =-时,多项式35ax bx -+的是为( ) A .4-B .6C .5D .98.已知:||3a =,||4b =,则a b -的值是( ) A .1-B .1-或7-C .1±或7±D .1或79.设237M x x =++,234N x x =-+-,那么M 与N 的大小关系是( ) A .M N <B .M N =C .M N >D .无法确定10.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.222221131(3)(4)2222x xy y x xy y x -+---+-=-2y +,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是( ) A .7xy -B .7xy +C .xy -D .xy +二、 填空题(每题3分,共24分) 11.若与是同类项,则a 的值是______.12.若多项式是关于x ,y 的三次多项式,则______.13.已知﹣5x 3y |a |﹣(a ﹣5)x ﹣6是关于x 、y 的八次三项式,则a 的值为 . 14.多项式3﹣2xy 2+4x 2yz 的次数是 .15.如果单项式2x m ﹣1y 2与﹣3x 2y n +1是同类项,那么m +n = . 16.计算:2a 2﹣(a 2+2)= . 17.多项式中不含xy 项,则常数k 的值是 .18.如图所示的运算程序中,如果开始输入的x 值为,我们发现第1次输出的结果为,第2次输出的结果为,,第2021次输出的结果为 .三.解答题(共46分,19题6分,20 ---24题8分) 19.化简:(1)(5a 2+2a ﹣1)﹣4[3﹣2(4a +a 2)]. (2)3x 2﹣[7x ﹣(4x ﹣3)﹣2x 2].20.先化简,再求值:2ab +6(a 2b +ab 2)﹣[3a 2b ﹣2(1﹣ab ﹣2ab 2)],其中a 为最大的负整数,b 为最小的正整数.。

七年级数学上册《整式的加减》单元测试卷及答案

七年级数学上册《整式的加减》单元测试卷及答案

人教新版七年级上册《第2章整式的加减》单元测试(1)一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4 3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣44.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.46.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.17.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣109.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣411.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+112.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为.15.当k=时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=.17.已知a2+a﹣3=0,则2024﹣a2﹣a=.18.x2﹣2x+y=x2﹣().19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?人教新版七年级上册《第2章整式的加减》单元测试卷(1)参考答案与试题解析一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个【考点】整式.【分析】根据整式的定义,结合题意即可得出答案.【解答】解:整式有﹣mn,m,8,x2+2x+6,,,故选:C.2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式的系数与次数分别为,4,故选:D.3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣4【考点】合并同类项.【分析】根据合并同类项的法则判断即可得结论.【解答】解:﹣2x﹣2x=(﹣2﹣2)x=﹣4x.故选:B.4.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy【考点】同类项.【分析】根据同类项的概念逐一判断即可得.【解答】解:A.﹣a2b和ab2相同字母的指数不相同,不是同类项;B.a2和22所含字母不相同,不是同类项;C.﹣ab2和2b2a所含字母相同,且相同字母的指数也相同,是同类项;D.2ab与2xy所含字母不相同,不是同类项;故选:C.5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.4【考点】同类项.【分析】根据同类项的概念求出x、y的值,再代入所求式子计算即可.【解答】解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.6.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.1【考点】合并同类项.【分析】直接利用两式可以合并进而得出m=n+2,即可得出答案.【解答】解:∵﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m﹣n=2.故选:A.7.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定【考点】整式的加减.【分析】直接利用整式的加减运算法则计算进而得出答案.【解答】解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣10【考点】代数式求值.【分析】根据相反数的定义得:﹣2a﹣3b=﹣4,首先化简﹣4a﹣6b+1,然后把﹣2a﹣3b =﹣4代入化简后的算式,求出算式的值是多少即可.【解答】解:∵2a+3b=4,∴﹣2a﹣3b=﹣4,∴﹣4a﹣6b+1=2(﹣2a﹣3b)+1=﹣8+1=﹣7,故选:C.9.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1【考点】代数式求值;有理数的混合运算.【分析】根据题意一一计算即可判断.【解答】解:当m=﹣1,n=1时,y=2m﹣n+1=2×(﹣1)﹣1+1=﹣2,不合题意;当m=1,n=0时,y=2m+n=2×1+0=2,不合题意;当m=1,n=2时,y=2m﹣n+1=2×1﹣2+1=1,符合题意;当m=2,n=1时,y=2m+n=2×2+1=5,不合题意;故选:C.10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣4【考点】多项式.【分析】根据多项式的定义即可求解.【解答】解:因为多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,所以|m|=2,且m﹣2≠0,解得m=±2,且m≠2,则m的值为﹣2.故选:C.11.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+1【考点】多项式.【分析】字母b的最高次数为3,然后按照字母b的指数从高到低进行排列即可.【解答】解:1﹣5ab2﹣7b3+6a2b按字母b的降幂排列为﹣7b3﹣5ab2+6a2b+1.故选:D.12.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较【考点】整式的加减.【分析】首先计算两个整式的差,再通过分析差的正负性可得答案.【解答】解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)=2x2﹣3x﹣1﹣x2+3x+2=x2+1,∵x2≥0,∴B﹣A>0,则B>A,故选:A.13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式【考点】多项式.【分析】根据多项式次数的定义知,该多项式的次数是5次,又因为次多项式有6个单项式组成,所以是五次六项式.【解答】解:多项式26﹣3x5+x4+x3+x2+x次数最高的项的次数是5,且有6个单项式组成,所以是五次六项式.故选:B.二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为2或1.【考点】多项式.【分析】根据多项式的次数定义和n是正整数得出4+n=6或4+n=5,求出n的值即可.【解答】解:∵x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,又∵n是正整数,∴4+n=6或4+n=5,∴n=2或n=1;故答案为:2或1.15.当k=2时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.【考点】合并同类项;多项式.【分析】根据多项式的概念即可求出答案.【解答】解:∵多项式x2+kxy﹣2xy﹣6中不含xy项,∴原式=x2+(k﹣2)xy﹣6令k﹣2=0,∴k=2故答案为:2.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=2.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)求出n,m的值,再代入代数式计算即可.【解答】解:由单项式2x m y3与﹣3xy3n是同类项,得m=1,3n=3,解得m=1,n=1.∴m+n=1+1=2.故答案为:2.17.已知a2+a﹣3=0,则2024﹣a2﹣a=2021.【考点】代数式求值.【分析】由a2+a﹣3=0可得a2+a=3,再将a2+a=3整体代入要求的式子即可.【解答】解:∵a2+a﹣3=0,∴a2+a=3,∴2024﹣a2﹣a=2024﹣(a2+a)=2024﹣3=2021,故答案为:2021.18.x2﹣2x+y=x2﹣(2x﹣y).【考点】去括号与添括号.【分析】本题添了1个括号,且所添的括号前为负号,括号内各项改变符号.【解答】解:根据添括号的法则可知,x2﹣2x+y=x2﹣(2x﹣y),故答案为:2x﹣y.19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值14.【考点】整式的加减.【分析】先将代数式(5x+2)﹣(3xy﹣5y)化简为:5(x+y)﹣3xy+2,然后把x+y=3,xy=1代入求解即可.【解答】解:∵x+y=3,xy=1,∴(5x+2)﹣(3xy﹣5y)=5x+2﹣3xy+5y=5(x+y)﹣3xy+2=5×3﹣3×1+2=14.故答案为:14.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.【考点】合并同类项.【分析】这个式子的运算是合并同类项的问题.根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:原式=(3x2﹣3x2)+(2xy﹣3xy)+(4y2﹣4y2)=﹣xy.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.【考点】整式的加减—化简求值.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:原式=12a2+6a﹣2a2﹣3a+5=10a2+3a+5.当a=﹣2时,原式=10×(﹣2)2+3×(﹣2)+5=40﹣6+5=39.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.【考点】整式的加减—化简求值.【分析】(1)先去掉括号,再合并同类项即可得出答案;(2)先去掉括号,再合并同类项即可;(3)先把给出的式子进行化简,再代入x,y的值进行计算即可;(4)根据题意先列出算式,再合并同类项,最后把x,y的值进行计算即可.【解答】解:(1)(5a+4c+7b)+(5c﹣3b﹣6a)=5a+4c+7b+5c﹣3b﹣6a=5a﹣6a+7b﹣3b+4c+5c=﹣a+4b+9c;(2)(2a2b﹣ab2)﹣2(ab2+3a2b)=2a2b﹣ab2﹣2ab2﹣6a2b=2a2b﹣6a2b﹣ab2﹣2ab2=﹣4a2b﹣3ab2;(3)4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=1,y=﹣2时原式=(﹣2)2+5×1×(﹣2)=4﹣10=﹣6;(4)2A﹣B=2(4x2y﹣5xy2)﹣(3x2y﹣4y2)=8x2y﹣10xy2﹣3x2y+4y2=5x2y﹣10xy2+4y2当x=﹣2,y=1时,原式=5×(﹣2)2×1﹣10×(﹣2)×12+4×12=5×4×1﹣(﹣20)×1+4=20+20+4=44.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.【考点】合并同类项;多项式;绝对值;代数式求值.【分析】(1)先把多项式合并同类项,再令含x项的系数等于0,求出m、n的值即可;(2)先把多项式合并同类项,然后根据多项式不含二次项,得到关于m、n的一次方程,求出m、n的值,再代入计算即可.(3)根据四次三项式的概念,得关于k的方程,求解即可.【解答】解:(1)原式=(m﹣1)x2+(3+n)xy﹣2y2﹣2y+6.∵原式的值与x的值无关,∴m﹣1=0,3+n=0,∴m=1,n=﹣3,∴(m+n)3=(1﹣3)3=﹣8,(2)原式=(6m﹣1)x2+(4n+2)xy+2x+y+4,∵多项式不含二次项,∴6m﹣1=0,4n+2=0.∴.∴.(3)由题意得:|k|+1+2=4,∴k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?【考点】列代数式.【分析】(1)先表示出第二车间的人数,再表示出第三车间的人数即可;(2)把表示三个车间的人数的代数式相加即可得到答案;(3)先表示出调动后第一车间的人数,再用调动后第一车间的人数减去第三车间的人数即可.【解答】解:(1)∵第二车间的人数比第一车间人数的少20人,即人,而第三车间人数是第二车间人数的多10人,∴第三车间的人数为:人;(2)三个车间共有:人;(3)(x+10)﹣(x﹣15)=25(人),答:原第三车间人数比调动后的第一车间人数少25人.。

