八年级数学角平分线的课件
合集下载
人教版八年级上册数学课件12.3角平分线的性质3
OC,在OC 上任取一点P,过点P 画出OA,OB 的垂
线,分别记垂足为D,E,测量 PD,PE 并
作比较,你得到什么结论?
A
在OC 上再取几个点试一试. 通过以上测量,你发现了角
D
的平分线的什么性质?
C
P
O
E
B
求证经; 历实验过程,发现并证明角的平分线的性质
求证:PD =PE.
追问2 由角的平分线的性质的证明过程,你能概
经历实验过程,发现并证明角的平分线的性质
追问1 通过动手实验、观察比较,我们发现“角 经历实验过程,发现并证明角的平分线的性质
∴∠DOP=∠BOP(角平分线定义)
线.你能说明它的道理吗?
的平分线上的点到角的两边的距离相等”,你能通过严 求证:PD =PE.
受到哪些启发?如何利用直尺和圆规作一个角的平分线?
在△OPD和△OPE 中
格的逻辑推理证明这个结论吗? 边放下,沿AC 画一条射线AE,AE 就是∠DAB 的平分
CA=CA(公共边)
追问2 由角的平分线的性质的证明过程,你能概
受到哪些启发?如何利用直尺和圆规作一个角的平分线?
追问3 角的平分线的性质的作用是什么?
已知:如图,OC平分∠AOB, 追问3 角的平分线的性质的作用是什么?
追问4 你能说明为什么射线OC 是∠AOB 的平分线吗?
如图,任意作一个角∠AOB,作出∠A的平分线
(3)经过分析,找出由已知推出求证的途径,写出证 在△ACD和△ACB中
D
B
问题2 利用尺规我们可以作一个角的平分线,那
格的逻辑推理证明这个结论吗?
证明:∵ OC平分∠AOB, P是OC上一点(已知)
E
八年级数学下册1.4.2角平分线课件新版北师大版
度数,可以求此角的度数。
3
应用三 解决实际问题
可以运用角平分线及其性质来解决直角 三角形、等腰三角形等问题。
角平分线的练习
练习一 画出角的平分线
练习用尺规等工具作出各种角的 平分线。
练习二 用角平分线定理 求角度
练习应用角平分线定理来求出角 的度数。
练习三 解决实际问题
练习将角平分线应用于解决不同 的实际问题。
总结
1 角平分线的重要性
角平分线是许多的几何问题的基础课件的学习,你是否已经对角平分线有了更好的理解?
3 知识点回顾
通过课件中的练习,你是否已经掌握了角平分线的基本定义、性质、作用、应用及求解 方法?
可用尺规作图法作出一条角的平 分线。
角平分线的作用
寻找角平分线
可以用尺规作图法求角平分线。
确定长度
若一个角的一条平分线已知其长度,则可以求出与此平分线相应两边的长度。
证明定理
可以用角平分线定理来证明一些定理。
角平分线的应用
1
应用一 求角平分线
通过尺规作图等方法求角平分线。
应用二 求角度大小
2
已知一个角的一条平分线与相应两边的
角平分线课件:北师大版 八年级数学下册1.4.2
本课件将深入讲解角平分线的定义、性质、作用、应用和练习,助你更好地 掌握这一知识点。
角平分线的定义
什么是角平分线
角平分线是指可以将一个角平分 成两个相等的角的线段。
角平分线的性质
作图
1.角平分线可以互相平分。
2.如果一个角的两条平分线相交, 则它们所截的弧上的点都在相同 的直线上。
人教版数学八年级上册 第十二章 12.3 角的平分线的性质 第一课时 课件(共33张PPT)
PD⊥OA,PE⊥OB,且
O
P
PD=PE
E B ∴OP是∠AOB的平分线
动脑想一想
• 我们之间就学习了三角形的角分线,之前 谈到过,三条角分线一定交于一点,不过 当时我们没有给出证明,而只是通过画图 的方法给出了印证。
• 现在我们学习了角分线的性质和判定定理, 怎样证明这个结论呢?我们先看下面的例 题。
DC=BC(已知) ∴ △ADC≌△ABC (SSS) ∴∠DAC=∠BAC(对应角相等) 即 AE平分∠BAD
动脑想一想
• 通过刚才的启发,你能想到怎样画出下面 的角的平分线吗?
