SPSS Clementine典型案例分析
spss主成分分析案例
spss主成分分析案例SPSS主成分分析案例。
主成分分析(Principal Component Analysis, PCA)是一种多变量数据分析方法,它通过线性变换将原始变量转换为一组新的互相无关的变量,称为主成分。
主成分分析可以帮助我们发现数据中的模式和结构,减少变量的维度,提取出数据中的重要信息,从而更好地理解数据的特性和关系。
在本文中,我们将通过一个实际的案例来介绍SPSS软件中主成分分析的应用。
案例背景:某公司在进行市场调研时,收集了一批关于消费者偏好的数据,包括了消费者对不同产品的评价、购买意愿、消费习惯等多个变量。
现在,公司希望通过主成分分析来挖掘这些数据中的潜在结构和规律,以便更好地了解消费者的特点和行为。
数据准备:首先,我们需要将收集到的原始数据导入SPSS软件中。
在SPSS中,选择“文件”-“导入数据”-“从文本文件”命令,打开数据文件并按照向导的指示完成数据导入的操作。
导入数据后,我们可以在数据视图中看到各个变量的取值情况,并对数据进行初步的观察和描述性统计。
主成分分析:在SPSS中进行主成分分析非常简单。
选择“分析”-“降维”-“因子”,在弹出的对话框中选择需要进行主成分分析的变量,然后点击“提取”按钮,设置提取主成分的条件,比如特征值大于1或者累积方差贡献率达到80%以上。
接着点击“旋转”按钮,选择合适的旋转方法,比如方差最大旋转(Varimax)或极大似然旋转(Promax)。
最后点击“确定”按钮,SPSS会自动进行主成分分析,并输出结果。
结果解释:主成分分析的结果包括了特征值、方差贡献率、成分矩阵等多个部分。
我们可以根据特征值的大小来确定保留的主成分个数,一般来说,特征值大于1的主成分才具有实际意义。
方差贡献率则可以帮助我们理解每个主成分所解释的原始变量的方差比例,从而确定主成分的解释能力。
成分矩阵则可以帮助我们理解每个主成分与原始变量之间的关系,从而对主成分进行解释和标注。
课题_SPSS Clementine 数据挖掘入门 (3)
SPSS Clementine 数据挖掘入门(3)了解SPSS Clementine的基本应用后,再对比微软的SSAS,各自的优缺点就非常明显了。
微软的SSAS是Service Oriented的数据挖掘工具,微软联合SAS、Hyperion等公司定义了用于数据挖掘的web服务标准——XMLA,微软还提供OLE DB for DM接口和MDX。
所以SSAS的优势是管理、部署、开发、应用耦合方便。
但SQL Server 2005使用Visual Studio 2005作为客户端开发工具,Visual Studio的SSAS项目只能作为模型设计和部署工具而已,根本不能独立实现完整的Crisp-DM流程。
尽管MS Excel也可以作为SSAS的客户端实现数据挖掘,不过Excel显然不是为专业数据挖掘人员设计的。
PS:既然说到Visual Studio,我又忍不住要发牢骚。
大家都知道Visual Studio Team System是一套非常棒的团队开发工具,它为团队中不同的角色提供不同的开发模板,并且还有一个服务端组件,通过这套工具实现了团队协作、项目管理、版本控制等功能。
SQL Server 2005相比2000的变化之一就是将开发客户端整合到了Visual Studio中,但是这种整合做得并不彻底。
比如说,使用SSIS开发是往往要一个人完成一个独立的包,比起DataStage 基于角色提供了四种客户端,VS很难实现元数据、项目管理、并行开发……;现在对比Clementine也是,Clementine最吸引人的地方就是其提供了强大的客户端。
当然,Visual Studio本身是很好的工具,只不过是微软没有好好利用而已,期望未来的SQL Server 2K8和Visual Studio 2K8能进一步改进。
所以我们不由得想到如果能在SPSS Clementine中实现Crisp-DM过程,但是将模型部署到SSAS就好了。
Clementine教材应用范例
© ISL 2000
18
圖20-7 撥款申請分佈
© ISL 2000
19
爲了探索其他可能的欺詐形式,我們可以撇開多次 申請的記錄,將注意力集中到只申請過一次的記錄上來。 可以用選擇節點(Select Node)刪除相應的記錄。
圖20-8 去除多重申請
© ISL 2000 20
我們可以使用Clementine建立一個迴歸模型,以農場大小, 主要作物類型,土壤質量等爲引數來估計一個農場的收入是 多少。在建模以前,需要在導出節點Derived Node中使用 CLEM語言來生成一個新的欄位。我們用如下的運算式來估 計農場收入:
© ISL 2000 23 圖20-11 偏差百分比的直方圖
