如何出好一份试卷2016数学中考
2016年江西省中考数学试卷及答案
2016年江西省中考数学试卷及答案一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列四个数中,最大的一个数是()A.2 B.C.0 D.﹣2【解析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.根据实数比较大小的方法,可得﹣2<0<<2,故四个数中,最大的一个数是2.故选:A.2.将不等式3x﹣2<1的解集表示在数轴上,正确的是()A.B.C.D.【解析】先解出不等式3x﹣2<1的解集,即可解答本题.3x﹣2<1,移项,得3x<3,系数化为1,得x<1,故选D.3.下列运算正确的是()A.a2+a2=a4 B.(﹣b2)3=﹣b6 C.2x•2x2=2x3 D.(m﹣n)2=m2﹣n2【解析】结合选项分别进行合并同类项、积的乘方、单项式乘单项式、完全平方公式的运算,选出正确答案.A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选B.4.有两个完全相同的正方体,按下面如图方式摆放,其主视图是()A.B C.D.【解析】根据主视图的定义即可得到结果.其主视图是C,故选C.5.设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是()A.2 B.1 C.-2 D.-1【解析】根据α、β是一元二次方程x2+2x﹣1=0的两个根,由根与系数的关系可以求得αβ的值,本题得以解决.∵α、β是一元二次方程x2+2x﹣1=0的两个根,∴αβ=,故选D.6.如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m,水平部分线段长度之和记为n,则这三个多边形中满足m=n的是()A.只有②B.只有③C.②③D.①②③【解析】利用相似三角形的判定和性质分别求出各多边形竖直部分线段长度之和与水平部分线段长度之和,再比较即可.假设每个小正方形的边长为1,①:m=1+2+1=4,n=2+4=6,则m≠n;②如图1,在△ACN中,BM∥CN,∴=,∴BM=,在△AGF中,DM∥NE∥FG,∴=,=,解得DM=,NE=,∴m=2+=2.5,n=+1++=2.5,∴m=n;③如图1,由②易得:BE=,CF=,∴m=2+2++1+=6,n=4+2=6,∴m=n,则这三个多边形中满足m=n的是②和③;故选C.图1二、填空题(本大题共6小题,每小题3分,共18分)7.计算:﹣3+2= .【解析】由绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,即可求得答案.﹣3+2=﹣1.故答案为:﹣1.8.分解因式:ax2﹣ay2= .【解析】应先提取公因式a,再对余下的多项式利用平方差公式继续分解.ax2﹣ay2=a(x2﹣y2)=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).9.如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为.【解析】先利用旋转的性质得到∠B′AC′=33°,∠BAB′=50°,从而得到∠B′AC的度数.∵∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,∴∠B′AC′=33°,∠BAB′=50°,∴∠B′AC =50°﹣33°=17°.故答案为:17°.10.如图所示,在ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为.【解析】由“平行四边形的对边相互平行” “两直线平行,同位角相等”以及“直角三角形的两个锐角互余”的性质进行解答.∵四边形ABCD是平行四边形,∴DC∥AB,∴∠C=∠ABF.又∵∠C=40°,∴∠ABF=40°.∵AD⊥DF,AB∥BC, ∴EF⊥BF,∴∠F=90°,∴∠BEF=90°﹣40°=50°.故答案是:50°.11.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=.【解析】由反比例函数的图象过第一象限可得出k1>0,k2>0,再由反比例函数的系数k的几何意义即可得出S△OAP=k1,S△OBP=k2,根据△OAB的面积为2,再结合三角形之间的关系即可得出结论.∵反比例函数y1=(x>0)及y2=(x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP=k1,S△OBP=k2.∴S△OAB=S△OAP﹣S△OBP=(k1﹣k2)=2,解得:k1﹣k2=4.故答案为4.12.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.【解析】分情况讨论:①当AP=AE=5时,△AEP是等腰直角三角形,得出底边PE=AE=5;②当PE=AE=5时,求出BE,由勾股定理求出PB,再由勾股定理求出底边AP;③当PA=PE时,底边AE=5;分别进行求解即可得出结论.如图所示:①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当P1E=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴P1B=122P E BE-=4,∴底边AP1=221AB PB+==4;③当P2A=P2E时,底边AE=5;综上所述,等腰三角形AEP的底边长为5或4或5;故答案为:5或4或5.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解方程组:2,1. x yx y y-=⎧⎨-=+⎩(2)如图,Rt△ABC中,∠ACB=90°,将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.(1)【解】2,1, x yx y y+=⎧⎨-=+⎩①②①﹣②得y=1,把y=1代入①可得x=3,所以方程组的解为3,1. xy=⎧⎨=⎩(2)【证明】将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.∴∠AED=∠CED=90°,∵∠ACB=90°,∴∠AED=∠ACB=90°,∴DE ∥BC .14.先化简,再求值:(+)÷,其中x=6.【解】原式=÷=÷=•=,当x=6时,原式==﹣.15.如图,过点A (2,0)的两条直线l 1,l 2分别交y 轴于点B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=.(1)求点B 的坐标;(2)若△ABC 的面积为4,求直线l 2的解析式.【解】(1)∵点A (2,0),AB=,∴BO==134-=3, ∴点B 的坐标为(0,3).(2)∵△ABC 的面积为4,∴×BC×AO=4, ∴×BC×2=4,即BC=4,∵BO=3,∴CO=4﹣3=1,∴C (0,﹣1),设直线l 2的解析式为y=kx+b ,则02,1,k b b =+⎧⎨-=⎩解得1,21,k b ⎧=⎪⎨⎪=-⎩∴直线l2的解析式为y=x﹣1.16.为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”“日常学习”“习惯养成”“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.(1)补全条形统计图.(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?【解】(1)乙组最关心“情感品质”的家长有:100﹣(18+20+23+17+5+7+4)=6(人),补全条形统计图如图:(2)×3600=360(人).答:估计约有360位家长最关心孩子“情感品质”方面的成长.(3)答案不唯一,结合自身情况或条形统计图,言之有理即可.如:由条形统计图中的数据可知,家长对孩子“情感品质”关心不够,可适当关注与指导.17.如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.【解】(1)如图3所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图4所示,点M是长方形AFBE对角线的交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.四、(本大题共4小题,每小题8分,共32分)18.