人教版七年级数学上册第2章《整式的加减》单元测试题(含解析)

人教版七年级数学上册第2章《整式的加减》单元测试题(含解析)

人教版七年级数学上册第2章《整式的加减》单元测试题一.选择题1.在代数式﹣7,m,x3y2,,2x+3y中,整式有()A.2个B.3个C.4个D.5个2.若5y﹣2x=3,则代数式4﹣10y+4x的值是()A.﹣3 B.﹣2 C.0 D.73.多项式3xy2﹣2y+1的次数及一次项的系数分别是()A.3,2 B.3,﹣2 C.2,﹣2 D.4,﹣24.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y25.下列说法正确的是()A.单项式3ab的次数是1B.3a﹣2a2b+2ab是三次三项式C.单项式的系数是2D.﹣4a2b,3ab,5是多项式﹣4a2b+3ab﹣5的项6.裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,则下列各式中,能正确表示这个商店第一季度的总利润的是()A.50(1+m)万元B.50(1+m)2万元C.[50+50(1+m)]万元D.[50+50(1+m)+50(1+m)2]万元7.下列计算正确的是()A.3a+4b=7ab B.3a﹣2a=1C.3a2b﹣2ab2=a2b D.2a2+3a2=5a28.若与的和是单项式,则a+b=()A.﹣3 B.0 C.3 D.69.已知A=x2+3y2﹣5xy与B=2xy+2x2﹣y2,则3A﹣B为()A.3x2+y2﹣3xy B.﹣x2+4y2﹣7xyC.x2+10y2﹣17xy D.5x2+8y2﹣13xy10.一个代数式加上﹣5+3x﹣6x2得到4x2﹣5x,则这个代数式是()A.10x2﹣8x+5 B.8x2﹣8x﹣5 C.2x2﹣8x+5 D.10x2﹣8x﹣5 11.下列去括号运算正确的是()A.﹣(x﹣y+z)=﹣x﹣y﹣zB.x﹣(y﹣z)=x﹣y﹣zC.x﹣2(x+y)=x﹣2x+2yD.﹣(a﹣b)﹣(﹣c﹣d)=﹣a+b+c+d12.一个多项式加上12y+7x+z2等于5y+3x﹣15z2,则这个多项式是()A.﹣7y﹣4x﹣16z2B.7y+4x+16z2C.17y+10x﹣14z2D.7y+4x﹣16z2二.填空题13.若a﹣2b=3,则4b﹣2a=.14.长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童票,则共需花费元.15.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.16.a的3倍与b的倒数的差,用代数式表示为.17.若代数式x2+x+3的值的值为7,则代数式的值为.18.已知关于x,y的多项式﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7不含二次项,则m+n=.19.已知三角形的周长为3m﹣n,其中两边的和为2m,则此三角形第三边的长为.20.甲、乙、丙三人有相同数量的小球.如果甲给乙2颗,丙给甲5颗,然后乙再给丙一些球,所给的数量与丙还有的球数量相同,那么乙最后剩下颗球.三.解答题21.在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式﹣2x2﹣4x+1的一次项系数,b是数轴上最小的正整数,单项式的次数为c.(1)a=,b=,c=.(2)请你画出数轴,并把点A,B,C表示在数轴上;(3)请你通过计算说明线段AB与AC之间的数量关系.22.一个花坛的形状如图所示,它的两端是半径相等的半圆,求:(1)花坛的周长l;(2)花坛的面积S;(3)若a=8m,r=5m,求此时花坛的周长及面积(π取3.14).23.已知A=3a2b﹣2ab2+abc,小明错将“C=2A﹣B”看成“C=2A+B”,算得结果C=4a2b﹣3ab2+4abc.(1)求正确的结果的表达式;(2)小芳说(1)中结果的大小与c的取值无关,对吗?若a=2,b=,求(1)中代数式的值.24.先化简,再求值:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)的值,其中x=1,y=﹣2.25.先化简,再求值:2x2﹣[3(﹣x2+xy)﹣(xy﹣3x2)]+2xy,其中x是﹣2的倒数,y 是最大的负整数.参考答案1.解:在代数式﹣7,m,x3y2,,2x+3y中,整式有:﹣7,m,x3y2,2x+3y共4个.故选:C.2.解:∵5y﹣2x=3,∴原式=4﹣2×(5y﹣2x)=4﹣2×3=﹣2,故选:B.3.解:多项式3xy2﹣2y+1的次数是:3,一次项的系数是:﹣2.故选:B.4.解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.5.解:A、单项式3ab的次数是2,故此选项错误;B、3a﹣2a2b+2ab是三次三项式,故此选项正确;C、单项式的系数是,故此选项错误;D、﹣4a2b,3ab,﹣5是多项式﹣4a2b+3ab﹣5的项,故此选项错误;故选:B.6.解:∵裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,∴二月份的利润为50(1+m)万元,三月份的利润为50(1+m)2,∴这个商店第一季度的总利润是[50+50(1+m)+50(1+m)2]万元.故选:D.7.解:A、3a和4b不能合并,故本选项不符合题意;B、3a﹣2a=a,故本选项不符合题意;C、3a2b和﹣2ab2不能合并,故本选项不符合题意;D、2a2+3a2=5a2,故本选项符合题意;故选:D.8.解:根据题意可得:,解得:,所以a+b=3+0=3,故选:C.9.解:∵A=x2+3y2﹣5xy与B=2xy+2x2﹣y2,∴3A﹣B=3(x2+3y2﹣5xy)﹣(2xy+2x2﹣y2)=3x2+9y2﹣15xy﹣2xy﹣2x2+y2=x2+10y2﹣17xy.故选:C.10.解:由题意得:这个代数式=(4x2﹣5x)﹣(﹣5+3x﹣6x2)=4x2﹣5x+5﹣3x+6x2=10x2﹣8x+5.故选:A.11.解:A、原式=﹣x+y﹣z,不符合题意;B、原式=x﹣y+z,不符合题意;C、原式=x﹣2x﹣2y=﹣x﹣2y,不符合题意;D、原式=﹣a+b+c+d,符合题意,故选:D.12.解:根据题意得:(5y+3x﹣15z2)﹣(12y+7x+z2)=5y+3x﹣15z2﹣12y﹣7x﹣z2=﹣7y ﹣4x﹣16z2,故选:A.13.解:∵a﹣2b=3.4b﹣2a=2(2b﹣a)=2×(﹣3)=﹣6.故答案为:﹣6.14.解:根据单价×数量=总价得,共需花费(30m+15n)元,故答案为:(30m+15n).15.解:∵多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,∴n﹣2=0,1+|m﹣n|=3,∴n=2,|m﹣n|=2,∴m﹣n=2或n﹣m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.16.解:由题意可得:3a﹣.故答案为:3a﹣.17.解:∵x2+x+3=7,∴x2+x=4,∴原式=(x2+x)﹣5=×4﹣5=1﹣5=﹣4,故答案为:﹣418.解:﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7=﹣5x2y﹣(2n+3)xy+5my2+4x﹣7,∵多项式不含二次项,∴5m=0,2n+3=0,解得m=0,n=﹣1.5,∴m+n=﹣1.5,故答案为:﹣1.5.19.解:由题意可知:3m﹣n﹣2m=m﹣n.故答案为:m﹣n.20.解:设甲、乙、丙原来有a颗小球,乙最后剩下的小球有:a+2﹣(a﹣5)=a+2﹣a+5=7,故答案为:7.21.解:(1)多项式﹣2x2﹣4x+1的一次项系数是﹣4,则a=﹣4,数轴上最小的正整数是1,则b=1,单项式的次数为6,则c=6,故答案为:﹣4,1,6;(2)如图所示,,点A,B,C即为所求.;(3)AB=b﹣a=1﹣(﹣4)=5,AC=c﹣a=6﹣(﹣4)=10.∵10÷5=2,∴AC=2AB.22.解:(1)花坛的周长l=2a+2πr,(2)花坛的面积S=2ra+πr2,(3)l=2a+2πr=16+10π=47.4(米),S=2ra+πr2=2×5×8+3.14×25=158.5(平方米).23.解:(1)∵2A+B=C,∴B=C﹣2A=4a2b﹣3ab2+4abc﹣2(3a2b﹣2ab2+abc)=4a2b﹣3ab2+4abc﹣6a2b+4ab2﹣2abc=﹣2a2b+ab2+2abc;∴2A﹣B=2(3a2b﹣2ab2+abc)﹣(﹣2a2b+ab2+2abc)=6a2b﹣4ab2+2abc+2a2b﹣ab2﹣2abc=8a2b﹣5ab2;(2)小芳说的对,与c无关,将a=2,b=代入,得:8a2b﹣5ab2==6.24.解:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)=3y2﹣x2+4x2﹣6xy﹣3x2﹣3y2=﹣6xy当x=1,y=﹣2时,原式=﹣6×1×(﹣2)=12.25.解:原式=2x2+5x2﹣2xy+xy﹣3x2+2xy=4x2+xy,∵x是﹣2的倒数,y是最大的负整数,∴x=﹣,y=﹣1,则原式=1.。