20.3.3 訓練神經網路
經過探索性資料分析,我們發現將真實值和通過一系 列因變數得到的期望值進行比較似乎是有用的。神經網路 可以用來處理此類問題。神經網路使用資料中的變數,對 目標變數或回應進行預測。使用預測的結果,我們可以探 索偏離正常值的記錄或記錄組。 在建模之前,我們首先將一個類型節點Type Node 加 到目前的流程中。因爲需要用資料中的變數來預測所申請 的貸款金額,所以將claimvalue的方向設置爲OUT。
© ISL 2000 27
20.3.4 總結
本例建立了一個預測模型將模型預測值和資料集(農場 收入)中的實際值進行比較。我們發現偏差主要出現在一種 撥款申請類型(可耕地開發)中,然後進行更深入的分析。
通過一個訓練後的神經網路模型,歸納出申請額和農場 大小、估計的收入,主要作物等等之間的關係。然後與神經 網路模型的估計值相比較,大於50%的將被認爲是需要進一 步調查的。當然,最終這些申請有可能是有效的,但是它們 與正常值的差異卻是值得注意的。
SPSS-Clementine和KNIME数据挖掘入门
SPSS Clementine是Spss公司收购ISL获得的数据挖掘工具。
在Gartner的客户数据挖掘工具评估中,仅有两家厂商被列为领导者:SAS和SPSS。
SAS获得了最高ability to execute评分,代表着SAS在市场执行、推广、认知方面有最佳表现;而SPSS获得了最高的completeness of vision,表明SPSS在技术创新方面遥遥领先。
客户端基本界面SPSS Clementine(在此简称clementine)在安装好后会自动启用服务,服务端的管理需要使用SPSS Predictive Enterprise Manager,在服务端clementine没有复杂的管理工具,一般的数据挖掘人员通过客户端完成所有工作。
下面就是clementine客户端的界面。
一看到上面这个界面,我相信只要是使用过SSIS+SSAS部署数据挖掘模型的,应该已经明白了六、七分。
是否以跃跃欲试了呢,别急,精彩的还在后面^_’项目区顾名思义,是对项目的管理,提供了两种视图。
其中CRISP-DM (Cross Industry Standard Process for Data Mining,数据挖掘跨行业标准流程)是由SPSS、DaimlerChrysler(戴姆勒克莱斯勒,汽车公司)、NCR(就是那个拥有Teradata的公司)共同提出的。
Clementine里通过组织CRISP-DM的六个步骤完成项目。
在项目中可以加入流、节点、输出、模型等。
工具栏工具栏总包括了ETL、数据分析、挖掘模型工具,工具可以加入到数据流设计区中,跟SSIS中的数据流非常相似。
Clementine中有6类工具。
源工具(Sources)相当SSIS数据流中的源组件啦,clementine支持的数据源有数据库、平面文件、Excel、维度数据、SAS数据、用户输入等。
记录操作(Record Ops)和字段操作(Field Ops)相当于SSIS数据流的转换组件,Record Ops是对数据行转换,Field Ops是对列转换,有些类型SSIS的异步输出转换和同步输出转换(关于SSIS异步和同步输出的概念,详见拙作:)。
Clementine关联规则实验论文
Clementine关联规则试验目的:通过使用SPSS Clementine数据挖掘平台,了解数据挖掘的目的、过程,理解数据挖掘的结果,并能够根据所学习的数据挖掘的相关知识,对挖掘的过程参数和结果数据进行分析。
试验内容:建立数据源,进行关联规则挖掘。
试验步骤:1、导入数据源a)选择“可变文件”节点,把节点图标拖入数据流区域b)右键点击“可变文件”节点,弹出节点细节选择界面c)导入BASKETS.txt数据2、查看导入的数据a)点击节点选项卡“输出”,双击“表格”节点b)右键点击“BASKETS.txt”节点,选择“Connect”选项,单击“Table”(在两个节点中产生一个箭头,从“BASKETS.txt”指向“Table”节点。
)c)右键点击“表格”节点,弹出细节选择界面,单击“执行”d)查看结束,单击“确定”退出查看表格3、对数据进行清洗a)选择节点选项卡的“字段选项”,把“类型”节点拖入数据流区域。
b)连接“BASKETS.txt”节点和“类型”节点c)双击数据流区域中的“类型”节点,单击“读取值”按钮d)对值为“T/F”的“方向”改为“两者”,把其他行的“方向”的值改为“无”4. 使用Apriori节点分析a)双击“建模”选项卡的“Apriori”节点b)连接“类型”节点与“Apriori”节点 (箭头指向“Apriori”节点)c)双击“Apriori”节点,弹出选项界面d)单击“执行”按钮5、查看挖掘结果a)左键单击管理器的“模型”选项卡,右键点击第5部执行以后出现的模型图标b)选择“浏览”,弹出图表c)查看结果如图可以得到最少置信度百分之八十以上,frozenmeal,cannedveg,beer三者之间支持度的关系,也就是购买者在购买其中之二同时购买其他另外一样东西的关联性大小。
