[VIP专享]安徽省历年高考数学文科卷
【精品】安徽省近两年(2018,2019)高考文科数学试卷以及答案(word解析版)
绝密★启用前安徽省2018年高考文科数学试卷注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}02A =,,{}21012B =--,,,,,则A B =( )A .{}02,B .{}12,C .{}0 D .{}21012--,,,, 2.设1i2i 1iz -=++,则z =( )A .0B .12C .1D 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( )A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为( )A .13B .12C .2D 5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A.B .12πC.D .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x = D.y x =7.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 8.已知函数()222cos sin 2f x x x =-+,则( ) A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A.B.C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( ) A .8B.C.D.11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=( )A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.三、解答题:共70分。
安徽省2009—2013年高考数学真题汇编(文科)
安徽省2009—2013年高考数学真题汇编(文科)(选择题、填空题部分)高考考点1:集合与常用逻辑用语1.(2009年-2). 若集合()(){},0312<-+=x x x A {}5≤∈=+x N x B ,则B A ⋂是A .{1,2,3} B. {1,2} C. {4,5} D. {1,2,3,4,5}2.(2009年-4).“d b c a +>+”是“b a >且d c >”的A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件3.(2010年-1).若{|10}A x x =+>,{|30}B x x =-<,则AB = A.(1,)-+∞ B.(,3)-∞ C.(1,3)- D.(1,3)4.(2011年-2)集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则)(CuT S ⋂等于A. }{,,,1456B. }{,15C. }{4D. }{,,,,123455.(2012年-2)设集合A={3123|≤-≤-x x },集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=A. (1,2)B.[1,2]C. [ 1,2D.(1,2 ]6.(2012年-4)命题“存在实数x ,使x > 1”的否定是A .对任意实数x , 都有x > 1 B.不存在实数x ,使x ≤ 1C.对任意实数x , 都有x ≤ 1D.存在实数x ,使x ≤ 17.(2013年-2)已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=A.{}2,1--B.{}2-C.{}1,0,1-D.{}0,18.(2013年-4) “(21)0x x -=”是“0x =”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.(2010年-11).命题“存在x R ∈,使得2250x x ++=”的否定是 高考考点2:函数、 导数及其应用1.(2009年-8) 设b a <,函数()()b x a x y --=2的图像可能是2.(2009年-9)设函数()θθθt an 2cos 33sin 23++=x x x f ,其中⎥⎦⎤⎢⎣⎡∈125,0πθ,则导数()1'f 的取值范围是A.[]2,2-B.[]3,2C. []2,3D. []2,2 3.(2010年-6).设0abc >,二次函数2()f x ax bx c =++的图像可能是4.(2010年-7)设253()5a =,352()5b =,252()5b =,则a 、b 、c 的大小关系是 A.a c b >> B.a b c >> (C )c a b >> D.b c a >>5.(2011年-5)若点(a,b)在lg y x = 图像上,a ≠1,则下列点也在此图像上的是A.(a 1,b )B. (10a,1-b)C. (a10,b+1) D. (a 2,2b) 6.(2011年-10) 函数()()n f x ax x 2=1-g 在区间〔0,1〕上的图像如图所示,则n 可能是A. 1B. 2C. 3 D .47.(2012年-3)(2l o g 9)·(3log 4)= A . 14 B. 12C. 2 D . 4 8.(2013年-8) 函数()y f x =的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同12,,,n x x x ,使得1212()()()n nf x f x f x x x x ===,则n 的取值范围为A. {}2,3B.{}2,3,4C. {}3,4D. {}3,4,59.(2013年-10)已知函数32()f x x ax bx c =+++有两个极值点12,x x ,若112()f x x x =<,则关于x 的方程 23(())2()0f x af x b ++=的不同实根个数为A. 3B. 4C. 5D. 610.(2011 年-11)设()f x 是定义在R 上的奇函数,当x≤0时,()f x =22x x -,则(1)f =.11.(2011年-13)函数y =的定义域是 .12.(2012年-13)若函数()|2|f x x a =+的单调递增区间是),3[+∞,则a =________.13.(2013年-11) 函数1ln(1)y x =+_____________.14.(2013年-14)定义在R 上的函数()f x 满足(1)2()f x f x +=.若当01x ≤≤时。
普通高等学校招生全国统一考试数学文试题(安徽卷,解析版)
普通高等学校招生全国统一考试数学文试题(安徽卷,解析版)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1. 答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3. 答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出书写的答案无效.........,在试题卷....、草稿纸上答题无效........。
4. 考试结束后,务必将试题卷和答题卡一并上交。
参考公式: 椎体体积13V Sh =,其中S 为椎体的底面积,h 为椎体的高. 若111ni y y n ==∑(x 1,y 1),(x 2,y 2)…,(x n ,y n )为样本点,ˆybx a =+为回归直线,则 111n i x x n ==∑,111ni y y n ==∑()()()111111222111nni i n n i i i x y yy x ynx yb x x x nx a y bx====---==--=-∑∑∑∑,a y bx =-说明:若对数据适当的预处理,可避免对大数字进行运算. 第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设 i 是虚数单位,复数aii1+2-为纯虚数,则实数a 为 (A )2 (B) -2 (C) 1-2(D) 12(1)【命题意图】本题考查复数的基本运算,属简单题. 【解析】设()aibi b R i1+∈2-=,则1+(2)2ai bi i b bi =-=+,所以1,2b a ==.故选A.(2)集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则()U SC T 等于(A )}{,,,1456 (B) }{,15 (C) }{4 (D) }{,,,,12345 (2)B 【命题意图】本题考查集合的补集与交集运算.属简答题. 【解析】{}1,5,6UT =,所以(){}1,6U S T =.故选B.(3) 双曲线x y 222-=8的实轴长是(A )2 (B)22 (C) 4 (D) 42(3)C 【命题意图】本题考查双曲线的标准方程,考查双曲线的性质.属容易题.【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C. (4) 若直线x y a 3++=0过圆x y x y 22++2-4=0的圆心,则a 的值为 (A )-1 (B) 1 (C) 3 (D) -3 (4)B 【命题意图】本题考查直线与圆的位置关系,属容易题.【解析】圆的方程x y x y 22++2-4=0可变形为()()x y 22+1+-2=5,所以圆心为(-1,2),代入直线x y a 3++=0得1a =.(5)若点(a,b)在lg y x = 图像上,a ≠1,则下列点也在此图像上的是(A )(a 1,b ) (B ) (10a,1-b) (C) (a10,b+1) (D)(a 2,2b) (5)D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系. 【解析】由题意lg b a =,lg lg b a a 22=2=,即()2,2a b 也在函数lg y x = 图像上.(6)设变量x,y 满足,x y 1x y 1x +≤⎧⎪-≤⎨⎪≥0⎩,则x y +2的最大值和最小值分别为说明:若对数据适当的预处理,可避免对大数字进行运算.(A ) 1,-1 (B) 2,-2 (C ) 1,-2 (D)2,-1(6)B 【命题意图】本题考查线性目标函数在线性约束条件下的最大值与最小值问题.属中等难度题.【解析】1,1,0x y x y x +=-==三条直线的交点分别为(0,1),(0,-1),(1,0),分别代入x y +2,得最大值为2,最小值为-2.故选B.(7)若数列}{n a 的通项公式是()()n a n =-13-2,则a a a 1210++=(A ) 15 (B) 12 (C ) -12 (D) -15 (7)A 【命题意图】本题考查数列求和.