人教版七年级数学上册《第四章整式的加减》单元测试卷-带答案

人教版七年级数学上册《第四章整式的加减》单元测试卷-带答案

人教版七年级数学上册《第四章整式的加减》单元测试卷-带答案一、单选题1.式子222,,2,59b x y a x -++-中,单项式有( ) A .1个 B .2个 C .3个 D .4个2.单项式2ab -的系数、次数分别是( )A .0、3B .1-、2C .0、2D .1-、33.下列各题中的两个项,不属于同类项的是( )A .22x y 与212yx -B .1与23-C .2a b 与22510ba ⨯D .213m n 与2n m 4.系数为-12且只含有 x 、y 的三次单项式(不需要包含每个字母),可以写出( ) . A .2 个 B .3 个 C .4 个 D .5 个5.下列说法正确的是( )A .1a +不是一个代数式B .单项式223ab π-的系数是23- C .一个多项式的次数为5,那么这个多项式的各项的次数都小于5D .0是一个单项式6.13⎛⎫-- ⎪⎝⎭的倒数是( ) A .13 B .13- C .﹣3 D .3 7.()()1333m m --+⋅-的值是( ) A .1 B .1- C .0 D .()13m +-8.三个有理数a ,b ,c 在数轴上表示的位置如图所示,则化简a b c b a +--+的结果是( )A .22a b +B .22a b c +-C .c -D .2b c --9.若()()2221x mx x -++的结果中x 的二次项系数和一次项系数相等,则m 的值为( )A .3B .-3C .4D .110.如图是2022年12月的日历表,在此日历表中用阴影十字框选中5个数(如2、8、9、10、16).若这样的阴影十字框上下左右移动选中这张日历表中的5个数,则这5个数的和可能为( )A .41B .46C .75D .116二、填空题11.单项式4367x y -的系数与次数的积是 . 12.在23b 32xy + 2- 5ab x + 3xy 1a b +,单项式有 .多项式有 ,整式有 .13.已知25,29a b c d -=-=,那么()()2a c b d ---的值为 .14.已知多项式()()2224331x mx y x y nx +-+--+-的值与字母x 的取值无关,其中m 、n 是常数,那么m n = .15.一个两位数m 的十位上的数字是a ,个位上的数字是b ,记()f m a b =+为这个两位数m 的“衍生数”.如494913f(1)若()11f m =,则满足条件的两位数m 的个数有 个;(2)现有2个两位数x 和y ,且满足100x y +=,则()()f x f y += .三、解答题16.化简 (1)2227a b a b - (2)347x y x y -++(3)()12ab ba ab --+ (4)()()225223x x x x -+--+17.已知关于x 、y 的多项式214310922m x x y x x +--+-是六次五项式.(1)m 的值是______,该多项式的常数项是______;(2)将此多项式按x 的降幂排列.18.已知代数式2232A x xy y =++ 2B x xy x =-+.(1)求2A B -;(2)当1x =-,3y =时,求2A B -的值;(3)若2A B -的值与x 的取值无关,求y 的值. 19.观察下面的三行单项式x 22x 34x 48x 516x …①2x - 24x 38x - 416x 532x -…②2x 23x - 35x 49x - 517x …③根据你发现的规律,完成以下各题:(1)第①行第8个单项式为 ;第②行第2024个单项式为 .(2)第③行第n 个单项式为 .(3)取每行的第9个单项式,令这三个单项式的和为A .计算当12x =时,12564A ⎛⎫ ⎪⎝⎭+的值. 参考答案1.B2.D3.D4.C5.D6.D7.C8.C9.B10.C11.6-12. 23b 2- 32xy + 5ab x + 23b 2- 32xy + 5ab x + 13.4-14.8-15. 8 19或1016.(1)257a b(2)103x y - (3)52ab(4)22x x ++17.(1)4;22-(2)542103922x y x x x --++- 18.(1)522xy y x +-(2)7- (3)25y =19.(1)782x ;202420242x(2)()()11121n n n x ---+ (3)1292。

人教版七年级上册数学第二章《整式的加减》单元达标测试卷(含答案解析)

人教版七年级上册数学第二章《整式的加减》单元达标测试卷(含答案解析)

人教版七年级上册数学第二章《整式的加减》单元达标测试卷一.选择题(每题3分,共30分)1.下列代数式中,符合书写规则的是( )A .xB .x ÷yC .m ×2D .32.已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .B .C .D .3关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+14.若x+y=1,则代数式3(4x-1)-2(3-6y )的值为( )A .-8B .8C .-3D .35.下列运算中,正确的是( )A .3a +2b =5abB .2a 3+3a 2=5a 5C .3a 2b -3ba 2=0D .5a 2-4a 2=1A .这个多项式是五次五项式B .常数项是﹣1C .四次项的系数是3D .按x 降幂排列为x 5+3x 2﹣3xy 3﹣y ﹣17.若A =3x 2-4y 2,B =-y 2-2x 2+1,则A -B 等于( )A .x 2-5y 2+1B .x 2-3y 2+1C .5x 2-3y 2-1D .5x 2-3y 2+18.两船从同一港口同时反向而行,甲船顺水航行,乙船逆水航行,两船在静水中的速度都是50km/h ,水流的速度为a km/h ,3h 后,甲船比乙船多航行的路程是( )A .1.5a kmB .3a kmC .6a kmD .(150+3a )km 9.下面是小明做的一道多项式的加减运算题,但他不小心把一滴墨水滴在了上面.(﹣x 2+3xy 12-y 2)﹣(12-x 2+4xy 12-y 2)12=-x 2●,黑点处即为被墨迹弄污的部分,那么被墨汁遮住的一项应是( )A .﹣xyB .+xyC .﹣7xyD .+7xy10.如图,阴影部分的面积为A.B.C.D.二、填空题(共24分)11.减去3m后,等于3m2+m﹣1的多项式是.12.已知3a n b n﹣1与﹣5a2b2m(m是正整数)是同类项,那么(2m﹣1)2=.13.计算:(m+3m+5m+…+2019m)﹣(2m+4m+6m+…+2020m)=.14.小华在计算多项式P加上x2﹣3x+6时,因误认为加上x2+3x+6,得到的答案是2x2﹣4x,则P应是.15.如图,把五个长为b、宽为a的小长方形,按图1和图2两种方式放在一个宽为m的大长方形上(相邻的小长方形既无重叠,又不留空隙).设图1中两块阴影部分的周长和为C1,图2中阴影部分的周长为C2,若大长方形的长比宽大(6﹣a),则C2﹣C1的值为.16.如图,将图①中的四边形剪开得到图②,图中共有4个四边形;将图②中的一个四边形剪开得到图③,图中共有7个四边形;如此剪下去,第5个图中共有________个四边形,第n(n为正整数)个图中共有________个四边形.。