如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.(1)求证:DC=DP;(2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.(1)【证明】连接OC,如图(2)所示,则易知OC⊥CD,OA=OC,∴∠OAC=∠ACO,∵PE⊥OE,∴∠APE=∠PCD,∵∠APE=∠DPC,∴∠DPC=∠PCD,∴DC=DP.(2)【解】以A,O,C,F为顶点的四边形是菱形.理由如下:连接OC,BC,OF,AF,如图(3)所示,∵∠CAB=30°,∴∠B=60°,∴△OBC为等边三角形,∴∠AOC=120°,∵F是的中点,∴∠AOF=∠COF=60°,∴△AOF与△COF均为等边三角形,∴AF=AO=OC=CF,∴四边形AOCF为菱形.19.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示),使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.【解】(1)第5节套管的长度为50﹣4×(5﹣1)=34(cm).(2)第10节套管的长度为50﹣4×(10﹣1)=14(cm),设每相邻两节套管间重叠的长度为xcm,根据题意得(50+46+42+…+14)﹣9x=311,即320﹣9x=311,解得x=1.答:每相邻两节套管间重叠的长度为1cm.20.甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.【解】(1)∵现甲、乙均各自摸了两张牌,数字之和都是5,甲从桌上继续摸一张扑克牌,乙不再摸牌,∴甲摸牌数字是4与5则获胜,∴甲获胜的概率为=.故答案为:.(2)方法一:画树状图得:则共有12种等可能的结果,乙获胜的概率为5 12.方法二:列表得:∴乙获胜的概率为.21.如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)【解】(1)作OC⊥AB于点C,如右图3所示,由题意可得OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°,∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13(cm),即所作圆的半径约为3.13cm.(2)作AD⊥OB于点D,作AE=AB,如下图4所示,保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.128×0.1564≈0.98(cm),即铅笔芯折断部分的长度是0.98cm.五、(本大题共10分)22.如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE′.【归纳猜想】(3)图1、图2中的“叠弦角”的度数分别为,;(4)图n中,“叠弦三角形”等边三角形(填“是”或“不是”); (5)图n中,“叠弦角”的度数为(用含n的式子表示).【解】(1)如图1,∵四边形ABCD是正方形,由旋转知AD=AD',∠D=∠D'=90°,∠DAD'=∠OAP=60°,∴∠DAP=∠D'AO,∴△APD≌△AOD'(ASA),∴AP=AO,∵∠OAP=60°,∴△AOP是等边三角形.(2)如图2,作AM⊥DE于M,作AN⊥CB于N.∵五边形ABCDE是正五边形,由旋转知AE=AE′,∠E=∠E′=108°,∠EAE′=∠OAP=60°,∴∠EAP=∠E ′AO ,∴△APE ≌△AOE ′(ASA ),∴∠OAE ′=∠PAE .在Rt △AEM 和Rt △ABN 中,∠AEM=∠ABN=72°,AE=AB, ∴Rt △AEM ≌Rt △ABN (AAS ),∴∠EAM=∠BAN ,AM=AN .在Rt △APM 和Rt △AON 中,AP=AO ,AM=AN ,∴Rt △APM ≌Rt △AON (HL ).∴∠PAM=∠OAN ,∴∠PAE=∠OAB,∴∠OAB =∠OAE ′(等量代换).(3)由(1)知△APD ≌△AOD ′,∴∠DAP=∠D ′AO ,在Rt △AD ′O 和Rt △ABO 中,,,AD AB AO AO '=⎧⎨=⎩ ∴Rt △AD ′O ≌Rt △ABO ,∴∠D′AO=∠BAO ,由旋转得∠DAD ′=60°,∵∠DAB=90°,∴∠D ′AB=∠DAB ﹣∠DAD ′=30°,∴∠D ′AO=∠D ′AB=15°,同理可得∠E ′AO=24°,故答案为:15°,24°.(4)如图3,∵六边形ABCDEF 和六边形AB′C′D′E′F′是正六边形,∴∠F=F′=120°,由旋转得AF=AF′,EF=E′F′,∴△APF ≌△AE′F′,∴∠PAF=∠E′AF′,由旋转得∠FAF′=60°,AP=AO,∴∠PAO =60°,∴△PAO 是等边三角形.故答案为:是.(5)同(3)的方法得,∠OAB=[(n﹣2)×180°÷n﹣60°]÷2=60°-180n︒.故答案为:60°﹣.六、(本大题共12分)23.设抛物线的解析式为y=ax2,过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2(,0)作x轴的垂线,交抛物线于点A2;…;过点B n(()n﹣1,0)(n为正整数)作x轴的垂线,交抛物线于点A n,连接A n B n+1,得Rt△A n B n B n+1.(1)求a的值;(2)直接写出线段A n B n,B n B n+1的长(用含n的式子表示);(3)在系列Rt△A n B n B n+1中,探究下列问题:①当n为何值时,Rt△A n B n B n+1是等腰直角三角形?②设1≤k<m≤n(k,m均为正整数),问:是否存在Rt△A k B k B k+1与Rt△A m B m B m+1相似?若存在,求出其相似比;若不存在,说明理由.【解】(1)∵点A1(1,2)在抛物线y=ax2上,∴a=2.(2)A n B n=2x2=2×[()n﹣1]2=,B n B n+1=.(3)①由Rt△A n B n B n+1是等腰直角三角形得A n B n=B n B n+1,则=,2n﹣3=n,n=3,∴当n=3时,Rt△A n B n B n+1是等腰直角三角形.②依题意得,∠A k B k B k+1=∠A m B m B m+1=90°,有两种情况:i)当Rt△A k B k B k+1∽Rt△A m B m B m+1时,=,=,=,所以k=m(舍去);ii)当Rt△A k B k B k+1∽Rt△B m+1B m A m时,=,=,=,∴k+m=6,∵1≤k<m≤n(k,m均为正整数),∴取2,5km=⎧⎨=⎩或2,4;km=⎧⎨=⎩当1,5km=⎧⎨=⎩时,Rt△A1B1B2∽Rt△B6B5A5,相似比为==64,当2,4km=⎧⎨=⎩时,Rt△A2B2B3∽Rt△B5B4A4,相似比为==8,所以存在Rt△A k B k B k+1与Rt△A m B m B m+1相似,其相似比为64∶1或8∶1.。
2016中考数学答题技巧和应试策略
2、按考卷顺序进行作答。中考的考题是由易到难,考试开始,顺利解答几个简单题目,可以使考生信心倍增,有利于顺利进入最佳思维状态。从近年来中考数学卷面来看,考试时间很紧张,考生几乎没有时间检查,这就要求在答卷时认真准确,争取“一遍成”。
3、遇到难题,要敢于暂时“放弃”,不要浪费太多时间(一般来说,选择或填空题每个不超过2分钟),等把会做的题目解答完后,再回头集中精力解决它,可能后面的题能够激发难题的做题灵感。
5、卷面书写既要速度快,又要整洁、准确,这样可以提高答准确,字迹工整,大题步骤明晰。草稿纸书写要有规划,便于回头检查。
6、调整心态。考前怯场或考试中某一环节暂时失利时,不要惊慌,不要灰心丧气,要沉着冷静,进行自我调节。由易到难。试题的难度一般按题目顺序逐渐递增,所以答题时要从头做起,不要因为后面大题目占的分数多,就先做后面的题目,这样往往容易把自己难住。遇到不会做的题,要敢于暂时“放弃”,调整好心态,改做下面的题,切记在考场上绝不能为一道题而浪费太多时间
四,不慌不躁,冷静应对在考试时难免有些题目一时想不出,千万不要钻牛角尖,因为所有试题包含的知识、能力要求都在考纲范围内,不妨先换一个题目做做,等一会儿往往就会豁然开朗了。综合题的题目内容长,容易使人心烦,我们不要想一口气吃掉整个题目,先做一个小题,后面的思路就好找了。
2016年江西省中考数学试卷(解析版)