A
仅用尺规作图,
已知∠AOB,
求作∠AOB的
平分线
O
B
尺规法画角平分线
A M
O
NB
以点O为圆心,任意适当长度为半径画弧,
• 对折之后的折痕和 这个角有什么关系?
• 如果是木板不能对 折,该怎么平分?
动脑想一想
• 如图是一个平分角的仪器, 其中AB=AD,BC=DC,将 点A放在角的顶点,AB和 AD沿着角的两边放下,则 AC所在直线就是这个角的 平分线。
• 你能说明这是为什么吗?
动脑想一想
证明: 在△ADC和△ABC 中 AB=AD(已知) AC=AC(公共边相等)
角分线上的点到角两边的距离相等
A D
∵OC平分∠AOB,
O
P C PD⊥OA,PE⊥OB
∴PD=PE
EB
动脑想一想
• 如图,要在S区建一个 集贸中心,使它到铁路、 公路的距离相等,并且 离公路与铁路的交叉处 500m,这个集贸中心应 建在哪里?
动脑想一想
• 角分线上的点到角两边的距离相等。 • 到角的两边的距离相等的点是否也在角的
《角的平分线的性质》PPT优质课件
E B
∴∠AOP=∠BOP (全等三角形的对应角相等).
∴点P在∠AOB的平分线上.
探究新知
判定定理:
角的内部到角的两边的距离相等的点在角的平分线上.
应用所具备的条件:
(1)位置关系:点在角的内部;
(2)数量关系:该点到角两边的距离相等.
定理的作用:判断点是否在角平分线上.
应用格式: ∵ PD⊥OA,PE⊥OB,PD=PE. O ∴点P 在∠AOB的平分线上.
O
这个点应该在角的平分线
S
探究新知
知识点 1 角平分线的判定
叙述角平分线的性质定理.
角的平分线上的点到角的两边的距离相等.
回 几何语言描述:∵ OC平分∠AOB,且PD⊥OA, PE⊥OB.
顾 旧 知
∴ PD= PE. 不必再证全等
A D
P到OA的距离PD
C P
P是角平分线上的点
O
E
B P到OB的距离PE.
证明:∵OD平分∠AOB,∠1=∠2, 又∵OA=OB,OD=OD, ∴△AOD≌△BOD,∴∠3=∠4, 又∵PM⊥DB,PN⊥DA, ∴PM=PN.(角平分线上的点到角两边 的距离相等)
探究新知
素养考点 2 利用角平分线的性质求线段的长度
例2 如图,AM是∠BAC的平分线,点P在AM上,PD⊥AB, PE⊥AC,垂足分别是D,E,PD=4cm,则PE=___4___cm.
探究新知
猜想证明
已知:如图,PD⊥OA,PE⊥OB,垂足分别是D,E,
PD=PE. 求证:点P在∠AOB的平分线上.
证明:作射线OP,∵PD⊥OA,PE⊥OB. ∴∠PDO=∠PEO=90°,
D
A
在Rt△PDO和Rt△PEO 中,
人教八年级数学上册《角的平分线的判定》(共18张)
等于2 cm,则Q 在∠AOB 的平分线上.( ) √
A
M
Q
O
ห้องสมุดไป่ตู้
N
B
应用角平分线性质定理的逆定理
2.在问题1中,在S 区建一个集贸市场,使它到公路与 铁路的距离相等.
(1) 这个集贸市场 应建于何处?这样的集贸市场可建 多少个?
应用角平分线性质定理的逆定理
2.在问题1中,在S 区建一个集贸市场,使它到公路 与铁路的距离相等.
学习重点: 角平分线性质定理的逆定理.
引言
问题1 如图,要在S 区建一个集贸市场,使它到 公路,铁路的距离相等,并且距离公路与铁路的交叉处500m
,请你帮忙设计一下,这个集贸市场应建于何(在图上 标 出它的位置,比例尺为1:20 000)?
探索并证明角平分线的性质定理的逆定理
问题2 交换角的平分线的性质中的已知和结论, 你能得到什么结论,这个新结论正确吗?
(1) 这个集贸市场 应建于何处?这样的集贸市场可 建多少个?
(在图上标出它的位置,比例尺为1:20 000)
应用角平分线性质定理的逆定理
2.在问题1中,在S 区建一个集贸市场,使它到公路与铁 路的距离相等.