《整式的加减》单元测试题

《整式的加减》单元测试题

《整式的加减》单元测试题一、选择题(每小题4分,共28分)1.在代数式222515,1,32,,,1x x x x x x π+--+++中,整式有( )A.3个B.4个C.5个D.6个2、下列说法正确的是( )A 、13 πx 2的系数是13B 、12 xy 2的系数为12x C 、-5x 2的系数为5 D 、-x 2的系数为-13.下面计算正确的是( )A .2233x x -=B 。

235325a a a +=C .33x x +=D 。

10.2504ab ab -+= 4.多项式2112x x ---的各项分别是 () A.21,,12x x - B.21,,12x x --- C.21,,12x x D.21,,12x x --5.下列去括号正确的是() A.()5252+-=--x xB.()222421+-=+-x xC.()n m n m +=-323231D. x m x m 232232--=⎪⎭⎫ ⎝⎛-- 6.下列各组中的两个单项式能合并的是() A .4和4x B .32323x y y x -和 C .c ab ab 221002和D .2m m 和 7.如果51=-n m ,那么-3()m n -的值是 ( ) A .-53 B.35 C.53 D.151 二、填空题(每小题4分,共28分) 8.单项式522xy -的系数是____________,次数是_______________。

9.多项式5253323+-+-y x y x xy 的次数是________.最高次项系数是__________。

10.任写两个与b a 221-是同类项的单项式:_________;_________。

11.多项式y x 23-与多项式y x 24-的差是______________________.12、若单项式y x 25和n m y x 42是同类项,则n m + 的值为____________。

整式的加减单元测试题(含参考答案)

整式的加减单元测试题(含参考答案)

第二章 整式的加减单元检测题(时间:120分钟 满分:150分)一、 选择题:(本大题10个小题,每小题4分,共40分)1.下列各式中,不是整式的是 ( )A .3a B.2x=1 C.0 D.x+y2.下列各式中,书写格式正确的是 ( )A .4·21B .3÷2y C.xy ·3 D.ab ( ) 3.用整式表示“比a 的平方的一半小1的数”是 ( )A.(21a)2B. 21a 2-1C. 21(a -1)2D. (21a -1)2 ( ) 4.在整式5abc ,-7x 2+1,-52x ,2131,24y x 中,单项式共有 ( ) A.1个 B.2个 C.3个 D.4个 ( )5.已知15m x n 和-92m 2n 是同类项,则∣2-4x ∣+∣4x -1∣的值为 ( ) A.1 B.3 C.8x -3 D.13 ( )6.已知-x+3y =5,则5(x -3y )2-8(x -3y )-5的值为 ( )A.80B.-170C.160D.60 ( )7.下列整式的运算中,结果正确的是 ( )A.3+x =3xB.y+y+y=y 3C.6ab -ab=6D.-41st+0.25st=0 ( ) 8.将多项式3x 2y -xy 2+x 3y 3-x 4y 4-1按字母x 的降幂排列,所得结果是( )A.-1-xy 2+3x 2y+x 3y 3-x 4y 4B. -x 4y 4+ x 3y 3+3 x 2y -x y 2-1C. -x 4y 4+ x 3y 3-xy 2+3x 2y -1D. -1+3 x 2y -x y 2+x 3y 3-x 4y 49.已知a<b,那么a -b 和它的相反数的差的绝对值是 ( )A.b -aB.2b -2aC.-2aD.2b10.下列说法错误的是 ( )A.-xy 的系数是-1B.3x 3-2x 2y 2-23y 3 C.当a<2b 时,2a+b+2∣a -2b ∣=5b D.多项式8)1(32x -中x 2的系数是-3 二、填空题:(本大题10个小题,每小题3分,共30分)11.-3ab 2c 3的系数是 ,次数是12.多项式1+a+b 4-a 2b 是 次 项式.13.把多项式2xy 2-x 2y -x 3y 3-7按x 的升幂排列是14.设a 、b 表示两数,则两数的平方和是 ,两数和的平方是15.若三个连续奇数中间一个是2n+1(n ≠0的整数),则这三个连续奇数的和为16.化简3a 2b -3(a 2b -ab 2)-3ab 2=17.一个多项式加上-2+x -x 2得到x 2-1,则这个多项式是18.m 、n 互为相反数,则(3m -2n )-(2m -3n )=19.如图,用灰白两色正方形瓷砖铺设地面,第n 个图案中灰色瓷砖块数为20.若3a 1+n b 2与21a 3b 3+m 的和仍是单项式,则m= ,n= 三、解答题:(本大题8个小题,每小题10分,共80分)解答时每小题必须给出必要的演算过程或推理步骤。

2024-2025学年人教新版七年级上册数学《第4章 整式的加减》单元测试卷(有答案)

2024-2025学年人教新版七年级上册数学《第4章 整式的加减》单元测试卷(有答案)