2016年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,满分18分,每小题只有一个正确选项)1.(3分)(2016•江西)下列四个数中,最大的一个数是()A.2 B.C.0 D.﹣2【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣2<0<<2,故四个数中,最大的一个数是2.故选:A.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)(2016•江西)将不等式3x﹣2<1的解集表示在数轴上,正确的是()A.B.C.D.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先解出不等式3x﹣2<1的解集,即可解答本题.【解答】解:3x﹣2<1移项,得3x<3,系数化为1,得x<1,故选D.【点评】本题考查解一元一次不等式\在数轴上表示不等式的解集,解题的关键是明确解一元一次不等式的方法.3.(3分)(2016•江西)下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.2x•2x2=2x3D.(m﹣n)2=m2﹣n2【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】结合选项分别进行合并同类项、积的乘方、单项式乘单项式、完全平方公式的运算,选出正确答案.【解答】解:A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选B.【点评】本题考查了合并同类项、积的乘方、单项式乘单项式、完全平方公式,掌握运算法则是解答本题的关键.4.(3分)(2016•江西)有两个完全相同的正方体,按下面如图方式摆放,其主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图的定义即可得到结果.【解答】解:其主视图是C,故选C.【点评】此题考查了三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.5.(3分)(2016•江西)设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是()A.2B.1C.﹣2D.﹣1【考点】根与系数的关系.【分析】根据α、β是一元二次方程x2+2x﹣1=0的两个根,由根与系数的关系可以求得αβ的值,本题得以解决.【解答】解:∵α、β是一元二次方程x2+2x﹣1=0的两个根,∴αβ=,故选D.【点评】本题考查根与系数的关系,解题的关键是明确两根之积等于常数项与二次项系数的比值.6.(3分)(2016•江西)如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m,水平部分线段长度之和记为n,则这三个多边形中满足m=n的是()A.只有②B.只有③C.②③D.①②③【考点】相似三角形的判定与性质;三角形中位线定理.【分析】利用相似三角形的判定和性质分别求出各多边形竖直部分线段长度之和与水平部分线段长度之和,再比较即可.【解答】解:假设每个小正方形的边长为1,①:m=1+2+1=4,n=2+4=6,则m≠n;②在△ACN中,BM∥CN,∴=,∴BM=,在△AGF中,DM∥NE∥FG,∴=,=,得DM=,NE=,∴m=2+=2.5,n=+1++=2.5,∴m=n;③由②得:BE=,CF=,∴m=2+2++1+=6,n=4+2=6,∴m=n,则这三个多边形中满足m=n的是②和③;故选C.【点评】本题考查了相似多边形的判定和性质,对于有中点的三角形可以利用三角形中位线定理得出;本题线段比较多要依次相加,做到不重不漏.二、填空题(本大题共6小题,每小题3分,满分18分)7.(3分)(2016•江西)计算:﹣3+2=﹣1.【考点】有理数的加法.【分析】由绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0,即可求得答案.【解答】解:﹣3+2=﹣1.故答案为:﹣1.【点评】此题考查了有理数的加法.注意在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.8.(3分)(2016•江西)分解因式:ax2﹣ay2=a(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】应先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).【点评】本题主要考查提公因式法分解因式和平方差公式分解因式,需要注意分解因式一定要彻底.9.(3分)(2016•江西)如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为17°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠B'AC'=33°,∠BAB'=50°,从而得到∠B′AC的度数.【解答】解:∵∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,∴∠B'AC'=33°,∠BAB'=50°,∴∠B′AC的度数=50°﹣33°=17°.故答案为:17°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.10.(3分)(2016•江西)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB 于点E,交CB的延长线于点F,则∠BEF的度数为50°.【考点】平行四边形的性质.【分析】由“平行四边形的对边相互平行”、“两直线平行,同位角相等”以及“直角三角形的两个锐角互余”的性质进行解答.【解答】解:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠C=∠ABF.又∵∠C=40°,∴∠ABF=40°.∵EF⊥BF,∴∠F=90°,∴∠BEF=90°﹣40°=50°.故答案是:50°.【点评】本题考查了平行四边形的性质.利用平行四边形的对边相互平行推知DC∥AB是解题的关键.11.(3分)(2016•江西)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=4.【考点】反比例函数与一次函数的交点问题;反比例函数系数k的几何意义.【分析】由反比例函数的图象过第一象限可得出k1>0,k2>0,再由反比例函数系数k的几何意义即可得出S△OAP=k1,S△OBP=k2,根据△OAB的面积为2结合三角形之间的关系即可得出结论.【解答】解:∵反比例函数y1=(x>0)及y2=(x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP=k1,S△OBP=k2.∴S△OAB=S△OAP﹣S△OBP=(k1﹣k2)=2,解得:k1﹣k2=4.故答案为:4.【点评】本题考查了反比例函数与一次函数的交点问题已经反比例函数系数k的几何意义,解题的关键是得出S△OAB=(k1﹣k2).本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k的几何意义用系数k来表示出三角形的面积是关键.12.(3分)(2016•江西)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是5\sqrt{2}或4\sqrt{5}或5.【考点】矩形的性质;等腰三角形的性质;勾股定理.【分析】分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE=AE=5即可;②当PE=AE=5时,求出BE,由勾股定理求出PB,再由勾股定理求出等边AP即可;③当PA=PE时,底边AE=5;即可得出结论.【解答】解:如图所示:①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当PE=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴PB==4,∴底边AP===4;③当PA=PE时,底边AE=5;综上所述:等腰三角形AEP的对边长为5或4或5;故答案为:5或4或5.【点评】本题考查了矩形的性质、等腰三角形的判定、勾股定理;熟练掌握矩形的性质和等腰三角形的判定,进行分类讨论是解决问题的关键.三、解答题(本大题共5小题,每小题3分,满分27分)13.(3分)(2016•江西)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.【考点】翻折变换(折叠问题);解二元一次方程组.