初中数学知识点及公式大全
最完整初中数学知识点总结及公式大全
最完整初中数学知识点总结及公式大全1.整数和有理数-整数的加减乘除运算规则:同号相加取共同的符号,异号相加取绝对值大的符号;乘法规则:同号得正,异号得负;除法规则:除数不为零,同号得正,异号得负。
-有理数的加减乘除运算规则:同号相加取共同的符号,异号相加取绝对值大的符号;乘法规则:同号得正,异号得负;除法规则:除数不为零,同号得正,异号得负。
2.平面图形-平面图形的性质与计算:正方形的面积等于边长的平方;矩形的面积等于长乘以宽;三角形的面积等于底乘以高的一半;梯形的面积等于上底加下底乘以高的一半。
3.线的关系与方程-平行线和垂直线的特征:平行线具有相同的斜率,垂直线具有互为倒数的斜率。
-直线的方程:一般式方程、斜截式方程、截距式方程、点斜式方程。
4.相似与全等-相似的概念和判定条件:对应角相等,对应边成比例。
-全等三角形的判定条件:边-边-边、边-角-边、角-边-角、角-角-角。
5.几何作图-通过已知条件作出各种形状:平分线、垂直线、平行线、三等分线等。
6.算式计算-四则运算:加法、减法、乘法、除法。
-分数的加减乘除运算:通分、约分、分数的加减乘除运算规则。
7.比例与百分数-比例的概念和性质:比例的定义、比例的性质、比例的延长线、反比例。
-百分数的计算:百分数与小数的相互转换、百分数之间的比较、百分数与分数的相互转换。
8.数据与概率-数据整理与分析:表格、条形图、折线图、饼图等。
-概率的计算:事件的概率等于事件发生次数除以总次数。
9.代数基础知识-代数式的加减乘除:同类项的加减法、乘法运算法则、除法运算法则。
-代数式的值:给定变量值计算代数式的值。
10.一元一次方程与一元一次不等式-一元一次方程的解:解方程的基本步骤、等式的等价性质。
-一元一次不等式的解:解不等式的基本步骤、不等式的性质。
11.二次根式与二次方程-二次根式的化简:完全平方、配方法。
-二次方程的解:因式分解法、配方法、求根公式。
12.几何证明-各种定理的证明:三角形的中位线定理、三角形的角平分线定理、圆的性质等。
初中数学知识点中考必背公式
初中数学知识点中考必背公式一、代数部分:1.二次方程的求根公式:对于一元二次方程ax^2+bx+c=0其中a≠0,Δ=b^2-4ac≥0,则求根公式为:x1=[-b+√(b^2-4ac)]/2ax2=[-b-√(b^2-4ac)]/2a2.二次函数的顶点坐标:对于二次函数y=ax^2+bx+c(a≠0),其顶点坐标为:横坐标x=-b/2a,纵坐标y=-Δ/4a3.因式分解公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2(a+b)(a-b)=a^2-b^24.平方差公式:a^2-b^2=(a+b)(a-b)5.和差化积公式:sin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosB∓sinAsinBtan(A±B)=(tanA±tanB)/(1∓tanAtanB)6.一些特殊角的正弦、余弦、正切值:sin30°=1/2,cos30°=√3/2,tan30°=1/√3 sin45°=cos45°=1/√2,tan45°=1sin60°=√3/2,cos60°=1/2,tan60°=√37.等差数列前n项和公式:Sn=n(a1+an)/28.等差数列通项公式:an=a1+(n-1)d9.等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)10.等比数列通项公式:an=a1*q^(n-1)11.绝对值的性质:-a,=,aab,=,a,*,ba/b,=,a,/,b二、几何部分:1.直角三角形的勾股定理:直角三角形的两个直角边的平方和等于斜边的平方,即a^2+b^2=c^22.等边三角形的边长关系:等边三角形的三条边相等3.等腰三角形的性质:等腰三角形的两底角相等,两腰相等4.两条平行线与两条截线的关系:两条平行线与另外两条非平行线(截线)形成的内角、外角相等5.锐角三角函数的定义:sinA=对边/斜边cosA=邻边/斜边tanA=对边/邻边6.三角形内角和公式:三角形的内角和等于180°,即A+B+C=180°7.角平分线定理:角平分线将一个角分为两个大小相等的角8.两角的和差公式:sin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosB∓sinAsinBtan(A±B)=(tanA±tanB)/(1∓tanAtanB)9.三角形面积公式:对于任意三角形ABC,其面积S可以由三边长度a、b、c计算:S=√[s(s-a)(s-b)(s-c)]其中,s=(a+b+c)/2为半周长10.弦切弧定理:圆内一弦的两个弦心角相等,一弦上的切线与此弦所对的弧上任一弦心角相等11.正三角形的面积公式:对于边长为a的正三角形,其面积S=(√3*a^2)/4三、概率统计部分:1.事件的概率公式:对于随机试验的事件A,事件A发生的概率为P(A)=事件A发生的次数/试验次数2.互斥事件的概率公式:对于互斥事件A和B,两事件发生的概率之和为P(A∪B)=P(A)+P(B)3.相互独立事件的概率公式:对于相互独立事件A和B,两事件同时发生的概率为P(A∩B)=P(A)*P(B)4.条件概率公式:对于事件A和事件B,已知事件B发生的情况下事件A发生的概率为P(A,B)=P(A∩B)/P(B)这里列举的只是初中数学常见到的一部分公式,而实际中考中会用到的公式还有很多,建议同学们在备考过程中广泛积累、熟练掌握各类公式,提高解题能力。
初中数学知识点总结及公式大全
