高考物理一轮复习资料.doc
高考物理一轮复习知识点全汇总
一、运动学的基本概念1、参考系:运动是绝对的,静止是相对的。
一个物体是运动的还是静止的,都是相对于参考系在而言的。
通常以地面为参考系。
2、质点:(1)定义:用来代替物体的有质量的点。
质点是一种理想化的模型,是科学的抽象。
(2)物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。
且物体能否看成质点,要具体问题具体分析。
(3)物体可被看做质点的几种情况:①平动的物体通常可视为质点。
②有转动但相对平动而言可以忽略时,也可以把物体视为质点。
③同一物体,有时可看成质点,有时不能.当物体本身的大小对所研究问题的影响不能忽略时,不能把物体看做质点,反之,则可以。
【注】质点并不是质量很小的点,要区别于几何学中的“点”。
3、时间和时刻:时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的一段线段来表示,它与过程量相对应。
4、位移和路程:位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量;路程是质点运动轨迹的长度,是标量。
5、速度:用来描述质点运动快慢和方向的物理量,是矢量。
(1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为,方向与位移的方向相同。
平均速度对变速运动只能作粗略的描述。
(2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它可以精确变速运动。
瞬时速度的大小简称速率,它是一个标量。
6、加速度:用量描述速度变化快慢的的物理量,其定义式为。
加速度是矢量,其方向与速度的变化量方向相同(注意与速度的方向没有关系),大小由两个因素决定。
补充:速度与加速度的关系1、速度与加速度没有必然的关系,即:(1)速度大,加速度不一定也大;(2)加速度大,速度不一定也大;(3)速度为零,加速度不一定也为零;(4)加速度为零,速度不一定也为零。
2、当加速度a与速度V方向的关系确定时,则有:(1)若a 与V方向相同时,不管a如何变化,V都增大。
高考物理一轮复习精选题辑:课练+20+Word版含解析
课练20库仑定律电场力的性质1.(2018·广东揭阳一中、潮州金中联考)(多选)如图所示的实验装置为库仑扭秤.细银丝的下端悬挂一根绝缘棒,棒的一端是一个带电的金属小球A,另一端有一个不带电的球B,B与A所受的重力平衡,当把另一个带电的金属球C插入容器并使它靠近A时,A和C 之间的作用力使悬丝扭转,通过悬丝扭转的角度可以比较力的大小,便可找到力F与距离r和电荷量q的关系.这一实验中用到了下列哪些方法()A.微小量放大法B.极限法C.控制变量法D.逐差法答案:AC解析:当小球C靠近小球A时,库仑力使悬丝扭转较小的角度,通过悬丝上的小镜子反射光线放大,能比较准确地测出转动角度.同时体现了控制变量法,即分别控制q和r不变,研究库仑力F与r和q的关系,故A、C正确.2.(2018·河南4月模拟)a、b、c三个点电荷仅在相互之间的静电力的作用下处于静止状态,已知a所带的电荷量为+Q,b所带的电荷量为-q,且Q>q,关于电荷c,下列判断正确的是() A.c一定带负电B.c所带的电荷量一定大于qC.c可能处在a、b之间D.如果固定a、b,仍使c处于平衡状态,则c的电性、电荷量、位置都将唯一确定答案:B解析:根据电场力方向来确定各自电性,从而得出“两同类一异”,根据库仑定律来确定电场力的大小,并由平衡条件来确定各自所带电荷量的大小,因此在大小上一定为“两大夹一小”,且c 所带的电荷量一定大于q ,故A 、C 错误,B 正确;如果a 、b 固定,则只需使c 处于平衡状态即可,由于a 、b 带异号电荷,c 应位于a 、b 连线的外侧,又由于a 的电荷量大于b 的电荷量,则c 应靠近b ,c 的电荷量不能确定,故D 错误.3.(2018·山东泰安一模)如图所示,+Q 为固定的正点电荷,虚线圆是其一条等势线.两电荷量相同、但质量不相等的粒子,分别从同一点A 以相同的速度v 0射入,轨迹如图中曲线,B 、C 为两曲线与圆的交点.a B 、a C 表示两粒子经过B 、C 时的加速度大小,v B 、v C 表示两粒子经过B 、C 时的速度大小.不计粒子重力,以下判断正确的是( )A .aB =aC v B =v C B .a B >a C v B =v CC .a B >a C v B <v CD .a B <a C v B >v C答案:C解析:库仑力F =kQq r 2,两粒子在B 、C 两点受的库仑力大小相同,根据粒子的运动轨迹可知a B >a C ,a =F m ,解得m B <m C ,因为B 、C 两点位于同一等势线上,电势相等,所以两粒子从A 运动到B 和从A 运动到C ,电场力做功相同且做负功,有-W =12m v 2-12m v 20,所以12m B (v 20-v 2B )=12m C (v 20-v 2C ),因为m B <m C ,所以v B <v C ,C 正确. 4.(2018·河南洛阳一模)(多选)如图所示,小球A 、B 质量均为m ,初始带电荷量均为+q ,都用长为L 的绝缘细线挂在绝缘的竖直墙上O 点,A 球紧靠绝缘的墙壁且其悬线刚好竖直,球B 悬线偏离竖直方向θ角而静止.如果保持B 球的电荷量不变,使小球A 的电荷量缓慢减小,当两球间距缓慢变为原来的13时,下列判断正确的是( )A .小球B 受到细线的拉力大小不变B .小球B 受到细线的拉力变小C .两球之间的库仑力大小不变D .小球A 的电荷量减小为原来的127 答案:AD 解析: 对小球B 进行受力分析,由三角形相似可得mg L =T L =F AB,解得T =mg ,F =mg L ·AB ,在小球A 的电荷量减小的过程中,小球B 受到细线的拉力大小不变,A 正确,B 错误;当两球间距离AB 变为原来的13,则库仑力减小为原来的13,C 错误;再由F =kq A q B AB2和F =mg L ·AB ,联立解得q A =mg AB 3kq BL ,所以小球A 的电荷量减小为原来的127,D 正确.5.如图所示,光滑平面上固定金属小球A ,用长为l 0的绝缘弹簧将A 与另一个金属小球B 连接,让它们带上等量同种电荷,弹簧伸长量为x 1;若两小球电荷量各漏掉一半,弹簧伸长量变为x 2,则有( )A .x 2=12x 1B .x 2>14x 1C .x 2=14x 1D .x 2<14x 1答案:B解析:电荷量减少一半,根据库仑定律知若两个球之间的距离保持不变,库仑力减小为原来的14,库仑力减小,弹簧的弹力减小,弹簧的伸长量减小,两球间的距离减小,所以实际的情况是小球之间的库仑力会大于原来的14,此时弹簧的伸长量也大于原来的14,B 正确.6.(2018·湖北七市州联考)如图所示,一水平放置的金属板正上方有一固定的正点电荷Q ,一表面绝缘的带正电小球(可视为质点且不影响Q 的电场),从左端以初速度v 0滑上金属板光滑的上表面向右运动到右端,在运动过程中( )A .小球先做减速运动再做加速运动B .小球受到的合力的冲量为零C .小球的电势能先减少,后增加D .小球先加速运动,后减速运动答案:B解析: 根据点电荷与金属板形成的电场的电场线特点可知,在金属板处,电场强度的方向垂直于金属板竖直向下,所以小球受重力、竖直向下的电场力、金属板的弹力,所受合力为零,小球做匀速直线运动,A 、D 错误;I =Ft ,合力为零,所以合力的冲量为零,B 正确;电场力对小球不做功,小球的电势能不变,C 错误.7.(2018·江西九江十校第二次联考)如图所示,A 是带电荷量为+Q 、半径为R 的球体且电荷均匀分布.(均匀分布电荷的绝缘球体在空间产生对称的电场,场强大小只和到球心的距离有关).B 为带电荷量为+q 的带电体,可看作点电荷.已检测到c 点的场强为零,d 点与c 点到球心O 的距离都为r ,B 到c 点距离也为r ,那么只把带电荷量为+q 的带电体移到e 点,e 点到c 、d 两点的距离均为r .则d 点场强大小为( )A .k 2q r 2B .k Q 2r 2C .k q 2r 2D .k 2q r 2答案:A解析:由c 点场强为零可知kQ r 2=kq r 2,Q =q ,把带电荷量为+q 的带电体移到e 点,两电荷在d 点处产生的场强大小相等,均为E =kq r 2=kQ r 2,两场强方向垂直,所以d 点场强大小E d =2E =2kq r 2=2kQ r 2,A 正确.8.(2018·四川泸州二诊)(多选)如图所示,图甲、图乙分别是等量负点电荷和等量异种点电荷组成的两个独立的带电系统,O 为电荷连线和中垂线的交点,M 、N 是连线上关于O 点对称的两点,p 、q 是中垂线上关于O 点对称的两点.现有一个正点电荷,仅受电场力作用,则( )A .该正点电荷在图甲和图乙中从p 运动到q 时一定是沿直线运动B .该正点电荷在图甲和图乙中从M 运动到N 时一定是沿直线运动C .该正点电荷可以在图甲中做匀速圆周运动经过p 和qD .该正点电荷可以在图乙中做匀速圆周运动经过p 和q答案:BC解析:题图甲中,等量负点电荷连线的中垂线上电场强度的方向为沿中垂线指向中点,所以该正点电荷从p 到q 运动时电场力的方向与运动方向共线,做直线运动,题图乙中,等量异种点电荷连线的中垂线上电场强度的方向为垂直于中垂线指向负电荷,所以该正点电荷从p 向q 运动的过程中,受的电场力向右,故应该做曲线运动,A 错误;在连线上,题图甲中,电场强度的方向由中点O 指向两负电荷,所以该正点电荷从M 向N 运动,电场力与速度方向共线,做直线运动;题图乙中,电场强度的方向由M 到N ,所以该正点电荷受电场力的方向与速度共线,做直线运动,B 正确;给该正点电荷适当的速度,可以使其在垂直于纸面内以O 点为圆心,以Op 为半径做匀速圆周运动,C 正确;根据正点电荷的受力情况和匀速圆周运动中合外力的特点可知,在题图乙中该正点电荷不可能做匀速圆周运动经过p 和q ,D 错误.9.(2018·河北邢台检测)如图所示,在真空中放置四个带电体,它们的带电荷量均为+Q ,半径均为R ,彼此互不影响.甲为均匀带电的球,乙为均匀带电的圆环,丙为均匀带电的圆盘,丁为均匀带电的半球壳.在过球心或圆心O 的中轴线上,距离球心或圆心r 处的A点,电场强度的大小E 可用公式E =k Q r 2(k 表示静电力常量)计算的有( )A .甲B .甲、丁C .乙、丙D .甲、乙、丙答案:A 解析:题图甲中球体均匀带电,故可看作是在球心O 处的点电荷,其A 点处的电场强度可以用E =k Q r 2求解,图甲符合题意;题图乙中应该把圆环分成无数小段的电荷元Δq ,每段电荷元在A 点处形成的电场叠加,故A 点处的电场强度不可以用E =k Q r 2求解,图乙不符合题意;题图丙中应该把带电盘面分成无数小的电荷元,每个电荷元在A 点处形成的电场叠加,故A 点处的电场强度不可以用E =k Q r 2求解,图丙不符合题意;题图丁中,球壳上的电荷Q 不能等效于放在球心处的点电荷,故A 点处的电场强度不可以用E =k Q r 2求解,图丁不符合题意.故选A.10.(2018·湖北天门、仙桃、潜江联考)如图所示,一边长为L 的立方体绝缘体上均匀分布着电荷量为Q 的电荷,在垂直于左右面且过立方体中心O 的轴线上有a 、b 、c 三个点,a 和b 、b 和O 、O 和c间的距离均为L ,在a 点处固定有一电荷量为q (q <0)的点电荷.已知b 点处的场强为零,则c 点处场强的大小为(k 为静电力常量)( )A .k 8q 9L 2B .k Q L 2C .k q L 2D .k 10q 9L 2 答案:D 解析:电荷Q 在b 点和c 处产生的场强大小相等,方向相反,根据b 点处的场强为零,可知Q 带负电,且kQ L 2=kq L 2,在c 点处,两电荷产生的场强方向均向左,E c =kQ L 2+kq (3L )2=k 10q 9L 2=k 10Q 9L 2,D 正确. 11.(2018·山西太原联考)如图所示,固定在竖直平面内的光滑绝缘半圆环的两端点A 、B ,分别安放两个电荷量均为+Q 的带电小球,A 、B 连线与水平方向成30°角,在半圆环上穿着一个质量为m 、电荷量为+q 的小球.已知半圆环的半径为R ,重力加速度为g ,静电力常量为k ,将小球从A 点正下方的C 点由静止释放,当小球运动到最低点D 时,求:(1)小球的速度大小;(2)小球对环的作用力.答案:(1)gR (2)3+36·kQq R 2+2mg 解析:(1)由静电场知识和几何关系可知,C 、D 两点电势相等,小球由C 运动到D 的过程中,mgh =12m v 2,由几何关系可知h =R 2,解得v =gR .(2)小球运动到D 点时,AD =3R ,BD =R ,小球分别受到A 、B两端带电小球的作用力为F A =k Qq 3R 2,F B =k Qq R 2,设环对小球的支持力为F N ,F N -F A cos30°-F B sin30°-mg =m v 2R ,由牛顿第三定律可知小球对环的压力F N =F ′N ,解得F ′N =3+36·kQq R 2+2mg ,方向竖直向下.12.质量都是m 的两个完全相同、带等量异种电荷的小球A 、B 分别用长l 的绝缘细线悬挂在同一水平面上相距为2l 的M 、N 两点,平衡时小球A 、B 的位置如图甲所示,线与竖直方向夹角α=30°,当外加水平向左的匀强电场时,两小球平衡位置如图乙所示,线与竖直方向夹角也为α=30°,求:(1)A 、B 小球电性及所带电荷量Q ;(2)外加匀强电场的场强E .答案:(1)A 带正电,B 带负电,Q =3mg 3k l (2)1033mgk /9l 解析:(1)A 球带正电,B 球带负电未加电场时,两小球相距d =2l -2l sin α=l由A 球受力平衡可得:mg tan α=k Q 2d 2解得:Q = 3mg 3k l(2)外加电场时,两球相距 d ′=2l +2l sin α=3l根据A 球受力平衡可得:QE -k Q 2d ′2=mg tan α 解得:E =10 33mgk 9l刷题加餐练 刷高考真题——找规律1.(2017·天津卷,7)(多选)如图所示,在点电荷Q 产生的电场中,实线MN 是一条方向未标出的电场线,虚线AB 是一个电子只在静电力作用下的运动轨迹.设电子在A 、B 两点的加速度大小分别为a A 、a B ,电势能分别为E p A 、E p B .下列说法正确的是( )A .电子一定从A 向B 运动B .若a A >a B ,则Q 靠近M 端且为正电荷C .