属中等偏易题. 【解析】法一:分别求出前10项相加即可得出结论; 法二:12349103a a a a a a +=+==+=,故a a a 1210++=3⨯5=15.故选A.(8)一个空间几何体得三视图如图所示,则该几何体的表面积为第(8)题图(A ) 48 (B)32+817 (C) 48+817 (D) 80(8)C 【命题意图】本题考查三视图的识别以及空间多面体表面积的求法.【解析】由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,下底为4,高为4,两底面积和为()12244242⨯+⨯=,四个侧面的面积为()44221724817++=+,所以几何体的表面积为48817+.故选C.(9) 从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于 (A )110(B) 18 (C) 16 (D) 15(9)D 【命题意图】本题考查古典概型的概率问题.属中等偏难题.【解析】通过画树状图可知从正六边形的6个顶点中随机选择4个顶点,以它们作为顶点的四边形共有15个,其中能构成矩形3个,所以是矩形的概率为31155=.故选D. (10) 函数()()nf x ax x 2=1-在区间〔0,1〕上的图像如图所示,则n 可能是 (A )1 (B) 2 (C) 3 (D) 4(10)A 【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当1n =时,()()()f x ax x a x x x 232=1-=-2+,则()()f x a x x 2'=3-4+1,由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫ ⎪⎝⎭递增,在1,13⎛⎫ ⎪⎝⎭递减,即在13x =取得最大值,由()()f a 21111=⨯1-=3332,知a 存在.故选A.2011年普通高等学校招生全国统一考试(安徽卷)数 学(文科)第II 卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.................. 二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)设()f x 是定义在R 上的奇函数,当x≤0时,()f x =22x x -,则(1)f = . (11)-3【命题意图】本题考查函数的奇偶性,考查函数值的求法.属中等难度题. 【解析】2(1)(1)[2(1)(1)]3f f =--=----=-.(12)如图所示,程序框图(算法流程图)的输出结果是15 .(12)15【命题意图】本题考查算法框图的识别,考查等差数列前n 项和. 【解析】由算法框图可知(1)1232k k T k +=++++=,若T =105,则K =14,继续执行循环体,这时k =15,T >105,所以输出的k 值为15. (13)函数216y x x=--的定义域是 .(13)(-3,2)【命题意图】本题考查函数的定义域,考查一元二次不等式的解法. 【解析】由260x x -->可得260x x +-<,即()()+320x x -<,所以32x -<<.(14)已知向量a ,b 满足(a +2b )·(a -b )=-6,且a =,2b =,则a 与b 的夹角为 . (14)60°【命题意图】本题考查向量的数量积,考查向量夹角的求法.属中等难度的题.【解析】()()26a b a b +⋅-=-,则2226a a b b +⋅-=-,即221226a b +⋅-⨯=-,1a b ⋅=,所以1cos ,2a b a b a b⋅〈〉==⋅,所以,60a b 〈〉=. (15)设()f x =sin 2cos2a x b x +,其中a ,b ∈R ,ab ≠0,若()()6f x f π≤对一切则x ∈R恒成立,则①11()012f π= ②7()10f π<()5f π ③()f x 既不是奇函数也不是偶函数④()f x 的单调递增区间是2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦⑤存在经过点(a ,b )的直线与函数的图()f x 像不相交 以上结论正确的是 (写出所有正确结论的编号).(15)①③【命题意图】本题考查辅助角公式的应用,考查基本不等式,考查三角函数求值,考查三角函数的单调性以及三角函数的图像. 【解析】2222()sin 2cos2sin(2)f x a x b x a b x a b ϕ=+=+++,又31()sin cos 063322f a b a b πππ=+=+,由题意()()6f x f π≤对一切则x ∈R 恒成立,则22312a b a b ++对一切则x ∈R 恒成立,即222231344a b a b ab +++,223230a b ab+恒成立,而22323a b ab +,所以22323a b ab +=,此时30a b =>.所以()3sin 2cos 22sin 26f x b x b x b x π⎛⎫=+=+ ⎪⎝⎭.①1111()2sin 01266f b πππ⎛⎫=+= ⎪⎝⎭,故①正确; ②774713()2sin 2sin 2sin 10563030f b b b πππππ⎛⎫⎛⎫⎛⎫=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 21713()2sin 2sin 2sin 5563030f b b b πππππ⎛⎫⎛⎫⎛⎫=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以7()10f π<()5f π,②错误; ③()()f x f x -≠±,所以③正确;④由①知()3sin 2cos 22sin 26f x b x b x b x π⎛⎫=+=+ ⎪⎝⎭,0b >, 由222262k x k πππππ-++知236k x k ππππ-+,所以③不正确;⑤由①知30a b =>,要经过点(a ,b )的直线与函数的图()f x 像不相交,则此直线与横轴平行,又()f x 的振幅为23b b >,所以直线必与()f x 图像有交点.⑤不正确.三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内. (16)(本小题满分13分)在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a=3,b=2,12cos()0B C ++=,求边BC 上的高.(16)解:∵A+B +C =180°,所以B +C =A , 又12cos()0B C ++=,∴12cos(180)0A +-=, 即12cos 0A -=,1cos 2A =, 又0°<A<180°,所以A =60°. 在△ABC 中,由正弦定理sin sin a b A B=得sin 2sin 602sin 23b A B a ===, 又∵b a <,所以B <A ,B =45°,C =75°, ∴BC 边上的高AD =AC ·sinC =2sin 752sin(4530)=+2(sin 45cos30cos 45sin 30)=+2321312()2+=⨯+⨯=.(17)(本小题满分13分)设直线11221212:x+1:y=k x 1k k k k +20l y k l =-⋅=,,其中实数满足,(I )证明1l 与2l 相交;(II )证明1l 与2l 的交点在椭圆222x +y =1上. (18)(本小题满分13分)设()2xe f x =,其中a 为正实数.(Ⅰ)当34a =时,求()f x 的极值点; (Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. (19)(本小题满分13分)如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,1OA =,2OD =,,OAB OAC ,ODF 都是正三角形。
文科数学安徽省高考真题含答案
2005年普通高等学校招生全国统一考试文科数学(必修+选修I )本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I 卷1至2页,第Ⅱ卷3至10页. 考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试卷卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面公式P(A+B)=P(A)+P(B) 24R S π=如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B) 其中R 表示球的半径 如果事件A 在一次实验中发生的概率是 球的体积公式 P ,那么n 次独立重复实验中恰好发生k 334R V π=球次的概率kn k k n n P P C k P --=)1()( 其中R 表示球的半径一、选择题1.设I 为全集,S 1、S 2、S 3是I 的三个非空子集且S 1∪S 2∪S 3=I ,则下面论断正确的是( ) A . I S I ∩(S 2∪S 3)= B .S 1⊆( I S 2∩I S 3)C . I S I ∩I S 2∩I S 3=D .S 1⊆( I S 2∪I S 3)2.一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 ( )A .8π2B .8πC .4π2D .4π3.函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a =( )A .2B .3C .4D .54.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF//AB ,EF=2,则该多面体的体积为( )A .32 B .33C .34 D .23 5.已知双曲线)0(1222>=-a y a x 的一条准线为23=x ,则该双曲线的离心率为 ( )A .23 B .23 C .26 D .332 6.当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为( )A .2B .23C .4D .43 7.)21(22≤≤-=x x x y 的反函数是( )A .)11(112≤≤--+=x x yB .)10(112≤≤-+=x x yC .)11(112≤≤---=x x yD .)10(112≤≤--=x x y8.设x x f a a x f a x xa 的则使函数0)(),22(log )(,102<--=<<的取值范围是 ( )A .)0,(-∞B .),0(+∞C .)3log ,(a -∞D .),3(log +∞a9.在坐标平面上,不等式组⎩⎨⎧+-≤-≥1||3,1x y x y 所表示的平面区域面积为 ( )A .2B .23 C .223 D .210.在△ABC 中,已知C BA sin 2tan =+,给出以下四个论断( )①tanA ·cotB=1②0<sinA+sinB ≤2③sin 2A+cos 2B=1④cosA 2+cos 2B=sin 2C A .①③ B .②④C .①④D .②③11.点O 是三角形ABC 所在平面内的一点,满足⋅=⋅=⋅,则点O是△ABC 的( )A .三个内角的角平分线的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三条高的交点12.设直线l 过点(-2,0),且与圆x 2+y 2=1相切,则l 的斜率是 ( )A .±1B .±21C .±33 D .±3第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试卷卷中。