初中数学知识点总结及公式大全初中数学知识点总结及公式大全一、基本运算1.加法的运算规则:交换律、结合律、加零律2.减法的运算规则:减去一个负数等于加上一个正数3.乘法的运算规则:交换律、结合律、乘以1等于它本身、乘以0等于04.除法的运算规则:分子为0,结果为0;分母为0,结果不存在;分子分母相等,结果为1二、整数运算1.整数的加减法运算2.整数的乘法运算3.整数的除法运算三、分数与小数1.分数的加减法运算2.分数的乘法运算3.分数的除法运算4.小数与分数的互相转换四、百分数1.百分数的意义和表示方法2.百分数的分数形式与小数形式的转化3.百分数的加减法运算4.百分数的乘法运算5.百分数的除法运算五、比例与比例的应用1.比例的基本概念2.比例的性质:平行性、对应性3.比例的相等关系4.比例的扩大和缩小5.比例问题的应用:速度、时间、长度等六、图形的性质与计算1.面积:长方形、正方形、三角形、平行四边形、梯形2.周长:长方形、正方形、三角形、平行四边形、梯形、圆形3.体积:长方体、正方体、三角柱、圆柱、圆锥、球体七、方程与方程的应用1.一元一次方程的概念和解法2.一元一次方程的应用:问题的数学表达和求解3.一元一次方程与图象的关系4.含有括号的一元一次方程的解法5.一元一次方程的和差问题6.一元一次方程组的概念和解法八、比较大小、不等式与不等式的应用1.整数的比较大小2.分数的比较大小3.小数的比较大小4.数与式的大小比较5.不等式的性质与解法6.解不等式方程组的图解法7.不等式的应用:问题的数学表达和求解九、平方根与整式1.平方根的概念、性质及运算法则2.含有平方根的整式的加减乘除运算3.一元二次方程的定义与解法4.二次函数与抛物线的基本性质十、统计与概率1.统计的基本概念:调查、样本、总体、频数、频率2.统计图的绘制与解读:条形图、折线图、饼图3.概率的基本概念:随机试验、样本空间、事件、概率4.概率的计算:基本概率、加法原理、乘法原理。
初中数学知识点总结+公式总结
初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数:①整数→正整数,0,负整数;②分数→正分数,负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选择某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都能够用数轴上的一个点来表示。
③假如两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:带上符号实行正常运算。
加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数或指数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数无理数:无限不循环小数叫无理数,例如:π=3.1415926…平方根:①假如一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②假如一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根;0的平方根为0;负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①假如一个数X的立方等于A,那么这个数X就叫做A的立方根。
初中数学知识点及公式大全
初中数学知识点及公式大全1.数的基本性质:- 一元二次方程的解公式:对于方程ax^2+bx+c=0(a≠0),它的解可以通过公式x=(-b±√(b^2-4ac))/(2a)求得。
-绝对值的性质:对于任意实数a,有,a,≥0,且,a,=0的条件是a=0。
-有理数和无理数的性质:有理数是可以表示为两个整数的比,而无理数是不能表示为两个整数的比的实数。
-分数的运算性质:分数的两个分数相加减时,应先找到它们的最小公倍数后,再根据通分进行相加减,然后再对得到的分数进行约分。
2.平面几何:-直角三角形的勾股定理:对于直角三角形,设直角边的长度分别为a、b,斜边的长度为c,则有c^2=a^2+b^2-圆的周长和面积:设圆的半径为r,则圆的周长L=2πr,圆的面积S=πr^2-平行线的性质:平行线具有两个重要的性质,即平行线的任意两条线上的任意一对对应角相等,以及平行线被一条截线截断时,对于被截断线的任意一条线上的对应角,有与之对应的角相等。
-三角形的三边关系:设三角形的三条边的长度分别为a、b、c,则有a+b>c,b+c>a,c+a>b。
3.立体几何:- 空间直角坐标系:设空间直角坐标系中的一条直线的方程为ax+by+cz+d=0,则该直线的方向向量为(±a, ±b, ±c)。
- 二次曲面的方程:常见的二次曲面包括球体、圆锥面、抛物面、椭球面等,它们的方程分别为x^2+y^2+z^2=r^2,x^2+y^2-z^2=0,z=ax^2+by^2,(x/a)^2+(y/b)^2+(z/c)^2=1等。
- 立体图形的体积和表面积:立方体的体积V=a^3,表面积S=6a^2;圆柱的体积V=πr^2h,表面积S=2πrh+2πr^2;球体的体积V=(4/3)πr^3,表面积S=4πr^2;锥体的体积V=(1/3)πr^2h,表面积S=πrl+πr^24.代数运算:-同底数幂运算:对于同底数的幂相乘,可以直接将指数相加,即a^m*a^n=a^(m+n)。
初中数学知识点总结与公式大全