无论Q 为正电荷还是负电荷一定有E p A <E p BD .B 点电势可能高于A 点电势答案:BC解析:若Q 在M 端,由电子运动的轨迹可知Q 为正电荷,电子从A 向B 运动或从B 向A 运动均可,由于r A <r B ,故E A >E B ,F A >F B ,a A >a B ,φA >φB ,E p A <E p B ;若Q 在N 端,由电子运动的轨迹可知Q 为负电荷,且电子从A 向B 运动或从B 向A 运动均可,由r A >r B ,故φA >φB ,E p A <E p B .综上所述选项A 、D 错误,选项B 、C 正确.2.(2016·新课标全国卷Ⅱ如图,P 是固定的点电荷,虚线是以P 为圆心的两个圆.带电粒子Q 在P 的电场中运动,运动轨迹与两圆在同一平面内,a 、b 、c 为轨迹上的三个点.若Q 仅受P 的电场力作用,其在a 、b 、c 点的加速度大小分别为a a 、a b 、a c ,速度大小分别为v a 、v b 、v c .则( )A .a a >a b >a c ,v a >v c >v bB .a a >a b >a c ,v b >v c >v aC .a b >a c >a a ,v b >v c >v aD .a b >a c >a a ,v a >v c >v b答案:D解析:a 、b 、c 三点到固定的点电荷P 的距离r b <r c <r a ,则三点的电场强度由E =k Q r 2可知E b >E c >E a ,故带电粒子Q 在这三点的加速度a b >a c >a a .由运动轨迹可知带电粒子Q 所受P 的电场力为斥力,从a到b 电场力做负功,由动能定理-|qU ab |=12m v 2b -12m v 2a <0,则v b <v a ,从b 到c 电场力做正功,由动能定理知|qU bc |=12m v 2c -12m v 2b >0,v c >v b ,又|U ab |>|U bc |,则v a >v c ,故v a >v c >v b ,选项D 正确.3.(2016·江苏卷,3)一金属容器置于绝缘板上,带电小球用绝缘细线悬挂于容器中,容器内的电场线分布如图所示,容器内表面为等势面,A 、B 为容器内表面上的两点,下列说法正确的是( )A .A 点的电场强度比B 点的大B .小球表面的电势比容器内表面的低C .B 点的电场强度方向与该处内表面垂直D .将检验电荷从A 点沿不同路径移到B 点,电场力所做的功不同答案:C解析:A 点的电场线比B 点的稀疏,故A 点的电场强度小于B 点的电场强度,选项A 错误;沿着电场线方向电势降低,故小球表面的电势比容器内表面的电势高,选项B 错误;容器内表面是等势面,所以B 点的电场强度方向与容器内表面垂直,选项C 正确;电场力做功与电荷的运动路径无关,选项D 错误.刷仿真模拟——明趋向4.(2018·湖北孝感统考)在一半径为R 的圆周上均匀分布有N 个带电小球(可视为质点)无间隙排列,其中A 点的小球带电荷量为+3q ,其余小球带电荷量为+q ,此时圆心O 点的电场强度大小为E ,现仅撤去A 点的小球,则O 点的电场强度大小为( )A .E B.E 2C.E 3D.E 4答案:B解析:撤去A 点小球前,O 点的电场强度是A 点的+3q 和与其关于O 点对称点+q 两小球分别产生的电场叠加形成的,则E =k ·3q R 2-kq R 2=k ·2q R 2,方向水平向左.撤去A 点的小球后,O 点的电场强度是A点关于O 点对称点+q 产生的,所以E ′=kq R 2=E 2,方向水平向右,B正确.5.(2018·重庆八中适应性考试)直角坐标系xOy 中,A 、B 两点位于x 轴上,坐标如图所示,C 、D 位于y 轴上.C 、D 两点各固定一等量正点电荷,另一电荷量为Q 的负点电荷置于O 点时,B 点处的场强恰好为零.若将该负点电荷移到A 点,则B 点处场强的大小和方向分别为(静电力常量为k )( )A.5kQ 4l 2,沿x 轴正方向B.5kQ 4l 2,沿x 轴负方向C.3kQ 4l 2,沿x 轴负方向D.3kQ 4l 2,沿x 轴正方向答案:D解析:B 点处的场强恰好为零,说明负点电荷在B 点产生的场强与两正点电荷在B 点产生的合场强大小相等、方向相反,根据点电荷的场强公式可得,负点电荷在B 点的场强为kQ l 2,沿x 轴负方向,两正电荷在B 点的合场强也为kQ l 2,沿x 轴正方向,当负点电荷移到A点时,负点电荷与B 点的距离为2l ,负点电荷在B 点产生的场强为kQ 4l 2,方向沿x 轴方向,两正电荷在B 点产生的合场强的大小仍为kQ l 2,方向沿x 轴正方向,所以B 点处合场强大小为kQ l 2-kQ 4l 2=3kQ 4l 2,方向沿x轴正方向,D 正确.6.(2018·上海4月模拟)均匀的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场.如图所示,在半球面AB 上均匀分布的正电荷,总电荷量为q ,球面半径为R ,CD 为通过半球顶点与球心O 的轴线,在轴线上有M 、N 两点,OM =ON =2R ,已知M 点的场强大小为E ,则N 点的场强大小为( )A.kq 2R 2-EB.kq 4R 2C.kq 4R 2-ED.kq 4R 2+E答案:A 解析:把AB 右侧半球面补齐,即将电荷量分别为+q 、-q 的两个半球面叠加在一起,AB 在N 点的场强相当于所带电荷量为2q 的完整的球壳在N 点向右的场强E 1与多加的所带电荷量为-q 的半球面在N 点向左的场强E 2的矢量和,E 2大小等于原球壳在M 点的场强大小E ,则E N =E 1-E 2=2kq (2R )2-E =kq 2R 2-E ,方向向右,选项A 正确. 7.(2018·广东江门模拟)如图所示,在光滑绝缘水平面上放置3个电荷量均为q (q >0)的相同小球,小球之间用劲度系数均为k 0的轻质弹簧绝缘连接.当3个小球处在静止状态时,每根弹簧长度为l .已知静电力常量为k ,若不考虑弹簧的静电感应,则每根弹簧的原长为( )A .l +5kq 22k 0l 2B .l -kq 2k 0l 2 C .l -5kq 24k 0l 2 D .l -5kq 22k 0l 2 答案:C 解析:对最右边的小球受力分析可知,小球受到另外两个带电小球对它向右的库仑斥力,大小分别为F 1=kq 2(2l )2和F 2=kq 2l 2.由力的平衡可知弹簧弹力的大小F =F 1+F 2=5kq 24l 2,弹簧的伸长量为Δl =F k 0=5kq 24k 0l 2,故弹簧的原长为l 0=l -Δl =l -5kq24k 0l 2,C 正确.刷最新原创——抓重点8.(2018·广东惠州三调)(多选)在真空中的x 轴上的原点处和x =6a 处分别固定一个点电荷M 、N ,在x =2a 处由静止释放一个正点电荷P ,假设点电荷P 只受电场力作用沿x 轴方向运动,得到点电荷P 速度大小与其在x 轴上的位置关系如图所示(其中在x =4a 处速度最大),则下列说法正确的是( )A .点电荷M 、N 一定是同种正电荷B .点电荷M 、N 一定为异种电荷C .点电荷M 、N 所带电荷量的绝对值之比为4 1D .x =4a 处的电场强度不一定为零答案:AC解析:v -t 图象的斜率大小等于运动过程的加速度大小,而a =Eq m ,所以x =4a 处的电场强度大小为零,D 错误.又因为正电荷从x =2a 处向右先加速运动后减速运动,所以x =0到x =4a 之间电场强度方向向右,x =4a 到x =6a 之间电场强度方向向左,所以点电荷M 、N 一定是同种正电荷,A 正确,B 错误;由x =4a 处电场强度大小为零,得kQ M (4a )2=kQ N (2a )2,则点电荷M 、N 所带电荷量的绝对值之比为Q M Q N =41,C 正确. 9.(2018·山东菏泽统测)(多选)如图所示,MPQO 为有界的竖直向下的匀强电场,电场强度为E ,ACB 为光滑固定的半圆形轨道,轨道半径为R ,A 、B 为圆心平直径的两个端点,AC 为14圆弧.一个质量为m 、电荷量为-q 的带电小球,从A 点正上方高为H 处由静止释放,并从A 点沿切线进入半圆轨道.不计空气阻力及一切能量损失,关于带电小球的运动情况,下列说法正确的是( )A .小球在AC 部分可能做匀速圆周运动B .小球一定能从B 点离开轨道C .若小球能到达C 点,小球在C 点时的速度一定不为零D .若小球能到达B 点,小球经过B 点时动能和经过A 点时动能一定相等答案:AC解析:若重力大小等于电场力大小,则小球进入轨道后,靠弹力提供向心力,所以小球在AC 部分可能做匀速圆周运动,A 正确;小球进入圆轨道后,受到竖直向下的重力、竖直向上的电场力和沿半径方向的轨道的弹力,电场力做负功,重力做正功,由于题中没有给出相关物理量的关系,所以小球不一定能从B 点离开轨道,故B 错误;若小球到达C 点的速度为零,则电场力必定大于重力,则小球不可能沿半圆轨道运动到C 点,所以小球到达C 点的速度不可能为零,C正确;由A 到B 根据动能定理有-EqR =12m v 2B -12m v 2A ,所以若小球能到达B 点,小球经过B 点时动能和经过A 点时动能一定不相等,D 错误.刷易错易误——排难点易错点1 分析不清A 、B 的受力情况及运动情况10.(多选)如图所示,光滑水平桌面上有A 、B 两个带电小球(可以看成点电荷),A 球带电荷量为+3q ,B 球带电荷量为-q ,由静止同时释放后A 球加速度的大小为B 球的3倍.现在A 、B 中点固定一个带正电的C 球(也可看成点电荷),再由静止同时释放A 、B 两球,结果两球加速度大小相等.则C 球带电荷量为( )A.3q 4B.3q 8C.3q 20D.9q 20答案:BC 解析:由静止同时释放后A 球加速度的大小为B 球的3倍,根据牛顿第二定律可知,A 、B 两个带电小球的质量之比为13;当在A 、B 中点固定一个带正电的C 球,由静止同时释放A 、B 两球,释放瞬间两球加速度大小相等.(1)若两球的加速度方向相反,即A 球向右,B 球向左,根据库仑定律与牛顿第二定律,对A ,k 3q ·q (2r )2-k Q C -3q r 2=ma ,对B ,k 3q ·q (2r )2+k Qc ·q r 2=3ma ,综上解得,Q C =320q ;(2)若两球的加速度方向相同,即A 、B 球均向左,根据库仑定律与牛顿第二定律,对A ,k Q C ·3q r 2-k 3q ·q (2r )2=ma ,对B ,k Q C ·q r 2+k 3q ·q (2r )2=3ma ,综上解得,Q C =38q ,故B 、C 正确,A 、D 错误. 易错点2 不能正确理解题给信息,从而正确地给出解答11.(2018·安徽师大附中期中)理论上已经证明:电荷均匀分布的球壳在壳内的电场强度为零.假设某星球是一半径为R 、电荷量为Q 且电荷分布均匀的球体,静电力常量为k ,则星球表面下h 深度处的电场强度的大小为( )A.kQ (R -h )R 3B.kQ (R -h )2C.kQ R 2 D .0答案:A解析:星球的体积V 0=4πR 33,所以半径(R -h )的内球所带的电荷量q =V V 0·Q =(R -h )3R 3·Q ,星球表面下h 深度处的电场强度的大小E =kq (R -h )2=kQ (R -h )R 3,故选A. 刷综合大题——提能力12.(2018·四川绵阳二诊)如图所示,轨道ABCDP 位于竖直平面内,其中圆弧段CD 与水平段AC 及倾斜段DP 分别相切于C 点和D 点,水平段AB 、圆弧段CD 和倾斜段DP 都光滑,水平段BC 粗糙,DP 段与水平面的夹角θ=37°,D 、C 两点的高度差h =0.1 m ,整个轨道绝缘,处于方向水平向左、场强未知的匀强电场中.一个质量m 1=0.4 kg 、带正电、电荷量未知的小物块I 在A 点由静止释放,经过时间t =1 s ,与静止在B 点的不带电、质量m 2=0.6 kg 的小物块Ⅱ碰撞并粘在一起在BC 段上做匀速直线运动,到达倾斜段DP 上某位置.物块Ⅰ和Ⅱ与轨道BC 段间的动摩擦因数μ=0.2,g 取10 m/s 2,sin37°=0.6,cos37°=0.8.求:(1)物块Ⅰ和Ⅱ在BC 段上做匀速直线运动的速度大小;(2)物块Ⅰ和Ⅱ第一次经过C 点时,圆弧段轨道对物块Ⅰ和Ⅱ支持力的大小.答案:(1)2 m/s (2)18 N解析:(1)物块Ⅰ和Ⅱ粘在一起的BC 段上做匀速直线运动,设电场强度为E ,物块Ⅰ带电荷量为q ,物块Ⅰ与物块Ⅱ碰撞前速度为v 1,碰撞后共同速度为v 2,则qE =μ(m 1+m 2)g ,qEt =m 1v 1,m 1v 1=(m 1+m 2)v 2,解得v 2=2 m/s.(2)设圆弧段CD 的半径为R ,物块Ⅰ和Ⅱ经过C 点时圆弧段轨道对物块支持力的大小为N ,则R (1-cos θ)=h ,N -(m 1+m 2)g =(m 1+m 2)v 22R, 解得N =18 N.。
北京四中高考第一轮复习资料大全.doc
北京四中年级:高三科目:物理期数:0103编稿老师:李建宁审稿老师:李建宁录入:申容一、本周内容:几何光学二、重点:1、光的直线传播,光速2、光的反射定律3、平面镜成像作图和规律4、光路可逆性原理三、讲解:1、光的直线传播、光速(1)光源、光束、光线;(2)光在同一种均匀媒质中沿直线传播;(3)实例:影的形成(本影半影),日食、月食、小孔成像;(4)光在真空中传播速度,C=299792458米/秒,可取C=3.00×108米/秒,光在其它媒质中小于C。
(5)光速的测定。
2、光的反射现象:当光从一种媒质射入另一种媒质,在两种媒质的界面上改变方向,一部分光返回原来媒质的现象——光的反射。
无论透明或不透明物在其表面均可发生光的反射。
3、反射定律;AO为入射光线;OB为反射光线;OO'为法线;α为入射角,β为反射角。
(1)反射光线跟入射光线和法线在同一平面内;反射光线和入射光线分居法线两侧。
(2)反射角等于入射角。
反射定律解决了如何根据入射光线来确定反射光线,说明反射光线是唯一确定的。
4、光路可逆:根据反射定律,沿反射光线入射介面则沿原入射光线返回原介质。
5、镜面反射和漫反射。
(1)镜面反射:平滑表面,当平行光入射即入射角相同,根据反射定律它们的反射角也相同,那么将沿相同方向反射。
(2)漫反射:表面粗糙不平,平行光入射后在每一个微小区域根据反射定律反射光线向不同方向反射。
6、平面镜(1)控制光路:原路返回改变900阳光进深井(2)平面镜成像S'为S的像A'B'为物AB的像虚像:不是光线的实际交点,而是光线反向延长线的交点。
成像作图——规范,步骤成像特点:1)平面镜成像是虚像;2)像和物对平面镜是对称;即物与像到镜等距正立、等大小。
(3)平面镜不改变光束性质平行光束会聚光束发散光束7、例题:1)如图光线A射到平面镜上,O为入射点,当平面镜绕过O点的与纸面垂直的轴转θ角时,反射光线B将转过角度多大?分析:平面镜绕过O点与纸面垂直转过θ角时−→−法线转过θ角−→−入射增加θ角。
高三物理一轮复习资料精品文档
阻.