6、提升a)双击“Apriori”节点,弹出选项界面,修改参数b)选择“模型”选项卡修改参数c)修改“最低规则置信度”为50(或者修改“最低条件支持度”和“最大前项数”)d)查看结果Wine confectionery50.174%下面做关于GRI的生成关联分析在选择面板中的建模目录中我们选择GRI结点加入到数据流中。
基于Clementine软件的时间序列分析--以浦发银行股票为例
基于Clementine软件的时间序列分析——以A股浦发银行(600000)股票为例摘要本文的主要内容是借助SPSS Clementine 软件研究A股浦发银行(600000)股票价格随时间的变化规律,并用时间序列分析的有关知识对其进行建模预测。
本文首先对Clementine软件作简要介绍,说明其在数据挖掘领域的广泛应用;然后介绍了3种时间序列分析预测的模型,分别为专家模型、Holt指数平滑模型和ARIMA模型;最后借助Clementine 软件对浦发银行股价分别进行专家建模、指数平滑建模和ARIMA建模,并对股价进行短期预测,通过模型参数比较及预测值误差对比,找出最佳模型。
在建模的同时,也给出了使用Clementine软件建立数据流的具体过程。
关键词:Clementine软件时间序列浦发银行股票一、引言数据挖掘是一个利用各种方法,从海量数据中提取隐含和潜在的对决策有用的信息和模式的过程。
通过数据挖掘提取的信息可应用于很多领域,如决策支持、预测、预报和估计等。
当今我们正面临这样一个问题,一边是对知识的饥渴,另一边却是大量数据的闲置未被利用,“我们被淹没在信息里,但却感受到知识的饥饿”。
因此,我们迫切需要借助数据挖掘技术对这些数据进行及时有效的处理,从这些海量的、有噪音的、随机的数据中提取有效的、潜在有用的而又新颖事先未知的信息[1]。
数据挖掘的工具有很多,本文选用SPSS Clementine软件。
二、Clementine软件简介Clementine是由SPSS公司开发的一款著名且非常实用的数据挖掘软件,也是目前众多软件中最成熟和最受欢迎的一款数据挖掘产品。
Clementine拥有丰富的数据挖掘算法,操作简单易用,分析结果直观易懂,图形功能强大,支持与数据库之间的数据和模型交换,可以使用户方便快捷地实现数据挖掘。
Clementine 形象地将数据分析的各个环节表示成若干个节点,将数据分析过程看作数据在各个节点之间的流动,并通过图形化的数据流方式直观表示整个数据挖掘的各个环节。
实验二、SPSSClementine数据可视化
实验报告学院 南徐学院 班级 09428031 姓名 朱亚军 成绩课程 名称 数据挖掘实验项目名 称SPSS Clementine 数据可视化指导教师教师评语教师签名:年 月 日一、 实验目的1、熟悉SPSS Clementine 绘图。
2、了解SPSS Clementine 图形选项面板各节点的使用方法。
3、熟练掌握SPSS Clementine 数据可视化流程。
二、实验内容1、打开SPSS Clementine 软件,逐一操作各图形选项面板,熟悉软件功能。
2、打开一有数据库、或新建数据文件,读入SPSS Clementine,并使用各种输出节点,熟悉数据输入输出。
(要求:至少做分布图、直方图、收集图、多重散点图、时间散点图)三、实验步骤1、启动 Clementine:请从 Windows 的“开始”菜单中选择:所有程序SPSS Clementine 12.0SPSS Clementine client 12.02、建立一个流、导入相关数据,打开图形选项面板3、绘制以下各类图形 (1)以颜色为层次的图(2)以大小为层次的图(3)以颜色、大小、形状和透明度为层次的图(4)以面板图为层次的图(5)三维收集图(6)动画散点图(7)分布图(8)直方图(9)收集图(10)多重散点图(11)网络图四、实验体会熟悉了SPSS Clementine 的绘图特点,了解SPSS Clementine 图形选项面板各节点的使用方法并熟练掌握SPSS Clementine 数据可视化流程。
数据挖掘工具(一)Clementine
数据挖掘工具(一)SPSS Clementine18082607 洪丹Clementine是ISL(Integral Solutions Limited)公司开发的数据挖掘工具平台。
1999年SPSS公司收购了ISL公司,对Clementine产品进行重新整合和开发,现在Clementine已经成为SPSS公司的又一亮点。