安徽省高考数学试卷(文科)答案与解析
2012年安徽省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.2.(5分)(2012•安徽)设集合A={x|﹣3≤2x﹣1≤3},集合B为函数y=lg(x﹣1)的定义域,B=,知,6.(5分)(2012•安徽)如图所示,程序框图(算法流程图)的输出结果是()向左平移向右平移个单位)个单8.(5分)(2012•安徽)若x,y满足约束条件,则z=x﹣y的最小值是(),表示的可行域如图,,,、)9.(5分)(2012•安徽)若直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,则实数a取值范的距离为10.(5分)(2012•安徽)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白B=;二.填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置.11.(5分)(2012•安徽)设向量=(1,2m),=(m+1,1),=(2,m),若(+)⊥,则||=.===,知,由(+)⊥)|==,+)⊥,),即.故答案为:12.(5分)(2012•安徽)某几何体的三视图如图所示,则该几何体的体积等于56.=5613.(5分)(2012•安徽)若函数f(x)=|2x+a|的单调递增区间是[3,+∞),则a=﹣6.关于直线关于直线14.(5分)(2012•安徽)过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,若|AF|=3,则|BF|=.=⇔=故答案为:.15.(5分)(2012•安徽)若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则②④⑤(写出所有正确结论编号)①四面体ABCD每组对棱相互垂直②四面体ABCD每个面的面积相等③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°而小于180°④连接四面体ABCD每组对棱中点的线段互垂直平分⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长.,,易知能构成三角形.,,,任意两边之和大于第三边,能构成三角形.三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤,解答写在答题卡上的指定区域内.16.(12分)(2012•安徽)设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.A=,可求B=cosA=A=A=B=.17.(12分)(2012•安徽)设定义在(0,+∞)上的函数f(x)=ax++b(a>0)(Ⅰ)求f(x)的最小值;(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=,求a,b的值.y==ax+x=,可得:,∴a++b=﹣=18.(13分)(2012•安徽)若某产品的直径长与标准值的差的绝对值不超过1mm时,则视为合格品,否则视为不合格品.在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;(Ⅲ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品.据此估算这批产品中的合格品的件数.(Ⅲ)这批产品中的合格品的件数为(Ⅲ)这批产品中的合格品的件数为19.(12分)(2012•安徽)如图,长方体ABCD﹣A1B1C1D1 中,底面A1B1C1D1 是正方形,O是BD的中点,E是棱AA1上任意一点.(Ⅰ)证明:BD⊥EC1;(Ⅱ)如果AB=2,AE=,OE⊥EC1,求AA1的长.,求出AE=⇔=320.(13分)(2012•安徽)如图,F1、F2分别是椭圆C:(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.(Ⅰ)求椭圆C的离心率;(Ⅱ)已知△AF1B的面积为40,求a,b 的值.40=|BA||F=40b=521.(13分)(2012•安徽)设函数f(x)=+sinx的所有正的极小值点从小到大排成的数列为{x n}.(Ⅰ)求数列{x n}.(Ⅱ)设{x n}的前n项和为S n,求sinS n.)﹣,再分类讨论,求,可得;,可得;.)﹣,=;=﹣。
安徽省高考文科数学试卷及答案
普通高等学校招生全国统一考试(安徽卷)数学(文科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至第2页,第II卷第3至第4页。
全卷满分150分,考试用时120分钟。
考生注意事项:1.答题前,考生务必用在试题卷、题卡规定的地方填写自己的姓名、座位号,并认真核答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号一致。
务必在答题卡北面规定的地方填写姓名和座位号后两位。
2.答第I卷时,每小题选出的答案后,用2B铅笔把答题卡对应的题材目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.第II卷时,必须用0.5毫米的黑色签字笔在答题卡上.....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色签字笔描清楚。
必须在题号所指示区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效...........................。
4.考试结束,务必将试题卷和答题卡一并上交。
参考公式:锥体体积公式:V=13Sh, 其中S是锥体的底面积,h是锥体的高。
若(x1,y1),(x2,y2),……,(x m,y n)为样本点,y=bx+a为回归直线,则说明:若对数据作适当的预处理,可避免对大数字进行运算。
第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设i是虚数单位,复数12aii+-为纯复数,则是数a为(A) 2 (B) -2 (C) -12(D)12(2)集合{1,2,3,4,5,6},U ={1,4,6},S ={2,3,4},T =则S ⋂()等于 (A) (B) {1,5} (C) {4} ( D) {1,2,3,4,5} (3) 油长是(A )2 (B) 22 (C)4 (D) 42(4)若直线30x y a ++=过圆22240x y x y ++-=的圆心,则a 的值为 (A )-1 (B ) 1 (C )3 (D )-3(5)若点(),a b 在lg y x =图像上,1a ≠,则下列点也在此图像上的是(A )1,b a ⎛⎫⎪⎝⎭(B )()10,1a b - (C )10,1b a ⎛⎫+ ⎪⎝⎭ (D )22a b +(6)设变量x ,y 满足 1x y +≤ 则2x y +的最大值和最小值分别为 1x y -≤ 0x ≥(A )1,-1 (B )2, -2 (C )1, -2 (D )2,-1(7)若数列n a 的通项公式是a n =(-1)n(3n -2),则12a a ++…10a +=(A )15 (B)12 (C )-12 (D) -15 (8)一个空间几何体的三视图如图所示,则该几何体的表面积为 (A )48 (B )32+817(C )48+817(D )80 (9)从六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于(A )110 (B )18 (C )16 (D )15(10)函数()()221f x ax x =-在区间[]0,1上的图像如图所示,则n 可能是(A )1 (B )2 (C )3 (D )4普通高等学校招生全国统一考试(安徽卷) 数学(文科)第 Ⅱ卷 (非选择题 共100分) 考生注意事项请用0.5毫米黑色墨水签字笔答题,在试题卷上答题无效.........二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。
近五年安徽文科高考数学试卷及答案2