冲 关
提
考 能
【答案】 (1)ADE (2)10 (3)11
·
实
验
专
练
菜单
测定电源的电动势和内电阻
二轮专题复习 ·物理
1.实验原理
攻
专 项
由闭合电路欧姆定律:E=U+Ir 可知,只要测出两组 U、
·
实 I 值,就可以列方程组求出 E 和 r.
验
分 析
2.实验电路的选择
高
由于电源的内阻一般很小,为减小测量误差,常采用图
二轮专题复习 ·物理
攻
专
项
·
实
验
分 析
第 2 讲 电学实验
高
考
冲
关 提
考
能
·
实
验
专
练
菜单
二轮专题复习 ·物理
攻
测定金属的电阻率(同时练习使用螺旋测
专
项
微器和游标卡尺)
·
实
验 分
1.实验原理
析
由电阻定律 R=ρSl 得 ρ=RlS.可见,只要测出金属丝的电
高 考 冲
关 提
考 阻 R、横截面积 S 和长度 l,即可求出其电阻率.
考 冲
提 考
6-2-6 甲所示的电路,而不用图 6-2-6 乙电路.
关
能
·
实
验
专
练
菜单
甲
乙
图6-2-6
二轮专题复习 ·物理
攻
专 项
3.电压表、电流表量程及滑动变阻器的选取
·
实 验
(1)电压表量程:根据测量电源的电动势的值选取,如测
分
析 两节干电池,电压表选 0~3.0 V 量程.
高考物理第一轮复习知识点总结
AB高考物理第一轮复习知识点总结Ⅰ。
力的种类:(13个性质力) 这些性质力是受力分析不可少的“是受力分析的基础” 力的种类:(13个性质力)有18条定律、2条定理1重力: G = mg (g 随高度、纬度、不同星球上不同) 2弹力:F= Kx3滑动摩擦力:F 滑= μN4静摩擦力: O ≤ f 静≤ f m (由运动趋势和平衡方程去判断)5浮力: F 浮= ρgV 排 6压力: F= PS = ρghs 7万有引力: F 引=G 221r m m8库仑力: F=K221r q q (真空中、点电荷)9电场力: F 电=q E =qdu 10安培力:磁场对电流的作用力F= BIL (B ⊥I) 方向:左手定则11洛仑兹力:磁场对运动电荷的作用力f=BqV (B ⊥V) 方向:左手定则12分子力:分子间的引力和斥力同时存在,都随距离的增大而减小,随距离的减小而增大,但斥力变化得快.。
13核力:只有相邻的核子之间才有核力,是一种短程强力。
5种基本运动模型1静止或作匀速直线运动(平衡态问题); 2匀变速直、曲线运动(以下均为非平衡态问题);3类平抛运动; 4匀速圆周运动;5振动。
1万有引力定律B 2胡克定律B3滑动摩擦定律B 4牛顿第一定律B5牛顿第二定律B 力学 6牛顿第三定律B 7动量守恒定律B 8机械能守恒定律B 9能的转化守恒定律. 10电荷守恒定律 11真空中的库仑定律 12欧姆定律13电阻定律B 电学 14闭合电路的欧姆定律B 15法拉第电磁感应定律 16楞次定律B 17反射定律 18折射定律B 定理: ①动量定理B②动能定理B 做功跟动能改变的关系受力分析入手(即力的大小、方向、力的性质与特征,力的变化及做功情况等)。
再分析运动过程(即运动状态及形式,动量变化及能量变化等)。
最后分析做功过程及能量的转化过程;然后选择适当的力学基本规律进行定性或定量的讨论。
强调:用能量的观点、整体的方法(对象整体,过程整体)、等效的方法(如等效重力)等解决 Ⅱ运动分类:(各种运动产生的力学和运动学条件及运动规律.............)是高中物理的重点、难点 高考中常出现多种运动形式的组合 追及(直线和圆)和碰撞、平抛、竖直上抛、匀速圆周运动等 ①匀速直线运动 F 合=0 a=0 V 0≠0 ②匀变速直线运动:初速为零或初速不为零,③匀变速直、曲线运动(决于F 合与V 0的方向关系) 但 F 合= 恒力④只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等⑤圆周运动:竖直平面内的圆周运动(最低点和最高点);匀速圆周运动(关键搞清楚是什么力提供作向心力) ⑥简谐运动;单摆运动; ⑦波动及共振;⑧分子热运动;(与宏观的机械运动区别)⑨类平抛运动;⑩带电粒在电场力作用下的运动情况;带电粒子在f 洛作用下的匀速圆周运动Ⅲ。
高考物理第一轮复习资料(知识点梳理)
学习必备欢迎下载高考物理第一轮复习资料(知识点梳理)学好物理要记住:最基本的知识、方法才是最重要的。
学好物理重在理解(概念、规律的确切含义,能用不同的形式进行表达,理解其适用条件)(最基础的概念、公式、定理、定律最重要)每一题弄清楚(对象、条件、状态、过程)是解题关健力的种类 : ( 13 个性质力)说明:凡矢量式中用“重力:G = mg弹力: F= Kx滑动摩擦力: F 滑 = N静摩擦力:O f 静f m浮力: F 浮 = gV 排压力 : F= PS =ghs+”号都为合成符号“受力分析的基础”万有引力:m 1 m 2电场力: F 电 =q E =qu q1 q2(真空中、点电荷 ) F 引=G2库仑力: F=Kr 2r d磁场力: (1) 、安培力:磁场对电流的作用力。
公式: F= BIL( B I )方向 :左手定则(2) 、洛仑兹力:磁场对运动电荷的作用力。
公式:f=BqV (B V) 方向 : 左手定则分子力:分子间的引力和斥力同时存在,都随距离的增大而减小,随距离的减小而增大 ,但斥力变化得快。
核力:只有相邻的核子之间才有核力,是一种短程强力。
运动分类:(各种运动产生的力学和运动学条件、及运动规律)重点难点高考中常出现多种运动形式的组合匀速直线运动 F 合=0V0≠0静止匀变速直线运动:初速为零,初速不为零,匀变速直曲线运动(决于 F 合与 V0的方向关系 ) 但 F 合=恒力只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等圆周运动:竖直平面内的圆周运动(最低点和最高点 );匀速圆周运动 (是什么力提供作向心力)简谐运动;单摆运动;波动及共振;分子热运动;类平抛运动;带电粒子在f洛作用下的匀速圆周运动物理解题的依据:力的公式各物理量的定义各种运动规律的公式物理中的定理定律及数学几何关系FF12F222F1 F2COS F1- F2F∣ F1 +F 2∣、三力平衡: F3=F1 +F2非平行的三个力作用于物体而平衡,则这三个力一定共点,按比例可平移为一个封闭的矢量三角形多个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力的合力一定等值反向匀变速直线运动:基本规律:V t = V 0 + a t S = v o t + a t2几个重要推论:(1)推论: V t2- V 02 = 2as (匀加速直线运动: a 为正值匀减速直线运动: a 为正值)(2) A B 段中间时刻的即时速度:(3) AB段位移中点的即时速度 :V t/ 2 = V =S N 1S NV s/2 = = == VN2T(4) S 第 t 秒 = St-S t-1= (v o t + a t2) - [ v o( t- 1) + a (t- 1)2]= V 0 + a (t -)(5)初速为零的匀加速直线运动规律①在 1s 末、 2s 末、 3s 末⋯⋯ ns 末的速度比为1: 2: 3⋯⋯ n;②在 1s 、 2s、 3s⋯⋯ ns 内的位移之比为12: 22: 32⋯⋯ n2;③在第 1s 内、第2s 内、第 3s 内⋯⋯第ns 内的位移之比为1: 3: 5⋯⋯ (2n-1);④从静止开始通过连续相等位移所用时间之比为1::⋯⋯(⑤通过连续相等位移末速度比为1: 2 : 3 ⋯⋯n(6) 匀减速直线运动至停可等效认为反方向初速为零的匀加速直线运动.(7)通过打点计时器在纸带上打点(或照像法记录在底片上)来研究物体的运动规律初速无论是否为零 ,匀变速直线运动的质点 ,在连续相邻的相等的时间间隔内的位移之差为一常数;匀变速直线运动的物体中时刻的即时速度等于这段的平均速度⑴是判断物体是否作匀变速直线运动的方法。
物理高考一轮复习(优质5篇)
物理高考一轮复习(优质5篇)1.物理高考一轮复习第1篇选择题选择题中,纯粹考察基础知识的题目有大概5道,从以下章节中抽取:相对论、光学、原子物理、万有引力与航天、机械振动与机械波、交变电流。
这些考题的特点是:知识点相对独立,没有综合应用,题型简单、易掌握。
因此我们在指导学生时,只需老师把这些知识点讲透、学生吃透就没问题了。
而搞定这些知识点最好的办法,就是精讲精练。
老师除了讲解,就是督促学生完成做题之后的归纳总结,做历年北京市的高考原题、所有期中、期末的考试题,以及所以有区的模拟题,每章最多50道。
把这些题弄明白了,考试没有理由在这些题上丢分。
30分到手,轻而易举。
余下的三道选择题中,有两道会涉及到力学和电学的主干知识,需要较强的综合应用能力,比如机械能守恒定律、带电粒子的运动、电磁感应等等。
这些问题需要较强的基础知识和综合分析能力,如果后面的大题能解,那么这两道题根本就是小菜一碟。
最后一道选择题有很强的综合性,可能是考察一种解决问题的方法,比如20XX年的就是考察了量纲知识,20XX年的是考察用图象法表示物理公式。
而20XX、20XX 两年考察的是推测的能力。
可以说这道题完全是能力的体现,考的是智力和应变能力,知识点倒是次要的。
综上所述,一个成绩中等偏下的学生,在经过一个月的“特训”以后,选择题达到做对6道的水平是非常轻松的。
实验题实验题会考两道,基本上一道电学一道力学。
力学实验共有八个、电学实验七个、光学实验两个。
并且命题还有一个特点,上一年考过的实验,接下来的几年肯定不会再考。
因此只剩下十个左右的实验。
每个实验有三到五个固定的考点,也就是无论怎样出题,都离不开这几个知识点。
对于北京实验的复习指导,其实只有一个字,那就是“细”,老师必须强调出每个实验中的具体的细节。
对于学生,除去认真重做一遍这些实验外,也只有一个字,那就是“背”,背完之后,把各城区的期中、期末考试、模拟考试上面的题研究明白。
16分以上,稳稳收入囊中。
高考物理一轮复习精选题辑:课练+17+Word版含解析
课练17动量冲量和动量定理1.(2018·河南南阳质检)(多选)下列关于力的冲量和动量的说法中正确的是()A.物体所受的合外力为零,它的动量一定为零B.物体所受的合外力做的功为零,它的动量变化量一定为零C.物体所受的合外力的冲量为零,它的动量变化量一定为零D.物体所受的合外力不变,它的动量变化率不变答案:CD解析:物体所受的合外力为零,物体可能处于静止状态,也可能做匀速直线运动,故其动量不一定为零,A错误;物体所受的合外力做的功为零,有可能合外力垂直于速度方向,不改变速度大小,只改变速度方向,而动量是矢量,所以其动量变化量有可能不为零,B错误;根据动量定理I=Δp可知,物体所受的合外力的冲量为零,则其可得物体所受的动量变化量一定为零,C正确;根据Ft=Δp⇒F=Δpt合外力不变,则其动量变化率不变,D正确.2.(2018·福建六校4月联考)(多选)如图所示,一颗钢珠从静止状态开始自由下落,然后陷入泥潭中,不计空气阻力.若把在空中下落的过程称为过程Ⅰ,进入泥潭直到停止的过程称为过程Ⅱ,则()A.过程Ⅱ中钢珠的动量的改变量等于零B.过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小C.Ⅰ、Ⅱ两个过程中合外力的总冲量等于零D.过程Ⅰ中钢珠的动量的改变量等于重力的冲量答案:CD解析:过程Ⅰ中钢珠所受的外力只有重力,由动量定理可知,钢珠的动量的改变量等于重力的冲量,故D正确;在整个过程中,钢珠的动量的变化量为零,由动量定理可知,Ⅰ、Ⅱ两个过程中合外力的总冲量等于零,故C正确;过程Ⅱ中,钢珠所受的外力有重力和阻力,所以过程Ⅱ中阻力的冲量的大小等于过程Ⅰ中重力的冲量的大小与过程Ⅱ中重力的冲量的大小之和,故B 错误;过程Ⅱ中钢珠所受合外力的冲量不为零,由动量定理可知,过程Ⅱ中钢珠的动量的改变量不等于零,故A 错误.3.(2018·山东枣庄期末联考)质量为60 kg 的建筑工人不慎从高空跌下,由于弹性安全带的保护,使他悬挂起来;已知弹性安全带的缓冲时间是1.2 s ,安全带长5 m ,不计空气阻力影响,g 取10 m/s 2,则安全带所受的平均冲力的大小为( )A .100 NB .500 NC .600 ND .1 100 N答案:D解析:在安全带产生拉力的过程中,人受重力和安全带的拉力作用做减速运动,此过程的初速度就是自由落体运动的末速度,所以有v 0=2gh =2×10×5m/s =10 m/s ,根据动量定理,取竖直向下为正方向,有mg ·t -F ·t =0-m v 0,解得F =mg +m v 0t =600 N +60×101.2 N=1 100 N ,故选D.4.(2018·河南周口一中等联考)(多选)质量为m 的物体以初速度v 0做平抛运动,经过时间t ,下落的高度为h ,速度大小为v ,不计空气阻力,在这段时间内,该物体的动量的变化量大小为( )A .m v -m v 0B .mgtC .m v 2-v 20D .m 2gh答案:BCD解析:根据动量定理得,物体所受合力的冲量等于它的动量的变化量,所以Δp =mgt ,故B 正确;由题可知,物体末位置的动量为m v ,初位置的动量为m v 0,根据矢量三角形定则知,该物体的动量的变化量Δp =m v y =m v 2-v 20=m 2gh ,故C 、D 正确.5.(2018·福建厦门一中月考)(多选)一细绳系着小球,在光滑水平面上做圆周运动,小球质量为m ,速度大小为v ,做圆周运动的周期为T ,则以下说法中正确的是( )A .