2024-2025学年人教新版七年级上册数学《第4章整式的加减》单元测试卷一.选择题(共8小题,满分24分)1.代数式x2+5,﹣1,x2﹣8x+2,π,,中,整式有()A.3个B.4个C.5个D.6个2.已知﹣2x6y与5x2m y n是同类项,则()A.m=2,n=1B.m=3,n=1C.m=,n=1D.m=3,n=03.下列计算正确的是()A.5a﹣2a=3B.2a2+6a2=8a4C.x2y﹣2xy2=﹣xy2D.3mn﹣2mn=mn4.在等式1﹣a2+2ab﹣b2=1﹣()中,括号里应填()A.a2﹣2ab+b2B.a2﹣2ab﹣b2C.﹣a2﹣2ab+b2D.﹣a2+2ab﹣b25.若a<0,则|a﹣(﹣a)|等于()A.﹣a B.0C.2a D.﹣2a6.如图是小明完成的线上作业,他的得分是()判断题(每小题2分,共10分)①1是单项式.(×)②非负有理数不包括零.(×)③绝对值不相等的两个数的和一定不为零.(√)④单项式﹣a的系数与次数都是1.(√)⑤将34.945精确到十分位为34.95.(×)A.4分B.6分C.8分D.10分7.在下列各整式中,次数为5的是()A.8x3y B.m+n2+q2C.52c3D.x2y38.若代数式2(mx2+x﹣1)﹣(x2﹣nx+1)的值与x的取值无关,则m2023n2025的值为()A.﹣4B.4C.D.二.填空题(共8小题,满分24分)9.有一道题:﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+□,“□”的地方被墨水弄污了,你认为“□”内应填写.10.已知关于x的整式x3﹣x2+x a﹣2x﹣2bx中不含有x的一次项和二次项,则a+b=.11.若关于x,y,z的单项式﹣mx3y n与单项式的次数相同,系数互为倒数,则该单项式是.12.多项式x2+x+1的次数是.13.若2a m+1b2与﹣3a3b n是同类项,则m+n的值为.14.若一个四位自然数M各个数位上的数字均不为0,且前两位数字之和为5,后两位数字之和为8,则称M为“幸福数”.把四位数M的前两位数字和后两位数字整体交换得到新的四位自然数N.规定.例如:M=2344,∵2+3=5,4+4=8,∴2344是“幸福数”,则.若P是最大的“幸福数”,则F(P)=;若S是“幸福数”,且F(S)恰好能被8整除,则所有满足题意的S的值共有个.15.如果a2﹣3a﹣7=0,那么代数式(a﹣1)2+a(a﹣4)﹣2的值为.16.设x、y互为相反数,且xy≠0.m的绝对值为8,则的值为.三.解答题(共6小题,满分52分)17.已知单项式﹣3xy2的系数和次数分别是a,b,求ab+a b的值.18.已知A=3x2+xy+y,B=2x2﹣xy+2y.(1)化简2A﹣3B.(2)当x=2,y=﹣3,求2A﹣3B的值.19.【问题呈现】(1)已知代数式mx﹣y﹣3x+4y﹣1的值与x的值无关,求m的值;【类比应用】(2)将7张长为a,宽为b的小长方形纸片(如图①),按如图②的方式不重叠地放在长方形ABCD 内,未被覆盖的两部分的面积分别记为S1,S2,当AB的长度变化时,S1﹣S2的值始终不变,求a与b 的数量关系.20.已知多项式A=(m﹣3)2﹣(2﹣m)(2+m)+6m.(1)化简多项式A;(2)若m2﹣4=5,求多项式A的值.21.类比同类项的概念,我们规定:所含字母相同,并且相同字母的指数之差的绝对值等于0或1的项是“强同类项”,例如:﹣x3y4与2x4y3是“强同类项”.(1)给出下列四个单项式:①5x2y5,②﹣x5y5,③4x4y4,④﹣2x3y6.其中与x4y5是“强同类项”的是(填写序号);(2)若x3y4z m﹣2与﹣2x2y3z6是“强同类项”,求m的值;(3)若C为关于x、y的多项式,C=(n﹣5)x5y6+3x4y5﹣7x4y n,当C的任意两项都是“强同类项”,求n的值;(4)已知2a2b s、3a t b4均为关于a,b的单项式,其中s=|x﹣1|+k,t=2k,如果2a2b s、3a t b4是“强同类项”,那么x的最大值是,最小值是.22.定义:若非零实数a,b,c满足,则称c是a和b的“协调数”.如4是3和6的“协调数”.(1)问:是不是﹣2和﹣3的“协调数”?(2)若2m是p和q的“协调数”,用m,q的代数式表示q.参考答案与试题解析一.选择题(共8小题,满分24分)1.B2.B3.D4.A5.D6.B7.D8.A二.填空题(共8小题,满分24分)9.3x.10.1.11.﹣3x3y2.12.2.13.4.14.30,3.15.13.16.16或﹣16.三.解答题(共6小题,满分52分)17.﹣36.18.解:(1)2A﹣3B=2(3x2+xy+y)﹣3(2x2﹣xy+2y)=6x2+2xy+2y﹣6x2+3xy﹣6y=5xy﹣4y;(2)当x=2,y=﹣3时,2A﹣3B=5xy﹣4y=5×2×(﹣3)﹣4×(﹣3)=﹣18.19.(1)3;(2)a﹣2b=0.20.(1)2m2+5;(2)23.21.(1)②③④;(2)m=7,8,9;(3)n=5或n=6;(4),.22.(1)是;(2).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版七年级数学上册《第2章整式的加减》一、选择题:1.(3分)下列说法正确的是()A.的次数为1B.单项式a既没有系数,也没有次数C.﹣2πa2bc的系数为﹣2D.是三次单项式,系数为2.(3分)下面叙述不正确的是()A.整式包括单项式和多项式B.﹣m2+n﹣6是多项式也是整式C.﹣m2+n﹣6的次数为3,常数项为6D.﹣m2+n﹣6是二次三项式3.(3分)下列各式﹣5m5,,5a2b,2m+n,0,x2﹣3y+5,x2+,,﹣.是整式的有()A.5个B.6个C.7个D.8个4.(3分)用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)2 5.(3分)百位数字是a,十位数字是b,个位数字是c,这个三位数是()A.abc B.a+b+c C.100a+10b+c D.100c+10b+a 6.(3分)下列各组项中是同类项的是()A.3x2y和﹣3xy2B.﹣0.2a2b和﹣b2aC.3abc和ab D.﹣x和πx7.(3分)若﹣3x2m y3与2x4y n的和是一个单项式,则|m﹣n|的值是()A.0B.1C.7D.﹣18.(3分)下列运算中结果正确的是()A.3a+2b=5ab B.5y﹣3y=2C.﹣3x+5x=﹣8x D.3x2y﹣2x2y=x2y9.(3分)下列各式中,去括号或添括号正确的是()A.a2﹣(2a﹣b+c)=a2﹣2a﹣b+cB.a﹣3x+2y﹣1=a+(﹣3x+2y﹣1)C.3x﹣[5x﹣(2x﹣1)]=3x﹣5x﹣2x+1D.﹣2x﹣y﹣a+1=﹣(2x﹣y)+(a﹣1)10.(3分)下列各题去括号错误的是()A.B.C.D.11.(3分)化简的结果是()A.﹣7x+B.﹣5x+C.﹣5x+D.﹣5x﹣12.(3分)化简:[x﹣(y﹣z)]﹣[(x﹣y)﹣z]的结果为()A.2y B.2z C.﹣2y D.﹣2z13.(3分)一个多项式与x2﹣2x+1的和是3x﹣2,则这个多项式为()A.x2﹣5x+3B.﹣x2+x﹣1C.﹣x2+5x﹣3D.x2﹣5x﹣13 14.(3分)小刚在复习改错本上,发现(﹣a2+3ab﹣b2)﹣(﹣a2+4ab)=﹣a2﹣ab+b2,空格的地方被墨水污染了,则空格处应填()A.B.3b2C.D.﹣3b215.(3分)一个多项式M减去多项式﹣2x2+5x﹣3,小马虎同学却误解为先加上这个多项式,结果得x2+3x+7,则多项式M是()A.3x2﹣2x+10B.﹣x2+8x+4C.3x2﹣x+10D.x2﹣8x﹣4 16.(3分)若A=3m2﹣5m+2,B=3m2﹣5m﹣2,则A与B的大小关系是()A.A=B B.A>B C.A<B D.无法确定17.(3分)二次三项式3x2﹣4x+6的值为9,则的值为()A.18B.12C.9D.718.(3分)已知y=ax5+bx3+cx﹣1,当x=﹣2时y=5,则当x=2时,y=()A.﹣17B.﹣7C.﹣3D.719.(3分)有理数m、n在数轴上的位置如图所示,则化简式子|m+n|﹣|m﹣n|的结果是()A.2m+n B.﹣2m C.﹣2n D.m﹣2n20.(3分)某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是()A.200﹣60x B.140﹣15x C.200﹣15x D.140﹣60x 21.(3分)如图,阴影部分的面积是()A.B.C.6xy D.3xy22.(3分)如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+623.(3分)一组按规律排列的多项式:a+b,a2﹣b3,a3+b5,a4﹣b7,…,其中第10个式子是()A.a10+b19B.a10﹣b19C.a10﹣b17D.a10﹣b2124.(3分)观察下面的一列单项式:﹣x、2x2、﹣4x3、8x4、﹣16x5、…根据其中的规律,得出的第10个单项式是()A.﹣29x10B.29x10C.﹣29x9D.29x925.(3分)观察下列图形它们是按一定的规律排列的,依照此规律,第20个图形的“★”有()A.57个B.60个C.63个D.85个二、填空题:26.(3分)写出系数的绝对值是1,含x、y、z三个字母的4次单项式是.(尽可能的全部写出)27.(3分)多项式﹣m2n2+m2﹣2n﹣3是次项式,最高项的系数为,常数项为.28.(3分)若多项式3x a﹣(b+1)x﹣7是个三次二项式,则a2•b2=.29.(3分)若﹣3a n﹣1b5与2a3b1﹣m可以合并,则合并后的单项式为,此时m﹣2n =.30.(3分)三角形的三边长分别为3a,4a,5a,则其周长为.31.