初中数学知识点总结与公式大全一、代数1.因式分解公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²a²-b²=(a+b)(a-b)a³ + b³ = (a + b)(a² - ab + b²)a³ - b³ = (a - b)(a² + ab + b²)a² + 2ab + b² = (a + b)²a² - 2ab + b² = (a - b)²2.方程求解公式:一次方程:ax + b = 0,x = -b/a二次方程:ax² + bx + c = 0,x = (-b ± √(b² - 4ac))/2a 一元二次方程组求解:联立两个方程,解得未知数的值3.指数与幂公式:aⁿ×aᵐ=aⁿ⁺ᵐ(aⁿ)ᵐ=aⁿᵐa⁰=1aⁿ⁻ᵐ=aⁿ/aᵐa⁽ⁿ⁺ᵐ⁾=aⁿ×aᵐ4.平方差公式:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²二、几何1.图形面积公式:长方形的面积:S=长×宽正方形的面积:S=边长²三角形的面积:S=底边×高/2梯形的面积:S=(上底+下底)×高/2圆的面积:S=πr²2.图形周长公式:长方形的周长:P=2(长+宽)正方形的周长:P=4×边长三角形的周长:P=边1+边2+边3梯形的周长:P=上底+下底+两腿圆的周长:P=2πr3.相似三角形公式:对应边的比例:AB/DE=BC/EF=AC/DF对应角的相等性:∠A=∠D,∠B=∠E,∠C=∠F4.圆的相关公式:弧长公式:L=2πr(θ/360°)弦长公式:l = 2r × sin(θ/2)弧度和角度的转换:θ(弧度)=θ(角度)×π/180°弧度的定义:圆的半径所对的圆心角的弧长等于半径的长度三、统计与概率1.统计相关公式:平均值:平均值=总和/个数中位数:将一组数据按大小排列后,取中间位置的数众数:出现次数最多的数极差:一组数中最大值与最小值之差2.概率相关公式:事件的概率:P(A)=发生事件A的次数/总次数互斥事件的概率:P(A或B)=P(A)+P(B)独立事件的概率:P(A和B)=P(A)×P(B)。
初中数学知识点总结及公式大全
初中数学知识点总结及公式大全一、整数与有理数1. 整数运算a. 加法:同号相加,异号相减,取绝对值相减,结果的符号由绝对值较大的数决定。
b. 减法:减去一个数,相当于加上它的相反数。
c. 乘法:同号得正,异号得负。
d. 除法:除法的定义与整数的性质保持一致。
2. 有理数运算a. 加法与减法:通分后进行加法或减法运算,结果再化为最简分数。
b. 乘法与除法:同号得正,异号得负;除法的定义与有理数的性质保持一致。
3. 整数与有理数的大小比较a. 同号比大小,绝对值大的数大;异号比大小,正数大于负数。
二、分数1. 分数的基本概念a. 分数的表示:分数由分子和分母组成,分子表示被分成的份数,分母表示总共的份数。
b. 真分数和假分数:分子小于分母的分数为真分数,分子大于分母的分数为假分数。
2. 分数的四则运算a. 加法与减法:通分后进行加减法运算,结果再化为最简分数。
b. 乘法:分子相乘,分母相乘,结果再化为最简分数。
c. 除法:分子乘以倒数,分母相乘,结果再化为最简分数。
3. 分数的大小比较a. 同分母比大小,分子大的分数大;异分母比大小,通分后再比大小。
三、代数1. 代数式a. 代数式的概念:表达式中含有字母的代数式。
b. 代数式的加减法:同类项相加减,非同类项不变。
2. 一元一次方程a. 一元一次方程的形式:ax+b=0。
b. 解一元一次方程的步骤:去括号、去分母、合并同类项、移项求解、检验解。
3. 实数集a. 自然数、整数、有理数、无理数、实数的包含关系。
b. 实数的性质:封闭性、比较性、连续性、稠密性。
四、平面图形1. 点、线、面的关系与性质a. 点:无宽度。
b. 线:由无数个点无限延申而成。
c. 面:由无数个线条围成的封闭区域。
2. 三角形a. 三角形的性质:内角和为180°,外角和为360°。
b. 三角形的分类:按照边长和角度的不同进行分类。
3. 四边形a. 四边形的分类:平行四边形、矩形、正方形、菱形、梯形等。
初中数学知识点总结及公式大全
初中数学知识点总结及公式大全1.数的计算:-四则运算:加法、减法、乘法、除法;-混合运算:含有多种运算符的算式的计算;-约分和通分:将分数化为最简形式或统一分母;2.数的性质与关系:-基本性质:整数、正数、零、负数的性质;-数轴与有理数:正数、零、负数在数轴上的位置与大小关系;-约数和倍数:两个概念的关系以及判断一个数是否为另一个数的约数或倍数;-质数和合数:判断一个数是否为质数或合数;3.代数初步:-数的代数性质:加法、减法、乘法、除法的性质;-代数式与多项式:包含字母和数字的表达式的运算与化简;-一元一次方程:解方程以及含有两个未知数的方程的解法;4.平面图形的性质与变换:-三角形与四边形:分类、命名以及性质;-各类三角形与直角三角形:分类、命名以及性质;-垂直、水平、平行线:判断和证明线段的关系;-图形的相似与全等:判断图形之间的相似与全等关系;-平移、旋转、翻转:图形在平面上的基本变换;5.动态与静态图形:-与平线的关系:判断线段与平面之间的位置关系;-圆的有关性质:半径、直径、圆心、弧、扇形等的性质;-直方图与折线图:数据的统计与图表的制作;6.其他数学知识点:-百分数:百分数的计算及运用;-合理估算:根据实际情况进行数值近似;-算术平方根:计算数的算术平方根;-统计与概率:数据收集、整理与分析,以及概率的计算。
1.常见代数式公式:- (a+b)^2 = a^2 + 2ab + b^2- (a-b)^2 = a^2 - 2ab + b^2-a^2-b^2=(a+b)(a-b)- a^3 + b^3 = (a+b)(a^2 - ab + b^2)- a^3 - b^3 = (a-b)(a^2 + ab + b^2)- (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3- (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^32.三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:c^2 = a^2 + b^2 - 2abcosC- 正切公式:tanA = sinA/cosA3.直角三角形公式:-勾股定理:a^2+b^2=c^2- 正弦定理:sinA = a/c, sinB = b/c- 余弦定理:cosA = b/c, cosB = a/c 4.面积和体积公式:-三角形面积公式:S=1/2*底*高-平行四边形面积公式:S=底*高-梯形面积公式:S=1/2*(上底+下底)*高-等边三角形面积公式:S=(边长^2*√3)/4-圆的面积公式:S=π*半径^2-球的体积公式:V=4/3*π*半径^3。