经过时间t =T 2,小球的动量的变化量为零B .经过时间t =T 4,小球的动量的变化量大小为2m vC .经过时间t =T 2,细绳的拉力对小球的冲量大小为2m vD .经过时间t =T 4,重力对小球的冲量大小为mgT 4答案:BCD解析:经过时间t =T 2,小球转过了180°,速度方向正好与开始计时的时刻的速度方向相反,若规定开始计时的时刻的速度方向为正方向,则小球的动量的变化量Δp =-m v -m v =-2m v ,细绳的拉力对小球的冲量I =Δp =-m v -m v =-2m v ,A 错误,C 正确;经过时间t =T 4,小球转过了90°,根据矢量合成法可得,小球的动量的变化量为Δp ′=m Δv =2m v ,重力对小球的冲量大小I G =mgt =mgT 4,B 、D 正确.6.(2018·湖南五市十校联考)(多选)如图所示,AB 为固定的光滑圆弧轨道,O 为圆心,AO 水平,BO竖直,轨道半径为R ,将质量为m 的小球(可视为质点)从A 点由静止释放,在小球从A 点运动到B 点的过程中,小球( )A .所受合力的冲量水平向右B .所受支持力的冲量水平向右C .所受合力的冲量大小为m 2gRD .所受重力的冲量大小为零答案:AC解析:在小球从A 点运动到B 点的过程中,根据动量定理可知I合=m Δv ,Δv 的方向为水平向右,所以小球所受合力的冲量水平向右,即重力和支持力的合力的冲量水平向右,A 正确、B 错误;在小球从A 点运动到B 点的过程中,机械能守恒,故有mgR =12m v 2B ,解得v B=2gR ,即Δv =2gR ,所以I 合=m 2gR ,C 正确;小球所受重力的冲量大小为I G =mgt ,大小不为零,D 错误.7.(2018·安徽合肥二模)(多选)一质点静止在光滑水平面上.现对其施加水平外力F ,F 随时间t 按正弦规律变化,如图所示,下列说法正确的是( )A.第2 s末,质点的动量为0B.第4 s末,质点回到出发点C.在0~2 s时间内,F的功率先增大后减小D.在1~3 s时间内,F的冲量为0答案:CD解析:从题图可以看出,在前2 s内质点受到的力的方向和运动的方向相同,质点经历了一个加速度先增大后减小的加速运动.所以第2 s末,质点的速度最大,动量最大,不为0,故A错误;该质点在后半个周期内受到的力与前半个周期内受到的力的方向相反,前半个周期内做加速运动,后半个周期内做减速运动,所以质点在0~4 s 时间内的位移为正,故B错误;在0~2 s时间内,速度在增大,力F 先增大后减小,根据瞬时功率P=F v得开始时力F瞬时功率为0.2 s 末的瞬时功率为0,所以在0~2 s时间内,F的功率先增大后减小,故C正确;在F-t图象中,F-t图线与横轴围成的面积表示力F的冲量,由题图可知,1~2 s之间的面积与2~3 s之间的面积大小相等,一正一负,所以和为0,则在1~3 s时间内,F的冲量为0,故D正确.8.篮球运动是大家比较喜好的运动,在运动场上开始训练的人常常在接球时伤到手指头,而专业运动员在接球时通常伸出双手迎接传来的篮球,两手随球迅速收缩至胸前.这样做可以() A.减小球对手的作用力B.减小球对手的作用时间C.减小球的动能变化量D.减小球的动量变化量答案:A解析:专业运动员伸出手接球时延缓了球与手作用的时间,根据动量定理可知,动量变化量相同时,作用时间越长,作用力越小,两种接球方式中球的动量变化相同,动能变化相同,故只有A正确.9.(多选)如图所示,一个质量为0.18 kg 的垒球,以25 m/s 的水平速度飞向球棒,被球棒打击后反向水平飞回,速度大小变为45 m/s ,设球棒与垒球的作用时间为0.01 s .下列说法正确的是( )A .球棒对垒球的平均作用力大小为360 NB .球棒对垒球的平均作用力大小为1260 NC .球棒对垒球做的功为126 JD .球棒对垒球做的功为36 J答案:BC解析:以初速度方向为正方向,根据动量定理F ·t =m v 2-m v 1得:F =-1260 N ,则球棒对垒球的平均作用力大小为1260 N ,故A 项错误,B 项正确;根据动能定理:W =12m v 22-12m v 21=126 J ,故C 项正确,D 项错误.10.如图所示,一个下面装有轮子的贮气瓶停放在光滑的水平地面上,左端与竖直墙壁接触.现打开尾端阀门,气体往外喷出,设喷口面积为S ,气体密度为ρ,气体往外喷出的速度为v ,则气体刚喷出时贮气瓶顶端对竖直墙的作用力大小是( )A .ρv S B.ρv 2SC.12ρv 2S D .ρv 2S答案:D 解析:以t 时间内喷出去的气体为研究对象,则Ft =ρS v t v =ρSt v 2,得F =ρS v 2,由于气瓶处于平衡状态,墙壁与气瓶间作用力与气体反冲作用力相等,故D 项正确.11.(2018·河北沧州一中月考)光滑水平面上放着质量m A =1 kg 的物块A 与质量m B =2 kg 的物块B ,A 与B 均可视为质点,A 靠在竖直墙壁上,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),用手挡住B 不动,此时弹簧弹性势能E p =49 J ;在A 、B 间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示.放手后B 向右运动,绳在短暂时间内被拉断,之后B 冲上与水平面相切的竖直半圆形光滑导轨,轨道半径R =0.5 m .B 恰能完成半个圆周运动到达导轨最高点C .g 取10 m/s 2,求:(1)绳拉断后瞬间B 的速度v B 的大小;(2)绳拉断过程绳对B 的冲量I 的大小.答案:(1)5 m/s (2)4 N·s 解析:(1)设物块B 在绳被拉断后的瞬时速率为v B ,到达C 点的速率为v C ,根据B 恰能完成半个圆周运动到达C 点可得F 向=m B g =m B v 2C R ①对绳断后到B 运动到最高点C 这一过程,应用动能定理有-2m B gR =12m B v 2C -12m B v 2B ②由①②解得v B =5 m/s.(2)设弹簧恢复到自然长度时B 的速率为v 1,取向右为正方向, 由能量守恒定律可知,弹簧的弹性势能转化为B 的动能,则E p =12m B v 21③根据动量定理有I =m B v B -m B v 1④由③④解得I =-4 N·s ,其大小为4 N·s.12.(2018·山西灵丘三模)塑料水枪是儿童们夏天喜欢的玩具,但是也有儿童眼睛被水枪击伤的报道,因此,限制儿童水枪的威力就成了生产厂家必须关注的问题.水枪产生的水柱对目标的冲击力与枪口直径、出水速度等因素相关.设有一水枪,枪口直径为d ,出水速度为v ,储水箱的体积为V .(1)水枪充满水可连续用多少时间?(2)设水的密度为ρ,水柱水平地打在竖直平面(目标)上后速度变为零,则水流对目标的冲击力是多大?你认为要控制水枪威力关键是控制哪些因素?不考虑重力、空气阻力等的影响,认为水柱到达目标的速度与出枪口时的速度相同.答案:(1)4V v πd 2 (2)14πρd 2v 2 控制枪口直径d 和出水速度v解析:(1)设Δt 时间内,从枪口喷出的水的体积为ΔV ,则 ΔV =v S Δt ,S =π⎝ ⎛⎭⎪⎫d 22, 所以单位时间内从枪口喷出的水的体积为ΔV Δt =14v πd 2,水枪充满水可连续用的时间t =V 14v πd 2=4V v πd 2.(2)Δt 时间内从枪口喷出的水的质量m =ρΔV =ρS v Δt =ρ·π⎝ ⎛⎭⎪⎫d 22v Δt =14ρπd 2v Δt . 质量为m 的水在Δt 时间内与目标作用,由动量定理有F Δt =Δp ,以水流的方向为正方向,得-F Δt =0-14ρπd 2v Δt ·v =0-14ρπd 2v 2Δt ,解得F =14πρd 2v 2.可见,要控制水枪威力关键是要控制枪口直径d 和出水速度v . 刷题加餐练 刷高考真题——找规律1.(2017·新课标全国卷Ⅲ一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动.F 随时间t 变化的图线如图所示,则( )A .t =1 s 时物块的速率为1 m/sB .t =2 s 时物块的动量大小为4 kg·m/sC .t =3 s 时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零答案:AB解析:前2 s内物块做初速度为零的匀加速直线运动,加速度a1=F1m =22m/s2=1 m/s2,t=1 s时物块的速率v1=a1t1=1 m/s,故A正确;t=2 s时物块的速率v2=a1t2=2 m/s,动量大小为p2=m v2=4 kg·m/s,故B正确;物块在2~4 s内做匀减速直线运动,加速度的大小a2=F2m=0.5 m/s2,t=3 s时物块的速率v3=v2-a2t3=(2-0.5×1) m/s=1.5 m/s,动量大小p3=m v3=3 kg·m/s,故C错误;t=4 s时物块的速度v4=v2-a2t4=(2-0.5×2) m/s=1 m/s,故D错误.2.(2016·北京卷,18)如图所示,一颗人造卫星原来在椭圆轨道1绕地球E运行,在P点变轨后进入轨道2做匀速圆周运动.下列说法正确的是()A.不论在轨道1还是在轨道2运行,卫星在P点的速度都相同B.不论在轨道1还是在轨道2运动,卫星在P点的加速度都相同C.卫星在轨道1的任何位置都具有相同加速度D.卫星在轨道2的任何位置都具有相同动量答案:B解析:本题考查万有引力定律、牛顿第二定律和动量的定义,意在考查学生的理解能力和分析能力.卫星由轨道1进入轨道2,需在P点加速做离心运动,故卫星在轨道2运行经过P点时的速度较大,A项错误;由G Mmr2=ma可知,不论在轨道1还是在轨道2运行,卫星在P点的加速度都相同,在轨道1运行时,P点在不同位置有不同的加速度,B项正确,C项错误;卫星在轨道2的不同位置,速度方向一定不相同,故动量方向一定不相同,D项错误.3.(2015·重庆卷,3)高空作业须系安全带,如果质量为m的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动).此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上.则该段时间安全带对人的平均作用力大小为( ) A.m 2gh t +mg B.m 2gh t -mgC.m gh t +mgD.m gh t -mg答案:A解析:人先做自由落体运动下落高度h ,获得速度为v ,由v 2=2gh ,得v =2gh .安全带伸长到最长时,人下落到最低点,此时速度为零.设安全带对人的平均作用力为F ,由动量定理得(mg -F )t =0-m v ,F =m 2gh t +mg ,所以A 正确.刷仿真模拟——明趋向4.(2018·河北唐山模拟)如图所示为某运动员用头颠球,若足球用头顶起,每次上升高度为80 cm ,足球的重量为400 g ,与头顶作用时间Δt 为0.1 s ,则足球一次在空中的运动时间t 及足球对头部的作用力大小F N 分别为(空气阻力不计,g =10 m/s 2)( )A .t =0.4 s ,F N =40 NB .t =0.4 s ,F N =36 NC .t =0.8 s ,F N =36 ND .t =0.8 s ,F N =40 N答案:C解析:足球自由下落时有h =12gt 21,解得t 1=2h g =0.4 s ,竖直向上运动的时间等于自由下落运动的时间,所以t =2t 1=0.8 s ;设竖直向上为正方向,由动量定理得(F -mg )Δt =m v -(-m v ),又v =gt =4 m/s ,联立解得F =36 N ,由牛顿第三定律知足球对头部的作用力F N =36 N ,故C 正确.5.(2018·河南郑州一中调研)(多选)如图所示,两个质量相等的物体在同一高度沿倾角不同的两个光滑斜面由静止开始自由下滑,不计空气阻力,在它们到达斜面底端的过程中()A.重力的冲量相同B.斜面弹力的冲量不同C.斜面弹力的冲量均为零D.合力的冲量不同答案:BD解析:设斜面高度为h,倾角为θ,物体质量为m,可求得物体滑至斜面底端的速度大小为v=2gh,所用时间t=1sinθ2hg.由冲量定义可求得重力的冲量大小为I G=mgt=m2ghsinθ,方向竖直向下,故A错误;斜面弹力的冲量大小为I N=mg cosθ·t=m2ghtanθ,方向垂直斜面向上,B正确,C错误;合力的大小为mg sinθ,I合=mg sinθ·t=m2gh,方向沿斜面向下(与合力方向相同),即合力冲量的大小相同,方向不同,故D正确.6.(2018·四川成都一诊)(多选)如图所示,ABCD是固定在地面上、由同种金属细杆制成的正方形框架,框架任意两条边的连接处平滑,A、B、C、D四点在同一竖直面内,BC、CD边与水平面的夹角分别为α、β(α>β),让套在金属细杆上的小环从A点无初速度释放.