【分析】(1)根据方程组的解法解答即可;(2)由翻折可知∠AED=∠CED=90°,再利用平行线的判定证明即可.【解答】解:(1),①﹣②得:y=1,把y=1代入①可得:x=3,所以方程组的解为;(2)∵将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.∴∠AED=∠CED=90°,∴∠AED=∠ACB=90°,∴DE∥BC.【点评】本题考查的是图形的翻折变换,涉及到平行线的判定,熟知折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.14.(6分)(2016•江西)先化简,再求值:(+)÷,其中x=6.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把x=6代入进行计算即可.【解答】解:原式=÷=÷=•=,当x=6时,原式==﹣.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.15.(6分)(2016•江西)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.【考点】两条直线相交或平行问题;待定系数法求一次函数解析式;勾股定理的应用.【分析】(1)先根据勾股定理求得BO的长,再写出点B的坐标;(2)先根据△ABC的面积为4,求得CO的长,再根据点A、C的坐标,运用待定系数法求得直线l2的解析式.【解答】解:(1)∵点A(2,0),AB=∴BO===3∴点B的坐标为(0,3);(2)∵△ABC的面积为4∴×BC×AO=4∴×BC×2=4,即BC=4∵BO=3∴CO=4﹣3=1∴C(0,﹣1)设l2的解析式为y=kx+b,则,解得∴l2的解析式为y=x﹣1【点评】本题主要考查了两条直线的交点问题,解题的关键是掌握勾股定理以及待定系数法.注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解,反之也成立.16.(6分)(2016•江西)为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”、“日常学习”、“习惯养成”、“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.(1)补全条形统计图.(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?【考点】条形统计图;用样本估计总体.【分析】(1)用甲、乙两班学生家长共100人减去其余各项目人数可得乙组关心“情感品质”的家长人数,补全图形即可;(2)用样本中关心孩子“情感品质”方面的家长数占被调查人数的比例乘以总人数3600可得答案;(3)无确切答案,结合自身情况或条形统计图,言之有理即可.【解答】解:(1)乙组关心“情感品质”的家长有:100﹣(18+20+23+17+5+7+4)=6(人),补全条形统计图如图:(2)×3600=360(人).答:估计约有360位家长最关心孩子“情感品质”方面的成长;(3)无确切答案,结合自身情况或条形统计图,言之有理即可,如:从条形统计图中,家长对“情感品质”关心不够,可适当关注与指导.【点评】本题主要考查条形统计图,条形统计图能清楚地表示出每个项目的数据,熟知各项目数据个数之和等于总数,也考查了用样本估计总体.17.(6分)(2016•江西)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.【考点】作图—应用与设计作图.【分析】(1)根据等腰直角三角形的性质即可解决问题.(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.【解答】解:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.【点评】本题考查作图﹣应用设计、正方形、长方形、等腰直角三角形的性质,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.四、(本大题共4小题,每小题8根,共32分)18.(8分)(2016•江西)如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.(1)求证:DC=DP;(2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.【考点】切线的性质;垂径定理.【分析】(1)连接OC,根据切线的性质和PE⊥OE以及∠OAC=∠OCA得∠APE=∠DPC,然后结合对顶角的性质可证得结论;(2)由∠CAB=30°易得△OBC为等边三角形,可得∠AOC=120°,由F是的中点,易得△AOF与△COF均为等边三角形,可得AF=AO=OC=CF,易得以A,O,C,F为顶点的四边形是菱形.【解答】(1)证明:连接OC,∵∠OAC=∠ACO,PE⊥OE,OC⊥CD,∴∠APE=∠PCD,∵∠APE=∠DPC,∴∠DPC=∠PCD,∴DC=DP;(2)解:以A,O,C,F为顶点的四边形是菱形;∵∠CAB=30°,∴∠B=60°,∴△OBC为等边三角形,∴∠AOC=120°,连接OF,AF,∵F是的中点,∴∠AOF=∠COF=60°,∴△AOF与△COF均为等边三角形,∴AF=AO=OC=CF,∴四边形OACF为菱形.【点评】本题主要考查了切线的性质、圆周角定理和等边三角形的判定等,作出恰当的辅助线利用切线的性质是解答此题的关键.19.(8分)(2016•江西)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.【考点】一元一次方程的应用.【分析】(1)根据“第n节套管的长度=第1节套管的长度﹣4×(n﹣1)”,代入数据即可得出结论;(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×相邻两节套管间的长度”,得出关于x的一元一次方程,解方程即可得出结论.【解答】解:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm).(2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm),设每相邻两节套管间重叠的长度为xcm,根据题意得:(50+46+42+…+14)﹣9x=311,即:320﹣9x=311,解得:x=1.答:每相邻两节套管间重叠的长度为1cm.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据数量关系直接求值;(2)根据数量关系找出关于x的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出不等式(方程或方程组)是关键.20.(8分)(2016•江西)甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为\frac{1}{2};(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.【考点】列表法与树状图法.【分析】(1)由现甲、乙均各自摸了两张牌,数字之和都是5,甲从桌上继续摸一张扑克牌,乙不再摸牌,甲摸牌数字是4与5则获胜,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后根据树状图列出甲、乙的“最终点数”,继而求得答案.【解答】解:(1)∵现甲、乙均各自摸了两张牌,数字之和都是5,甲从桌上继续摸一张扑克牌,乙不再摸牌,∴甲摸牌数字是4与5则获胜,∴甲获胜的概率为:=;故答案为:;(2)画树状图得:则共有12种等可能的结果;列表得:∴乙获胜的概率为:.【点评】此题考查了列表法或树状图法求概率.注意根据题意列出甲、乙的“最终点数”的表格是难点.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)(2016•江西)如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)【考点】解直角三角形的应用.【分析】(1)根据题意作辅助线OC⊥AB于点C,根据OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决.