作为一个数据挖掘平台, Clementine结合商业技术可以快速建立预测性模型,进而应用到商业活动中,帮助人们改进决策过程。
强大的数据挖掘功能和显著的投资回报率使得Clementine在业界久负盛誉。
同那些仅仅着重于模型的外在表现而忽略了数据挖掘在整个业务流程中的应用价值的其它数据挖掘工具相比, Clementine其功能强大的数据挖掘算法,使数据挖掘贯穿业务流程的始终,在缩短投资回报周期的同时极大提高了投资回报率。
近年来,数据挖掘技术越来越多的投入工程统计和商业运筹,国外各大数据开发公司陆续推出了一些先进的挖掘工具,其中spss公司的Clementine软件以其简单的操作,强大的算法库和完善的操作流程成为了市场占有率最高的通用数据挖掘软件。
本文通过对其界面、算法、操作流程的介绍,具体实例解析以及与同类软件的比较测评来解析该数据挖掘软件。
1.1 关于数据挖掘数据挖掘有很多种定义与解释,例如“识别出巨量数据中有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程。
” 1、大体上看,数据挖掘可以视为机器学习和数据库的交叉,它主要利用机器学习界提供的技术来分析海量数据,利用数据库界提供的技术来管理海量数据。
2、数据挖掘的意义却不限于此,尽管数据挖掘技术的诞生源于对数据库管理的优化和改进,但时至今日数据挖掘技术已成为了一门独立学科,过多的依赖数据库存储信息,以数据库已有数据为研究主体,尝试寻找算法挖掘其中的数据关系严重影响了数据挖掘技术的发展和创新。
尽管有了数据仓库的存在可以分析整理出已有数据中的敏感数据为数据挖掘所用,但数据挖掘技术却仍然没有完全舒展开拳脚,释放出其巨大的能量,可怜的数据适用率(即可用于数据挖掘的数据占数据库总数据的比率)导致了数据挖掘预测准确率与实用性的下降。
Clementine示例01-因子分析
1、因子分析(factor. str)研究从变量群中提取共性因子的统计技术。
最早由英国心理学家C.E.斯皮尔曼提出。
他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。
因子分析可在许多变量中找出隐藏的具有代表性的因子。
将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。
因子分析的主要目的是用来描述隐藏在一组测量到的变量中的一些更基本的,但又无法直接测量到的隐性变量(latent variable, latent factor)。
比如,如果要测量学生的学习积极性(motivation),课堂中的积极参与,作业完成情况,以及课外阅读时间可以用来反应积极性。
而学习成绩可以用期中,期末成绩来反应。
在这里,学习积极性与学习成绩是无法直接用一个测度(比如一个问题)测准,它们必须用一组测度方法来测量,然后把测量结果结合起来,才能更准确地来把握。
换句话说,这些变量无法直接测量。
可以直接测量的可能只是它所反映的一个表征(manifest),或者是它的一部分。
在这里,表征与部分是两个不同的概念。
表征是由这个隐性变量直接决定的。
隐性变量是因,而表征是果,比如学习积极性是课堂参与程度(表征测度)的一个主要决定因素。
那么如何从显性的变量中得到因子呢?因子分析的方法有两类。
一类是探索性因子分析,另一类是验证性因子分析。
探索性因子分析不事先假定因子与测度项之间的关系,而让数据“自己说话”。
主成分分析是其中的典型方法。
验证性因子分析假定因子与测度项的关系是部分知道的,即哪个测度项对应于哪个因子,虽然我们尚且不知道具体的系数。
示例factor.str是对孩童的玩具使用情况的描述,它一共有76个字段。
过多的字段不仅增添了分析的复杂性,而且字段之间还可能存在一定的相关性,于是我们无需使用全部字段来描述样本信息。
spss主成分分析案例
spss主成分分析案例SPSS主成分分析案例。
主成分分析(Principal Component Analysis, PCA)是一种常用的多元统计分析方法,它可以将原始变量转换为一组新的互相无关的变量,称为主成分,用于降低数据维度、挖掘数据内在结构和简化数据分析。
本文将以一个实际案例来介绍如何使用SPSS进行主成分分析。
案例背景。
某市一家公司想要了解员工工作满意度的情况,因此进行了一次员工满意度调查,涉及到多个方面的问题,如工作环境、薪酬福利、工作压力等。
为了更好地分析这些数据,他们决定使用主成分分析方法来挖掘数据背后的信息。
数据准备。
首先,我们需要收集员工满意度调查的数据,包括各个方面的评分。
在收集完数据后,我们将数据录入SPSS软件中进行后续的主成分分析。
数据分析。