(3)如图,点P是△ABC的两条角平分线BM, CN 的交点, 点P 在∠BAC的平分线上吗?这说明三 角形的三条角平分线有什么关系?
角的内部到角的两边距离相等的点在角的平分线 上.
探索并证明角平分线的性质定理的逆定理
追问1 你能证明这个结论的正确性吗?
探索并证明角平分线的性质定理的逆定理
追问2 这个结论与角的平分线的性质在应用上有 什么不同?
这个结论可以判定角的平分线,而角的平分线的性 质可用来证明线段相等.
A
M
Q
O
ห้องสมุดไป่ตู้
N
B
应用角平分线性质定理的逆定理
2.在问题1中,在S 区建一个集贸市场,使它到公路与 铁路的距离相等.
(1) 这个集贸市场 应建于何处?这样的集贸市场可建 多少个?
应用角平分线性质定理的逆定理
2.在问题1中,在S 区建一个集贸市场,使它到公路 与铁路的距离相等.
学习重点: 角平分线性质定理的逆定理.
引言
问题1 如图,要在S 区建一个集贸市场,使它到 公路,铁路的距离相等,并且距离公路与铁路的交叉处500m
,请你帮忙设计一下,这个集贸市场应建于何(在图上 标 出它的位置,比例尺为1:20 000)?
探索并证明角平分线的性质定理的逆定理
问题2 交换角的平分线的性质中的已知和结论, 你能得到什么结论,这个新结论正确吗?
(1) 这个集贸市场 应建于何处?这样的集贸市场可 建多少个?
(在图上标出它的位置,比例尺为1:20 000)
应用角平分线性质定理的逆定理
2.在问题1中,在S 区建一个集贸市场,使它到公路与铁 路的距离相等.
(3)如图,点P是△ABC的两条角平分线BM, CN 的交点, 点P 在∠BAC的平分线上吗?这说明三 角形的三条角平分线有什么关系?
角的内部到角的两边距离相等的点在角的平分线 上.
探索并证明角平分线的性质定理的逆定理
追问1 你能证明这个结论的正确性吗?
探索并证明角平分线的性质定理的逆定理
追问2 这个结论与角的平分线的性质在应用上有 什么不同?
这个结论可以判定角的平分线,而角的平分线的性 质可用来证明线段相等.
初中数学《角平分线的性质》优质课件
M
B
D P
N C
∴ △AMP ≌ △ANP(AAS) ∴PM=PN
角平分线的性质1
角的平分线上的点到角的两边的距离相等.
应用所具备的条件:
M
B
(1)AD为角的平分线; (2)点P在该平分线上; A
D P
(3)PM⊥AB PN⊥AC
符号语言:
N C
∵AD平分∠BAC ,PM⊥AB , PN⊥AC
∴PM=PN
作用:判断线段相等的依据.
练习一:判断正误,并说明理由:
1.如图,P是∠AOB的平分线OC上的一点,D、E分
别在OA、OB上,则PD=PE .
(×)
2.如图,P在射线OC上,PD⊥OA,PE⊥OB,
PE=PF.
A
D
O
O
PC
E B
(1题)
A D
PC
E B
(2题)
(× )
3.如图,在∠AOB的平分线OC上任取一点P,若P到 OA 的距离为3cm,则P到OB的距离边为3cm.( √ )
B
A
D
C
结论: 角是轴对称图形,角的平分线所在的
直线是它的对称轴.
活动二:探索角平分线的第一个性质
请同学们在刚才折出的角平分线AD上,任意取一点 P,
通过尺规作图,过点 P 作 PM⊥AB,PN⊥AC,垂足分
别是点 M,N,用圆规比较 PM 与 PN 的大小,你有什
么发现?说明你的理由.
M
B
D
A
P
N C
结论:角平分线上的点,到这个角的两边的距离相等.
已知:AD是∠BAC的角平分线,点P是AD上任意一点,
PM⊥AB,PN⊥AC.求证:PM=PN
八年级数学《尺规作图-角平分线、垂线和中垂线》课件
2、试把一个钝角四等分。
3、任意画一个三角形,画出三个内角的角 平分线.(不写画法,保留作图痕迹)
4、已知:角∠α,线段m。 求作:等腰三角形△ABC,使其顶角
∠BAC=∠α, ∠BAC的平分线为m。
2、经过一点作已知直线的垂线
1、如图,点C在直线上,试过点C画出直线的 垂线。
2、如图,如果点C不在直线上,试和同学讨论, 应采取怎样的步骤,过点C画出直线的垂线?