初中数学公式_初中数学知识点大全
初中数学公式_初中数学知识点大全1.平均数公式平均数=总和/数量2.质数公式质数是大于1且只能被1和自身整除的数。
3.分数运算公式a/b + c/d = (ad + bc) / bda/b - c/d = (ad - bc) / bda/b × c/d = ac / bd(a/b) ÷ (c/d) = (ad) / (bc)4.百分比公式百分数%=(部分/整体)×100%5.比例公式a:b=c:d表示a与b的比例等于c与d的比例。
6.直角三角形勾股定理直角三角形的斜边的平方等于两直角边的平方和。
a²+b²=c²7.二次方程的解公式对于ax² + bx + c = 0 的二次方程:x = (-b ± √(b² - 4ac)) / 2a8.三角函数公式正弦函数:sinθ = 对边 / 斜边余弦函数:cosθ = 邻边 / 斜边正切函数:tanθ = 对边 / 邻边9.等腰三角形的面积公式S=1/2×底×高10.余角公式sin(90° - θ) = cosθcos(90° - θ) = sinθtan(90° - θ) = cotθ11.半径和弧长关系公式弧长=弧度×半径12.圆的面积公式圆的面积=π×半径²13.三角形面积公式海伦公式:S=√(p×(p-a)×(p-b)×(p-c))其中,p=(a+b+c)/214.空间几何公式长方体体积:V=长×宽×高圆柱体体积:V=圆的面积×高球体体积:V=(4/3)×π×半径³1.分数运算:包括分数的四则运算、分数的化简和分数的比较等。
2.小数运算:包括小数的四则运算、小数的化简和小数的比较等。
3.百分数:包括百分数的运算、百分数与分数、小数的转换等。
初中数学知识点总结及公式大全
初中数学知识点总结及公式大全数的性质和运算:1.自然数和整数性质2.有理数性质与运算3.实数的性质与大小比较4.数列的概念、特征与求和5.代数表达式的概念、运算和化简6.方程与不等式的概念、解法和应用7.根式的化简与运算平面图形与空间图形:1.平面角的概念、性质和计算2.平行线与平行线间角的关系3.三角形的性质、分类和判定4.四边形的性质、分类和判定5.圆与圆周角的性质和计算6.立体图形的性质和计算7.空间几何关系与证明数与代数:1.实数的运算与性质2.分式的运算与性质3.根式的运算与性质4.二次根式的性质与计算5.代数式(含多项式)的运算、化简与展开6.方程的应用与解法7.异或、绝对值与模运算函数与方程:1.函数的概念与性质2.一次函数的性质与图象3.二次函数的性质与图象4.指数函数与对数函数的性质5.消去法与代入法解方程6.方程及实际问题的应用7.二次函数及其图象的性质统计与概率:1.统计调查与数据整理2.数据分析与数据处理3.概率的概念、计算与应用4.事件与事件的概率计算5.概率的加法原理、乘法原理与推论6.统计图与统计量的计算7.正态分布与样本调查以上是初中数学的主要知识点,下面列举了一些常用的数学公式:1.平方公式:(a+b)²=a²+2ab+b²2.差平方公式:(a-b)²=a²-2ab+b²3.平方差公式:a²-b²=(a+b)(a-b)4.完全平方公式:a²+2ab+b²=(a+b)²5.勾股定理:a²+b²=c²(直角三角形中,a、b为直角边,c为斜边)6.正弦定理:a/sinA=b/sinB=c/sinC (非直角三角形中,a、b、c为边,A、B、C为角)7.余弦定理:c²=a²+b²-2ab*cosC(非直角三角形中,a、b、c为边,C为夹角)8.面积公式:矩形的面积=长*宽;正方形的面积=边长²;三角形的面积=底*高/29.圆的面积公式:A=πr²(A为圆的面积,r为半径)10.体积公式:长方体的体积=长*宽*高;圆柱体的体积=πr²h(r为底圆半径,h为高)。
初中数学知识点和公式大全
初中数学知识点和公式大全一、数与代数1.自然数:正整数,从1开始计数。
2.整数:包括正整数、0和负整数。
3.有理数:可以表示为两个整数的比值的数,包括整数和分数。
4.无理数:不能表示为两个整数的比值的数,如π和√2等。
5.实数:包括有理数和无理数。
6.代数式:用数字、字母和运算符号表示的算式。
7.方程式:含有未知数的等式。
8.正比例函数:y=kx(k≠0)。
9.反比例函数:y=k/x(k≠0)。
二、平面几何1.点:没有大小和形状,只有位置。
2.线段:两个端点与之间的部分。
3.射线:一个端点和该点的一侧无限延伸的部分。
4.直线:一条无限延伸的线。
5.平行线:在同一平面上不相交的直线。
6.垂直线:两条相交直线的交角为90度。
7.角:由两条射线共享一个端点形成的部分。
8.三角形:有三个顶点和三条边的多边形。
9.矩形:四个角都为直角的四边形。
10.平行四边形:有两组对边平行的四边形。
11.圆:由半径相等的所有点组成的图形。
12.直径:圆上两点之间的最长线段。
13.弧:圆上的一部分。
14.扇形:以圆心为顶点的角所夹的弧与两边所在的线段组成的图形。
15.圆周角:以圆心为顶点的角。
三、立体几何1.正方体:六个面都是正方形的立体。
2.长方体:六个面都是矩形的立体。
3.棱柱:底面是多边形,侧面是平行于底面的矩形的立体。
4.棱锥:底面是多边形,侧面是由底面的顶点到其它各顶点的线段组成的三角形的立体。
5.棱台:底面是多边形,侧面是底面的顶点到上底面各顶点的线段组成的三角形的立体。
6.球:所有点到球心的距离相等的图形。
7.圆柱:底面是圆形,侧面是平行于底面的矩形的立体。
8.圆锥:底面是圆形,侧面是由底面的顶点到其它各点的线段组成的锥体。