1. 打开SPSS软件,导入员工满意度调查的数据文件。
2. 选择“分析”菜单中的“降维”选项,然后点击“主成分”。
3. 在弹出的对话框中,选择需要进行主成分分析的变量,将其添加到“变量”框中。
4. 点击“提取”按钮,设置提取条件,如特征值大于1的主成分。
5. 点击“旋转”按钮,选择适当的旋转方法,如方差最大旋转。
6. 点击“OK”按钮,完成主成分分析的设置。
结果解释。
主成分分析完成后,我们将得到主成分的系数矩阵、特征值、解释方差等结果。
通过这些结果,我们可以进行如下解释:1. 主成分系数矩阵,通过系数矩阵,我们可以了解各个原始变量与主成分之间的关系,从而解释主成分的含义。
2. 特征值,特征值表示了每个主成分所能解释的原始变量的方差比例,特征值越大的主成分解释的信息越多。
3. 解释方差,解释方差表明了各个主成分对原始变量的解释程度,可以帮助我们选择保留的主成分数量。
结论与建议。
通过主成分分析,我们可以得到员工满意度调查数据的主要结构和特征,从而为公司提供以下结论与建议:1. 根据主成分的系数矩阵,我们发现工作环境和薪酬福利两个方面对第一个主成分影响较大,说明这两个方面对员工满意度的影响最为显著。
SPSS关联模型步骤
SPSSClementines 预测分析模型----啤酒+尿片故事的实现机理(使用11版本实现)SPSSClenmentines 提供众多的预测模型,这使得它们可以应用在多种商业领域中:如超市商品如何摆放可以提高销量;分析商场营销的打折方案,以制定新的更为有效的方案;保险公司分析以往的理赔案例,以推出新的保险品种等等,具有很强的商业价值。
超市典型案例如何摆放超市的商品引导消费者购物从而提高销量,这对大型连锁超市来说是一个现实的营销问题。
关联规则模型自它诞生之时为此类问题提供了一种科学的解决方法。
该模型利用数据挖掘的技术,在海量数据中依据该模型的独特算法发现数据内在的规律性联系,进而提供具有洞察力的分析解决方案。
通过一则超市销售商品的案例,利用“关联规则模型”,来分析商品交易流水数据,以其发现合理的商品摆放规则,来帮助提高销量。
关联规则简介关联规则的定义关联规则表示不同数据项目在同一事件中出现的相关性,就是从大量数据中挖掘出关联规则。
有关数据挖掘关联规则的具体理论依据这里不做详细讲解,大家可以参看韩家炜的数据挖掘概论。
为了更直观的理解关联规则,我们首先来看下面的场景。
一个市场分析人员经常要考虑这样一个问题:哪些商品是频繁被顾客同时购买的?顾客1:牛奶+面包+谷类顾客2:牛奶+面包+糖+鸡蛋顾客3:牛奶+面包+黄油顾客4:糖+鸡蛋以上的情景类似于当年沃尔玛做的市场调查:啤酒+尿片摆放在同一个货架上,销售业绩激增的著名关联规则应用。
市场分析员分析顾客购买商品的场景,顾客购买面包同时也会购买牛奶的购物模式就可用以下的关联规则来描述:面包=> 牛奶[ 支持度=2%, 置信度=60%] (式1)式1中面包是规则前项(Antecedent),牛奶是规则后项(Consequent)。
实例数(Instances)表示所有购买记录中包含面包的记录的数量。
支持度(Support)表示购买面包的记录数占所有的购买记录数的百分比。
spssclementines预测分析模型
SPSS Clementines 预测分析模型----啤酒+尿片故事的实现机理(使用11版本实现)SPSS Clenmentines提供众多的预测模型,这使得它们可以应用在多种商业领域中:如超市商品如何摆放可以提高销量;分析商场营销的打折方案,以制定新的更为有效的方案;保险公司分析以往的理赔案例,以推出新的保险品种等等,具有很强的商业价值。
超市典型案例如何摆放超市的商品引导消费者购物从而提高销量,这对大型连锁超市来说是一个现实的营销问题。
关联规则模型自它诞生之时为此类问题提供了一种科学的解决方法。
该模型利用数据挖掘的技术,在海量数据中依据该模型的独特算法发现数据内在的规律性联系,进而提供具有洞察力的分析解决方案。
通过一则超市销售商品的案例,利用“关联规则模型”,来分析商品交易流水数据,以其发现合理的商品摆放规则,来帮助提高销量。
关联规则简介关联规则的定义关联规则表示不同数据项目在同一事件中出现的相关性,就是从大量数据中挖掘出关联规则。
有关数据挖掘关联规则的具体理论依据这里不做详细讲解,大家可以参看韩家炜的数据挖掘概论。
为了更直观的理解关联规则,我们首先来看下面的场景。
一个市场分析人员经常要考虑这样一个问题:哪些商品是频繁被顾客同时购买的?顾客1:牛奶+面包+谷类顾客2:牛奶+面包+糖+鸡蛋顾客3:牛奶+面包+黄油顾客4:糖+鸡蛋以上的情景类似于当年沃尔玛做的市场调查:啤酒+尿片摆放在同一个货架上,销售业绩激增的著名关联规则应用。