2007年普通高等学校招生全国统一考试(安徽卷)数学(文科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第I 至第2页,第II 卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致.2.答第I 卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第II 卷时,必须用0.5毫米黑色黑水签字笔在答题卡上.....书写.在试题卷上作答无........效.. 4.考试结束,监考员将试题和答题卡一并收回. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么球的体积公式(1)122n n n ++++=34π3V R =222(1)(21)126n n n n +++++=其中R 表示球的半径22333(1)124n n n ++++=第I 卷(选择题共55分)一、选择题:本大题共11小题,每小题5分,共55分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若{}21A x x ==,{}2230B x x x =--=,则A B =( )A.{}3B.{}1C.∅D.{}1-2.椭圆2241x y +=的离心率为( )A.2B.34C.2D.233.等差数列{}n a 的前n 项和为n S ,若21a =,33a =,则4S =( ) A.12 B.10 C.8 D.64.下列函数中,反函数是其自身的函数为( ) A.2()f x x =,[0)x ∈+∞,B.3()()f x x x =∈-∞+∞,,C.()e ()xf x x =∈-∞+∞,,D.1()f x x=,(0)x ∈+∞, 5.若圆22240x y x y +--=的圆心到直线0x y a -+=的距离为2,则a 的值为( ) A.2-或2B.12或32C.2或0 D.2-或0 6.设t ,m ,n 均为直线,其中m n ,在平面α内,则“l α⊥”是“l m ⊥且l n ⊥”的( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 7.图中的图象所表示的函数的解析式为( )A.312y x =- (02)x ≤≤B.33122y x =-- (02)x ≤≤C.312y x =-- (02)x ≤≤D.11y x =--(02)x ≤≤8.设1a >,且2log (1)a m a =+,log (1)a n a =-,log (2)a p a =,则m n p ,,的大小关系为( )A.n m p >>B.m p n >> C.m n p >> D.p m n >>9.如果点P 在平面区域22020210x y x y y -+⎧⎪+-⎨⎪-⎩≥≤≥上,点Q 在曲线22(2)1x y ++=上,那么PQ 的最小值为( ) A.321-C.1110.把边长为的正方形ABCD 沿对角线AC 折成直二面角,折成直二面角后,在A B C D ,,,四点所在的球面上,B 与D 两点之间的球面距离为( )C.π B.π2 D.π311.定义在R 上的函数()f x 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程()0f x =在闭区间[]T T -,上的根的个数记为n ,则n 可能为( )A.0B.1C.3D.52007年普通高等学校招生全国统一考试(安微卷)第7题图数学(文科)第II 卷(非选择题共95分)注意事项: 请用0.5毫米黑色墨水签字笔在答题卡...上书写作答,在试题卷上书写作答无效........... 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.12.已知52345012345(1)x a a x a x a x a x a x -=+++++,则024135()()a a a a a a ++++的值等于 .13.在四面体O ABC -中,OA a =,OB b =,OC c =,D 为BC 的中点,E 为AD 的中点,则OE =(用a b c ,,表示)14.在正方体上任意选择两条棱,则这两条棱相互平行的概率为. 15.函数π()3sin 23f x x ⎛⎫=- ⎪⎝⎭的图象为C ,如下结论中正确的是(写出所有正确结论的编号..). ①图象C 关于直线11π12x =对称; ②图象C 关于点2π03⎛⎫⎪⎝⎭,对称; ③函数()f x 在区间π5π1212⎛⎫-⎪⎝⎭,内是增函数; ④由3sin 2y x =的图角向右平移π3个单位长度可以得到图象C . 三、解答题:本大题共6小题,共79分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分10分) 解不等式(311)(sin 2)0x x --->.17.(本小题满分14分) 如图,在六面体1111ABCD A B C D -中,四边形ABCD 是边长为2的正方形,四边形1111A B C D 是边长为1的正方形,1DD ⊥平面1111A B C D ,1DD ⊥平面ABCD ,12DD =.(Ⅰ)求证:11A C 与AC 共面,11B D 与BD 共面. (Ⅱ)求证:平面11A ACC ⊥平面11B BDD ;(Ⅲ)求二面角1A BB C --的大小(用反三角函数值表示) 18.(本小题满分14分)设F 是抛物线2:4G x y =的焦点.(I )过点(04)P -,作抛物线G 的切线,求切线方程; ABCD1A1B1C 1D(II )设A B ,为抛物线G 上异于原点的两点,且满足0FA FB =,延长AF ,BF 分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值. 19.(本小题满分13分)在医学生物试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到..两只苍蝇都飞出,再关闭小孔. (I )求笼内恰好剩下....1只果蝇的概率; (II )求笼内至少剩下....5只果蝇的概率. 20.(本小题满分14分) 设函数232()cos 4sincos 43422x xf x x t t t t =--++-+,x ∈R , 其中1t ≤,将()f x 的最小值记为()g t . (I )求()g t 的表达式;(II )讨论()g t 在区间(11)-,内的单调性并求极值.21.(本小题满分14分)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为1a ,以后每年交纳的数目均比上一年增加(0)d d >,因此,历年所交纳的储备金数目12a a ,,是一个公差为d 的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为(0)r r >,那么,在第n 年末,第一年所交纳的储备金就变为11(1)n a r -+,第二年所交纳的储备金就变为22(1)n a r -+,.以n T 表示到第n 年末所累计的储备金总额.(Ⅰ)写出n T 与1(2)n T n -≥的递推关系式;(Ⅱ)求证:n n n T A B =+,其中{}n A 是一个等比数列,{}n B 是一个等差数列.2007年普通高等学校招生全国统一考试(安徽卷)数学(文史)参考答案一、选择题:本题考查基本知识的基本运算.每小题5分,满分55分. 1.D 2.A 3.C 4.D 5.C 6.A7.B 8.B 9.A 10.C 11.D二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 12.256-13.111244a b c ++ 14.31115.①②③三、解答题16.本小题主要考查三角函数的基本性质,含绝对值不等式的解法,考查基本运算能力.本小题满分10分.解:因为对任意x ∈R ,sin 20x -<,所以原不等式等价于3110x --<. 即311x -<,1311x -<-<,032x <<,故解为203x <<. 所以原不等式的解集为203x x ⎧⎫<<⎨⎬⎩⎭. 17.本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.本小题满分14分. 解法1(向量法):以D 为原点,以1DADC DD ,,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -如图,则有1111(200)(220)(020)(102)(112)(012)(002)A B C A B C D ,,,,,,,,,,,,,,,,,,,,. (Ⅰ)证明:1111(110)(220)(110)(220)AC AC D B DB =-=-==,,,,,,,,,,,∵. 111122AC AC DB D B ==,∴. AC ∴与11AC 平行,DB 与11D B 平行,于是11A C 与AC 共面,11B D 与BD 共面.(Ⅱ)证明:1(002)(220)0DD AC =-=,,,,··,(220)(220)0DB AC =-=,,,,··, 1DD AC ⊥∴,DB AC ⊥.1DD 与DB 是平面11B BDD 内的两条相交直线.AC ⊥∴平面11B BDD .又平面11A ACC 过AC .∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:111(102)(112)(012)AA BB CC =-=--=-,,,,,,,,. 设111()x y z =,,n 为平面11A ABB 的法向量,11120AA x z =-+=·n ,111120BB x y z =--+=n ·.于是10y =,取11z =,则12x =,(201)=,,n . 设222()x y z =,,m 为平面11B BCC 的法向量,122220BB x y z =--+=m ·,12220CC y z =-+=m ·.于是20x =,取21z =,则22y =,(021)=,,m .1cos 5==,m n m n m n ·. ∴二面角1A BB C --的大小为1πarccos 5-.解法2(综合法):(Ⅰ)证明:1D D ⊥∵平面1111A B C D ,1D D ⊥平面ABCD .1D D DA ⊥∴,1D D DC ⊥,平面1111A B C D ∥平面ABCD .于是11C D CD ∥,11D A DA ∥.设E F ,分别为DADC ,的中点,连结11EF A E C F ,,, 有111111A E D D C F D D DE DF ==,,,∥∥. 11A E C F ∴∥,于是11AC EF ∥.由1DE DF ==,得EF AC ∥, 故11AC AC ∥,11A C 与AC 共面. 过点1B 作1B O ⊥平面ABCD 于点O ,则1111B O A E B OC F , ∥∥,连结OE OF ,, ABCD1A1B1C 1D MOEF于是11OE B A ∥,11OF B C ∥,OE OF =∴. 1111B A A D ⊥∵,OE AD ⊥∴. 1111B C C D ⊥∵,OF CD ⊥∴.所以点O 在BD 上,故11D B 与DB 共面.(Ⅱ)证明:1D D ⊥∵平面ABCD ,1D D AC ⊥∴, 又BD AC ⊥(正方形的对角线互相垂直),1D D 与BD 是平面11B BDD 内的两条相交直线,AC ⊥∴平面11B BDD .又平面11A ACC 过AC ,∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:∵直线DB 是直线1B B 在平面ABCD 上的射影,AC DB ⊥, 根据三垂线定理,有1AC B B ⊥.过点A 在平面1ABB A 内作1AM B B ⊥于M ,连结MC MO ,, 则1B B ⊥平面AMC , 于是11B B MC B B MO ⊥⊥,,所以,AMC ∠是二面角1A B B C --的一个平面角.根据勾股定理,有111A A C C B B ==. 1OM B B ⊥∵,有11B O OB OM B B ==·,BM =AM =,CM =. 2221cos 25AM CM AC AMC AM CM +-∠==-·,1πarccos 5AMC ∠=-,二面角1A BB C --的大小为1πarccos5-. 