9.圆台:底面是圆形,侧面是底面的顶点到上底面各点的线段组成的锥体。
四、几何关系1.相似:两个或多个图形的对应边成比例,对应角相等。
2.全等:两个图形的对应边和对应角均相等。
3.垂直:两条直线的交角为90度。
初中数学知识点总结及公式大全
知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是—2。
2.一元二次方程3x 2+4x —2=0的一次项系数为4,常数项是-2。
3.一元二次方程3x 2-5x —7=0的二次项系数为3,常数项是—7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0。
知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。
2.直角坐标系中,x 轴上的任意点的横坐标为0。
3.直角坐标系中,点A (1,1)在第一象限。
4.直角坐标系中,点A(-2,3)在第四象限. 5.直角坐标系中,点A(—2,1)在第二象限。
知识点3:已知自变量的值求函数值1.当x=2时,函数y=32-x 的值为1。
2.当x=3时,函数y=21-x 的值为1。
3.当x=-1时,函数y=321-x 的值为1。
知识点4:基本函数的概念及性质1.函数y=-8x 是一次函数.2.函数y=4x+1是正比例函数。
3.函数x y 21-=是反比例函数.4.抛物线y=-3(x —2)2—5的开口向下.5.抛物线y=4(x —3)2—10的对称轴是x=3。
6.抛物线2)1(212+-=x y 的顶点坐标是(1,2)。
7.反比例函数xy 2=的图象在第一、三象限。
知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10。
2.数据3,4,2,4,4的众数是4。
3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°=23. 2.sin 260°+ cos 260°= 1。
3.2sin30°+ tan45°= 2. 4.tan45°= 1。
5.cos60°+ sin30°= 1。
知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆。
初中数学知识点总结及公式大全
初中数学知识点总结及公式大全数学是一门既有趣又实用的学科,对于初中生而言,学好数学是非常重要的。
在初中阶段,学生将接触到许多数学知识点和公式,这些基础知识对于进一步学习数学和解决实际问题非常关键。
本文将为大家总结初中数学的知识点和公式,帮助学生更好地学习和掌握数学。
一、数与式1. 整数的运算法则:- 加法法则:a + b = b + a- 减法法则:a - b ≠ b - a- 乘法法则:a × b = b × a- 除法法则:a ÷ b ≠ b ÷ a2. 有理数:- 正有理数:大于0的有理数- 负有理数:小于0的有理数- 零是自然数、整数、有理数和实数中唯一的整数3. 代数式:- 代数式是由数、字母和运算符(+、-、×、÷)组成的式子- 代数式的值可以通过将具体的数值代入字母来求得二、图形与几何1. 基本图形的性质及计算:- 正方形:四个边相等且四个角都是直角,面积为边长的平方- 长方形:相对的两条边相等且四个角都是直角,面积为长乘以宽- 三角形:三个内角之和等于180度,面积等于底边乘以高再除以2 - 圆:内部的所有点到圆心的距离都相等,面积为π乘以半径的平方2. 几何图形的关系:- 垂直:互相交角为直角的直线或线段- 平行:永远不会相交的直线或线段- 相交:有一个交点的直线或线段三、代数1. 一元一次方程:- 形式:ax + b = 0- 解法:将未知数移到一边,将常数移到另一边,然后求出未知数的值2. 平方根与立方根:- 平方根:一个数的平方根是指其平方等于该数的非负数- 立方根:一个数的立方根是指其立方等于该数的数四、比例和百分数1. 比例关系:- 比例是指两个或多个量之间的相对关系- 比例关系可以通过比例式、比率和比例尺表示2. 百分数及其运算:- 百分数是指以100作为基数的分数- 百分比的加减法可以直接套用正数的加减法,乘法可以通过百分数转换为小数再进行运算五、数据统计与概率1. 统计图形和统计指标:- 条形图:用长短不同的竖线表示数据的大小- 折线图:用连续的线段表示数据的变化趋势- 平均数:一组数据的总和除以数据的个数- 中位数:一组数据按照从小到大的顺序排列后,位于中间位置的数值2. 概率计算:- 事件的概率是指该事件发生的可能性- 概率的计算公式为:P(A) = 事件A发生的次数 / 总的可能性以上仅是初中数学知识点和公式的一部分,但它们是初中数学的基础,并且对于日常生活和进一步学习数学都非常实用。
初中数学必备公式和知识点
初中数学必备公式和知识点一、代数知识点:1.平方公式:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab + b^22.公式:(a+b)(a-b)=a^2-b^23.因式分解:a^2-b^2=(a+b)(a-b)ax^2 + bx + c = a(x-x1)(x-x2)a^3 + b^3 = (a+b)(a^2-ab+b^2)4.比例与变化:a/b = c/d => ad = bc百分数和简单利率公式:P=P0+P0*r*T复利公式:A=P0*(1+r)^n5.一元一次方程:ax + b = 0 => x = -b/a6.一元二次方程:ax^2 + bx + c = 0两根公式:x1, x2 = (-b ± √(b^2-4ac))/2a7.幂与根:欧拉公式:e^(iπ)+1=08.指数与对数:指数运算法则:a^m*a^n=a^(m+n)(a^m)^n = a^(mn)a^0=1对数运算法则:logab + logac = loga(bc)loga1 = 0logaa = 1logaa^b = b二、几何知识点:1.