市场分析员分析顾客购买商品的场景,顾客购买面包同时也会购买牛奶的购物模式就可用以下的关联规则来描述:面包 => 牛奶 [ 支持度 =2%, 置信度 =60%] (式 1)式 1中面包是规则前项(Antecedent),牛奶是规则后项 (Consequent)。
实例数(Instances)表示所有购买记录中包含面包的记录的数量。
支持度(Support)表示购买面包的记录数占所有的购买记录数的百分比。
实验二 Clementine12购物篮分析(关联规则)
实验二Clementine12购物篮分析(关联规则)一、[实验目的]设计关联规则分析模型,通过模型演示如何对购物篮分析,并根据细分结果对采取不同的营销策略。
体验以数据驱动的模型计算给科学决策带来的先进性。
二、[知识要点]1、购物蓝分析概念;2、管来呢规则算法原理;3、购物蓝分析工具;4、Clementine12.0关联规则分析流程。
三、[实验要求和内容]1、初步了解使用工作流的方式构建分析模型;2、理解智能数据分析流程,主要是CRISP-DM工业标准流程;3、理解关联规则模型原理;4、设计关联规则分流;5、运行该流,并将结果可视化展示;6、得出模型分析结论7、运行结果进行相关营销策略设计。
四、[实验条件]Clementine12.0挖掘软件。
五、[实验步骤]1、启动Clementine12.0软件;2、在工作区设计管来呢规则挖掘流;3、执行模型,分析计算结果;4、撰写实验报告。
六、[思考与练习]1、为什么要进行关联规则分析?它是如何支持客户营销的?实验内容与步骤一、前言“啤酒与尿布”的故事是营销届的神话,“啤酒”和“尿布”两个看上去没有关系的商品摆放在一起进行销售、并获得了很好的销售收益,这种现象就是卖场中商品之间的关联性,研究“啤酒与尿布”关联的方法就是购物篮分析,购物篮分析曾经是沃尔玛秘而不宣的独门武器,购物篮分析可以帮助我们在门店的销售过程中找到具有关联关系的商品,并以此获得销售收益的增长!“啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。
在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布。
父亲在购买尿布的同时,往往会顺便为自己购买啤酒,这样就会出现啤酒与尿布这两件看上去不相干的商品经常会出现在同一个购物篮的现象。
Clmentine实验报告
实验报告学号:姓名:专业:金融学一、实验名称:SPSS Clementine 11.0的应用二、实验目的:通过对SPSS Clementine 11.0中所附实例——有线电视服务销售(C&R树)的实践,初步掌握对该软件的操作。
三、实验过程及结果:1.打开数据源:NewsChan.sav.2.输出表,可以看到该数据源中包涵的字段及信息。
其中包涵教育、性别、年龄、每天看电视时长、子女数、收入水平、是否有意订购有限电视等8个字段,442条信息。
接下来通过对着442个样本的分析,挖掘出那些群体真正订购有线电视服务的可能性最大。
3.将是否有意订购有限电视服务这一字段设为输出变量。
4.建立C&R决策树。
在“模型”选项卡中选择“启动交互会话”作为构建选项,以便生成“交互树”窗口,对决策树进行选择和编辑。
5.在“专家”选项中选中“专家”并对最大代理数以及最小杂志改变进行设置,同时对停止标准以及修剪树规则进行设置,这样倾向于产生简单的树,避免改进对意义十分微小的分支。
6.设置完成后,执行该节点,出现交互树界面。
最初只显示根节点,由此可以看出,总共442个样本数据,有可能预定的为215个,占48.6%。
7.整个决策树如下,共五层。
由于之前有设置修剪,所以决策树比较简单明了。
图中的每个节点是按照不同的变量分的,例如第一个节点是按照年龄来分,第二个节点是按照收入分的。
8、由树可以看出,年龄在40.5岁以上的是“是”的几率占近68%,响应积极,在40.5岁及以下的响应率较低,接着在其下根据收入水平进一步提高其响应率,直至到最后一层将其响应率从34.5%提高到60.5%。
9.查看此树的收益表。
节点2和节点13拥有最高的指数值,同预期一样。
节点2的指数近140%,这表明,从节点2的样本中选择获得积极响应的概率会是随机选择获得积极响应的140%倍。
10.查看其指数提升图。
可以看出节点2与13的样本中至少包含了全体样本积极响应的50%以上。
Clementine自带实例_多项式Logistic回归
» logistic回归是一种基于输入值的记彔分类统计 技术。它跟线性回归相似但用分类目标字段替换 数字字段。 » 比如,考虑电信服务提供商基于服务使用模式将 他们的客户分群成4类。如果人口统计数据能够 用来预测组成员,那么您可以为潜在客户定制特 定的产品。 » 使用的流文件 %clementine%\demo\Classification_Module \telco_custcat.str » 使用的数据文件 %clementine%\demo\telco.sav