(3分)一个长方形的长为5m+3n,宽为2m+n,则此长方形的周长为.32.(3分)一根钢筋长a米,第一次用去了全长的,第二次用去了余下的,则剩余部分的长度为米.(结果要化简)33.(3分)有a名男生和b名女生在社区做义工,他们为建花坛搬砖.男生每人搬了40块,女生每人搬了30块.这a名男生和b名女生一共搬了块砖(用含a、b的代数式表示).34.(3分)(1)m﹣n﹣(m+n)=;(2)a﹣()=a﹣b+c﹣d;(3)()﹣2m3﹣1=﹣m+6.(4)(3a5b2﹣ab)+()=a5b2﹣ab+3.35.(3分)多项式m2﹣mn﹣n2与2m2+3mn﹣n2的差为.36.(3分)(1)已知2a﹣b=5,c﹣2d=3,则2(a+d)﹣(b+c)=.(2)若当x=﹣1时,ax3+bx+1=﹣2015,则当x=1时,ax3+bx+1=.(3)代数式2x2﹣3x+2的值为7,则x2﹣x﹣1的值为.37.(3分)根据如图所示的计算程序,若输入的值x=﹣1,则输出的值y=.38.(3分)(1)组数据为x,﹣2x2,4x3,﹣8x4,…,观察其规律,推断其n个数据为;(2)有一个多项式为0﹣m2+m3﹣m4+m5﹣…按照这样的规律写下去,第2016项为是;试写出第n项为.39.(3分)如图,是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边摆上20(n=20)根时,需火柴棍为根,若当每边摆上n根时,试写出需火柴棍为根.三、计算或化简:40.4b4﹣4a3b+0.2a2b2+ab3﹣a2b2﹣4b4﹣a3b.41.(x2﹣y2﹣3z2)﹣(x2+y2﹣z2)+(﹣3x2﹣5y2+3z2).42.(﹣4x+8)﹣3(4﹣5x).43.7a2b﹣(﹣4a2b+5ab2)﹣2(2a2b﹣3ab2).44.﹣2x2﹣[3y2﹣2(x2﹣3y2)+6].45.9m﹣{159﹣[4m﹣(11n﹣2m)﹣10n]+2m}.四、化简求值:46.﹣(x2+3x)+2(4x+x2),其中x=﹣2.47.(3a2﹣ab+7)﹣2(5ab﹣4a2+7),其中a=2,b=﹣.48.已知a=﹣1,b=﹣2,求代数式{a2b﹣[3a2b﹣(4ab2+a2b)]}+3a2b的值.49.若(3b﹣6)2+|2a﹣b﹣3|=0,求5(2a﹣b)﹣2(6a﹣2b+2)+(4a﹣3b﹣)的值.五、解答题:50.k为何值时,多项式2(2x2﹣3xy﹣2y2)﹣(2x2+2kxy+b2)不含xy的项?51.规定,如.若,求11x2﹣5.52.已知A=x2﹣2xy,B=y2+3xy.(1)求2A﹣3B?(2)若A﹣B+C=0,试求C?(3)若x=﹣2,y=﹣3时,求2A﹣B+C的值?53.用式子表示十位上的数字x,个位上的数字是y的两位数,再把这个两位数的十位上的数字与个位上的数交换位置,计算所得的数与原数的差,这个数能被9整除吗?54.学习了整式的加减运算后,郑老师出了一道题课堂练习题为“当a=﹣2,b=2016时,求多项式3a3b3﹣a2b+b﹣(4a3b3+b ﹣a2b﹣b2)+(a3b3+a2b)﹣2b2+3的值.”张同学把a=﹣2抄成a=2,韦同学没有抄错题,但他们做出的结果恰好一样,说说这是怎么回事?六、应用题:55.某工厂第一车间有x 人,第二车间比第一车间人数的少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有多少人?(2)调动后,第一车间的人数比第二车间多多少人?56.某城市自来水收费实行阶梯水价,收费标准如表所示;某户5月份用水x吨(x>18),则交水费为多少元?若用水28吨,则水费为多少元?月用水量不超过12吨部分超过12吨不超过18超过18吨部分吨部分收费标准(元/吨) 2.00 2.50 3.0057.如图,△ABC的周长为48,且AB=3a+2b,BC边的2倍比AB少a﹣2b+2.试求:(1)BC边的长;(2)AC边的长.58.某中学一寝室前有一块长为x,宽为x的空地,学校向全校师生征集这块地的绿化设计方案并要求绿地面积不少于2,如图是学生小明的设计方案,阴影部分是绿地.试问小明的设计方案是否合乎要求?为什么?七、探究题:59.如下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去;(1)填表:剪的次数12345正方形个数(2)如果剪了100次,共剪出多少个小正方形?(3)如果剪了n次,共剪出多少个小正方形?(4)观察图形,你还能得出什么规律?新人教版七年级数学上册《第2章整式的加减》参考答案与试题解析一、选择题:1.(3分)下列说法正确的是()A.的次数为1B.单项式a既没有系数,也没有次数C.﹣2πa2bc的系数为﹣2D.是三次单项式,系数为【分析】单项式是指只有数与字母积的式子,包括单独一个数(或者字母).单项式的系数是指其中的数字因数,π属于数字;次数是单项式中所有字母的指数和.【解答】解:A、的次数为3,故选项错误;B、单项式a的系数是1,次数是1,故选项错误;C、﹣2πa2bc的系数为﹣2π,故选项错误;D、是三次单项式,系数为﹣,故选项正确.故选:D.【点评】考查了单项式,解答此题的关键是要注意π是一种特定的数字,不是字母,判断单项式,确定单项式的系数,次数要理解定义.2.(3分)下面叙述不正确的是()A.整式包括单项式和多项式B.﹣m2+n﹣6是多项式也是整式C.﹣m2+n﹣6的次数为3,常数项为6D.﹣m2+n﹣6是二次三项式【分析】根据多项式、整式、单项式的有关概念逐个判断即可.【解答】解:A、整式包括单项式和多项式,故本选项错误;B、﹣m2+n﹣6是多项式也是整式,故本选项错误;C、﹣m2+n﹣6的次数是2,常数项是﹣6,故本选项正确;D、﹣m2+n﹣6是二次三项式,故本选项错误;故选:C.【点评】本题考查了多项式、整式、单项式的有关概念的应用,能理解有关概念是解此题的关键.3.(3分)下列各式﹣5m5,,5a2b,2m+n,0,x2﹣3y+5,x2+,,﹣.是整式的有()A.5个B.6个C.7个D.8个【分析】根据整式的定义,结合题意即可得出答案.【解答】解:﹣5m5,,5a2b,2m+n,0,x2﹣3y+5,x2+,,﹣是整式的有﹣5m5,5a2b,2m+n,0,x2﹣3y+5,,﹣共7个.故选:C.【点评】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数.4.(3分)用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)2【分析】因为a的3倍为3a,与b的差是3a﹣b,所以再把它们的差平方即可.【解答】解:∵a的3倍与b的差为3a﹣b,∴差的平方为(3a﹣b)2.故选:B.【点评】本题考查列代数式,找到所求式子的等量关系是解决问题的关键.本题的易错点是得到被减式.列代数式的关键是正确理解题中给出的文字语言关键词,比如题干中的“倍”、“平方的差”,尤其要弄清“平方的差”和“差的平方”的区别.5.(3分)百位数字是a,十位数字是b,个位数字是c,这个三位数是()A.abc B.a+b+c C.100a+10b+c D.100c+10b+a【分析】三位数的表示方法为:百位数字×100+十位数字×10+个位数字.【解答】解:依题意得:这个三位数是100a+10b+c.故选:C.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.6.(3分)下列各组项中是同类项的是()A.3x2y和﹣3xy2B.﹣0.2a2b和﹣b2aC.3abc和ab D.﹣x和πx【分析】根据同类项的定义判断:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:A、3x2y和﹣3xy2不是同类项,故本选项错误;B、﹣0.2a2b和﹣b2a不是同类项,故本选项错误;C、3abc和ab,不是同类项,故本选项错误;D、﹣x和πx,是同类项,故本选项正确.故选:D.【点评】本题考查了同类项的定义,解题的关键是牢记定义,此题比较简单,易于掌握.7.(3分)若﹣3x2m y3与2x4y n的和是一个单项式,则|m﹣n|的值是()A.0B.1C.7D.﹣1【分析】根据单项式的和是单项式,可得同类项,根据同类项,可得m、n的值,根据差的绝对值是大数减小数,可得答案.【解答】解:由题意,得2m=4,n=3.解得m=2,n=3.|m﹣n|=|2﹣3|=1,故选:B.【点评】本题考查了合并同类项,利用同类项的定义得出m、n的值是解题关键.8.(3分)下列运算中结果正确的是()A.3a+2b=5ab B.5y﹣3y=2C.﹣3x+5x=﹣8x D.3x2y﹣2x2y=x2y【分析】①所含字母相同,并且相同字母的指数相同,像这样的项是同类项;②合并同类项,系数相加字母不变;③、④合并同类项,系数相加字母和字母的指数不变.【解答】解:A、算式中所含字母不同,所以不能合并,故A错误;B、5y﹣3y=2y,合并同类项,系数相加字母不变,故B错误;C、﹣3x+5x=2x,合并同类项,系数相加减,故C错误;D、3x2y﹣2x2y=x2y,合并同类项,系数相加字母和字母的指数不变,故D正确.故选:D.【点评】“同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并”这是本题特别应该注意的地方.9.(3分)下列各式中,去括号或添括号正确的是()A.a2﹣(2a﹣b+c)=a2﹣2a﹣b+cB.a﹣3x+2y﹣1=a+(﹣3x+2y﹣1)C.3x﹣[5x﹣(2x﹣1)]=3x﹣5x﹣2x+1D.