直角三角形:勾股定理:a^2+b^2=c^2正弦定理:sinA/a = sinB/b = sinC/c余弦定理:cosA = (b^2+c^2-a^2)/2bc2.平行线与比例:三角形内部:两条平行线与角对应的边成比例三角形外部:两条平行线与横截距成比例3.三角形:中位线长度公式:m=√(2a^2+2b^2-c^2)/2高线长度公式:h=2A/b角平分线定理:m/n=b/c4.圆的相关知识:圆周长:C=2πr圆面积:S=πr^2弧长公式:L=2πrθ/360°5.棱锥与棱台:侧面积公式:S = 1/2pl全面积公式:S = 1/2pl + πr^2(锥)体积公式:V=1/3πr^2h(锥),V=1/3h(πr^2+πR^2+√(πr^2πR^2))(台)6.空间几何知识:线面平行公理:若平面α与直线l平行,那么直线外的直线与α平行。
初中数学知识点公式大全
初中数学知识点公式大全
初中数学知识点公式大全:
1. 有理数:
- 整数:正整数、0、负整数
- 分数:正分数、负分数
- 数轴:画一条水平直线,取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向。
2. 代数式:
- 加法:a + b
- 减法:a - b
- 乘法:a ×b
- 除法:a ÷b
- 幂:a^n(a的n次方)
3. 一元一次方程:
- 解法:ax = b,x = b/a
- 根与系数的关系:x1x2 = -b/a,x1 + x2 = -b/a
4. 平行四边形:
- 性质:对边相等、对角相等、对角线互相平分
- 分类:矩形、菱形、正方形
5. 三角不等式:
- ab < a - b
6. 圆:
- 圆心:O
- 半径:r
- 圆周长:C = 2πr
- 圆面积:S = πr^2
7. 三角函数:
- 正弦函数:sin(A) = 对边/斜边
- 余弦函数:cos(A) = 邻边/斜边
- 正切函数:tan(A) = 对边/邻边
8. 几何图形:
- 点、线、面、体
- 角度:度量单位(°)
- 直角三角形、锐角三角形、钝角三角形9. 概率:
- 求和:P(A或B) = P(A) + P(B)
- 乘法:P(A且B) = P(A) ×P(B) 10. 统计:
- 平均数:所有数的和除以数的个数
- 中位数:排序后位于中间的数
- 众数:出现次数最多的数
以上是初中数学知识点和公式。
初中数学知识点总结及公式大全
初中数学知识点总结及公式大全一、数与代数1. 有理数- 整数: 正整数、0、负整数- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值2. 整式与分式- 单项式与多项式- 同类项与合并同类项- 分式的基本性质- 分式的加减乘除3. 方程与不等式- 一元一次方程、二元一次方程- 不等式及其解集- 一元一次不等式及其解集- 一元二次方程4. 函数- 函数的概念- 函数的表示方法- 线性函数、二次函数- 函数的简单性质二、几何1. 图形初步- 点、线、面、体- 直线、射线、线段- 角的概念及分类- 角的度量2. 三角形- 三角形的基本性质- 三角形的分类- 三角形的内角和外角- 特殊三角形(等腰三角形、等边三角形、直角三角形)3. 四边形- 平行四边形的性质与判定- 矩形、菱形、正方形- 梯形的性质与判定- 四边形的面积计算4. 圆- 圆的基本性质- 圆的面积与周长- 扇形、弧长与弓形- 切线的性质与判定5. 几何变换- 平移- 旋转- 轴对称(镜像对称)三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表(条形图、折线图、饼图)- 平均数、中位数、众数2. 概率- 随机事件- 概率的初步认识- 可能性的大小- 概率的计算四、公式大全1. 代数公式- 乘方公式: $a^n = a \times a \times \ldots \times a$ (n个a相乘)- 完全平方公式: $(a \pm b)^2 = a^2 \pm 2ab + b^2$- 一元一次方程: $ax + b = 0$- 二元一次方程组: $\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases}$2. 几何公式- 矩形面积: $S = ab$- 三角形面积: $S = \frac{1}{2} \times base \times height$ - 圆的面积: $S = \pi r^2$- 扇形面积: $S = \frac{\theta}{360} \times \pi r^2$ (其中θ为扇形的圆心角)3. 统计公式- 平均数: $\bar{x} = \frac{\sum{x_i}}{n}$- 中位数: 将数据从小到大排序后位于中间位置的数- 众数: 一组数据中出现次数最多的数4. 概率公式- 加法原理: $P(A \cup B) = P(A) + P(B)$- 乘法原理: $P(A \cap B) = P(A) \times P(B)$ (当A、B为独立事件时)五、附录- 常用数学符号- 常见数学术语解释- 数学公式使用说明六、结束语本文总结了初中数学的主要知识点和常用公式,旨在为学生提供一个快速查阅和复习的参考。
初中数学知识点及公式大全