» 在与家标签中,选择与家 模式,选择输出,在高级 输出对话框,选择分类表 » 执行节点产生模型(在右 上角的模型面板),右击 选择浏览
» 模型标签展示了用 于将记彔分类的等 式。有四种分类, 其中一种为基准类 别,因此丌会展示 等式绅节,而只会 展示其他三种
» 汇总标签展示了模型使用的 目标字段和输入字段(预测 字段/协变量)。我们看到这 些都是被逐步法选入的字段, 而丌是所有的被提交的字段。
译者注:Logistic regression应该翻译成Logistic回归,而非逻辑回归,因为本身跟逻辑没有什么关系
说明
» 本文档翻译自Clementine的自带应用程序实例, 错漏在所难免,有问题请e-mail,欢迎粉我微博 » e-mail:973599102@ » 微博:/datafish
» 实例关注使用人口数据预测使用模式。目标字段 custcat有四种可能的值,相当于四种客户群, 如下:
因为目标有多种分类,所以我们采用多项式模型。 而在有两个丌同目标的案例中,例如是 /否,真/假, 流失/丌流失,则可以使用二项式模型代替。参见 本系列文档中的电信流失(二项式回归)
» 添加一个指向telco.sav 的SPSS源文件节点 » 添加一个类型节点以定 义字段,确保它们的类 型都设置正确。例如, 对于大多数只有0值和1 值的字段来说应该被设 为标志,但某些特定的 字段,如性别,应该被 更精确的视为双值集合。 小技巧:要改变多个字段的类型,点击“值”字段 排序,按下shift键对您要改变的字段进行多选。可 右击选择的字段改变选择字段的类型戒者属性。
SPSS关联模型步骤
SPSS Clementines 预测分析模型 ---- 啤酒 + 尿片故事的实现机理(使用11 版本实现)SPSS Clenmentines 提供众多的预测模型,这使得它们可以应用在多种商业领域中:如超市商品如何摆放可以提高销量;分析商场营销的打折方案,以制定新的更为有效的方案;保险公司分析以往的理赔案例,以推出新的保险品种等等,具有很强的商业价值。
超市典型案例如何摆放超市的商品引导消费者购物从而提高销量,这对大型连锁超市来说是一个现实的营销问题。
关联规则模型自它诞生之时为此类问题提供了一种科学的解决方法。
该模型利用数据挖掘的技术,在海量数据中依据该模型的独特算法发现数据内在的规律性联系,进而提供具有洞察力的分析解决方案。
通过一则超市销售商品的案例,利用“关联规则模型”,来分析商品交易流水数据,以其发现合理的商品摆放规则,来帮助提高销量。
关联规则简介关联规则的定义关联规则表示不同数据项目在同一事件中出现的相关性,就是从大量数据中挖掘出关联规则。
有关数据挖掘关联规则的具体理论依据这里不做详细讲解,大家可以参看韩家炜的数据挖掘概论。
为了更直观的理解关联规则,我们首先来看下面的场景。
一个市场分析人员经常要考虑这样一个问题:哪些商品是频繁被顾客同时购买的?顾客 1:牛奶 +面包 +谷类顾客 2:牛奶 +面包 +糖 +鸡蛋顾客 3:牛奶 +面包 +黄油顾客 4:糖 +鸡蛋以上的情景类似于当年沃尔玛做的市场调查:啤酒+尿片摆放在同一个货架上,销售业绩激增的著名关联规则应用。
市场分析员分析顾客购买商品的场景,顾客购买面包同时也会购买牛奶的购物模式就可用以下的关联规则来描述:面包 => 牛奶 [ 支持度 =2%, 置信度 =60%] (式 1 )式1 中面包是规则前项( Antecedent ),牛奶是规则后项 (Consequent) 。
实例数(Instances )表示所有购买记录中包含面包的记录的数量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.3.2 理解数据
在建模之前,需要了解数据集中都有哪些 字段,这些字段如何分布,它们之间是否 隐含着某种相关性等信息。只有了解这些 信息后才能决定使用哪些字段,应用何种 挖掘算法和算法参数。这个过程就是一个 理解数据的过程。
24.3.3 准备数据
首先考虑数据集中可能存在的欺诈类型。 在该数据流中连接一个“条形图”节点并选 定字段名为“name”的字段 。 选中“name”字段之后,点击“执行” 。
24.3 利用神经网络对数据进行欺诈探测
背景是关于农业发展贷款的申请。使用虚构 的数据来说明如何使用神经网络来检测偏离 常态的行为,重点为标识那些异常和需要更 深一步调查的记录。要解决的问题是找出那 些就农场类型和大小来说申请贷款过多的农 场主 。
24.3.1 定义数据源
使用一个“变项文件”节点连接到数据集 grantfraudN.db。在“变项文件”节点之后 增加一个“类型”节点到数据流中。