若小环从A经B滑到C点,摩擦力对小环做的功为W1,重力的冲量为I1;若小环从A经D滑到C点,摩擦力对小环做的功为W2,重力的冲量为I2,则()A.W1>W2B.W1=W2C.I1>I2D.I1=I2答案:BC解析:小环从A经B滑到C点,摩擦力对小环做的功W1=μmg cosβ·s AB+μmg cosα·s BC,小环从A经D滑到C点,摩擦力对小环做的功W2=μmg cosα·s AD+μmg cosβ·s DC,又因为s AB=s BC=s AD=s DC,所以摩擦力对小环做的功W1=W2,故A错误,B正确;根据动能定理可知,mgh-W f=12m v 2C,因为两次重力做的功和摩擦力做的功都相等,所以两次小环到达C点的速度大小相等,小环从A经B滑到C 点,根据牛顿第二定律可得,小环从A到B的加速度a AB=g sinβ-μg cosβ,小环从B到C的加速度a BC=g sinα-μg cosα,同理,小环从A到D的加速度a AD=g sinα-μg cosα,小环从D到C的加速度a DC=g sinβ-Mg cosβ,又因为α>β,所以a AB=a DC<a BC=a AD,其速度—时间图象如图所示,由图象可知,t1>t2,由I=mgt得,则重力的冲量I1>I2,故C正确,D错误.7.(2018·山东枣庄一模)如图所示,一根固定直杆与水平方向夹角为θ,将质量为m1的滑块套在杆上,通过轻绳悬挂质量为m2的小球,杆与滑块之间的动摩擦因数为μ.通过某种外部作用,使滑块和小球瞬间获得初动量后,撤去外部作用,发现滑块与小球仍保持相对静止一起运动,且轻绳与竖直方向夹角β>θ.则滑块的运动情况是() A.动量方向沿杆向下,正在均匀增大B.动量方向沿杆向下,正在均匀减小C.动量方向沿杆向上,正在均匀增大D.动量方向沿杆向上,正在均匀减小答案:D解析:把滑块和球看成一个整体进行受力分析,沿杆和垂直于杆建立直角坐标系,假设滑块速度方向沿杆向下,则沿杆方向有(m1+m2)g sinθ-f=(m1+m2)a,垂直于杆方向有F N=(m1+m2)g cosθ,其中摩擦力f=μF N,联立可解得a=g sinθ-μg cosθ,现对小环进行分析,因θ<β,则有a>g sinβ,所以g sinθ-μg cosθ>g sinβ,g sinθ-g sinβ>μg cosθ,因为θ<β,所以g sinθ-g sinβ<0,但μg cosθ>0,所以假设不成立,即滑块速度方向一定沿杆向上.滑块沿杆向上运动,滑块重力有沿杆向下的分力,同时摩擦力的方向沿杆向下,滑块的加速度方向沿杆向下,所以滑块沿杆减速上滑,则滑块的动量方向沿杆向上,正在均匀减小,故A、B、C错误,D正确.刷最新原创——抓重点8.物体A和物体B用轻绳相连挂在轻质弹簧下静止不动,如图甲所示.A的质量为m,B的质量为m′.当连接A、B的绳突然断开后,物体A上升经某一位置时的速度大小为v,这时物体B下落速度大小为u,如图乙所示.在这段时间里,弹簧的弹力对物体A的冲量为()A.m v B.m v-m′uC.m v+m′u D.m v+mu答案:D解析:解法一:对A有I弹-mgt=m v,对B有m′gt=m′u,解得弹簧弹力的冲量I弹=m v+mu.解法二:对A、B两物体系统有I 弹-(mg+m′g)t=m v-m′u,m′gt=m′u,联立解得I弹=m v+mu.9.(多选)如图所示,两根足够长的光滑平行金属导轨倾斜放置,上端接有一定值电阻(其余电阻不计),匀强磁场垂直于导轨平面向上,一导体棒以平行导轨向上的初速度从ab处上滑,到最高点后又下滑回到ab处,下列说法正确的是()A.上滑过程中导体棒克服安培力做的功大于下滑过程中克服安培力做的功B.上滑过程中导体棒克服安培力做的功等于下滑过程中克服安培力做的功C.上滑过程中安培力对导体棒的冲量大小大于下滑过程中安培力对导体棒的冲量大小D.上滑过程中安培力对导体棒的冲量大小等于下滑过程中安培力对导体棒的冲量大小答案:AD解析:考虑到回路中有感应电流产生,机械能不断向内能转化,根据能量守恒定律可知,导体棒上滑和下滑分别通过任意的同一个位置时,上滑的速度大,故上滑过程的平均速度要大于下滑过程的平均速度;根据F安=BIL、I=BL vR,知上滑过程的平均安培力要大于下滑过程的平均安培力,故上滑过程中导体棒克服安培力做的功大于下滑过程中克服安培力做的功,故A正确,B错误;设导体棒上滑的距离为x,上滑过程中安培力对导体棒的冲量大小I=F安t=BIL t=B BI vR Lt=B2L2v tR=B2L2xR,同理,下滑过程中,安培力对导体棒的冲量大小I′=B2L2xR,故上滑过程中安培力对导体棒的冲量大小等于下滑过程中安培力对导体棒的冲量大小,故C错误,D正确.刷易错易误——排难点易错点1容易忽视动量运算的矢量性10.在空中相同高度处以相同的速率分别抛出质量相同的三个小球.一个竖直上抛,一个竖直下抛,一个平抛,若不计空气阻力,从三个小球抛出到落地的过程中()A.三个小球动量的变化量相同B.下抛球和平抛球动量的变化量相同C.上抛球动量的变化量最大D.三个小球落地时的动量相同答案:C解析:三个小球以相同的速率抛出,可知做竖直上抛运动的小球运动的时间大于做平抛运动的小球运动的时间,做平抛运动的小球运动的时间大于做竖直下抛运动的小球运动的时间,所以做上抛运动的小球运动时间最长,根据动量定理知,mgt=Δp,可得上抛球动量的变化量最大,下抛球动量的变化量最小,故C正确,A、B错误;根据动能定理有mgh =12m v 2-12m v 20,可知三个球落地时速度的大小相等,由于做平抛运动的小球速度方向与做上抛运动和下抛运动的小球速度方向不同,则三个球落地时的动量不同.故D 错误. 易错点2 不能正确选择研究对象11.(2018·北京模拟)根据量子理论:光子既有能量也有动量;光子的能量E 和动量p 之间的关系是E =pc ,其中c 为光速.由于光子有动量,辐射到物体表面的光子被物体吸收或被反射时都会对物体产生一定的冲量,也就对物体产生了一定的压强,这就是“光压”.根据动量定理可近似认为:当动量为p 的光子垂直照到物体表面,若被物体反射,则物体受到的冲量大小为2p ;若被物体吸收,则物体受到的冲量大小为p .有人设想在宇宙探测中用光作为动力推动探测器加速,探测器上安装有面积极大、反光率为η的薄膜,并让它正对太阳.已知太阳光照射薄膜时对每平方米面积上的辐谢功率为P 0,探测器和薄膜的总质量为m ,薄膜面积为S ,则探测器的加速度大小为(不考虑万有引力等其他的力)( ) A.(1+η)S P 0mc B.(1+η)P 0S mc C.(2-η)P 0S mc D.(2+η)P 20S mc答案:B解析:在时间t 内辐射到薄膜表面的光子的能量E 总=P 0tS ,光子的总动量p =E 总c =P 0tS c ,根据题意,由动量定理得2ηp +(1-η)p =Ft ,由牛顿第二定律得F =ma ,联立解得加速度a =(1+η)P 0S mc ,故B正确.刷综合大题——提能力12.(2016·新课标全国卷Ⅰ)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M 的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S 的喷口持续以速度v 0竖直向上喷出;玩具底部为平板(面积略大于S );水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g .求:(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度.答案:(1)ρv 0S (2)v 202g -M 2g 2ρ2v 20S 2 解析:(1)设Δt 时间内,从喷口喷出的水的体积为ΔV ,质量为Δm ,则Δm =ρΔV ①ΔV =v 0S Δt ②由①②式得,单位时间内从喷口喷出的水的质量为Δm Δt =ρv 0S ③(2)设玩具悬停时其底面相对于喷口的高度为h ,水从喷口喷出后到达玩具底面时的速度大小为v .对于Δt 时间内喷出的水,由能量守恒得12(Δm )v 2+(Δm )gh =12(Δm )v 20④ 在h 高度处,Δt 时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小为Δp =(Δm )v ⑤设水对玩具的作用力的大小为F ,根据动量定理有F Δt =Δp ⑥ 由于玩具在空中悬停,由力的平衡条件得F =Mg ⑦联立③④⑤⑥⑦式得h =v 202g -M 2g 2ρ2v 20S 2⑧。
高考物理一轮复习考点归纳复习专题
精品基础教育教学资料,仅供参考,需要可下载使用!高考一轮复习知识考点归纳专题01 运动的描述、匀变速直线运动目录第一节描述运动的基本概念 (2)【基本概念、规律】 (2)【重要考点归纳总结】 (2)考点一对质点模型的理解 (2)考点二平均速度和瞬时速度 (3)考点三速度、速度变化量和加速度的关系 (3)【思想方法与技巧】 (3)第二节匀变速直线运动的规律及应用 (4)【基本概念、规律】 (4)【重要考点归纳】 (5)考点一匀变速直线运动基本公式的应用 (5)考点二匀变速直线运动推论的应用 (5)考点三自由落体运动和竖直上抛运动 (5)【思想方法与技巧】 (6)第三节运动图象追及、相遇问题 (6)【基本概念、规律】 (6)【重要考点归纳】 (7)考点一运动图象的理解及应用 (7)考点二追及与相遇问题 (7)【思想方法与技巧】 (8)方法技巧——用图象法解决追及相遇问题 (8)巧解直线运动六法 (8)实验一研究匀变速直线运动 (9)第一节 描述运动的基本概念【基本概念、规律】一、质点、参考系1.质点:用来代替物体的有质量的点.它是一种理想化模型.2.参考系:为了研究物体的运动而选定用来作为参考的物体.参考系可以任意选取.通常以地面或相对于地面不动的物体为参考系来研究物体的运动.二、位移和速度 1.位移和路程(1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量. (2)路程是物体运动路径的长度,是标量. 2.速度(1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即v =xt,是矢量. (2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量. 3.速率和平均速率(1)速率:瞬时速度的大小,是标量.(2)平均速率:路程与时间的比值,不一定等于平均速度的大小. 三、加速度1.定义式:a =ΔvΔt ;单位是m/s 2.2.物理意义:描述速度变化的快慢.3.方向:与速度变化的方向相同. 【重要考点归纳总结】 考点一 对质点模型的理解1.质点是一种理想化的物理模型,实际并不存在.2.物体能否被看做质点是由所研究问题的性质决定的,并非依据物体自身大小来判断. 3.物体可被看做质点主要有三种情况: (1)多数情况下,平动的物体可看做质点.(2)当问题所涉及的空间位移远大于物体本身的大小时,可以看做质点. (3)有转动但转动可以忽略时,可把物体看做质点.考点二 平均速度和瞬时速度1.平均速度与瞬时速度的区别平均速度与位移和时间有关,表示物体在某段位移或某段时间内的平均快慢程度;瞬时速度与位置或时刻有关,表示物体在某一位置或某一时刻的快慢程度.2.平均速度与瞬时速度的联系(1)瞬时速度是运动时间Δt →0时的平均速度. (2)对于匀速直线运动,瞬时速度与平均速度相等. 考点三 速度、速度变化量和加速度的关系 1.速度、速度变化量和加速度的比较2.物体加、减速的判定(1)当a 与v 同向或夹角为锐角时,物体加速. (2)当a 与v 垂直时,物体速度大小不变. (3)当a 与v 反向或夹角为钝角时,物体减速 【思想方法与技巧】物理思想——用极限法求瞬时物理量1.极限法:如果把一个复杂的物理全过程分解成几个小过程,且这些小过程的变化是单一的.那么,选取全过程的两个端点及中间的极限来进行分析,其结果必然包含了所要讨论的物理过程,从而能使求解过程简单、直观,这就是极限思想方法.极限法只能用于在选定区间内所研究的物理量连续、单调变化(单调增大或单调减小)的情况. 2.用极限法求瞬时速度和瞬时加速度 (1)公式v =ΔxΔt 中当Δt →0时v 是瞬时速度.(2)公式a =ΔvΔt中当Δt →0时a 是瞬时加速度.第二节 匀变速直线运动的规律及应用【基本概念、规律】一、匀变速直线运动的基本规律 1.速度与时间的关系式:v =v 0+at . 2.位移与时间的关系式:x =v 0t +12at 2.3.位移与速度的关系式:v 2-v 20=2ax . 二、匀变速直线运动的推论 1.平均速度公式:v =v t 2=v 0+v2. 2.位移差公式:Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2. 可以推广到x m -x n =(m -n )aT 2. 3.初速度为零的匀加速直线运动比例式 (1)1T 末,2T 末,3T 末……瞬时速度之比为: v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n . (2)1T 内,2T 内,3T 内……位移之比为: x 1∶x 2∶x 3∶…∶x n =1∶22∶32∶…∶n 2.(3)第一个T 内,第二个T 内,第三个T 内……位移之比为: x ∶∶x ∶∶x ∶∶…∶x n =1∶3∶5∶…∶(2n -1). (4)通过连续相等的位移所用时间之比为:t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1). 三、自由落体运动和竖直上抛运动的规律 1.自由落体运动规律 (1)速度公式:v =gt . (2)位移公式:h =12gt 2.(3)速度—位移关系式:v 2=2gh . 2.竖直上抛运动规律 (1)速度公式:v =v 0-gt . (2)位移公式:h =v 0t -12gt 2.