2题的作法:
(1)任取一点M,使点M和点C在的两侧; (2)以C点为圆心,以CM长为半径画弧,交
于A、B两点; (3)分别以A、B两点为圆心,以大于 1 AB
长为半径画弧,两弧相交于D点; 2 (4)过C、D两点作直线CD。
所以,直线CD就是所求作的。
练习
1、如图,过点P画∠O 两边的垂线.
2、如图,画 △ABC 边 BC 上的(第高1 题.)
第19章 全等三角形 19.3 尺规作图
基本作图
❖在几何里,把限定用直尺和圆规来画 图,称为尺规作图.最基本,最常用的尺 规作图,通常称基本作图.
❖ 其中,直尺是没有刻度的;
❖ 一些复杂的尺规作图都是由基本作图组成的. 以前学过的”作一条线段等于已知线段”,就 是一种基本作图.
❖ 下面介绍几种基本作图:
(第 2 题)
❖什么垂直平分线?
(过线段的中点,垂直这条线段的 直线)
❖线段垂直平分线有哪些特征?
(线段的垂直平分线上的点到线段 两端点的距离相等;反过来,到线 段两端点距离相等的点在线段的垂 直平分线上)
❖已知线段AB,画出它的垂直平分线.
说出你的 作图思路
议一议;能否说出这 种画法的依据,小组 讨论交流一下。
1、平分已知角
3、任意画一个三角形,画出三个内角的角 平分线.(不写画法,保留作图痕迹)
4、已知:角∠α,线段m。 求作:等腰三角形△ABC,使其顶角
∠BAC=∠α, ∠BAC的平分线为m。
2、经过一点作已知直线的垂线
1、如图,点C在直线上,试过点C画出直线的 垂线。
2、如图,如果点C不在直线上,试和同学讨论, 应采取怎样的步骤,过点C画出直线的垂线?
2题的作法:
(1)任取一点M,使点M和点C在的两侧; (2)以C点为圆心,以CM长为半径画弧,交
于A、B两点; (3)分别以A、B两点为圆心,以大于 1 AB
长为半径画弧,两弧相交于D点; 2 (4)过C、D两点作直线CD。
所以,直线CD就是所求作的。
练习
1、如图,过点P画∠O 两边的垂线.
2、如图,画 △ABC 边 BC 上的(第高1 题.)
第19章 全等三角形 19.3 尺规作图
基本作图
❖在几何里,把限定用直尺和圆规来画 图,称为尺规作图.最基本,最常用的尺 规作图,通常称基本作图.
❖ 其中,直尺是没有刻度的;
❖ 一些复杂的尺规作图都是由基本作图组成的. 以前学过的”作一条线段等于已知线段”,就 是一种基本作图.
❖ 下面介绍几种基本作图:
(第 2 题)
❖什么垂直平分线?
(过线段的中点,垂直这条线段的 直线)
❖线段垂直平分线有哪些特征?
(线段的垂直平分线上的点到线段 两端点的距离相等;反过来,到线 段两端点距离相等的点在线段的垂 直平分线上)
❖已知线段AB,画出它的垂直平分线.
说出你的 作图思路
议一议;能否说出这 种画法的依据,小组 讨论交流一下。
1、平分已知角
人教版八年级数学上册 《三角形的高、中线与角平分线》PPT教育课件
三角形中线的理解
∵AD是△ABC的中线
∴BD=CD
∴BD= BC
CD=
BC
∴BC=2BD BC=2CD
A
B
C
D
第十页,共二十页。
三角形的重心
概念:三条中线相交于一点,三角形三条中线的交点叫做三角形的重心。
A
F
B
E
O
D
第十一页,共二十页。
C
扩展
思考:△ABD和△ADC的面积相等吗?
∵D是BC的中点
人教版八年级数学上册 《三角形的高、中线与角平分线》PPT教育课件
科
目:数学
适用版本:人教版
适用范围:【教师教学】
第十一章 三角形
11.1.2 三角形的高、中
线与角平分线
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text
知识点回顾
问题:你还记得“过一点画已知直线的垂线”吗?
