数字图像处理课设图像频域增强正文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章绪论

MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连matlab开发工作界面接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB 成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JA V A 的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。

第2章数字图像处理的相关知识

2.1图像频域增强原理

图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。

图像增强的方法分为空域法和频域法两类,空域法主要是对图像中的各个像素点进行操作;而频域法是在图像的某个变换域内,对图像进行操作,修改变换后的系数,例如傅立叶变换、DCT变换等的系数,然后再进行反变换得到处理后的图像。

卷积理论是频域技术的基础。设函数f(x,y)与线性位不变算子h(x,y)的卷积结果是g(x,y),即g(x,y)=h(x,y)*f(x,y),那么根据卷积定理在频域有:

G(u,v)=H(u,v)F(u,v) (2.1)其中G(u,v),H(u,v),F(u,v)分别是g(x,y),h(x,y),f(x,y)的傅立叶变换。用线性系统理论的话来说,H(u,v)是转移函数。

在具体的增强应用中,f(x,y)是给定的(所以F(u,v)可利用变换得到),需要确定的是H(u,v),这样具有所需特性的g(x,y)就可由式(1)算出G(u,v)而得到:g(x,y)=F-1[H(u,v)F(u,v)] (2.2)

2.2实现步骤

根据以上讨论,在频率域中进行增强是相当直观的,其主要步骤有:

(1)计算需增强图的傅立叶变换;

(2)将其与1个(根据需要设计的)转移函数相乘;

(3)再将结果傅立叶反变换以得到增强的图。

频域增强的两个关键步骤:

(1)将图像从空域转换到频域所需的变换及将图像从频域空间转换回空域所需的变换.

(2)在频域空间对图像进行增强加工操作

2.3实现方法

常用的频域增强方法有:(1)低通滤波;(2)高通滤波;(3)带通和带阻滤波;(4)同态滤波。

2.4低通滤波器

本次设计是用低通滤波做的,图像中的边缘和噪声都对应图像傅立叶变换中的高频部分,所以如要在频域中消弱其影响就要设法减弱这部分频率的分量。根据式(2.1)我们需要选择1个合适的H(u,v)以得到消弱F(u,v)高频分量的G(u,v).在以下讨论中我们考虑对F(u,v)的实部和虚部影响完全相同的滤波转移函数。具有这种特性的滤波器称为零相移滤波器。

理想是指小于D0的频率可以完全不受影响地通过滤波器,而大于D0的频率则完全通不过。1个2-D理想低通滤波器的转移函数满足下列条件:

1 如D(u,v)<=D0

H(u,v)= (2.3)

0如D(u,v)>D0

上式中D0是1个非负整数。D(u,v)是从点(u,v)到频率平面原点的距离,D(u,v)=(u2+v2)1/2。(2.4) 图2.1给出H的1个剖面图(设D对原点对称),这里理想是指小于D0的频率可以完全不受影响地通过滤波器,而大于D0的频率则完全通不过。因此D0也叫截断频率。尽管理想低通滤波器在数学上定义得很清楚,在计算机模拟中也可实现,但在截断频率处直上直下的理想低通滤波器是不能用实际的电子器件实现的。

00

图2.1 理想低通滤波器转移函数的剖面图

如果使用这些“非物理”的理想滤波器,其输出图像会变得模糊和有“振铃

(ring)”现像出现。我们可借助卷积定理解释如下。

为简便,考虑1-D的情况。对1个理想低通滤波器,其h(x)的一般形式可由求式(2.3)的傅立叶反变换得到,其曲线可见图2.2(a)。现设f(x)是1副只有1个亮像素的简单图像,见图2.2(b)。这个亮点可看作是1个脉冲的近似。在这种情况下,f(x)和h(x)的卷积实际上是把h(x)复制到f(x)中亮点的位置。比较图2.2(b)和图6.2.2(c)可明显看出卷积使原来清晰的点被模糊函数模糊了。对更为复杂的原始图,如我们认为其中每个灰度值不为零的点都可以看作是1个其值正比于该点灰度值的1个亮点,则上述结论仍可成立。

图2.2 空间模糊示意图

由图2.2还可以看出h(x,y)在2-D图像平面上将显示出一系列同心圆环。如对1个理想低通滤波器的H(u,v)求反变换,则可知道h(x,y)中同心圆环的半径是反比于D0的值的。所以如果D0较小,就会使h(x,y)产生数量较少但较宽的同心圆环,并使g(x,y)模糊得比较厉害。当增加D0时,就会使h(x,y)产生数量较多但较窄的同心圆环,并使g(x,y)模糊得比较少。如果D0超出F(u,v)的定义域,则h(x,y)在其对应的空间区域为1,h(x,y)与f(x,y)的卷积仍是f(x,y),这相当于没有滤波。

2.5巴特沃斯低通滤波器

物理上可以实现的一种低通滤波器是巴特沃斯(Butterworth)低通滤波器。在进行图像处理的过程中,获取原始图像后,首先需要对图像进行图像预处理,因为在获取图像的过程中,往往会发生图像失真,使所得图像与原图像有某种程度上的差别。在许多情况下,人们难以确切了解引起图像降质的具体物理过程及其数学模型,但却能估计出使图像降质的一些可能原因,针对这些原因采取简单易行的方法,改善图像质量。由于噪声、光照等原因,使图像质量不高,为了改

相关文档
最新文档