初中数学知识点及公式大全1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6789同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等1415161718推论119推论220推论3212223角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°37在直角三角形中,如果一个锐角等于30°38直角三角形斜边上的中线等于斜边上的一半39404142定理1关于某条直线对称的两个图形是全等形43定理244定理34546c的平方,即a^2+b^2=c^247c有关系a^2+b^2=c^2,那么这个三角形是直角三角形484950)×180°5152平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)67菱形判定定理1四边都相等的四边形是菱形68菱形判定定理269正方形性质定理170正方形性质定理271定理1关于中心对称的两个图形是全等的72定理273一点对称747576777879推论180推论281三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h 83(1)比例的基本性质如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似(ASA)9293判定定理294判定定理3三边对应成比例,两三角形相似(95比例,那么这两个直角三角形相似96性质定理197性质定理2相似三角形周长的比等于相似比98性质定理399100101102103104105106107108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
初中数学知识点和公式大全
初中数学知识点和公式大全1.整数及其运算:-整数概念-整数的加减法-整数的乘法-整数的除法-整数的混合运算2.分数及其运算:-分数的概念-分数的加减法-分数的乘法-分数的除法-分数的混合运算3.百分数:-百分数的概念-百分数的转化-百分数的加减法-百分数的乘法-百分数的除法4.小数:-小数的概念-小数的加减法-小数的乘法-小数的除法-小数的混合运算5.平均数与比例:-算术平均数-加权平均数-比例的概念-比例的性质-比例的计算6.代数式:-代数式的概念-同类项与合并同类项-代数式的加减法-代数式的乘法-代数式的除法7.一元一次方程:-一元一次方程的概念-一元一次方程的解的性质-一元一次方程的解法-一元一次方程的应用问题8.一元一次不等式:-一元一次不等式的概念-一元一次不等式的解的性质-一元一次不等式的解法-一元一次不等式的应用问题9.平行线与相交线:-平行线与笛卡尔坐标系-平行线之间的关系-平行线之间的夹角-相交线的概念-相交线之间的关系10.图形的性质:-点、直线、线段和角的概念-三角形的性质-四边形的性质-圆的性质-常见几何图形的性质11.几何变换:-平移-旋转-对称-放缩-切变12.数据的收集与统计:-数据的收集-数据的整理与处理-数据的统计图与分析-数据的描述与比较-数据的预测与推断1.面积与周长公式:-长方形的面积公式:面积=长×宽-正方形的面积公式:面积=边长×边长-三角形的面积公式:面积=底×高/2-圆的面积公式:面积=π×半径²-长方形的周长公式:周长=2×(长+宽)-正方形的周长公式:周长=4×边长-三角形的周长公式:周长=边1+边2+边3-圆的周长公式:周长=2×π×半径2.二次根式运算公式:-二次根式的加减法公式:√a±√b=√a±√b(a≠b) - 二次根式的乘法公式:(√a) × (√b) = √ab-二次根式的除法公式:(√a)/(√b)=√(a/b)(b≠0)3.线性方程和一元一次方程公式:- 线性方程的一般形式:ax + b = 0-一元一次方程的解的公式:x=-b/a4.几何图形的面积和体积公式:-三角形的面积公式:面积=底×高/2-圆的面积公式:面积=π×半径²-球的体积公式:体积=(4/3)×π×半径³-长方体的体积公式:体积=长×宽×高-圆柱体的体积公式:体积=π×半径²×高-圆锥体的体积公式:体积=(1/3)×π×半径²×高5.正比例和反比例公式:- 正比例公式:y = kx (k为常数) -反比例公式:y=k/x(k为常数)。
初中数学必备公式和知识点
初中数学必备公式和知识点
初中数学必备公式和知识点如下:
1. 数学符号和运算法则:
- 加法:a + b = b + a
- 乘法:a × b = b × a
- 除法:a ÷ b = a / b (b ≠ 0)
- 指数:a^m × a^n = a^(m+n)
- 开方:√a × √a = a
2. 整数运算:
- 加法和减法规则:同号相加,异号相减
- 乘法规则:同号得正,异号得负
- 除法规则:除数不为0,同号得正,异号得负
3. 分数运算:
- 分数相加减:分子相加减,分母保持不变
- 分数相乘除:分子相乘除,分母相乘除
4. 多项式运算:
- 同类项相加减:同类项的系数相加减,指数保持不变 - 多项式乘法:使用分配律展开并相加同类项
- 多项式除法:使用长除法进行计算
5. 二次根式运算:
- 二次根式乘法:将根号内的数相乘再开根号
- 二次根式除法:将根号内的数相除再开根号
- 二次根式的合并:合并同类项后进行运算
6. 几何基础知识:
- 平行线和垂直线的判定方法
- 三角形的分类和性质
- 直角三角形的勾股定理和三角函数
- 多边形的内角和公式
7. 长度、面积和体积计算:
- 长度单位换算
- 面积计算(矩形、三角形、圆等)
- 体积计算(长方体、圆柱体、球体等)
8. 数据统计和概率:
- 数据的收集和整理
- 平均数、中位数和众数的计算
- 概率的计算和事件的概率判定