分析:即过点p做已知直线l的垂线。
0
p
1
2
3
4
5
0
1
2
3
4
5
l
O
第三页,共二十页。
课堂测试
问题:过三角形的一个顶点,你能画出它的对边的垂线吗?
分析:即过点A点做已知对边BC的垂线。
0
A
1
2
3
4
5
0
1
2
3
4
5
B
C
O
北师大版八年级数学下册1.4角平分线角平分线的性质与判定课件
= ,
∴△ADB≌△ADC(SAS).
∴BD=CD.
复习训练
1.如图,视察尺规作图痕迹,下列说法错误的是( C )
A.OE是∠AOB的平分线
B.OC=OD
C.点C,D到OE的距离不相等
D.∠AOE=∠BOE
2.如图,PD⊥AB,PE⊥AC,垂足分别为点D,E,且PD=PE,若
∠BAP=20°,则∠BAC=( D )
5.如图,DA⊥AC于点A,DE⊥BC于点E.若AD=5,DE=5,∠ACD
=30°,则∠DCE=( A )
A.30°
B.40°
C.50°
D.60°
例2
如图,在△ABC中,点D是BC的中点,DE⊥AB,DF⊥AC,垂
足分别是点E,F,BE=CF.求证:AD平分∠BAC.
证明:∵点D是BC的中点,∴DB=DC.
D,DE⊥BC于点E,若AD=3,DC=5,则DE= 3 ,CE= 4 .
例1
如图,在△ABC中,AD是它的角平分线,且BD=CD,
DE⊥AB,DF⊥AC,垂足分别为点E,F.求证:EB=FC.
证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,
∴DE=DF,∠BED=∠CFD=90°.
= ,
解:如图,连接BD.
∵DE=DF,DE⊥AB,DF⊥BC,
∴BD平分∠ABC.
∴∠ABD= ∠ABC= ×60°=30°.
在Rt△BDE中,DE= ,∠DBE=30°,
∴BD=2DE=2 .∴BE= − =3.
基础巩固
1.如图,DB⊥AB,DC⊥AC,垂足分别为点B,C,AD平分
∠BAC,BD=2,∠BAC=80°,则DC= 2 ,∠ADC= 50 °.
∴△ADB≌△ADC(SAS).
∴BD=CD.
复习训练
1.如图,视察尺规作图痕迹,下列说法错误的是( C )
A.OE是∠AOB的平分线
B.OC=OD
C.点C,D到OE的距离不相等
D.∠AOE=∠BOE
2.如图,PD⊥AB,PE⊥AC,垂足分别为点D,E,且PD=PE,若
∠BAP=20°,则∠BAC=( D )
5.如图,DA⊥AC于点A,DE⊥BC于点E.若AD=5,DE=5,∠ACD
=30°,则∠DCE=( A )
A.30°
B.40°
C.50°
D.60°
例2
如图,在△ABC中,点D是BC的中点,DE⊥AB,DF⊥AC,垂
足分别是点E,F,BE=CF.求证:AD平分∠BAC.
证明:∵点D是BC的中点,∴DB=DC.
D,DE⊥BC于点E,若AD=3,DC=5,则DE= 3 ,CE= 4 .
例1
如图,在△ABC中,AD是它的角平分线,且BD=CD,
DE⊥AB,DF⊥AC,垂足分别为点E,F.求证:EB=FC.
证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,
∴DE=DF,∠BED=∠CFD=90°.
= ,
解:如图,连接BD.
∵DE=DF,DE⊥AB,DF⊥BC,
∴BD平分∠ABC.
∴∠ABD= ∠ABC= ×60°=30°.
在Rt△BDE中,DE= ,∠DBE=30°,
∴BD=2DE=2 .∴BE= − =3.
基础巩固
1.如图,DB⊥AB,DC⊥AC,垂足分别为点B,C,AD平分
∠BAC,BD=2,∠BAC=80°,则DC= 2 ,∠ADC= 50 °.