18.本小题主要考查抛物线的方程与性质,抛物线的切点与焦点,向量的数量积,直线与抛物线的位置关系,平均不等式等基础知识,考查综合分析问题、解决问题的能力.本小题满分14分.解:(I )设切点2004x Q x ⎛⎫ ⎪⎝⎭,.由2xy '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为2000()42x xy x x -=-. 即20424x x y x =-. 因为点(0)P -4,在切线上.所以2044x -=-,2016x =,04x =±.所求切线方程为24y x =±-. (II )设11()A x y ,,22()C x y ,.由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >. 因直线AC 过焦点(01)F ,,所以直线AC 的方程为1y kx =+.点A C ,的坐标满足方程组214y kx x y =+⎧⎨=⎩,, 得2440x kx --=, 由根与系数的关系知121244.x x k x x +=⎧⎨=-⎩,24(1)AC k ===+.因为AC BD ⊥,所以BD 的斜率为1k -,从而BD 的方程为11y x k=-+. 同理可求得22214(1)41k BD k k ⎛⎫+⎛⎫=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭. 2222218(1)18(2)322ABCDk S AC BD k k k +===++≥. 当1k =时,等号成立.所以,四边形ABCD 面积的最小值为32.19.本小题主要考查排列、组合知识与等可能事件、互斥事件概率的计算,运用概率知识分析问题及解决实际问题的能力.本小题满分13分.解:以k A 表示恰剩下k 只果蝇的事件(016)k =,,,. 以m B 表示至少剩下m 只果蝇的事件(016)m =,,,. 可以有多种不同的计算()k P A 的方法.方法1(组合模式):当事件k A 发生时,第8k -只飞出的蝇子是苍蝇,且在前7k -只飞出的蝇子中有1只是苍蝇,所以17287()28kk C k P A C --==. 方法2(排列模式):当事件k A 发生时,共飞走8k -只蝇子,其中第8k -只飞出的蝇子是苍蝇,哪一只?有两种不同可能.在前7k -只飞出的蝇子中有6k -只是果蝇,有68kC -种不同的选择可能,还需考虑这7k -只蝇子的排列顺序.所以162688(7)!7()28kk kC C k kP A A ----==. 由上式立得163()2814P A ==; 356563()()()()28P B P A A P A P A =+=+=. 20.本小题主要考查同角三角函数的基本关系,倍角的正弦公式,正弦函数的值域,多项式函数的导数,函数的单调性,考查应用导数分析解决多项式函数的单调区间,极值与最值等问题的综合能力.本小题满分14分. 解:(I )我们有232()cos 4sin cos 43422x xf x x t t t t =--++-+222sin 12sin 434x t t t t =--++-+ 223sin 2sin 433x t x t t t =-++-+23(sin )433x t t t =-+-+.由于2(sin )0x t -≥,1t ≤,故当sin x t =时,()f x 达到其最小值()g t ,即3()433g t t t =-+.(II )我们有2()1233(21)(21)1g t t t t t '=-=+--1<<,. 列表如下:由此可见,()g t 在区间112⎛⎫-- ⎪⎝⎭,和112⎛⎫ ⎪⎝⎭,单调增加,在区间1122⎛⎫- ⎪⎝⎭,单调减小,极小值为122g ⎛⎫= ⎪⎝⎭,极大值为42g 1⎛⎫-= ⎪⎝⎭. 21.本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力、考查应用所学知识分析和解决实际问题的能力.本小题满分14分.解:(Ⅰ)我们有1(1)(2)n n n T T r a n -=++≥. (Ⅱ)11T a =,对2n ≥反复使用上述关系式,得2121(1)(1)(1)n n n n n n T T r a T r a r a ---=++=++++=12121(1)(1)(1)n n n n a r a r a r a ---=+++++++,①在①式两端同乘1r +,得12121(1)(1)(1)(1)(1)n n n n n r T a r a r a r a r --+=++++++++②②-①,得121(1)[(1)(1)(1)]n n n n n rT a r d r r r a --=++++++++-1[(1)1](1)n n n dr r a r a r=+--++-. 即1122(1)nn a r d a r d d T r n r r r ++=+--.如果记12(1)nn a r d A r r +=+,12n a r d d B n r r+=--,则n n n T A B =+. 其中{}n A 是以12(1)a r dr r++为首项,以1(0)r r +>为公比的等比数列;{}n B 是以12a r d d r r +--为首项,dr-为公差的等差数列.2008年普通高等学校招生全国统一考试(安徽卷)数 学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致. 2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写.在试题卷上作答无效. 4. 考试结束,监考员将试题卷和答题卡一并收回. 参考公式:如果事件A B ,互斥,那么球的表面积公式 24πS R = ()()()P A B P A P B +=+其中R 表示球的半径如果事件A B ,相互独立,那么 球的体积公式 34π3V R =()()()P A B P A P B =其中R 表示球的半径第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1).若A 为位全体正实数的集合,{}2,1,1,2B =--则下列结论正确的是( )A .}{2,1AB =--B . ()(,0)R A B =-∞ðC .(0,)AB =+∞D . }{()2,1R A B =--ð 解:R A ð是全体非正数的集合即负数和0,所以}{()2,1R A B =--ð(2).若(2,4)AB =,(1,3)AC =, 则BC =( )A .(1,1)B .(-1,-1)C .(3,7)D .(-3,-7)解:向量基本运算 (1,3)(2,4)(1,1)BC AC AB =-=-=--(3).已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,αγβγαβ⊥⊥若则‖B .,,m n m n αα⊥⊥若则‖C .,,m n m n αα若则‖‖‖D .,,m m αβαβ若则‖‖‖解:定理:垂直于一个平面的两条直线互相平行,故选B 。
2007—2011年历年安徽高考数学试卷(文、理及答案)
2007年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。
2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动、用橡皮擦干净后,再选涂其他答案标号。
3.答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上.....书写。
在试题卷上作答无........效.。
4.考试结束,监考员将试题卷和答题卡一并收回。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A+B )=PA .+PB . S=4лR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A ·B )=PA .+PB . 球的体积公式1+2+…+n 2)1(+n n V=334R π 12+22+…+n 2=6)12)(1(++n n n 其中R 表示球的半径 13+23++n 3=4)1(22+n n 第Ⅰ卷(选择题 共55分)一、选择题:本大题共11小题,每小题5分,共55分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列函数中,反函数是其自身的函数为A .[)+∞∈=,0,)(3x x x f B .[)+∞∞-∈=,,)(3x x x fC .),(,)(+∞-∞∈=x e x f xD .),0(,1)(+∞∈=x xx f 2.设l ,m ,n 均为直线,其中m ,n 在平面α内,“l ⊥α”是l ⊥m 且“l ⊥n ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若对任意∈x R,不等式x ≥ax 恒成立,则实数a 的取值范围是A .a <-1B .a ≤1C . a <1D .a ≥14.若a 为实数,iai212++=-2i ,则a 等于 A .2B .—2C .22D .—22 5.若}{8222<≤Z ∈=-x x A ,{}1log R 2>∈=x x B ,则)(C R B A ⋂的元素个数为A .0B .1C .2D .3 6.函数)3π2sin(3)(-=x x f 的图象为C , ①图象C 关于直线π1211=x 对称; ②函灶)(x f 在区间)12π5,12π(-内是增函数; ③由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C . 以上三个论断中,正确论断的个数是A .0B .1C .2D .3 7.如果点P 在平面区域⎪⎩⎪⎨⎧≤-+≤+-≥+-02012022y x y x y x 上,点Q 在曲线1)2(22=++y x 上,那么Q P 的最小值为A .15-B .154-C .122-D .12-8.半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为A .)33arccos(- B .)36arccos(-C .)31arccos(-D .)41arccos(- 9.如图,1F 和2F 分别是双曲线)0,0(12222>>=-b a br a x 的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为A .3B .5C .25D .31+10.以)(x φ表示标准正态总体在区间(x ,∞-)内取值的概率,若随机变量ξ服从正态分布),(2σμN ,则概率)(σμξ<-P 等于A .)(σμφ+-)(σμφ-B .)1()1(--φφC .)1(σμφ-D .)(2σμφ+11.定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为A .0B .1C .3D .5第Ⅱ卷(非选择题 共95分)注意事项:请用0.5毫米黑色水签字笔在答题卡...上书写作答,在试题卷上书写作答无效............二、填空题:本大题共4小题,每小题4分,共16分。