【解答】解:(1)作OC⊥AB于点C,如右图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13cm,即所作圆的半径约为3.13cm;(2)作AD⊥OB于点D,作AE=AB,如下图3所示,∵保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,即铅笔芯折断部分的长度是0.98cm.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件.五、(本大题共10分)22.(10分)(2016•江西)如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE′.【归纳猜想】(3)图1、图2中的“叠弦角”的度数分别为15°,24°;(4)图n中,“叠弦三角形”是等边三角形(填“是”或“不是”)(5)图n中,“叠弦角”的度数为60°﹣\frac{180°}{n}(用含n的式子表示)【考点】几何变换综合题.【分析】(1)先由旋转的性质,再判断出△APD≌△AOD',最后用旋转角计算即可;(2)先判断出Rt△AEM≌Rt△ABN,在判断出Rt△APM≌Rt△AON 即可;(3)先判断出△AD′O≌△ABO,再利用正方形,正五边形的性质和旋转的性质,计算即可;(4)先判断出△APF≌△AE′F′,再用旋转角为60°,从而得出△PAO是等边三角形;(5)用(3)的方法求出正n边形的,“叠弦角”的度数.【解答】解:(1)如图1,∵四ABCD是正方形,由旋转知:AD=AD',∠D=∠D'=90°,∠DAD'=∠OAP=60°,∴∠DAP=∠D'AO,∴△APD≌△AOD'(ASA)∴AP=AO,∵∠OAP=60°,∴△AOP是等边三角形,(2)如图2,作AM⊥DE于M,作AN⊥CB于N.∵五ABCDE是正五边形,由旋转知:AE=AE',∠E=∠E'=108°,∠EAE'=∠OAP=60°∴∠EAP=∠E'AO∴△APE≌△AOE'(ASA)∴∠OAE'=∠PAE.在Rt△AEM和Rt△ABN中,∠AEM=∠ABN=72°,AA AE=AB ∴Rt△AEM≌Rt△ABN (AAS),∴∠EAM=∠BAN,AM=AN.在Rt△APM和Rt△AON中,AP=AO,AM=AN∴Rt△APM≌Rt△AON (HL).∴∠PAM=∠OAN,∴∠PAE=∠OAB∴∠OAE'=∠OAB (等量代换).(3)由(1)有,△APD≌△AOD',∴∠DAP=∠D′AO,在△AD′O和△ABO中,,∴△AD′O≌△ABO,∴∠D′AO=∠BAO,由旋转得,∠DAD′=60°,∵∠DAB=90°,∴∠D′AB=∠DAB﹣∠DAD′=30°,∴∠D′AD=∠D′AB=15°,同理可得,∠E′AO=24°,故答案为:15°,24°.(4)如图3,∵六边形ABCDEF和六边形A′B′C′E′F′是正六边形,∴∠F=F′=120°,由旋转得,AF=AF′,EF=E′F′,∴△APF≌△AE′F′,∴∠PAF=∠E′AF′,由旋转得,∠FAF′=60°,AP=AO∴∠PAO=∠FAO=60°,∴△PAO是等边三角形.故答案为:是(5)同(3)的方法得,∠OAB=[(n﹣2)×180°÷n﹣60°]÷2=60°﹣故答案:60°﹣.【点评】此题是几何变形综合题,主要考查了正多边形的性质旋转的性质,全等三角形的判定,等边三角形的判定,解本题的关键是判定三角形全等.六、(本大题共12分)23.(12分)(2016•江西)设抛物线的解析式为y=ax2,过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2(,0)作x轴的垂线,交抛物线于点A2;…;过点B n (()n﹣1,0)(n为正整数)作x轴的垂线,交抛物线于点A n,连接A n B n+1,得Rt△A n B n B n+1.(1)求a的值;(2)直接写出线段A n B n,B n B n+1的长(用含n的式子表示);(3)在系列Rt△A n B n B n+1中,探究下列问题:①当n为何值时,Rt△A n B n B n+1是等腰直角三角形?②设1≤k<m≤n(k,m均为正整数),问:是否存在Rt△A k B k B k+1与Rt△A m B m B m+1相似?若存在,求出其相似比;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)直接把点A1的坐标代入y=ax2求出a的值;(2)由题意可知:A1B1是点A1的纵坐标:则A1B1=2×12=2;A2B2是点A2的纵坐标:则A2B2=2×()2=;…则A n B n=2x2=2×[()n﹣1]2=;B1B2=1﹣=,B2B3=﹣==,…,B n B n+1=;(3)因为Rt△A k B k B k+1与Rt△A m B m B m+1是直角三角形,所以分两种情况讨论:根据(2)的结论代入所得的对应边的比列式,计算求出k与m的关系,并与1≤k<m≤n(k,m均为正整数)相结合,得出两种符合条件的值,分别代入两相似直角三角形计算相似比.【解答】解:(1)∵点A1(1,2)在抛物线的解析式为y=ax2上,∴a=2;(2)A n B n=2x2=2×[()n﹣1]2=,B n B n+1=;(3)由Rt△A n B n B n+1是等腰直角三角形得A n B n=B n B n+1,则:=,2n﹣3=n,n=3,∴当n=3时,Rt△A n B n B n+1是等腰直角三角形,②依题意得,∠A k B k B k+1=∠A m B m B m+1=90°,有两种情况:i)当Rt△A k B k B k+1∽Rt△A m B m B m+1时,=,=,=,所以,k=m(舍去),ii)当Rt△A k B k B k+1∽Rt△B m+1B m A m时,=,=,=,∴k+m=6,∵1≤k<m≤n(k,m均为正整数),∴取或;当时,Rt△A1B1B2∽Rt△B6B5A5,相似比为:==64,当时,Rt△A2B2B3∽Rt△B5B4A4,相似比为:==8,所以:存在Rt△A k B k B k+1与Rt△A m B m B m+1相似,其相似比为64:1或8:1.【点评】本题考查了二次函数的综合问题,这是一个函数类的规律题,把坐标、二次函数和线段有机地结合在一起,以求线段的长为突破口,以相似三角形的对应边的比为等量关系,代入计算解决问题,综合性较强,因为本题小字标较多,容易出错.2016年江西省中考数学试卷一、选择题(本大题共6小题,每小题3分,满分18分,每小题只有一个正确选项)1.(3分)(2016•江西)下列四个数中,最大的一个数是()A.2B.C.0D.﹣22.(3分)(2016•江西)将不等式3x﹣2<1的解集表示在数轴上,正确的是()A.B.C.D.3.(3分)(2016•江西)下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.2x•2x2=2x3D.(m﹣n)2=m2﹣n24.(3分)(2016•江西)有两个完全相同的正方体,按下面如图方式摆放,其主视图是()A.B.C.D.5.(3分)(2016•江西)设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是()A.2B.1C.﹣2D.﹣16.(3分)(2016•江西)如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m,水平部分线段长度之和记为n,则这三个多边形中满足m=n的是()A.只有②B.只有③C.②③D.①②③二、填空题(本大题共6小题,每小题3分,满分18分)7.(3分)(2016•江西)计算:﹣3+2=.8.(3分)(2016•江西)分解因式:ax2﹣ay2=.9.(3分)(2016•江西)如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为.10.(3分)(2016•江西)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB 于点E,交CB的延长线于点F,则∠BEF的度数为.11.(3分)(2016•江西)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=.12.(3分)(2016•江西)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.三、解答题(本大题共5小题,每小题3分,满分27分)13.(3分)(2016•江西)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.14.(6分)(2016•江西)先化简,再求值:(+)÷,其中x=6.15.