角平分线的性质课件
在数学竞赛和高考中,角平分线定理通常是必考内容,体现了它在数学 教育中的重要性。
角平分线定理也被广泛应用于实际生活中,如建筑设计、机械制造和测 量等领域。
角平分线定理的应用在其他学科领域中的体现
在经济学中,角平分线定理可以用于研究市场结构和 市场份额。
在物理学中,角平分线定理可以用于研究物体的运动 轨迹和受力分析。
CHAPTER
角平分线的历史背景和起源
角平分线的起源可以追溯到古代 数学和几何学的研究。
在古埃及和古希腊时期,角平分 线被用于解决几何问题,如土地
测量和建筑。
中世纪欧洲数学家进一步研究了 角平分线,将其与三角形的其他
性质联
角平分线是数学中的一个基本概念,是几何学中的重要定理之一。
02 角平分线的定义与性质
CHAPTER
角平分线的定义
角平分线是一条射线,它把一个角分 成两个相等的部分。
角平分线用符号“”表示,如“”表 示角平分线。
角平分线的性质定理
角平分线将角的两边分为等长 线段。
在角平分线上的点到角的两边 的距离相等。
在角的内部,到角的两边距离 相等的点一定在角平分线上。
角平分线的性质解决实际问题。
对后续学习的建议和展望
加强对角平分线性质的应用练习,通过更多的实际案例和应用实践提高自己的应用能力。 加强与角平分线相关的其他几何性质的学习和研究,为后续的学习和实践打下坚实的基础。
通过参加数学竞赛、学术交流等活动,提高自己的数学素养和应用能力。
谢谢
THANKS
面积等。
03
利用角平分线定理解决立体几何问题
在立体几何中,角平分线定理可以用来解决一些与角度、距离相关的问
题。
04 角平分线在三角函数中的应用
角平分线定理也被广泛应用于实际生活中,如建筑设计、机械制造和测 量等领域。
角平分线定理的应用在其他学科领域中的体现
在经济学中,角平分线定理可以用于研究市场结构和 市场份额。
在物理学中,角平分线定理可以用于研究物体的运动 轨迹和受力分析。
CHAPTER
角平分线的历史背景和起源
角平分线的起源可以追溯到古代 数学和几何学的研究。
在古埃及和古希腊时期,角平分 线被用于解决几何问题,如土地
测量和建筑。
中世纪欧洲数学家进一步研究了 角平分线,将其与三角形的其他
性质联
角平分线是数学中的一个基本概念,是几何学中的重要定理之一。
02 角平分线的定义与性质
CHAPTER
角平分线的定义
角平分线是一条射线,它把一个角分 成两个相等的部分。
角平分线用符号“”表示,如“”表 示角平分线。
角平分线的性质定理
角平分线将角的两边分为等长 线段。
在角平分线上的点到角的两边 的距离相等。
在角的内部,到角的两边距离 相等的点一定在角平分线上。
角平分线的性质解决实际问题。
对后续学习的建议和展望
加强对角平分线性质的应用练习,通过更多的实际案例和应用实践提高自己的应用能力。 加强与角平分线相关的其他几何性质的学习和研究,为后续的学习和实践打下坚实的基础。
通过参加数学竞赛、学术交流等活动,提高自己的数学素养和应用能力。
谢谢
THANKS
面积等。
03
利用角平分线定理解决立体几何问题
在立体几何中,角平分线定理可以用来解决一些与角度、距离相关的问
题。
04 角平分线在三角函数中的应用
北师大版八年级数学下册1.4角平分线课件
只需作出两个角的平分线,第三个角的平分线必过这两
条角平分线的交点.
3.利用面积法求距离的方法:三角形角平分线交点与三
个顶点的连线,把原三角形分割成了三个小三角形,利用
小三角形的面积之和等于原三角形的面积,是求角平分
线交点到三边距离的常用方法.
课外作业
1.如图,在△ABC中,∠B的平分线与∠C的外角的
∴点F在∠DAE的平分线上.
3.证明(1)∵P是∠AOB平分线上的一
点,PC⊥OA,PD⊥OB,∴PC=PD.
又∵OP=OP,∴Rt△OCP≌Rt△ODP.
∴OC=OD.
(2)∵OC=OD,∠COP=∠DOP,
∴OP是CD的垂直平分线.
4.解(1)如图,作∠BAC的角平分线AF或作∠BAC的外角
∠CAE的外角平分线AN,则直线AF或直线AN上任意一点
的角平分线,DE⊥AB于E,F在AC上,BD=DF.
求证:CF=EB.