(3)速度—位移关系式:v 2-v 20=-2gh . (4)上升的最大高度:h =v 202g .(5)上升到最大高度用时:t =v 0g.【重要考点归纳】考点一 匀变速直线运动基本公式的应用1.速度时间公式v =v 0+at 、位移时间公式x =v 0t +12at 2、位移速度公式v 2-v 20=2ax ,是匀变速直线运动的三个基本公式,是解决匀变速直线运动的基石.2.匀变速直线运动的基本公式均是矢量式,应用时要注意各物理量的符号,一般规定初速度的方向为正方向,当v 0=0时,一般以a 的方向为正方向.3.求解匀变速直线运动的一般步骤画过程分析图→判断运动性质→选取正方向→选用公式列方程→解方程并讨论4.应注意的问题∶如果一个物体的运动包含几个阶段,就要分段分析,各段交接处的速度往往是联系各段的纽带. ∶对于刹车类问题,当车速度为零时,停止运动,其加速度也突变为零.求解此类问题应先判断车停下所用时间,再选择合适公式求解.∶物体先做匀减速直线运动,速度减为零后又反向做匀加速直线运动,全程加速度不变,可以将全程看做匀减速直线运动,应用基本公式求解.考点二 匀变速直线运动推论的应用1.推论公式主要是指:∶v =v t 2=v 0+v t 2,∶Δx =aT 2,∶∶式都是矢量式,在应用时要注意v 0与v t 、Δx与a 的方向关系.2.∶式常与x =v ·t 结合使用,而∶式中T 表示等时间隔,而不是运动时间. 考点三 自由落体运动和竖直上抛运动1.自由落体运动为初速度为零、加速度为g 的匀加速直线运动. 2.竖直上抛运动的重要特性 (1)对称性 ∶时间对称物体上升过程中从A →C 所用时间t AC 和下降过程中从C →A 所用时间t CA 相等,同理t AB =t BA .∶速度对称物体上升过程经过A 点的速度与下降过程经过A 点的速度大小相等. (2)多解性当物体经过抛出点上方某个位置时,可能处于上升阶段,也可能处于下降阶段,造成双解,在解决问题时要注意这个特点.3.竖直上抛运动的研究方法分段法下降过程:自由落体运动【思想方法与技巧】物理思想——用转换法求解多个物体的运动在涉及多体问题和不能视为质点的研究对象问题时,应用“转化”的思想方法转换研究对象、研究角度,就会使问题清晰、简捷.通常主要涉及以下两种转化形式:(1)将多体转化为单体:研究多物体在时间或空间上重复同样运动问题时,可用一个物体的运动取代多个物体的运动.(2)将线状物体的运动转化为质点运动:长度较大的物体在某些问题的研究中可转化为质点的运动问题.如求列车通过某个路标的时间,可转化为车尾(质点)通过与列车等长的位移所经历的时间.第三节运动图象追及、相遇问题【基本概念、规律】一、匀变速直线运动的图象1.直线运动的x-t图象(1)物理意义:反映了物体做直线运动的位移随时间变化的规律.(2)斜率的意义:图线上某点切线的斜率大小表示物体速度的大小,斜率正负表示物体速度的方向.2.直线运动的v-t图象(1)物理意义:反映了物体做直线运动的速度随时间变化的规律.(2)斜率的意义:图线上某点切线的斜率大小表示物体加速度的大小,斜率正负表示物体加速度的方向.(3)“面积”的意义∶图线与时间轴围成的面积表示相应时间内的位移大小.∶若面积在时间轴的上方,表示位移方向为正方向;若面积在时间轴的下方,表示位移方向为负方向.二、追及和相遇问题1.两类追及问题(1)若后者能追上前者,追上时,两者处于同一位置,且后者速度一定不小于前者速度.(2)若追不上前者,则当后者速度与前者相等时,两者相距最近.2.两类相遇问题(1)同向运动的两物体追及即相遇.(2)相向运动的物体,当各自发生的位移大小之和等于开始时两物体间的距离时即相遇.【重要考点归纳】考点一运动图象的理解及应用1.对运动图象的理解(1)无论是x-t图象还是v-t图象都只能描述直线运动.(2)x-t图象和v-t图象都不表示物体运动的轨迹.(3)x-t图象和v-t图象的形状由x与t、v与t的函数关系决定.2.应用运动图象解题“六看”考点二1.分析追及问题的方法技巧可概括为“一个临界条件”、“两个等量关系”.(1)一个临界条件:速度相等.它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断问题的切入点.(2)两个等量关系:时间关系和位移关系,通过画草图找出两物体的时间关系和位移关系是解题的突破口.2.能否追上的判断方法(1)做匀速直线运动的物体B追赶从静止开始做匀加速直线运动的物体A:开始时,两个物体相距x0.若v A=v B时,x A+x0<x B,则能追上;若v A=v B时,x A+x0=x B,则恰好不相撞;若v A=v B时,x A+x0>x B,则不能追上.(2)数学判别式法:设相遇时间为t,根据条件列方程,得到关于t的一元二次方程,用判别式进行讨论,若Δ>0,即有两个解,说明可以相遇两次;若Δ=0,说明刚好追上或相遇;若Δ<0,说明追不上或不能相遇.3.注意三类追及相遇情况(1)若被追赶的物体做匀减速运动,一定要判断是运动中被追上还是停止运动后被追上.(2)若追赶者先做加速运动后做匀速运动,一定要判断是在加速过程中追上还是匀速过程中追上.(3)判断是否追尾,是比较后面减速运动的物体与前面物体的速度相等的位置关系,而不是比较减速到0时的位置关系.4.解题思路分析物体运动过程→画运动示意图→找两物体位移关系→列位移方程(2)解题技巧∶紧抓“一图三式”,即:过程示意图,时间关系式、速度关系式和位移关系式.∶审题应抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多”、“至少”等,它们往往对应一个临界状态,满足相应的临界条件. 【思想方法与技巧】方法技巧——用图象法解决追及相遇问题(1)两个做匀减速直线运动物体的追及相遇问题,过程较为复杂.如果两物体的加速度没有给出具体的数值,并且两个加速度的大小也不相同,如果用公式法,运算量比较大,且过程不够直观,若应用v -t 图象进行讨论,则会使问题简化.(2)根据物体在不同阶段的运动过程,利用图象的斜率、面积、交点等含义分别画出相应图象,以便直观地得到结论.巧解直线运动六法在解决直线运动的某些问题时,如果用常规解法——一般公式法,解答繁琐且易出错,如果从另外角度入手,能够使问题得到快速、简捷解答.下面便介绍几种处理直线运动的巧法.一、平均速度法在匀变速直线运动中,物体在时间t 内的平均速度等于物体在这段时间内的初速度v 0与末速度v 的平均值,也等于物体在t 时间内中间时刻的瞬时速度,即v =x t =v 0+v 2=v t 2.如果将这两个推论加以利用,可以使某些问题的求解更为简捷.二、逐差法匀变速直线运动中,在连续相等的时间T 内的位移之差为一恒量,即Δx =x n +1-x n =aT 2,一般的匀变速直线运动问题,若出现相等的时间间隔,应优先考虑用Δx =aT 2求解.三、比例法对于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可利用初速度为零的匀加速直线运动的相关比例关系求解.四、逆向思维法把运动过程的末态作为初态的反向研究问题的方法.一般用于末态已知的情况. 五、相对运动法以系统中的一个物体为参考系研究另一个物体运动情况的方法.六、图象法应用v-t图象,可把较复杂的问题转变为较简单的数学问题解决.尤其是用图象定性分析,可避开繁杂的计算,快速找出答案.实验一研究匀变速直线运动一、实验目的1.练习使用打点计时器,学会用打上点的纸带研究物体的运动情况.2.会利用纸带求匀变速直线运动的速度、加速度.3.利用打点纸带探究小车速度随时间变化的规律,并能画出小车运动的v-t图象,根据图象求加速度.二、实验器材电火花计时器(或电磁打点计时器)、一端附有滑轮的长木板、小车、纸带、细绳、钩码、刻度尺、导线、电源、复写纸片.三、实验步骤1.把附有滑轮的长木板放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路.2.把一条细绳拴在小车上,细绳跨过滑轮,下边挂上合适的钩码,把纸带穿过打点计时器,并把它的一端固定在小车的后面.实验装置见上图,放手后,看小车能否在木板上平稳地加速滑行.3.把小车停在靠近打点计时器处,先接通电源,后放开小车,让小车拖着纸带运动,打点计时器就在纸带上打下一系列的点,换上新纸带,重复三次.4.从几条纸带中选择一条比较理想的纸带,舍掉开始一些比较密集的点,在后面便于测量的地方找一个开始点,以后依次每五个点取一个计数点,确定好计数始点,并标明0、1、2、3、4、…,测量各计数点到0点的距离x,并记录填入表中.位置编号012345t/sx/mv/(m·s-1)5.计算出相邻的计数点之间的距离x1、x2、x3、….6.利用一段时间内的平均速度等于这段时间中间时刻的瞬时速度求得各计数点1、2、3、4、5的瞬时速度,填入上面的表格中.7.增减所挂钩码数,再做两次实验. 四、注意事项1.纸带、细绳要和长木板平行.2.释放小车前,应使小车停在靠近打点计时器的位置.3.实验时应先接通电源,后释放小车;实验后先断开电源,后取下纸带.一、数据处理1.匀变速直线运动的判断:(1)沿直线运动的物体在连续相等时间T 内的位移分别为x 1、x 2、x 3、x 4、…,若Δx =x 2-x 1=x 3-x 2=x 4-x 3=…则说明物体在做匀变速直线运动,且Δx =aT 2.(2)利用“平均速度法”确定多个点的瞬时速度,作出物体运动的v -t 图象.若v -t 图线是一条倾斜的直线,则说明物体的速度随时间均匀变化,即做匀变速直线运动.2.求速度的方法:根据匀变速直线运动某段时间中间时刻的瞬时速度等于这段时间内的平均速度v n =x n +x n +12T .3.求加速度的两种方法:(1)逐差法:即根据x 4-x 1=x 5-x 2=x 6-x 3=3aT 2(T 为相邻两计数点之间的时间间隔),求出a 1=x 4-x 13T 2,a 2=x 5-x 23T 2,a 3=x 6-x 33T 2,再算出a 1、a 2、a 3的平均值 a =a 1+a 2+a 33=13×⎝⎛⎭⎫x 4-x 13T 2+x 5-x 23T 2+x 6-x 33T 2=x 4+x 5+x 6-x 1+x 2+x 39T 2,即为物体的加速度.(2)图象法:以打某计数点时为计时起点,利用v n =x n +x n +12T 求出打各点时的瞬时速度,描点得v -t 图象,图象的斜率即为物体做匀变速直线运动的加速度.二、误差分析1.纸带上计数点间距测量有偶然误差,故要多测几组数据,以尽量减小误差.2.纸带运动时摩擦不均匀,打点不稳定引起测量误差,所以安装时纸带、细绳要与长木板平行,同时选择符合要求的交流电源的电压及频率.3.用作图法作出的v -t 图象并不是一条直线.为此在描点时最好用坐标纸,在纵、横轴上选取合适的单位,用细铅笔认真描点.4.在到达长木板末端前应让小车停止运动,防止钩码落地,小车与滑轮碰撞. 5.选择一条点迹清晰的纸带,舍弃点密集部分,适当选取计数点.6.在坐标纸上,纵、横轴选取合适的单位(避免所描点过密或过疏,而导致误差过大),仔细描点连线,不能连成折线,应作一条平滑曲线,让各点尽量落到这条曲线上,落不到曲线上的各点应均匀分布在曲线的两侧.精品基础教育教学资料,仅供参考,需要可下载使用!2020年高考一轮复习知识考点归纳专题02 相互作用目录第一节重力弹力摩擦力 (2)【基本概念、规律】 (2)【重要考点归纳】 (3)考点一弹力的分析与计算 (3)考点二摩擦力的分析与计算 (3)考点三摩擦力突变问题的分析 (4)【思想方法与技巧】 (4)物理模型——轻杆、轻绳、轻弹簧模型 (4)第二节力的合成与分解 (5)【基本概念、规律】 (5)【重要考点归纳】 (6)考点一共点力的合成 (6)考点二力的两种分解方法 (6)【思想方法与技巧】 (7)方法技巧——辅助图法巧解力的合成和分解问题 (7)第三节受力分析共点力的平衡 (7)【基本概念、规律】 (7)【重要考点归纳】 (8)考点一物体的受力分析 (8)考点二解决平衡问题的常用方法 (9)考点三图解法分析动态平衡问题 (9)考点四隔离法和整体法在多体平衡中的应用 (9)【思想方法与技巧】 (10)求解平衡问题的四种特殊方法 (10)实验二探究弹力和弹簧伸长的关系 (10)实验三验证力的平行四边形定则 (12)第一节重力弹力摩擦力【基本概念、规律】一、重力1.产生:由于地球的吸引而使物体受到的力.2.大小:G=mg.3.方向:总是竖直向下.4.重心:因为物体各部分都受重力的作用,从效果上看,可以认为各部分受到的重力作用集中于一点,这一点叫做物体的重心.二、弹力1.定义:发生弹性形变的物体由于要恢复原状,对与它接触的物体产生力的作用.2.产生的条件(1)两物体相互接触;(2)发生弹性形变.3.方向:与物体形变方向相反.三、胡克定律1.内容:弹簧发生弹性形变时,弹簧的弹力的大小F跟弹簧伸长(或缩短)的长度x成正比.2.表达式:F=kx.(1)k是弹簧的劲度系数,单位为N/m;k的大小由弹簧自身性质决定.(2)x是弹簧长度的变化量,不是弹簧形变以后的长度.四、摩擦力1.产生:相互接触且发生形变的粗糙物体间,有相对运动或相对运动趋势时,在接触面上所受的阻碍相对运动或相对运动趋势的力.2.产生条件:接触面粗糙;接触面间有弹力;物体间有相对运动或相对运动趋势.3.大小:滑动摩擦力F f=μF N,静摩擦力:0≤F f≤F fmax.4.方向:与相对运动或相对运动趋势方向相反.5.作用效果:阻碍物体间的相对运动或相对运动趋势.【重要考点归纳】考点一弹力的分析与计算1.