(6分)(2016•江西)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.16.(6分)(2016•江西)为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”、“日常学习”、“习惯养成”、“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.(1)补全条形统计图.(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?17.(6分)(2016•江西)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.四、(本大题共4小题,每小题8根,共32分)18.(8分)(2016•江西)如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.(1)求证:DC=DP;(2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.19.(8分)(2016•江西)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.20.(8分)(2016•江西)甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;。
2016年河南省中考数学试卷分析
2016年河南省中考数学试卷分析巩义市第二初级中学李荣有一、命题的指导思想:2016年中考数学试卷依照《新课程标准》为出题依据,坚持从学生实际出发,考查学生在义务教育阶段学习的基础知识、基本技能、基本数学思想与方法;考查学生的运算能力、思维能力、空间想象能力;考查学生用数学知识和思维方法分析解决生活问题的应用能力。
试卷全面落实《课程标准》所设立的课程目标,改善学生学习数学的方式,提高学习效率。
二、试卷的结构和特点:1.试卷的整体结构:全卷共有三种题型,23个题目,其中选择题8个,填空题7个,解答题8个,这与以往的中考试卷相同。
但今年的选择题和填空题相对去年较为简单,尤其是选择题,填空题虽然也出现了折叠和分类讨论题(15题),但难度有所降低。
题号分值分布如下:2016年中考数学试卷总体保持稳定,稳中有变、变中有新。
例如21题就给人耳目一新的感觉,虽然中学阶段不断渗透数形结合思想,但以这种大视角重分数出现还是第一次。
由于数形结合是一种重要的数学思想,对学生的思维训练有着重要的意义,从这个角度来讲试卷体现了义务教育课程改革的新理念。
另外试卷的22题和23题的第3问难度偏大,能够正确写出答案的的学生很少,从选拔的角度讲。
试卷需要有难度的试题,但难度过大就失去了选拔的意义。
2.试卷的具体特点:(1)注重基础,突出对基础知识、基础技能的考查,有较好的教学导向作用。
在命题方向上,中考试题没有太多的起伏,从内容和知识点上看,试题覆盖面广,涉及到初中六册教材的核心内容,比如填空题中考查科学计数法、勾股定理、实数的运算等,选择题中考查平行四边形、一元二次方程、概率等,计算题中考查圆的证明和计算、方程组、三角函数、化简求值等。
对这些知识点的考查,并不是对概念、性质的记忆上进行考查,而是对概念、性质的理解与运用上进行考查。
始终体现了“基础知识、基本技能”的基础要求,有利于引导学生摆脱题海,落实“减负”要求,试题设计循序渐进,坡度缓,有层次,有节奏,难易适中。
2016年武汉市中考数学试卷解析版
2016年武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分) 1.实数2的值在( ) A .0和1之间 B .1和2之间 C .2和3之间 D .3和4之间【考点】有理数的估计【答案】B【解析】∵1<2<4,∴124<<,∴122<<.2.若代数式在31-x 实数范围内有意义,则实数x 的取值范围是( ) A .x <3 B .x >3 C .x ≠3 D .x =3【考点】分式有意义的条件【答案】C 【解析】要使31-x 错误!未找到引用源。
有意义,则x -3≠0,∴x ≠3 故选C.3.下列计算中正确的是( )A .a ·a 2=a 2B .2a ·a =2a 2C .(2a 2)2=2a 4D .6a 8÷3a 2=2a 4 【考点】幂的运算 【答案】B【解析】A . a ·a 2=a 3,此选项错误;B .2a ·a =2a 2,此选项正确;C .(2a 2)2=4a 4,此选项错误;D .6a 8÷3a 2=2a 6,此选项错误。
4.不透明的袋子中装有性状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球【考点】不可能事件的概率 【答案】A【解析】∵袋子中有4个黑球,2个白球,∴摸出的黑球个数不能大于4个,摸出白球的个数不能大于2个。
A 选项摸出的白球的个数是3个,超过2个,是不可能事件。
故答案为:A5.运用乘法公式计算(x +3)2的结果是( ) A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +9【考点】完全平方公式【答案】C【解析】运用完全平方公式,(x+3)2=x2+2×3x+32=x2+6x+9.故答案为:C6.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1 B.a=-5,b=1C.a=5,b=-1 D.a=-5,b=-1【考点】关于原点对称的点的坐标.【答案】D【解析】关于原点对称的点的横坐标与纵坐标互为相反数.∵点A(a,1)与点A′(5,b)关于坐标原点对称,∴a =-5,b=-1,故选D.7.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()【考点】简单几何体的三视图.【答案】A【解析】从左面看,上面看到的是长方形,下面看到的也是长方形,且两个长方形一样大.故选A8.某车间20名工人日加工零件数如下表所示:日加工零件数 4 5 6 7 8人数 2 6 5 4 3这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6【考点】众数;加权平均数;中位数.根据众数、平均数、中位数的定义分别进行解答.【答案】D【解析】5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6;平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故选D.9.如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P 沿半圆从点A运动至点B时,点M运动的路径长是()A.π2B.πC.22D.2 【考点】轨迹,等腰直角三角形【答案】B【解析】取AB的中点E,取CE的中点F,连接PE,CE,MF,则FM=12PE=1,故M的轨迹为以F为圆心,1为半径的半圆弧,轨迹长为1212ππ⋅⋅=.10.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8【考点】等腰三角形的判定;坐标与图形性质【答案】A【解析】构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除。
如何出一份高质量的数学综合试卷
如何出一份高质量的数学综合试卷合格试卷的十个字:正确、适度、符合、和谐、简明。
正确:试题不出纰漏,卷面分值,多种问题的全面,要做全需要认真的态度和严谨的检查。
适度:要有信度和效度,对学生要公平,不出现地区差异的理解性问题,考察结果要有效,即内容和考察过程方法恰当。
符合:理念和实际相符,一道题中的几问题有一定关联,切合实际问题。
和谐:比例结构,整体安排完美一体。
简明:主要是问题的表述。
出题的几步骤:从难—易的方法,先出后面大题,把难的问题先解决;做栏目明细表,把知识点和分值用坐标方法标出,再根据问题和分值定题目类型;大题要有10%的有创意,填空、选择题也需要10%有创意的题,但总的新面孔不超过20%;出好题后进行规范解答,争取发现较多的新解法,或隐含问题;对试卷精雕细刻,同一道题不越面,把握平衡。
初三试题要求:先搭好框架,共25题,选择题10个,填空题5个,计算2题,方程1题,三个应用题(概率+常规+创新),一个探究题1题(从特殊到一般的),开放性问题1题(发散性,探索性),合情推理1题,逻辑推理1题,综合题1题。
在出题中一定要从易到难,特别是选择题,不可太难,要有效的为后面问题提供机会。
命题先综合性和新颖题,然后开放题、探究题,最后小题补缺。