﹣2x﹣y﹣a+1=﹣(2x﹣y)+(a﹣1)【分析】根据去括号和添括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】解:A、a2﹣(2a﹣b+c)=a2﹣2a+b﹣c,故错误;B、a﹣3x+2y﹣1=a+(﹣3x+2y﹣1),故正确;C、3x﹣[5x﹣(2x﹣1)]=3x﹣5x+2x﹣1,故错误;D、﹣2x﹣y﹣a+1=﹣(2x+y)+(﹣a+1),故错误;只有B符合运算方法,正确.故选:B.【点评】本题考查去括号和添括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.10.(3分)下列各题去括号错误的是()A.B.C.D.【分析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,分别进行各选项的判断即可.【解答】解:A、括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,故A正确;B、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同,故B正确;C、括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,故C错误;D、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,故D正确;故选:C.【点评】此题考查去括号,关键是根据括号外是负号,去括号时应该变号.11.(3分)化简的结果是()A.﹣7x+B.﹣5x+C.﹣5x+D.﹣5x﹣【分析】本题涉及整式的加减乘法运算、去括号法则.解答时根据每个考点作出回答,然后根据整式的加减运算得出结果.【解答】解:原式=x+﹣6x+=﹣5x+故选:C.【点评】解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.括号前添负号,括号里的各项要变号.12.(3分)化简:[x﹣(y﹣z)]﹣[(x﹣y)﹣z]的结果为()A.2y B.2z C.﹣2y D.﹣2z【分析】先去括号,再合并同类项即可.【解答】解:原式=[x﹣y+z]﹣[x﹣y﹣z]=x﹣y+z﹣x+y+z=2z.故选:B.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.13.(3分)一个多项式与x2﹣2x+1的和是3x﹣2,则这个多项式为()A.x2﹣5x+3B.﹣x2+x﹣1C.﹣x2+5x﹣3D.x2﹣5x﹣13【分析】由题意可得被减式为3x﹣2,减式为x2﹣2x+1,根据差=被减式﹣减式可得出这个多项式.【解答】解:由题意得:这个多项式=3x﹣2﹣(x2﹣2x+1),=3x﹣2﹣x2+2x﹣1,=﹣x2+5x﹣3.故选:C.【点评】本题考查整式的加减,难度不大,注意在合并同类项时要细心.14.(3分)小刚在复习改错本上,发现(﹣a2+3ab﹣b2)﹣(﹣a2+4ab)=﹣a2﹣ab+b2,空格的地方被墨水污染了,则空格处应填()A.B.3b2C.D.﹣3b2【分析】根据题意可得出﹣(﹣a2+4b)=(﹣a2+3ab﹣b2)﹣(﹣a2﹣ab+b2),再计算即可.【解答】解:(﹣a2+3ab﹣b2)﹣(﹣a2﹣ab+b2),=﹣a2+3ab﹣b2+a2+ab﹣b2,=﹣a2+4ab﹣b2,∴空格处应填﹣b2,故选:C.【点评】本题考查了整式的加减,掌握整式加减的运算法则是解题的关键.15.(3分)一个多项式M减去多项式﹣2x2+5x﹣3,小马虎同学却误解为先加上这个多项式,结果得x2+3x+7,则多项式M是()A.3x2﹣2x+10B.﹣x2+8x+4C.3x2﹣x+10D.x2﹣8x﹣4【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:M=(x2+3x+7)﹣(﹣2x2+5x﹣3)=x2+3x+7+2x2﹣5x+3=3x2﹣2x+10,故选:A.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.16.(3分)若A=3m2﹣5m+2,B=3m2﹣5m﹣2,则A与B的大小关系是()A.A=B B.A>B C.A<B D.无法确定【分析】利用作差法即可判断两个多项式的大小关系.【解答】解:A﹣B=(3m2﹣5m+2)﹣(3m2﹣5m﹣2)=3m2﹣5m+2﹣3m2+5m+2=4>0,∴A﹣B>0,∴A>B,故选:B.【点评】本题考查整式加减,若要比较两个多项式的大小关系即可利用作差法比较.17.(3分)二次三项式3x2﹣4x+6的值为9,则的值为()A.18B.12C.9D.7【分析】由已知得出等式3x2﹣4x+6=9,再将等式变形,整体代入即可.【解答】解:依题意,得3x2﹣4x+6=9,整理,得x2﹣x=1,则=1+6=7,故选:D.【点评】本题考查了代数式求值.关键是根据题意,得出等式并变形,整体代入求值.18.(3分)已知y=ax5+bx3+cx﹣1,当x=﹣2时y=5,则当x=2时,y=()A.﹣17B.﹣7C.﹣3D.7【分析】将x=﹣2代入可求出25a+23a+2c的值,从而将x=2代入后再将25a+23a+2c的值代入即可得出当x=2时,y的值.【解答】解:将x=﹣2代入得:y=﹣25a﹣23a﹣2c﹣1=5,∴25a+23a+2c=﹣6,当x=2时,y=25a+23a+2c﹣1=﹣6﹣1=﹣7.故选:B.【点评】本题考查代数式求值的知识,将x=﹣2代入后求出25a+23a+2c是本题的关键,要注意整体思想的运用,不要想着将a、b、c分别解出.19.(3分)有理数m、n在数轴上的位置如图所示,则化简式子|m+n|﹣|m﹣n|的结果是()A.2m+n B.﹣2m C.﹣2n D.m﹣2n【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,合并即可得到结果.【解答】解:根据题意得:m<0<n,且|m|>|n|,∴m﹣n<0,m+n<0,则原式=﹣m﹣n+m﹣n=﹣2n,故选:C.【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.20.(3分)某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是()A.200﹣60x B.140﹣15x C.200﹣15x D.140﹣60x【分析】由于学校租用45座的客车x辆,则余下20人无座位,由此可以用x表示出师生的总人数,又租用60座的客车则可少租用2辆,且最后一辆还没坐满,利用这个条件就可以求出乘坐最后一辆60座客车的人数.【解答】解:∵学校租用45座的客车x辆,则余下20人无座位,∴师生的总人数为45x+20,又∵租用60座的客车则可少租用2辆,∴乘坐最后一辆60座客车的人数为:45x+20﹣60(x﹣3)=45x+20﹣60x+180=200﹣15x.故选:C.【点评】此题主要考查了整式的计算,解题时首先根据题意列出代数式,然后根据题意进行整式的加减即可.21.(3分)如图,阴影部分的面积是()A.B.C.6xy D.3xy【分析】阴影部分的面积即两个矩形的面积和.【解答】解:2y(3x﹣0.5x)+0.5xy=5xy+0.5xy=5.5xy.故选:A.【点评】特别注意大长方形的长的计算.熟练运用合并同类项的法则.22.(3分)如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+6【分析】由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.【解答】解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.故选:C.【点评】本题主要考查了多项式除以单项式,解题关键是熟悉除法法则.23.(3分)一组按规律排列的多项式:a+b,a2﹣b3,a3+b5,a4﹣b7,…,其中第10个式子是()A.a10+b19B.a10﹣b19C.a10﹣b17D.a10﹣b21【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【解答】解:多项式的第一项依次是a,a2,a3,a4,…,a n,第二项依次是b,﹣b3,b5,﹣b7,…,(﹣1)n+1b2n﹣1,所以第10个式子即当n=10时,代入到得到a n+(﹣1)n+1b2n﹣1=a10﹣b19.故选:B.【点评】本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.24.(3分)观察下面的一列单项式:﹣x、2x2、﹣4x3、8x4、﹣16x5、…根据其中的规律,得出的第10个单项式是()A.﹣29x10B.29x10C.﹣29x9D.29x9【分析】通过观察题意可得:n为奇数时,单项式为负数.x的指数为n时,2的指数为(n﹣1).由此可解出本题.【解答】解:依题意得:(1)n为奇数,单项式为:﹣2(n﹣1)x n;(2)n为偶数时,单项式为:2(n﹣1)x n.综合(1)、(2),本数列的通式为:2n﹣1•(﹣x)n,∴第10个单项式为:29x10.故选:B.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.25.(3分)观察下列图形它们是按一定的规律排列的,依照此规律,第20个图形的“★”有()A.57个B.60个C.63个D.85个【分析】排列组成的图形都是三角形.第一个图形中有1×3=3个★,第二个图形中有2×3=6个★,第三个图形中有3×3=9个★,…第20个图形共有20×3=60个★.【解答】解:根据规律可知第n个图形有3n个★,所以第20个图形共有20×3=60个★.另解:通过观察发现每行五星组成的三角形的边上分别有(n+1)个五星,共有3(n﹣1)个,但每个角上的五星重复加了两次,故五星的个数为3(n﹣1)﹣3=3n个,故第20个图象共有60个★.故选:B.