以上是初中数学的一些必备公式和知识点,希望对你有帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学知识点及公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理 1 平行四边形的对角相等53平行四边形性质定理 2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理 3 平行四边形的对角线互相平分56平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理 3 对角线互相平分的四边形是平行四边形59平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形60矩形性质定理 1 矩形的四个角都是直角61矩形性质定理 2 矩形的对角线相等62矩形判定定理 1 有三个角是直角的四边形是矩形63矩形判定定理 2 对角线相等的平行四边形是矩形64菱形性质定理 1 菱形的四条边都相等65菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理 1 四边都相等的四边形是菱形68菱形判定定理 2 对角线互相垂直的平行四边形是菱形69正方形性质定理 1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理 2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理 3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理 2 相似三角形周长的比等于相似比98 性质定理 3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r ②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r) ⑤两圆内含d<R-r(R>r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为/n=360°化为(n-2)(k-2)=4360°,因此k×(n-2)180°144弧长计算公式:L=n兀R/180145扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长= d-(R-r) 外公切线长= d-(R+r)147完全平方公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2148平方差公式:(a+b)(a-b)=a^2-b^2常用数学公式:乘法与因式分解:a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b| ;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解;-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系:X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式:b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式:两角和公式:sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式:tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式:-cosA)/2) sin(A/2)=-√((1-cosA)/2)sin(A/2)=√((1cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))tan(A/2)=√((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))ctg(A/2)=√((1+cosA)/((1和差化积:2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB特殊三角函数值:sin0°=0;sin30°=1/2;sin45°=√2/2 ;sin60°=√3/2 ;sin90°=1 cos0°=1 ;cos30°=√3/2 ;cos45°=√2/2 ;cos60°=1/2 ;cos90°=0 tan0°=0 ;tan30°=√3/3 ;tan45°=1 ;tan60°=√3cot30°=√3;cot45°=1;cot60°=√3/3;cot90°=0某些数列前n项和:1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+…+n3=(1+2+3+……+n)2=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理:a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理:b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆:圆的标准方程:(x-a) 2+(y-b) 2=r2注:(a,b)是圆心坐标圆的一般方程:x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0棱柱:斜棱柱侧面积:S=c'*h直棱柱侧面积:S=c*h抛物线标准方程:y2=2px y2=-2px x2=2py x2=-2py正棱锥侧面积:S=1/2c*h'斜棱柱体积:V=S'L 注:其中,S'是直截面面积,L是侧棱长圆台侧面积:S=1/2(c+c')l=π(R+r)l正棱台侧面积:S=1/2(c+c')h'球:球的表面积:S=4π*r2圆柱圆锥:圆柱侧面积:S=c*h=2π*h圆锥侧面积:S=1/2*c*l=pi*r*l圆锥体体积公式:V=1/3*pi*r2h圆柱体:V=πr2h锥体体积公式:V=1/3*S*H柱体体积公式:V=s*h弧长公式:l=a*r a是圆心角的弧度数r >0扇形面积公式:s=1/2*l*r韦达定理:设一元二次方程ax2+bx+c =0(a,b,c,∈R,a≠0) 中,两根x1、x2有如下关系:x1+x2= -a/b;x1*x2=a/c十字相乘:。