分类讨论题一定要环环相扣,选择支须从学生容易出现的错误中产生,一个选择题要有一个主题,关联性要强。
压轴题学生的得分率一定要保证2%--3%。
如何出综合性题:试题最好是原创,含至少一种数学方法,比如:化规思想、分类讨论思想等。
出题也可以在旧题上改编,用逆向思维变形。
可以创造问题,平移、旋转、翻折都是创造的好方法,但要小心,魔鬼常常藏在细节之处,要全面考虑多种情况。
叠加也是创造问题的好方法,用运动可以从内到外,方程可以从此到彼。
试卷格式:在版面上,一级标题顶左排,字级字体为3黑,二级标题顶左排,字级字体为4黑,正文为标宋(五号).图表要清晰,达到出版要求.图表(含扫描图表)均要清楚到位,尤其标点符号用全角,句号用实心点.选择题的选择项ABCD用正体,长度单位用正体,三角形判定定理如SAS用正体,集合符号R等。
云南省2016年中考数学试卷及答案解析
云南省2016年中考数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每小题3分,满分18分)1.|﹣3|= 3 .【考点】绝对值.【解析】根据负数的绝对值等于这个数的相反数,即可得出答案.【解答】解:|﹣3|=3.故答案为:3.【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2= 60°.【考点】平行线的性质.【解析】先根据平行线的性质求出∠3的度数,再由对顶角的定义即可得出结论.【解答】解:∵直线a∥b,∠1=60°,∴∠1=∠3=60°.∵∠2与∠3是对顶角,∴∠2=∠3=60°.故答案为:60°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3.因式分解:x2﹣1= (x+1)(x﹣1).【考点】因式分解-运用公式法.【专题】因式分解.【解析】方程利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.4.若一个多边形的边数为6,则这个多边形的内角和为 720度.【考点】多边形内角与外角.【解析】根据多边形的内角和公式求解即可.【解答】解:根据题意得,180°(6﹣2)=720°故答案为720【点评】此题是多边形的内角和外角,主要考差了多边形的内角和公式,解本题的关键是熟记多边形的内角和公式.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为﹣1或2 .【考点】根的判别式.【解析】根据方程有两个相等的实数根列出关于a的方程,求出a的值即可.【解答】解:∵关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,∴△=0,即4a2﹣4(a+2)=0,解得a=﹣1或2.故答案为:﹣1或2.【点评】本题考查的是根的判别式,熟知一元二次方程的解与判别式之间的关系是解答此题的关键.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于144或384π.【考点】几何体的展开图.【解析】分两种情况:①底面周长为6高为16π;②底面周长为16π高为6;先根据底面周长得到底面半径,再根据圆柱的体积公式计算即可求解.【解答】解:①底面周长为6高为16π,π×()2×16π=π××16π=144;②底面周长为16π高为6,π×()2×6=π×64×6=384π.答:这个圆柱的体积可以是144或384π.故答案为:144或384π.【点评】本题考查了展开图折叠成几何体,本题关键是熟练掌握圆柱的体积公式,注意分类思想的运用.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7.据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣4【考点】科学记数法—表示较大的数.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为2.5434×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠2【考点】函数自变量的取值范围.【解析】根据当函数表达式的分母中含有自变量时,自变量取值要使分母不为零,判断求解即可.【解答】解:∵函数表达式y=的分母中含有自变量x,∴自变量x的取值范围为:x﹣2≠0,即x≠2.故选D.【点评】本题考查了函数自变量取值范围的知识,求自变量的取值范围的关键在于必须使含有自变量的表达式都有意义.9.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱 B.圆锥 C.球 D.正方体【考点】由三视图判断几何体.【解析】利用三视图都是圆,则可得出几何体的形状.【解答】解:主视图、俯视图和左视图都是圆的几何体是球.故选C.【点评】本题考查了由三视图确定几何体的形状,学生的思考能力和对几何体三种视图的空间想象能力.10.下列计算,正确的是()A.(﹣2)﹣2=4 B. C.46÷(﹣2)6=64 D.【考点】二次根式的加减法;有理数的乘方;负整数指数幂;二次根式的性质与化简.【解析】依次根据负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并进行判断即可.【解答】解:A、(﹣2)﹣2=,所以A错误,B、=2,所以B错误,C、46÷(﹣2)6=212÷26=26=64,所以C正确;D、﹣=2﹣=,所以D错误,故选C【点评】此题是二次根式的加减法,主要考查了负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并同类二次根式,熟练掌握这些知识点是解本题的关键.11.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4 B.2 C.1 D.﹣2【考点】反比例函数系数k的几何意义.【解析】此题应先由三角形的面积公式,再求解k即可.【解答】解:因为位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,所以,解得:xy=2,所以:k=2,故选:B【点评】主要考查了反比例函数系数k的几何意义问题,关键是由三角形的面积公式,再求解k.12.某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为48【考点】方差;加权平均数;中位数;众数.【解析】结合表格根据众数、平均数、中位数的概念求解即可.【解答】解:10名学生的体育成绩中50分出现的次数最多,众数为50;第5和第6名同学的成绩的平均值为中位数,中位数为: =49;平均数==48.6,方差= [(46﹣48.6)2+2×(47﹣48.6)2+(48﹣48.6)2+2×(49﹣48.6)2+4×(50﹣48.6)2]≠50;∴选项A正确,B、C、D错误;故选:A.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.13.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【解析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为()A.15 B.10 C. D.5【考点】相似三角形的判定与性质.【解析】首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为9,进而求出△ACD的面积.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为15,∴△ACD的面积∴△ACD的面积=5.故选D.【点评】本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.三.解答题(共9个小题,共70分)15.解不等式组.【考点】解一元一次不等式组.【解析】分别解得不等式2(x+3)>10和2x+1>x,然后取得这两个不等式解的公共部分即可得出答案.【解答】解:∵,∴解不等式①得:x>2,解不等式②得:x>﹣1,∴不等式组的解集为:x>2.【点评】本题主要考查了解一元一次不等式组的知识,要掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【解析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定方法:SSS,SAS,ASA,AAS,直角三角形还有HL.17.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?