2023年安徽省高考文科数学真题及参考答案
2023年安徽省高考文科数学真题及参考答案一、选择题1.=++3222ii ()A .1B .2C .5D .52.设集合{}8,6,4,2,1,0=U ,集合{}6,4,0=M ,{}6,1,0=N ,则=⋃N C M U ()A .{}8,6,4,2,0B .{}8,6,4,1,0C .{}8,6,4,2,1D .U3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A .24B .26C .28D .304.在ABC ∆中,内角C B A ,,的对边分别是c b a ,,,若c A b B a =-cos cos ,且5π=C ,则=∠B ()A .10πB .5πC .103πD .52π5.已知()1-=ax xe xe xf 是偶函数,则=a ()A .2-B .1-C .1D .26.正方形ABCD 的边长是2,E 是AB 的中点,则=⋅ED EC ()A .5B .3C .52D .57.设O 为平面坐标系的坐标原点,在区域(){}41,22≤+≤y x y x 内随机取一点A ,则直线OA 的倾斜角不大于4π的概率为()A .81B .61C .41D .218.函数()23++=ax x x f 存在3个零点,则a 的取值范围是()A .()2-∞-,B .()3-∞-,C .()14--,D .()0,3-9.某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()A .65B .32C .21D .3110.已知函数()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,直线6π=x 和32π=x 为函数()x f y =的图象的两条对称轴,则=⎪⎭⎫⎝⎛-125πf ()A .23-B .21-C .21D .2311.已知实数y x ,满足042422=---+y x y x ,则y x -的最大值是()A .2231+B .4C .231+D .712.已知B A ,是双曲线1922=-y x 上两点,下列四个点中,可为AB 中点的是()A .()1,1B .()2,1-C .()3,1D .()4,1-二、填空题13.已知点()51,A 在抛物线px y C 22=:上,则A 到C 的准线的距离为.14.若⎪⎭⎫ ⎝⎛∈30πθ,,21tan =θ,则=-θθcos sin .15.若y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+-≤-739213y x y x y x ,则y x z -=2的最大值为.16.已知点C B A S ,,,均在半径为2的球面上,ABC ∆是边长为3的等边三角形,SA ⊥平面ABC ,则=SA .三、解答题(一)必做题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i i y x ,()10,2,1 =i ,试验结果如下试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记i i i y x z -=()10,2,1 =i ,记1021,z z z 的样本平均数为z ,样本方差为2s ,(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果1022s z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).18.记n S 为等差数列{}n a 的前n 项和,已知112=a ,4010=S .(1)求{}n a 的通项公式;(2)求数列{}n a 前n 项和n T .19.如图,在三棱锥ABC P -中,BC AB ⊥,2=AB ,22=BC ,6==PC PB ,BC AP BP ,,的中点分别为O E D ,,,点F 在AC 上,AO BF ⊥.(1)证明:EF ∥平面ADO ;(2)若︒=∠120POF ,求三棱锥ABC P -的体积.20.已知函数()()1ln 1+⎪⎭⎫⎝⎛+=x a x x f .(1)当1-=a 时,求曲线()x f 在()()1,1f 的切线方程;(2)若()x f 在()∞+,0单调递增,求a 的取值范围.21.已知椭圆C :()012222>>=+b a bx a y 的离心率为35,点()02,-A 在C 上.(1)求C 的方程;(2)过点()3,2-的直线交曲线C 于Q P ,两点,直线AQ AP ,交y 轴于N M ,两点,证明:线段MN 中点为定点.(二)选做题【选修4-4】22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为⎪⎭⎫ ⎝⎛≤≤=24sin 2πθπθρ,曲线2C :⎩⎨⎧==ααsin 2cos 2y x (α为参数,παπ<<2).(1)写出1C 的直角坐标方程;(2)若直线m x y +=既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】23.已知()22-+=x x x f .(1)求不等式()x x f -≤6的解集;(2)在直角坐标系xOy 中,求不等式组()⎩⎨⎧≤-+≤06y x yx f 所确定的平面区域的面积.参考答案一、选择题123456789101112CADCDBCBADCD1.解:∵i i i i 212122232-=--=++,∴()52121222232=-+=-=++i ii 3.解:如图所示,在长方体1111D C B A ABCD -中,2==BC AB ,31=AA ,点K J I H ,,,为所在棱上靠近点1111,,,A D C B 的三等分点,N M L O ,,,为所在棱的中点,则三视图所对应的几何体为长方体1111D C B A ABCD -去掉长方体11LMHB ONIC -之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方体.4.解:∵C B A -=+π,∴()B A C +=sin sin ,∵c A b B a =-cos cos ,由正弦定理得:B A B A C A B B A sin cos cos sin sin cos sin cos sin +==-∴0cos sin =A B ,∵()π,0∈B ,∴0sin ≠B ,∴0cos =A ,∴2π=A ∵5π=C ,∴10352πππ=-=B .5.解:∵()1-=ax xe xe xf 是偶函数,则()()=--x f x f ()()[]01111=--=-------axx a x ax x axx e e e x e e x e xe ,又∵x 不恒为0,可得()01=--xa xee ,则()x a x 1-=,∴2=a .6.解:以AD AB ,为基底表示:AD AB BC EB EC +=+=21,AD AB AD EA ED +-=+=21,∴31441212122=-=-=⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+=⋅AB AD AD AB AD AB ED EC7.解:∵区域(){}41,22≤+≤y x y x 表示以()00,O 为圆心,外圆半径2=R ,内圆半径1=r 的圆环,则直线OA 的倾斜角不大于4π的部分如阴影所示,在第一象限对应的圆心角4π=∠MON ,结合对称性可得所求概率为41242=⨯=ππp .8.解:由条件可知()032=+='a x x f 有两根,∴0<a 要使函数()x f 存在3个零点,则03>⎪⎪⎭⎫ ⎝⎛--a f 且03<⎪⎪⎭⎫⎝⎛-a f ,解得3-<a 9.解:有条件可知656626=⨯=A P .10.解:∵()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,∴26322πππ=-=T ,且0>ω,则π=T ,22==Tπω.当6π=x 时,()x f 取得最小值,则Z k k ∈-=+⋅,2262ππϕπ,则Z k k ∈-=,652ππϕ,不妨取0=k 则()⎪⎭⎫ ⎝⎛-=652sin πx x f ,则2335sin 125=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππf .11.解:由042422=---+y x y x 得()()91222=-+-y x ,令t y x =-,则0=--t y x ,圆心()1,2到直线0=--t y x 的距离为321111222≤-=+--t t ,解得231231+≤≤-t ,∴y x -的最大值为231+.12.解:由对称性只需考虑()1,1,()2,1,()3,1,()4,1即可,注意到()3,1在渐近线上,()1,1,()2,1在渐近线一侧,()4,1在渐近线的另一侧.下证明()4,1点可以作为AB 的中点.设直线AB 的斜率为k ,显然k 存在.设()41+-=x k y l AB :,直线与双曲线联立()⎪⎩⎪⎨⎧=-+-=194122y x x k y ,整理得()()()094429222=------k x k k xk,只需满足⎩⎨⎧>∆=+0221x x ,∴()29422=--k k k ,解得49=k ,此时满足0>∆.二、填空题13.49;14.55-;15.8;16.213.解:由题意可得:()1252⨯=p ,则52=p ,∴抛物线的方程为x y 52=,准线方程为45-=x ,点A 到C 的准线的距离为49451=⎪⎭⎫ ⎝⎛--.14.解:∵⎪⎭⎫⎝⎛∈20πθ,,∴0cos ,0sin >>θθ,由⎪⎩⎪⎨⎧===+21cos sin tan 1cos sin 22θθθθθ,解得552cos ,55sin ==θθ,∴55cos sin -=-θθ.15.解:作出可行域如下图所示,∵y x z -=2,∴z x y -=2,联立有⎩⎨⎧=+-=-9213y x y x ,解得⎩⎨⎧==25y x 设()2,5A ,显然平移直线x y 2=使其经过点A ,此时截距z -最小,则z 最大,代入得8=z .16.