24.3.4 建模
将一个“类型”节点添加到当前数据流中。对 数据集中的数据进行设置。
在数据流上添加一个“神经网络”节点。执 行此数据流。神经网络经过训练后,会产生 一个模型。将产生的模型加入到数据流流中。 然后在数据流中再增加一个“散点图”节点, 对“散点图”节点进行设置。设置完成之后, 执行。
数据挖掘原理与SPSS Clementine应用宝典
元昌安 主编 邓 松 李文敬
刘海涛
编著
电子工业出版社
第24章 SPSS Clementine典型案例分析
本章包括:
市场购物篮分析 利用决策树模型挖掘商业信息 利用神经网络对数据进行欺诈探测
24.1市场购物篮分析
本节的例子采用Clementine系统自带的 数据 集BASKETS1n。该数据集是超市的“购物 篮” (一次购物内容的集合)数据和购买者个人 的背景数据,目标是发现购买物品之间的关 联分析。
24.1.1 定义数据源
24.1.2 理解数据
在建模之前,我们需要了解数据集中都有哪些字段,这些字段如何分 布,它们之间是否隐含着某种相关性等信息。只有了解这些信息后才能决 定使用哪些字段,应用何种挖掘算法和算法参数。这个过程就是一个理解 数据的过程。
24.1.3 准备数据
在这18个字段中,有一些对于挖掘知识来说 是没有用的,如cardid等,这时我们就可以 把这些暂时没有用到的字段剔除出挖掘过程。 这样可以节约挖掘时间和效率。
输出类型除了选用“决策树”之外,还可以选择“规则集” 来显示结果。用“规则集”表示的结果很多时候比“决策 树”更加直观、易懂。。
ห้องสมุดไป่ตู้ 一般生成的决策树都是经过剪枝的。下面看 看剪枝程度的高低对挖掘结果的影响。选中 “模式”中的“专家”,把“修剪严重性” 的值改为“0”,这意味着在挖掘过程中,进 行的剪枝程度将很小。模型名称改为 “nocut”。
在数据流区域中添加一个“选择”节点,对 该节点进行设置。 以农场大小、主要作物类型、土壤质量等为 自变量建立一个回归模型来估计一个农场的 收入是多少。
为了发现那些偏离估计值的农场,先生成一个字段――diff, 代表估计值与实际值偏离的百分数。在数据流中再增加一 个“导出”节点 进行设置。 在数据流中增加一个“直方图”节点。对“直方图”节点进 行设置。。
选择“执行(E)”。在右面管理器窗口中选中“模型(S)”, 在“nocut”上右击,选择“浏览(B)”,查看生成模型结 果。
利用剪枝程度较高的决策树、剪枝程度低的决 策树、规则集生成的结果,可以通过 Clementine系统提供的很多模型来进行精度 测试。 在这儿选用“分析”节点。生成的结果显示剪 枝程度高的模型正确率为93.8% 。同样的原 理,测试“nocut” 。剪枝程度低的精度为 94.7%。
24.1.4 建模
对字段设置完毕之后,下一步就是选择挖掘 所需要的模型,在这里我们会选择使用三 种不同的模型来挖掘该数据集。 1. “Apriori”模型节点 2.GRI模型 3.“网络”节点
24.2 利用决策树模型挖掘商业信息
过程如下 : Step1:添加一个“变项文件”节点。 Step2:加入一个“导出”节点。 Step3:对“导出”节点进行设置。 Step4:加入“Healthfood”字段之后,在“导出”节 点后再加入一个“类型”节点,用来选择哪些字 段用来进行数据挖掘。根据挖掘的目标,可以设 置个人信息为“输入”,“Healthfood”设置为 “输出” Step5:加入 “C5.0”节点。 Step6:点选“执行(E)” Step7:从“查看器”中查看该结果
最后,在数据流中增加一个“条形图”节点。 双击该节点,在“字段”下拉列表中选择 “name”字段,点击“执行(E)”,得出 结果如图所示。在图中所显示的就是我们要 重点关注的数据。
24.4小结
本章通过使用Apriori模型、GRI模型、可视化网 络图、决策树、神经网络等来说明如何使用 Clementine在数据库中发现知识。Clementine系 统中提供了很多种模型,对于这些模型的使用, 要考虑到实际情况来酌情进行使用。 本章所展示的只是Clementine系统的一部分应 用。随着社会的不断发展,数据库技术的不断进 步。Clementine将会越来越多的被重视、使用。
进行深一步的分析。在该数据流中增加一个 “导出”节点,对该节点进行设置。 为了说明真实值和估计值之间的差距,可以 参考claimdiff的直方图。主要对那些由神经 网络得出的申请超出预期的人感兴趣。 在数据流中再添加一个“直方图”节点。双 击打开该节点,在“字段”下拉列表中选择 “claimdiff”,单击“执行(E)” 。 增加一个分割带到直方图中,右击带区生成 一个选择节点,进一步查看那些claimdiff值 较大的数据。