【点评】本题考查了图形的变化类问题,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的关键规律为第n个图形有3n个★.二、填空题:26.(3分)写出系数的绝对值是1,含x、y、z三个字母的4次单项式是﹣x2yz,﹣xy2z,﹣xyz2,x2yz,xy2z,xyz2.(尽可能的全部写出)【分析】由于所求单项式是系数为±1,且是含x、y、z三个字母的4次单项式,所以根据其要求和单项式的定义即可求解.【解答】解:系数的绝对值是1,含x、y、z三个字母的4次单项式是﹣x2yz,﹣xy2z,﹣xyz2,x2yz,xy2z,xyz2.故答案为:﹣x2yz,﹣xy2z,﹣xyz2,x2yz,xy2z,xyz2.【点评】此题是一个开放性试题,主要考查了多项式及其系数、次数的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.27.(3分)多项式﹣m2n2+m2﹣2n﹣3是四次四项式,最高项的系数为﹣1,常数项为﹣3.【分析】多项式的次数是多项式中最高次项的次数,含有几项就是几项式,不含字母的项是常数项,据此作答.【解答】解:多项式﹣m2n2+m2﹣2n﹣3是四次四项式,最高项的系数为﹣1,常数项为﹣3;故答案为:四,四,﹣1,﹣3.【点评】此题考查了多项式,解答此题的关键是熟知以下概念:多项式中的每个单项式叫做多项式的项;多项式中不含字母的项叫常数项;多项式里次数最高项的次数,叫多项式的次数.28.(3分)若多项式3x a﹣(b+1)x﹣7是个三次二项式,则a2•b2=9.【分析】根据已知得出关于a和b的方程,求出a、b的值,再代入求出即可.【解答】解:∵多项式3x a﹣(b+1)x﹣7是个三次二项式,∴a=3,﹣(b+1)=0,解得:a=3,b=﹣1,∴a2•b2=32×(﹣1)2=9,故答案为:9.【点评】本题考查了多项式的应用,能根据已知求出a=3和﹣(b+1)=0是解此题的关键.29.(3分)若﹣3a n﹣1b5与2a3b1﹣m可以合并,则合并后的单项式为﹣a3b5,此时m﹣2n=﹣12.【分析】根据同类项的定义,含有相同的字母,相同字母的指数相同,可得m、n的值,根据代数式求值,可得答案.【解答】解:由题意,得﹣3a n﹣1b5与2a3b1﹣m可以合并,则合并后的单项式为﹣a3b5.n﹣1=3,1﹣m=5,解得n=4,m=﹣4.m﹣2n=﹣4﹣2×4=﹣12,故答案为:﹣a3b5,﹣12.【点评】本题考查了合并同类项,本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同,注意①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可.30.(3分)三角形的三边长分别为3a,4a,5a,则其周长为12a.【分析】三角形的周长=三边长相加,把相关数值代入化简即可.【解答】解:∵三角形的三边长分别为3a,4a,5a,∴其周长为3a+4a+5a=12a,故答案为12a.【点评】考查列代数式及代数式化简的知识,理解三角形周长的求法是解决本题的关键.31.(3分)一个长方形的长为5m+3n,宽为2m+n,则此长方形的周长为14m+8n.【分析】根据长方形的周长公式列出整式相加减的式子,再去括号,合并同类项即可.【解答】解:∵一个长方形的长为5m+3n,宽为2m+n,∴此长方形的周长=2(5m+3n+2m+n)=2(7m+4n)=14m+8n.故答案为:14m+8n.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.32.(3分)一根钢筋长a米,第一次用去了全长的,第二次用去了余下的,则剩余部分的长度为米.(结果要化简)【分析】剩余部分的长度=第二次用去的长度=(全长﹣第一次用去的长度)×.【解答】解:可先求第一次剩下了(1﹣)a米,再求第二次用去了余下的后剩下:(1﹣)a×=a.故答案为:a.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.用字母表示数时,要注意写法:①在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号;②在代数式中出现除法运算时,一般按照分数的写法来写;③数字通常写在字母的前面;④带分数的要写成假分数的形式.33.(3分)有a名男生和b名女生在社区做义工,他们为建花坛搬砖.男生每人搬了40块,女生每人搬了30块.这a名男生和b名女生一共搬了(40a+30b)块砖(用含a、b 的代数式表示).【分析】首先表示出男生共搬运的砖数,再表示出女生共搬运的砖数,然后相加即可.【解答】解:男生每人搬了40块,共有a名男生,∴男生共搬运的砖数是:40a,女生每人搬了30块,共有b名女生,∴女生共搬运的砖数是:30b,∴男女生共搬运的砖数是:40a+30b.故答案为:40a+30b.【点评】此题主要考查了根据实际问题列代数式,关键是弄懂题意,表示出男女生各搬运的砖数.34.(3分)(1)m﹣n﹣(m+n)=﹣2n;(2)a﹣(b﹣c+d)=a﹣b+c﹣d;(3)(2m3﹣m+7)﹣2m3﹣1=﹣m+6.(4)(3a5b2﹣ab)+(﹣2a5b2+3)=a5b2﹣ab+3.【分析】(1)去括号、合并同类项即可得到结果;(2)利用被减数减去差得到减数,即可得到结果;(3)利用被减数等于减数加上差,即可得到结果;(2)利用和减去加数得到另一个加数,即可得到结果.【解答】解:(1)m﹣n﹣(m+n)=m﹣n﹣m﹣n=﹣2n.故答案为:﹣2n;(2)∵a﹣(a﹣b+c﹣d)=a﹣a+b﹣c+d=b﹣c+d,∴a﹣(b﹣c+d)=a﹣b+c﹣d.故答案为:b﹣c+d;(3)(2m3﹣m+7)﹣2m3﹣1=﹣m+6.故答案为:2m3﹣m+7;(4)∵(a5b2﹣ab+3)﹣(3a5b2﹣ab)=a5b2﹣ab+3﹣3a5b2+ab=﹣2a5b2+3,∴(3a5b2﹣ab)+(﹣2a5b2+3)=a5b2﹣ab+3.故答案为:﹣2a5b2+3.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.35.(3分)多项式m2﹣mn﹣n2与2m2+3mn﹣n2的差为﹣m2﹣4mn.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:(m2﹣mn﹣n2)﹣(2m2+3mn﹣n2)=m2﹣mn﹣n2﹣2m2﹣3mn+n2=﹣m2﹣4mn.故答案为:﹣m2﹣4mn【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.36.(3分)(1)已知2a﹣b=5,c﹣2d=3,则2(a+d)﹣(b+c)=2.(2)若当x=﹣1时,ax3+bx+1=﹣2015,则当x=1时,ax3+bx+1=2017.(3)代数式2x2﹣3x+2的值为7,则x2﹣x﹣1的值为.【分析】(1)原式去括号整理后,将已知等式代入计算即可求出值;(2)把x=﹣1代入已知等式求出a+b的值,再将x=1与a+b的值代入计算即可求出值;(3)根据已知代数式的值确定出x2﹣x的值,代入原式计算即可得到结果.【解答】解:(1)∵2a﹣b=5,c﹣2d=3,∴原式=2a+2d﹣b﹣c=(2a﹣b)﹣(c﹣2d)=5﹣3=2;(2)把x=﹣1代入得:﹣a﹣b+1=﹣2015,即a+b=2016,则当x=1时,原式=a+b+1=2016+1=2017;(3)根据题意得:2x2﹣3x+2=7,即x2﹣x=,则原式=﹣1=.故答案为:(1)2;(2)2017;(3)【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.37.(3分)根据如图所示的计算程序,若输入的值x=﹣1,则输出的值y=2.【分析】根据所给的函数关系式所对应的自变量的取值范围,将x的值代入对应的函数即可求得y的值.【解答】解:∵x=﹣1,∴对应y=x2+1,故输出的值y=x2+1=(﹣1)2+1=1+1=2.故答案为:2.【点评】能够根据所给的自变量的值结合各个函数关系式所对应的自变量的取值范围,确定其对应的函数关系式,再代入计算.38.(3分)(1)组数据为x,﹣2x2,4x3,﹣8x4,…,观察其规律,推断其n个数据为(﹣2)n﹣1x n;(2)有一个多项式为0﹣m2+m3﹣m4+m5﹣…按照这样的规律写下去,第2016项为是﹣m2016;试写出第n项为(﹣1)n+1m n.【分析】根据各个单项式的变化规律解答即可.【解答】解:(1)x=(﹣2)1﹣1x1,﹣2x2=(﹣2)2﹣1x2,4x3=(﹣2)3﹣1x3,则n个数据为:(﹣2)n﹣1x n;(2)第2016项为是﹣m2016,第n项为(﹣1)n+1m n,故答案为:(1)(﹣2)n﹣1x n;(2)﹣m2016;(﹣1)n+1m n.【点评】本题考查的是多项式和单项式的概念,掌握多项式中每个单项式的变化规律是解题的关键.39.(3分)如图,是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边摆上20(n=20)根时,需火柴棍为630根,若当每边摆上n根时,试写出需火柴棍为根.【分析】根据图中规律可发现,每边增加一根火柴,火柴总数就会比前面增加3n根火柴.【解答】解:由图形可知:当n=1时,火柴总数为3×1,当n=2时,火柴总数为3×(1+2),当n=3时,火柴总数为3×(1+2+3),∴当n=20时,火柴总数为3×(1+2+3+…+20)=630,当每边摆上n根式,火柴总数为3×(1+2+3+…+n)=,【点评】本题考查数字规律,要注意每一个图形之间的联系是解本题的关键.三、计算或化简:40.4b4﹣4a3b+0.2a2b2+ab3﹣a2b2﹣4b4﹣a3b.。

相关文档
最新文档