解:如图所示,根据题中条件2==OS OA ,3===AC BC AB ,∴3323321=⎪⎪⎭⎫ ⎝⎛⨯⨯==A O r ,∴()⎪⎩⎪⎨⎧+-=+=2121221212A O OO SA OS A O OO OA即()⎪⎩⎪⎨⎧+-=+=222222r d SA R r d R ,代入数据得()⎪⎩⎪⎨⎧+-=+=343422d SA d ,解得2=SA 或1-=SA (舍)三、解答题(一)必做题17.解:(1)∵i i i y x z -=()10,2,1 =i ,∴9536545111=-=-=y x z ;62=z ;83=z ;84-=z ;155=z ;116=z ;197=z ;188=z ;209=z ;1210=z .()()[]1112201819111588691011011021=++++++-+++⨯=++=z z z z ∵()∑=-=1012101i i z z s ,将各对应值代入计算可得612=s (2)由(1)知:11=z ,612=s ,∴5122106121061210222=⨯==s ,121112==z ,∴1022s z ≥∴甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高18.解:(1)设等差数列{}n a 的公差为d ,由题意可得⎪⎩⎪⎨⎧=⨯+==+=402910101111012d a S d a a 解得⎩⎨⎧-==2131d a ,∴数列{}n a 的通项公式为()n d n a a n 21511-=-+=.(2)由(1)知n a n 215-=,令0215>-=n a n 得*∈≤<N n n ,70∴当*∈≤<N n n ,70时,()n n a a n T n n 14221+-=+=;当*∈≥N n n ,8时,nn a a a a a a T +++++++= 98721n a a a a a a ----+++= 98721()n a a a a a a +++-+++= 98721()981414492222777+-=+--⨯=-=--=n n n n T T T T T n n 综上所述⎪⎩⎪⎨⎧∈≤++-∈≤+-=**Nn n n n Nn n n n T n ,7,814,7,142219.解:(1)∵BC AB BF AO ⊥⊥,,∴OAB FBC ∠=∠.22tan ==∠AB OB OAB ,22tan ==∠BC AB ACB ,∴ACB FBC ∠=∠.又点O 为BC 中点,∴BC OF ⊥.又BC AB ⊥∴AB OF ∥.∴点F 为AC 中点.∵点E 为P A 中点,∴PC EF ∥.∵点O D ,分别为BC BP ,中点,∴PC DO ∥,即EFDO ∥∵⊄EF 平面ADO ,⊂DO 平面ADO ,∴EF ∥平面ADO .(2)过点P 作OF PH ⊥,垂足为H .由(1)知BC OF ⊥,在PBC ∆中,PC PB =,∴BC PO ⊥.∵O PO OF =⋂,∴BC ⊥平面POF .又⊂PH 平面POF ,∴PH BC ⊥.又∵OF PH ⊥,O BC OF =⋂,∴PH ⊥平面ABC .在PBC ∆中,222=-=OC PC PO .在POH Rt ∆中,︒=∠60POH ,3sin =∠⋅=POH PO PH ∴362213131=⋅⋅⨯=⋅=∆-BC AB PH S PH V ABC ABC P .20.解:(1)(1)当1-=a 时,()(),1ln 11+⎪⎭⎫⎝⎛-=x x x f ,则()()11111ln 12+⨯⎪⎭⎫⎝⎛-++⨯-='x x x x x f ,据此可得()()2ln 1,01-='=f f ,函数在()()11f ,处的切线方程为()12ln 0--=-x y ,即()02ln 2ln =-+y x .(2)由题意知()()()()()11ln 11111ln 1222+++-+=+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-='x x x x x ax x a x x x x f .若()x f 在()∞+,0上单调递增,则方程()()01ln 12≥++-+x x x ax 在()∞+,0上恒成立,令()()()0,1ln 12>++-+=x x x x ax x h ,则()()1ln 2+-='x ax x h .当21≥a 时,()()01ln 2≥+-='x ax x h 成立,()x h 单调递增且()00=h ,()0≥x h 成立,符合题意.当210<<a 时,()()()0112,1ln 2=+-=''+-='x a x h x ax x h ,则121-=a x ,则()x h '在⎪⎭⎫ ⎝⎛-121,0a 上单调递减,在⎪⎭⎫ ⎝⎛∞+-,121a 上单调递增,()00='h 则()x h 在⎪⎭⎫⎝⎛-121,0a 上单调递减,()00=h ,则⎪⎭⎫⎝⎛-∈121,0a x 上时,()0<x h 不合题意,舍去.当0≤a 时,()()01ln 2<+-='x ax x h ,()x h 单调递减,()00=h ,则()0<x h 不合题意,舍去.∴a 的取值范围为⎪⎭⎫⎢⎣⎡∞+,21.21.解:(1)由题意可得⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==352222a c e c b a b ,解得⎪⎩⎪⎨⎧===523c b a ,∴椭圆的方程为14922=+x y 。
年高考安徽卷文科数学试题及详细解答
普通高等学校招生全国统一考试试卷(安徽卷、文科数学)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。
2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第Ⅱ卷时,必须用0.5毫米墨水签字笔在答题卡上书写。
在试题卷上作答无效。
4.考试结束,监考人员将试题卷和答题卡一并收回。
参考公式:如果时间A 、B 互斥,那么()()()P A B P A P B +=+ 如果时间A 、B 相互独立,那么()()()P A B P A P B = 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()()1n kk kn n P k C P P -=-球的表面积公式24S R π=,其中R 表示球的半径 球的体积公式343V R π=,其中R 表示球的半径 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设全集{1,2,3,4,5,6,7,8}U =,集合{1,3,5}S =,{3,6}T =,则()U C S T ⋃等于( )A .∅B .{2,4,7,8}C .{1,3,5,6}D .{2,4,6,8}解:{1,3,5,6}S T ⋃=,则()U C S T ⋃={2,4,7,8},故选B(2)不等式112x <的解集是( ) A .(,2)-∞ B .(2,)+∞ C .(0,2) D .()0,∞-⋃(2,)+∞解:由112x <得:112022x x x--=<,即(2)0x x -<,故选D 。
普通高等学校招生全国统一考试文科数学(安徽卷)
年普通高等学校招生全国统一考试文科数学(必修+选修I )安徽卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I 卷1至2页,第Ⅱ卷3至10页. 考试结束后,将本试卷和答题卡一并交回。
总分150分。
第I 卷注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面公式P(A+B)=P(A)+P(B) 24R S π= 如果事件A 、B 相互,那么P(A·B)=P(A)·P(B)其中R 表示球的半径 如果事件A 在一次试验中发生的概率是球的体积公式P ,那么n 次重复试验中恰好发生k 334R V π=球次的概率kn k k n n P P C k P --=)1()( 其中R 表示球的半径一、选择题1.设I 为全集,S 1、S 2、S 3是I 的三个非空子集且S 1∪S 2∪S 3=I ,则下面论断正确的是( ) A . I S I ∩(S 2∪S 3)= B .S 1⊆( I S 2∩ I S 3)C . I S I ∩ I S 2 ∩ I S 3=D .S 1⊆( I S 2∪ I S 3)2.一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 ( )A .8π2B .8πC .4π2D .4π3.函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a =( )A .2B .3C .4D .54.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF//AB ,EF=2,则该多面体的体积为( )A .32 B .33C .34 D .23 5.已知双曲线)0(1222>=-a y a x 的一条准线为23=x ,则该双曲线的离心率为 ( )A .23 B .23 C .26 D .332 6.当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为( )A .2B .23C .4D .43 7.)21(22≤≤-=x x x y 的反函数是( )A .)11(112≤≤--+=x x yB .)10(112≤≤-+=x x yC .)11(112≤≤---=x x yD .)10(112≤≤--=x x y8.设x x f a a x f a x xa 的则使函数0)(),22(log )(,102<--=<<的取值范围是 ( )A .)0,(-∞B .),0(+∞C .)3log ,(a -∞D .),3(log +∞a9.在坐标平面上,不等式组⎩⎨⎧+-≤-≥1||3,1x y x y 所表示的平面区域面积为 ( )A .2B .23 C .223 D .2 10.在△ABC 中,已知C BA sin 2tan =+,给出以下四个论断( )①tanA ·cotB=1②0<sinA+sinB ≤2 ③sin 2A+cos 2B=1④cosA 2+cos 2B=sin 2CA .①③B .②④C .①④D .②③11.点O 是三角形ABC 所在平面内的一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则点O是△ABC 的( )A .三个内角的角平分线的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三条高的交点12.设直线l 过点(-2,0),且与圆x 2+y 2=1相切,则l 的斜率是( )A .±1B .±21 C .±33 D .±3第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
0
x
2
.