弹力有无的判断方法(1)条件法:根据物体是否直接接触并发生弹性形变来判断是否存在弹力.此方法多用来判断形变较明显的情况.(2)假设法:对形变不明显的情况,可假设两个物体间弹力不存在,看物体能否保持原有的状态,若运动状态不变,则此处不存在弹力;若运动状态改变,则此处一定有弹力.(3)状态法:根据物体的运动状态,利用牛顿第二定律或共点力平衡条件判断弹力是否存在.2.弹力方向的判断方法(1)根据物体所受弹力方向与施力物体形变的方向相反判断.(2)根据共点力的平衡条件或牛顿第二定律确定弹力的方向.3.计算弹力大小的三种方法(1)根据胡克定律进行求解.(2)根据力的平衡条件进行求解.(3)根据牛顿第二定律进行求解.考点二摩擦力的分析与计算1.静摩擦力的有无和方向的判断方法(1)假设法:利用假设法判断的思维程序如下:(2)状态法:先判明物体的运动状态(即加速度的方向),再利用牛顿第二定律(F=ma)确定合力,然后通过受力分析确定静摩擦力的大小及方向.(3)牛顿第三定律法:先确定受力较少的物体受到的静摩擦力的方向,再根据“力的相互性”确定另一物体受到的静摩擦力方向.2.静摩擦力大小的计算(1)物体处于平衡状态(静止或匀速运动),利用力的平衡条件来判断其大小.(2)物体有加速度时,若只有静摩擦力,则F f=ma.若除静摩擦力外,物体还受其他力,则F合=ma,先求合力再求静摩擦力.3.滑动摩擦力的计算滑动摩擦力的大小用公式F f=μF N来计算,应用此公式时要注意以下几点:(1)μ为动摩擦因数,其大小与接触面的材料、表面的粗糙程度有关;F N为两接触面间的正压力,其大小不一定等于物体的重力.(2)滑动摩擦力的大小与物体的运动速度和接触面的大小均无关.方法技巧:(1)在分析两个或两个以上物体间的相互作用时,一般采用整体法与隔离法进行分析.(2)受静摩擦力作用的物体不一定是静止的,受滑动摩擦力作用的物体不一定是运动的.(3)摩擦力阻碍的是物体间的相对运动或相对运动趋势,但摩擦力不一定阻碍物体的运动,即摩擦力不一定是阻力.考点三摩擦力突变问题的分析1.当物体受力或运动发生变化时,摩擦力常发生突变,摩擦力的突变,又会导致物体的受力情况和运动性质的突变,其突变点(时刻或位置)往往具有很深的隐蔽性.对其突变点的分析与判断是物理问题的切入点.2.常见类型(1)静摩擦力因其他外力的突变而突变.(2)静摩擦力突变为滑动摩擦力.(3)滑动摩擦力突变为静摩擦力.【思想方法与技巧】物理模型——轻杆、轻绳、轻弹簧模型柔软,只能发生微小形既可伸长,也可压缩,弹簧与橡皮筋的弹力特点:(1)弹簧与橡皮筋产生的弹力遵循胡克定律F=kx.(2)橡皮筋、弹簧的两端及中间各点的弹力大小相等.(3)弹簧既能受拉力,也能受压力(沿弹簧轴线),而橡皮筋只能受拉力作用.(4)弹簧和橡皮筋中的弹力均不能突变,但当将弹簧或橡皮筋剪断时,其弹力立即消失.第二节力的合成与分解【基本概念、规律】一、力的合成1.合力与分力(1)定义:如果一个力产生的效果跟几个力共同作用的效果相同,这一个力就叫那几个力的合力,那几个力就叫这个力的分力.(2)关系:合力和分力是一种等效替代关系.2.力的合成:求几个力的合力的过程.3.力的运算法则(1)三角形定则:把两个矢量首尾相连从而求出合矢量的方法.(如图所示)(2)平行四边形定则:求互成角度的两个力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向.二、力的分解1.概念:求一个力的分力的过程.2.遵循的法则:平行四边形定则或三角形定则.3.分解的方法(1)按力产生的实际效果进行分解.(2)正交分解.三、矢量和标量1.矢量既有大小又有方向的物理量,相加时遵循平行四边形定则.2.标量只有大小没有方向的物理量,求和时按算术法则相加.【重要考点归纳】考点一共点力的合成1.共点力合成的方法(1)作图法(2)计算法:根据平行四边形定则作出示意图,然后利用解三角形的方法求出合力,是解题的常用方法.2.重要结论(1)二个分力一定时,夹角θ越大,合力越小. (2)合力一定,二等大分力的夹角越大,二分力越大. (3)合力可以大于分力,等于分力,也可以小于分力. 3.几种特殊情况下力的合成(1)两分力F 1、F 2互相垂直时(如图甲所示):F 合=F 21+F 22,tan θ=F 2F1.甲 乙(2)两分力大小相等时,即F 1=F 2=F 时(如图乙所示): F 合=2Fcos θ2.(3)两分力大小相等,夹角为120°时,可得F 合=F.解答共点力的合成时应注意的问题(1)合成力时,要正确理解合力与分力的大小关系:合力与分力的大小关系要视情况而定,不能形成合力总大于分力的思维定势.(2)三个共点力合成时,其合力的最小值不一定等于两个较小力的和与第三个较大的力之差.考点二 力的两种分解方法1.力的效果分解法(1)根据力的实际作用效果确定两个实际分力的方向; (2)再根据两个实际分力的方向画出平行四边形; (3)最后由平行四边形和数学知识求出两分力的大小. 2.正交分解法(1)定义:将已知力按互相垂直的两个方向进行分解的方法.(2)建立坐标轴的原则:一般选共点力的作用点为原点,在静力学中,以少分解力和容易分解力为原则(即尽量多的力在坐标轴上);在动力学中,以加速度方向和垂直加速度方向为坐标轴建立坐标系.(3)方法:物体受到多个力作用F 1、F 2、F 3…,求合力F 时,可把各力沿相互垂直的x 轴、y 轴分解.x 轴上的合力:。
高考物理第一轮专题复习针对训练《电场》word含答案解析
高考物理第一轮专题复习针对训练电场一、选择题在电场中,下列说法正确的是( ) A .某点的电场强度大,该点的电势一定高 B .某点的电势高,试探电荷在该点的电势能一定大 C .某点的场强为零,试探电荷在该点的电势能一定为零 D .某点的电势为零,试探电荷在该点的电势能一定为零如图所示,空间有两个等量的正点电荷,a 、b 两点在其连线的中垂线上,则下列说法一定正确的是( )A .场强 a b E E >B . 场强 abE E <C . 电势 a b ϕϕ>D . 电势 a b ϕϕ<如图所示,三块平行放置的带电金属薄板 A 、 B 、 C 中央各有一小孔,小孔分别位于 O 、 M 、 P 点.由 O 点静止释放的电子恰好能运动到 P 点.现将 C 板向右平移到 P'点,则由 O点静止释放的电子(A)运动到 P 点返回(B)运动到 P 和 P'点之间返回(C)运动到P'点返回(D)穿过P'点一个正点电荷Q静止在正方形的一个顶点上,另一个带电质点q射入该区域时,仅受电场力的作用,恰好能依次经过正方形的另外三个顶点a、b、c,如图所示,则有()A.质点由a到c电势能先减小后增大B.质点在a、b、c三处的加速度大小之比是1:2:1C.a、b、c三点电势高低及电场强度大小的关系是φa=φc>φb,E a=E c=2E bD.若改变带电质点q在a处的速度大小和方向,则质点q可能做类平抛运动a、b两个带电小球的质量均为m,所带电荷量分别为+3q和-q,两球间用绝缘细线连接,a球又用长度相同的绝缘细线悬挂在天花板上,在两球所在的空间有方向向左的匀强电场,电场强度为E,平衡时细线都被拉紧,则平衡时可能位置是( )套有三个带电小球的圆环放在水平面桌面上(不计一切摩擦),小球的电荷量保持不变,整个装置平衡后,三个小球的一种可能位置如图所示.三个小球构成一个锐角三角形,三角形的边长大小关系是AB>AC>BC,可以判断图中()A.三个小球电荷量的代数和可能为0B.三个小球一定带同种电荷C.三个小球所受环的弹力大小为F A>F C>F BD.三个小球带电荷量的大小为Q A>Q C>Q B一匀强电场的方向平行于xOy平面,平面内a、b、c三点的位置如图所示,三点的电势分别为10 V、17 V、26 V。
高三高考物理第一轮复习资料
高三高考物理第一轮复习资料(一)匀变速直线运动的规律1.条件:物体受到的合外力恒定,且与运动方向在一条直线上.2.特点:a恒定,即相等时刻内速度的变化量恒定.3.规律:(1)vt=v0+at(2)s=v0t+ at2(3)vt2-v02=2as4.推论:(1)匀变速直线运动的物体,在任意两个连续相等的时刻里的位移之差是个恒量,即Δs=si+1-si=aT 2=恒量.(2)匀变速直线运动的物体,在某段时刻内的平均速度等于该段时刻的中间时刻的瞬时速度,即vt/2= =以上两个推论在"测定匀变速直线运动的加速度"等学生实验中经常用到,要熟练把握.(3)初速度为零的匀加速直线运动(设T为等分时刻间隔):①1T末、2T末、3T末……瞬时速度的比为:v1∶v2∶v3∶……∶vN=1∶2∶3∶…∶n②1T内、2T内、3T内……位移的比为:s1∶s2∶s3∶…∶sN=12∶22∶32∶…∶n2③第一个T内、第二个T内、第三个T内……位移的比为:sⅠ∶sⅡ∶sⅢ∶…∶sN=1∶3∶5∶…∶(2n-1)④从静止开始通过连续相等的位移所用时刻的比:t1∶t2∶t3∶…∶tN=1∶( -1)∶( - )∶…∶( - )5.自由落体运动是初速度为0、加速度为g的匀加速直线运动,初速度为零的匀加速运动的所有规律和比例关系均适用于自由落体运动(二)解题方法指导(1)要养成依照题意画出物体运动示意图的适应.专门对较复杂的运动,画出草图可使运动过程直观,物理图景清晰,便于分析研究。
(2)要注意分析研究对象的运动过程,搞清整个运动过程按运动性质的转换可分为哪几个运动时期,各个时期遵循什么规律,各个时期间存在什么联系。
(3)由于本章公式较多,且各公式间有相互联系,因此,本章的题目常可一题多解。
解题时要思路开阔,联想比较,选择最简捷的解题方案。
解题时除采纳常规的公式解析法外,图象法、比例法、极值法、逆向转换法(如将一匀减速直线运动视为反向的匀加速直线运动)等也是本章解题中常用的方法。
备考2024届高考物理一轮复习讲义第七章动量守恒定律第2讲动量守恒定律及应用考点2爆炸和反冲
考点2 爆炸和反冲1.爆炸现象位置不变爆炸的时间极短,因而在作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从作用前的位置以新的动量开始运动动能增加在爆炸过程中,由于有其他形式的能量转化为动能,因此爆炸后系统的总动能增加动量守恒由于内力远大于外力,故爆炸过程动量守恒2.反冲现象作用原理系统内物体之间的作用力和反作用力产生的效果动能增加反冲运动过程中,有其他形式的能转化为动能,系统的总动能将增加动量守恒反冲运动过程中,系统在某一方向不受外力或外力远小于物体间的相互作用力,可在该方向上应用动量守恒定律对下列关于爆炸和反冲的说法进行判断.(1)发射炮弹,炮身后退;园林喷灌装置一边喷水一边旋转均属于反冲现象.(√)(2)火箭向后喷气的瞬间,火箭和喷出的气体组成的系统动量守恒.(√)(3)爆炸过程中机械能增加,反冲过程中机械能减少.(✕)(4)鞭炮爆炸的瞬间,鞭炮动量守恒.(√)研透高考明确方向4.[爆炸/2021浙江1月]在爆炸实验基地有一发射塔,发射塔正下方的水平地面上安装有声音记录仪.爆炸物自发射塔竖直向上发射,上升到空中最高点时炸裂成质量之比为2∶1、初速度均沿水平方向的两个碎块.遥控器引爆瞬间开始计时,在5s末和6s末先后记录到从空气中传来的碎块撞击地面的响声.已知声音在空气中的传播速度为340m/s,重力加速度g=10m/s2,忽略空气阻力.下列说法正确的是(B)A.两碎块的位移大小之比为1∶2B.爆炸物的爆炸点离地面高度为80mC.爆炸后质量大的碎块的初速度为68m/sD.爆炸后两碎块落地点之间的水平距离为340m解析假设爆炸物炸裂后两碎块的速度分别为v1、v2,爆炸过程由动量守恒定律得0=2mv1-mv2,解得v1v2=12,又两碎块在空中运动的时间相同,在水平方向上有x=vt,所以水平位移之比为1∶2,竖直方向下落的高度相同,所以两碎块的位移之比不等于1∶2,A错误;假设两碎块在空中运动的时间均为t,则两碎块从落地到被记录到声音所用的时间分别为(5-t)s、(6-t)s,由几何关系可知v1t=340(5-t) m,2v1t=340(6-t) m,解得t=4 s,则爆炸点距离地面的高度为h=12gt2=80 m,B正确;两碎块的水平位移分别为x1=340 m、x2=680 m,所以两碎块落地点之间的距离为x=x1+x2=1 020 m,D错误;爆炸后质量大的碎块的初速度为v1=x1t=85 m/s,C错误.5.[反冲/多选]火箭飞行时,在极短时间Δt内喷射燃气的质量是Δm,喷出的燃气相对喷气前火箭的速度大小是u,喷出燃气后火箭的质量是m,下列说法正确的是(AB)A.火箭的发射利用了反冲原理B.喷出燃气时,火箭受到的推力为ΔmuΔtC.喷出燃气后,火箭的动量改变量大小为ΔmuD.火箭喷出燃气的质量与火箭剩余质量之比越小,火箭增加的速度Δv就越大解析火箭的发射利用了反冲原理,A正确;设火箭喷气前的速度大小为v,则喷出的燃气对地的速度大小为u-v,设火箭运动的方向为正方向,则对喷出的燃气,根据动量定理有-FΔt=-Δm(u-v)-Δmv,可得F=ΔmuΔt,由牛顿第三定律可知火箭受到的推力F'=F,B正确;设喷气后火箭的速度大小为v',由动量守恒定律有(m+Δm)v=-Δm(u-v)+mv',则喷出燃气后,火箭的动量改变量大小为Δp=mv'-(m+Δm)v=Δm(u- v),C错误;由动量守恒定律有(m+Δm)v=-Δm(u-v)+mv',解得火箭速度的增加量Δv=v'-v=Δmum,则火箭喷出燃气的质量与火箭剩余质量之比越小,火箭增加的速度Δv就越小,D错误.命题拓展命题条件不变,一题多设问已知喷出燃气前火箭的速度为v0,求喷出燃气后火箭的速度大小.答案(m+Δm)v0-Δmum+Δm解析对火箭喷出燃气的过程由动量守恒定律有(m+Δm)v0=mv1+Δm(v1+u),解得喷出燃气后火箭的速度大小为v1=(m+Δm)v0−Δmum+Δm.。