证明:∵AD平分∠CAB,
A
DE⊥AB,∠C=90°(已知),
∴
CD=DE (角平分线的性质).
在Rt△CDF和Rt△EDB中,
CD=ED(已证),
DF=DB (已知),
∴ Rt△CDF≌Rt△EDB (HL).
F
C
∴ CF=EB(全等三角形的对应边相等).
∴ QD=QE
课外作业
1.如图,在△ABC中,∠C=90° AD是∠BAC
的平分线,DE⊥AB于点E,点F在AC上,BD=DF.
求证:(1)CF=EB;
(2)AB=AF+2EB.
证明:(1)∵AD是∠BAC的平分线
,DE⊥AB,DC⊥AC,
∴DE=DC.
∵在Rt△DCF和Rt△DEB中,
条角平分线的交点.
3.利用面积法求距离的方法:三角形角平分线交点与三
个顶点的连线,把原三角形分割成了三个小三角形,利用
小三角形的面积之和等于原三角形的面积,是求角平分
线交点到三边距离的常用方法.
课外作业
1.如图,在△ABC中,∠B的平分线与∠C的外角的
∴点F在∠DAE的平分线上.
3.证明(1)∵P是∠AOB平分线上的一
点,PC⊥OA,PD⊥OB,∴PC=PD.
又∵OP=OP,∴Rt△OCP≌Rt△ODP.
∴OC=OD.
(2)∵OC=OD,∠COP=∠DOP,
∴OP是CD的垂直平分线.
4.解(1)如图,作∠BAC的角平分线AF或作∠BAC的外角
∠CAE的外角平分线AN,则直线AF或直线AN上任意一点
的角平分线,DE⊥AB于E,F在AC上,BD=DF.
求证:CF=EB.
证明:∵AD平分∠CAB,
A
DE⊥AB,∠C=90°(已知),
∴
CD=DE (角平分线的性质).
在Rt△CDF和Rt△EDB中,
CD=ED(已证),
DF=DB (已知),
∴ Rt△CDF≌Rt△EDB (HL).
F
C
∴ CF=EB(全等三角形的对应边相等).
∴ QD=QE
课外作业
1.如图,在△ABC中,∠C=90° AD是∠BAC
的平分线,DE⊥AB于点E,点F在AC上,BD=DF.
求证:(1)CF=EB;
(2)AB=AF+2EB.
证明:(1)∵AD是∠BAC的平分线
,DE⊥AB,DC⊥AC,
∴DE=DC.
∵在Rt△DCF和Rt△DEB中,
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
猜想: 角的平分线上的点到角的两边的距 离相等.
活 动 2 证明角平分线的性质
已知:如图,OC平分∠AOB,点P在
上,PD⊥OA于点D,PE⊥OB于点E A 求证: PD=PE
D
证明:∵OC平分∠ AOB (已知)
C
1
P
2
O
EB
∴ ∠1= ∠2(角平分线的定义) ∵PD ⊥ OA,PE ⊥ OB(已知) ∴ ∠PDO= ∠PEO(垂直的定义)
13.5.3 角平分线
隆兴乡越溪学校 柴彬
• 学习目标:
• 1.初步掌握角平分线定理及其逆定 理,会运用角平分线的性质定理及 逆定理解决实际问题。
• 2.掌握三角形三条角平分线的性质, 会用这个解决一些简单的实际问题。
活 动 1 探究角平分线的性质
动手实践:将∠AOB对折,再折出一个直角 三角形(使第一条折痕为斜边),然后展开,观 察两次折叠形成的三条折痕,你能得出什么结论?
证明:过点O作OI、OG 、OH分别垂直于 AB、BC、CA,垂足为I、G、H.
∵BE平分∠ABC,OG⊥BC,OI⊥AB(已知) A
∴OG=OI(角平分线上的点到角
的两边的距离相等)
同理 OI=OH.
∴ OG=OH
B
即点O在∠BCA的平分线上.
I F
E
OH
DG
C
图形
C
C
P
P
已知
OP平分∠AOB
PD=PE
上的点到角两边的距离
相等)
活动 3
已知:如图,QD⊥OA,QE⊥OB, 点D、E为垂足,QD=QE. 求证:点Q在∠AOB的平分线上.