3
17.
解法 1(向量法):
以 D 为原点,以 DA且且 DC DD1 所在直线分别为 x 轴, y 轴, z 轴建
立空间直角坐标系 D xyz 如
图,
D1 z
C1
则有
A(2且且0且且0且且)且且且且B且且(且且2且且2且且且0且)
C(0 2
. (Ⅰ)证明:
. ∴ AC 2 A1C1且 DB 2D1B1 .
88.8918÷.12990.÷1=4214÷3922=.0034=1÷15251371=8.535.78208÷.0232173c0*0÷1=m920.30392.2c=1÷203m=2÷1202.52=3535=42314)c*5232m40341*.31252=3.*1.153.5*03134.2*920522..104455=+21*3*50202.2.0285.4850.13*50+5c8*125*12m0.2+050.+0*014.852*0051000+0+/038.T+0÷+=55*+1011+010+91÷0145405*00010200+5+0+080+40*04+***115.103910*-%*C%6(+÷*M==5M÷5)0*3*0(31÷3110**5*+*÷414.m2371e=%7)8n08%.=s8.5=77.93cc60.mc*m4*m13,101w9.9o.k24mc-.cem5nm2csp2665m*9..03-4.50c60*5.pc3m85,9cm0.5g.i50mr0l-.p.s85p/6c50bc.0om7m.yp.cs6pc5m+;c0m..m7.ckm; 1+1k+12+1+k2234=1c+m1++4+4+2
(20)(本小题满分 14 分) 设函数 f(x)=-cos2x-4tsin x cos x +4t2+t2-3t+4,x∈R, 22 其中 t ≤1,将 f(x)的最小值记为 g(t).
(Ⅰ)求 g(t)的表达式; (Ⅱ)诗论 g(t)在区间(-1,1)内的单调性并求极值.
1) B2Ak+22+12=+15+c51mc+=5m=2c111++m+12+21+++2=12=2+1+2+1+2+2+22+32k+1+2
(21)(本小题满分 14 分) 某国采用养老储备金制度,公民在就业的第一年就交纳养老储备金,数目为 a1,以后第年交纳的数
目均比上一年增加 d(d>0),因此,历年所交纳的储备金数目 a1,a2,…是一个公差为 d 的等差数列, 与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利,这就是说,如果固定 年利率为 r(r>0),那么,在第 n 年末,第一年所交纳的储备金就变为 n(1+r)n-1,第二年所交纳的 储备金就变为 a2(1+r)n-2,……,以 Tn 表示到第 n 年末所累计的储备金总额. (Ⅰ)写出 Tn 与 Tn-1(n≥2)的递推关系式;
故 A1C1 ∥ AC , A1C1 与 AC 共面. 过点 B1 作 B1O 平面 ABCD 于点 O ,
1) B2Ak+22+12=+15+c51mc+=5m=2c111++m+12+21+++2=12=2+1+2+1+2+2+22+32k+1+2
88.8918÷.12990.÷1=4214÷3922=.0034=1÷15251371=8.535.78208÷.0232173c0*0÷1=m920.30392.2c=1÷203m=2÷1202.52=3535=42314)c*5232m40341*.31252=3.*1.153.5*03134.2*920522..104455=+21*3*50202.2.0285.4850.13*50+5c8*125*12m0.2+050.+0*014.852*0051000+0+/038.T+0÷+=55*+1011+010+91÷0145405*00010200+5+0+080+40*04+***115.103910*-%*C%6(+÷*M==5M÷5)0*3*0(31÷3110**5*+*÷414.m2371e=%7)8n08%.=s8.5=77.93cc60.mc*m4*m13,101w9.9o.k24mc-.cem5nm2csp2665m*9..03-4.50c60*5.pc3m85,9cm0.5g.i50mr0l-.p.s85p/6c50bc.0om7m.yp.cs6pc5m+;c0m..m7.ckm; 1+1k+12+1+k2234=1c+m1++4+4+2
(2
2
0)
0 , DB·
AC
(2且且2且且0·)
(2
2
0)
0,
∴ DD1 AC , DB AC .
DD1 与 DB 是平面 B1BDD1 内的两条相交直线.
∴ AC 平面 B1BDD1 .
Hale Waihona Puke 又平面 A1ACC1 过 AC . ∴平面 A1ACC1 平面 B1BDD1 .
解法 2(综合法):
A1
B1
∵ A1C1 (1且1且且且0且)且且且A且且C且 (
D
C
y
A
B
x
[VIP 专享]安徽省历年高考数学文科卷.pdf
2
∴ AC 与 A1C1 平行, DB 与 D1B1 平行,
于是 A1C1 与 AC共 面, B1D1 与 BD 共面.
(Ⅱ)证明:
DD·1AC
(0且且0且且2·)
(Ⅱ)求证:Tn=An+Bn,其中 An是一个等比数列, Bn 是一个等差数列.
参考答案
16.
解:因为对任意 x R , sin x 2 0 ,所以原不等式等价于 3x 1 1 0 .
即 3x 1 1, 1 3x 1 1 , 0 3x 2 ,故解为 0 x 2 . 3
所以原不等式的解集为
(Ⅰ)求证:
(Ⅱ)求证:平面 A1 ACC1 平面B1BDD1;
第(17)题图
(18)(本小题满分 14 分) 设 F 是抛物线 G:x2=4y 的焦点. (Ⅰ)过点 P(0,-4)作抛物线 G 的切线,求切线方程:
(Ⅱ)设 A、B 为势物线 G 上异于原点的两点,且满足 FA·FB 0 ,延长 AF、BF 分别交抛物线 G 于点 C,D,求四边形 ABCD 面积的最小值.
(Ⅰ)证明:∵ D1D 平面 A1B1C1D1 , D1D 平面 ABCD . ∴ D1D DA , D1D DC ,平面 A1B1C1D1 ∥平面 ABCD . 于是 C1D1 ∥CD , D1A1 ∥ DA . 设 E且 F 分别为 DA且 DC 的中点,连结 EF且且 A1E C1F , 有 A1E ∥∥D1D且且且 C1F D1D DE 1 DF 1. ∴∥A1E C1F , 于是 A1C1 ∥ EF . 由 DE DF 1,得 EF ∥ AC ,
[VIP 专享]安徽省历年高考数学文科卷.pdf
1
2007 安徽文科数学卷
(16)(本小题满分 10 分)
解不等式 (| 3x 1| 1)(sin x 2) >0.
(17) (本小题满分 14 分)
如图,在六面体 ABCD A1B1C1D1 中,四边形 ABCD 是边 长为 2 的正方形,四边形 A1B1C1D1 是边长为 1 的正方 形, DD1 平面 A1B1C1D1 , DD1 平面 ABCD, DD1 2.