高三物理高考第一轮专题复习——电磁场(含答案详解)
高三物理第一轮专题复习——电磁场 例1. (高考题)在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。
一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。
(1)请判断该粒子带何种电荷,并求出其比荷q/m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ’,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ’多大?此次粒子在磁场中运动所用时间t 是多少?例2.(调研)电子自静止开始经M 、N 板间(两板间的电压为U )的电场加速后从A 点垂直于磁场边界射入宽度为d 的匀强磁场中,电子离开磁场时的位置P 偏离入射方向的距离为L ,如图所示.求匀强磁场的磁感应强度.(已知电子的质量为m ,电量为e )例3.(高考)如图所示,abcd 为一正方形区域,正离子束从a 点沿ad 方向以0υ=80m/s 的初速度射入,若在该区域中加上一个沿ab 方向的匀强电场,电场强度为E ,则离子束刚好从c 点射出;若撒去电场,在该区域中加上一个垂直于abcd 平面的匀强磁砀,磁感应强度为B ,则离子束刚好从bc 的中点e 射出,忽略离子束中离子间的相互作用,不计离子的重力,试判断和计算:(1)所加磁场的方向如何?(2)E 与B 的比值B E /为多少? 例4.(北京市西城区)在高能物理研究中,粒子回旋加速器起着重要作用,如图甲为它的示意图。
它由两个铝制D 型金属扁盒组成,两个D 形盒正中间开有一条窄缝。
两个D 型盒处在匀强磁场中并接有高频交变电压。
图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。
在磁场力的作用下运动半周,再经狭缝电压加速。
高考物理一轮复习知识点总结归纳
高考物理一轮复习知识点总结归纳一、力学1. 牛顿三定律a. 第一定律:物体在静止状态或匀速直线运动状态下,受力平衡。
b. 第二定律:F = ma,物体所受合力等于其质量乘以加速度。
c. 第三定律:任何两个物体之间存在相互作用力,大小相等、方向相反。
2. 力的合成与分解a. 合力:多个力共同作用在物体上的结果力。
b. 分解:将一个力分解为两个或多个力的合成。
3. 牛顿万有引力定律a. 任何两个物体之间存在引力,大小与质量成正比,与距离的平方成反比。
4. 牛顿运动定律a. 第一定律:惯性原理,物体在没有外力作用下保持匀速直线运动或静止状态。
b. 第二定律:物体所受合力等于质量乘以加速度。
c. 第三定律:作用力与反作用力大小相等、方向相反。
5. 动量与动量守恒定律a. 动量:物体的质量乘以速度。
b. 动量守恒定律:系统中物体总动量在不受外力作用下保持不变。
6. 工作、能量与功a. 功:力在物体上产生的位移与力的方向相同时的乘积。
b. 功率:单位时间内做功的大小。
c. 机械能守恒定律:一个封闭系统中,机械能总量保持不变。
7. 机械振动与波动a. 振动:物体来回周期性运动。
b. 波动:能量以波的形式传播。
二、热学1. 温度与热量a. 温度:物体分子热运动的快慢程度的度量。
b. 热量:能量由高温物体传递到低温物体的过程。
2. 热能传递a. 热传导:通过物质的直接接触而传递热能。
b. 热对流:热能通过流体的对流传递。
c. 热辐射:热能以电磁波的形式传播。
3. 热力学定律a. 热力学第一定律:能量守恒定律。
b. 热力学第二定律:熵增定律。
4. 相变a. 固体-液体相变:熔化。
b. 液体-气体相变:汽化。
c. 固体-气体相变:升华。
5. 理想气体定律a. 法国物理学家伯努利发现的理想气体定律:PV = nRT。
三、电学1. 电荷与电场a. 电荷:质子带正电荷,电子带负电荷。
b. 电场:电荷周围的空间中存在电力作用的物理场。
高考物理一轮复习题集
高考物理一轮复习题集一、力学基础1. 描述牛顿三大定律的内容,并给出一个实际例子说明每个定律的应用。
2. 解释什么是动量守恒定律,并给出一个物理情景,说明在该情景下动量守恒定律如何起作用。
3. 计算一个物体在斜面上受到的重力分量和摩擦力,假设物体的质量为m,斜面角度为θ,摩擦系数为μ。
4. 描述如何使用动能定理解决一个简单的物理问题,并给出计算公式。
二、运动学1. 解释位移、速度和加速度的概念,并给出它们之间的关系。
2. 给出一个物体做匀加速直线运动的公式,并解释如何使用这些公式解决相关问题。
3. 解释什么是抛体运动,并给出水平抛体运动和垂直抛体运动的公式。
4. 描述圆周运动中的线速度、角速度、周期和频率的关系,并给出相应的公式。
三、能量守恒与转化1. 解释什么是能量守恒定律,并给出一个实际例子说明其应用。
2. 描述势能、动能和机械能的概念,并解释它们之间的关系。
3. 计算一个物体在重力场中从一定高度自由下落的动能和势能变化。
4. 解释什么是弹性势能,并给出一个弹簧的例子来说明弹性势能的计算。
四、电学基础1. 解释电荷、电流和电压的基本概念。
2. 描述欧姆定律的内容,并给出计算电阻、电流或电压的公式。
3. 解释什么是电路,并给出串联和并联电路的特点。
4. 计算一个简单的串联电路或并联电路中的总电阻。
五、电磁学1. 解释什么是磁场,并描述磁场对运动电荷的作用。
2. 解释法拉第电磁感应定律,并给出一个实际应用的例子。
3. 描述安培环路定理的内容,并解释其在电磁学中的应用。
4. 计算一个线圈在磁场中受到的安培力,假设线圈的面积、磁场强度和电流已知。
六、光学基础1. 解释光的折射定律,并给出斯涅尔定律的公式。
2. 描述全反射的条件,并给出一个实际例子。
3. 解释什么是干涉现象,并给出杨氏双缝实验的基本原理。
4. 描述衍射现象,并解释单缝衍射和双缝衍射的区别。
七、热学基础1. 解释温度、热量和内能的概念,并解释它们之间的关系。
直线运动 训练题——2023届高考物理一轮复习(word版含答案)
直线运动 训练题一、选择题(本题共15个小题,每题5分,共75分)1.一物体做变速直线运动,某时刻速度的大小为5 m/s ,1 s 后速度的大小变为8 m/s 。
在这1 s 内该物体的( )A.速度变化的大小可能等于5 m/sB.速度变化的大小可能大于13 m/sC.平均加速度的大小可能小于25m/sD.平均加速度的大小可能等于28m/s2.如图所示,在东京奥运会的女子四人双桨赛艇决赛中,我国的四位姑娘强势夺金。
在比赛过程中,有测量仪精确测量赛艇运动快慢,某一时刻,测量仪显示牌上显示中国队的速度为20.5 km/h 。
则( )A.显示牌上显示的速度为平均速度B.求赛艇通过终点线的时间时,不可以将其视为质点C.研究比赛中四个姑娘的划桨动作,可以将桨视为质点D.赛艇全程的平均速度一定等于全程中点时刻的瞬时速度3.某班同学去部队参加代号为“猎狐”的军事演习,甲、乙两个小分队同时从同一处O 出发,并同时捕“狐”于A 点,指挥部在荧光屏上描出两个小分队的行军路径如图所示,则下列说法正确的是( )A.甲队的位移大于乙队的位移B.甲队的平均速度大于乙队C.两个小分队运动的平均速率相等D.甲队的平均速率大于乙队4.关于加速度,下列说法中正确的是( ) A.有加速度的物体,其速度一定增大 B.物体的速度有变化,则一定具有加速度 C.加速度为零的物体一定处于静止状态D.加速度越大,则物体速度的变化量越大5.2020年11月10日,我国“奋斗者”号载人潜水器在马里亚纳海沟成功坐底,坐底深度10 909 m 。
“奋斗者”号照片如图所示,下列情况中“奋斗者”号一定可视为质点的是( )A.估算下降总时间时B.用推进器使其转弯时C.在海沟中穿越窄缝时D.科学家在其舱内进行实验时6.甲、乙两个小球在空中由静止释放,做自由落体运动,两球同时落地,落地时,甲的速度比乙的速度大5 m/s ,重力加速度210m/s g =,不计空气阻力,则下列说法错误的是( ) A.甲比乙提前0.5 s 释放B.释放乙球时,甲球的速度大小为5 m/sC.甲下落的高度比乙下落的高度高1.25 mD.两球运动过程中的速度差恒为5 m/s7.子弹恰能依次穿过3块紧贴在一起的厚度分别为32d d 、和d 的固定木板(即穿过第3块木板时子弹速度减小为零)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理一轮复习资料
对于高考物理的复习,你有什么好方法呢?下面是我网络整理的以供大家学习。
(一)
一、动能
如果一个物体能对外做功,我们就说这个物体具有能量.物体由于运动而具有的能. Ek=mv2,其大小与参照系的选取有关.动能是描述物体运动状态的物理量.是相对量。
二、动能定理
做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量。
1.反映了物体动能的变化与引起变化的原因——力对物体所做功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。
2."增量"是末动能减初动能.EK>0表示动能增加,EK<0表示动能减小。
3、动能定理适用单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理.由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化.在动能定理中.总功指各外力对物体做功的代数和.这里我们所说的外力包括重力、弹力、摩擦力、电场力等。
4.各力位移相同时,可求合外力做的功,各力位移不同时,分别求力做功,然后求代数和。
5.力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式.但动能定理是标量式.功和动能都是标量,不能利用矢量法则分解.故动能定理无分量式.在处理一些问题时,可在某一方向应用动能定理。
6.动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它也适用于变为及物体作曲线运动的情况.即动能定理对恒力、变力做功都适用;直线运动与曲线运动也均适用。
7.对动能定理中的位移与速度必须相对同一参照物。
(二)
一、弹性势能
1、定义:发生弹性形变的物体的各部分之间,由于有弹力的相互作用,也具有势能,叫做弹性势能。
说明:
1、弹性形变弹力的相互作用
2、由于整个物体都发生了形变,各部分之间都有弹力
3、这种能量归结为势能
对比:重力势能是由于有重力的相互作用,具有对外做功本领而具有的一种能量
引导:弹性势能和重力势能一样大小都和相对位置有关。
下面我们就来研究弹性势能的大小,我们研究最简单的,弹簧的弹性势能大小。
2、研究弹性势能的出发点
弹性势能与重力势能都是物体凭借其位置而具有的能。
在讨论重力势能
的时候,我们从重力做功的分析入手。
同样,在讨论弹性势能的时候,则要从弹力做功的分析入手。
弹力做功应是我们研究弹性势能的出发点。
二、探究弹簧弹性势能的大小
1、猜想,并进行定性研究弹性势能表达式中相关物理量的猜测
弹性势能的表达式可能与哪些物理量有关呢?
① 可能与弹簧被拉伸(或压缩)的长度有关。
这是因为,与重力势能相类比,重力势能与物体被举起(或下降)的高度有关,所以弹性势能很可能与弹簧被拉伸(或压缩)的长度有关。
重力势能与高度成正比,但是弹性势能与弹簧被拉伸(或压缩)的长度则不一定成正比,在地球表面附近可认为重力不随高度变化,而弹力在弹簧形变过程中则是变力。
② 可能与弹簧的劲度系数有关。
这是因为,不同弹簧的"软硬"程度不同,即劲度系数不同,使弹簧发生相同长度的形变所需做的功也不相同。
2、探究弹性势能表达式
1)弹性势能与拉力做功的关系
当弹簧的长度为原长时,我们设它的弹性势能为0,弹簧被拉长或缩短后就具有了弹性势能。
我们研究弹簧被拉长的情况,那么弹簧的弹性势能应该与拉力所做的功相等。
可见,研究弹性势能的表达式,只需研究拉力做功的表达式。
(三)
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A m
2.安培力F=BIL;(注:LB) {B:磁感应强度(T),F:安培力(F),I:电流强度
(A),L:导线长度(m)}
3.洛仑兹力f=qVB(注VB);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F 向=f洛=mV2/r=m2r=mr(2/T)2=qVB;r=mV/qB;T=2m/qB;(b)运动周期与圆周运动的半径和线速度无关,
洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
注:
(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;
(2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册
P144〕;
(3)其它相关内容:地磁场/磁电式电表原理〔见第二册P150〕/回旋加速器〔见第二册P156〕/磁性材料。