证明: 经过点Q作射线OC
∵ QD⊥OA,QE⊥OB
∴ ∠QDO=∠QEO=90°
C
在Rt△QDO和Rt△QEO中 QO=QO
Q
QD=QE
∠QDO=∠QEO=90°
在△PDO和△PEO中
∠PDO= ∠PEO(已证)
∠1= ∠2 (已证)
验证猜想
OP=OP (公共边) ∴ △PDO ≌ △PEO(AAS)
∴PD=PE(全等三角形的对应边相等)
利用此性质
怎样书写推理过
程?
A
D
C
1P
2
O
EB
角平分线上 的点到角两 边的距离相
等。
∵ ∠1= ∠2, PD ⊥ OA, PE ⊥ OB(已知) ∴PD=PE(角平分线
∴ Rt△QDO ≌Rt△QEO(HL)
∴ ∠ QOD=∠QOE
∴点Q在∠AOB的平分线OC上
由上面两个定理可知:角的内部到 角的两边距离相等的点在角的平分 线上;反过来,角平分线上的点到 角的两边的距离相等。
活动 4
已知:如图,△ABC的角平分线BE、CF相交于点 O. 求证:点O在∠BCA的平分线上.
条件
PD⊥OA于D PD⊥OA于D
PE⊥OB于E PE⊥OB于E
结论
PD=PE
OP平分∠AOB
谢谢合作!
活 动 2 证明角平分线的性质
已知:如图,OC平分∠AOB,点P在
上,PD⊥OA于点D,PE⊥OB于点E A 求证: PD=PE
D
证明:∵OC平分∠ AOB (已知)
C
1
P
2
O
EB
∴ ∠1= ∠2(角平分线的定义) ∵PD ⊥ OA,PE ⊥ OB(已知) ∴ ∠PDO= ∠PEO(垂直的定义)
13.5.3 角平分线
隆兴乡越溪学校 柴彬
• 学习目标:
• 1.初步掌握角平分线定理及其逆定 理,会运用角平分线的性质定理及 逆定理解决实际问题。
• 2.掌握三角形三条角平分线的性质, 会用这个解决一些简单的实际问题。
活 动 1 探究角平分线的性质
动手实践:将∠AOB对折,再折出一个直角 三角形(使第一条折痕为斜边),然后展开,观 察两次折叠形成的三条折痕,你能得出什么结论?
证明:过点O作OI、OG 、OH分别垂直于 AB、BC、CA,垂足为I、G、H.
∵BE平分∠ABC,OG⊥BC,OI⊥AB(已知) A
∴OG=OI(角平分线上的点到角
的两边的距离相等)
同理 OI=OH.
∴ OG=OH
B
即点O在∠BCA的平分线上.
I F
E
OH
DG
C
图形
C
C
P
P
已知
OP平分∠AOB
PD=PE
上的点到角两边的距离
相等)
活动 3
已知:如图,QD⊥OA,QE⊥OB, 点D、E为垂足,QD=QE. 求证:点Q在∠AOB的平分线上.
证明: 经过点Q作射线OC
∵ QD⊥OA,QE⊥OB
∴ ∠QDO=∠QEO=90°
C
在Rt△QDO和Rt△QEO中 QO=QO
Q
QD=QE
∠QDO=∠QEO=90°
在△PDO和△PEO中
∠PDO= ∠PEO(已证)
∠1= ∠2 (已证)
验证猜想
OP=OP (公共边) ∴ △PDO ≌ △PEO(AAS)
∴PD=PE(全等三角形的对应边相等)
利用此性质
怎样书写推理过
程?
A
D
C
1P
2
O
EB
角平分线上 的点到角两 边的距离相
等。
∵ ∠1= ∠2, PD ⊥ OA, PE ⊥ OB(已知) ∴PD=PE(角平分线
∴ Rt△QDO ≌Rt△QEO(HL)
∴ ∠ QOD=∠QOE
∴点Q在∠AOB的平分线OC上
由上面两个定理可知:角的内部到 角的两边距离相等的点在角的平分 线上;反过来,角平分线上的点到 角的两边的距离相等。
活动 4
已知:如图,△ABC的角平分线BE、CF相交于点 O. 求证:点O在∠BCA的平分线上.
条件
PD⊥OA于D PD⊥OA于D
PE⊥OB于E PE⊥OB于E
结论
PD=PE
OP平分∠AOB
谢谢合作!