【考点】二元一次方程组的应用.【解析】设A种饮料生产了x瓶,B种饮料生产了y瓶,根据:①A种饮料瓶数+B种饮料瓶数=100,②A种饮料添加剂的总质量+B种饮料的总质量=270,列出方程组求解可得.【解答】解:设A种饮料生产了x瓶,B种饮料生产了y瓶,根据题意,得:,解得:,答:A种饮料生产了30瓶,B种饮料生产了70瓶.【点评】本题主要考查二元一次方程组的应用能力,在解题时要能根据题意得出等量关系,列出方程组是本题的关键.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.【考点】矩形的判定;菱形的性质;解直角三角形.【专题】计算题;矩形菱形正方形.【解析】(1)由四边形ABCD是菱形,得到对边平行,且BD为角平分线,利用两直线平行得到一对同旁内角互补,根据已知角之比求出相应度数,进而求出∠BDC度数,即可求出tan ∠DBC的值;(2)由四边形ABCD是菱形,得到对角线互相垂直,利用两组对边平行的四边形是平行四边形,再利用有一个角为直角的平行四边形是矩形即可得证.【解答】(1)解:∵四边形ABCD是菱形,∴AD∥BC,∠DBC=∠ABC,∴∠ABC+∠BAD=180°,∵∠ABC:∠BAD=1:2,∴∠ABC=60°,∴∠BDC=∠ABC=30°,则tan∠DBC=tan30°=;(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠BOC=90°,∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC是平行四边形,则四边形OBEC是矩形.【点评】此题考查了矩形的判定,菱形的性质,以及解直角三角形,熟练掌握判定与性质是解本题的关键.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?【考点】条形统计图;用样本估计总体;扇形统计图.【解析】(1)根据喜欢篮球的人数有25人,占总人数的25%即可得出总人数;(2)根据总人数求出喜欢羽毛球的人数,补全条形统计图即可;(3)求出喜欢跳绳的人数占总人数的20%即可得出结论.【解答】解:(1)∵喜欢篮球的人数有25人,占总人数的25%,∴=100(人);(2)∵喜欢羽毛球的人数=100×20%=20人,∴条形统计图如图;(3)由已知得,1200×20%=240(人).答;该校约有240人喜欢跳绳.【点评】本题考查的是条形统计图,熟知从条形图可以很容易看出数据的大小,便于比较是解答此题的关键.20.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【解析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【解答】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD===4,∴S△OCD===8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.【点评】本题主要考查了切线的判定以及扇形的面积计算,解(1)的关键是证明OC⊥DE,解(2)的关键是求出扇形OBC的面积,此题难度一般.21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.【考点】列表法与树状图法.【解析】(1)首先根据题意画出表格,然后由表格求得所有等可能的结果;(2)根据概率公式进行解答即可.【解答】解:(1)列表得:(2)由列表可知,所有可能出现的结果一共有16种,这些结果出现的可能性相同,其中两次所得数字之和为8、6、5的结果有8种,所以抽奖一次中奖的概率为:P==.答:抽奖一次能中奖的概率为.【点评】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.【考点】二次函数的应用.【解析】(1)待定系数法求解可得;(2)根据:总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.【解答】解:(1)设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,∴y与x的函数解析式为y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2(40﹣95)2+11250=5200元.【点评】本题主要考查待定系数法求一次函数解析式与二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键.23.(12分)(2016•云南)有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这2016个数的和,即,求证:.【考点】分式的混合运算;规律型:数字的变化类.【解析】(1)由已知规律可得;(2)先根据已知规律写出第n、n+1个数,再根据分式的运算化简可得;(3)将每个分式根据﹣=<<=﹣,展开后再全部相加可得结论.【解答】解:(1)由题意知第5个数a==﹣;(2)∵第n个数为,第(n+1)个数为,∴+=(+)=×=×=,即第n个数与第(n+1)个数的和等于;(3)∵1﹣=<=1,=<<=1﹣,﹣=<<=﹣,…﹣=<<=﹣,﹣=<<=﹣,∴1﹣<+++…++<2﹣,即<+++…++<,∴.【点评】本题主要考查分式的混合运算及数字的变化规律,根据已知规律=﹣得到﹣=<<=﹣是解题的关键.云南省2016年中考数学试卷一、填空题(本大题共6个小题,每小题3分,满分18分)1.|﹣3|= .2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2= .3.因式分解:x2﹣1= .4.若一个多边形的边数为6,则这个多边形的内角和为 720度.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7.据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣48.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠29.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱 B.圆锥 C.球 D.正方体10.下列计算,正确的是()A.(﹣2)﹣2=4 B. C.46÷(﹣2)6=64 D.11.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4 B.2 C.1 D.﹣212.某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为4813.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为()A.15 B.10 C. D.5三.解答题(共9个小题,共70分)15.解不等式组.16.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.17.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?20.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.23.(12分)(2016•云南)有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这2016个数的和,即,求证:.第21 页共21 页。
初中数学试卷应试技巧(含学习方法技巧、例题示范教学方法)
初中数学试卷应试技巧第一篇范文:初中数学试卷应试技巧在当今教育体系中,初中数学考试是检验学生数学水平的重要手段之一。
面对日益提高的竞争压力,学生们需要在短时间内掌握有效的应试技巧,以提高考试成绩。
本文从人性化的角度出发,结合教育心理学原理,为初中生提供一套切实可行的数学试卷应试技巧。
二、试卷分析1.试卷结构初中数学试卷通常分为选择题、填空题、解答题三个部分。
其中,选择题和填空题主要考查学生的基础知识,解答题则侧重于学生的综合运用能力。
2.试题类型试卷中的试题类型包括计算题、应用题、证明题等。
掌握各类题型的解题方法,有助于提高学生整体的答题效率。
3.难度分布初中数学试卷的难度分布一般遵循由易到难的原则。
学生在答题时,应合理分配时间,先易后难,确保每道题都能得到分数。
三、应试技巧1.审题技巧(1)仔细阅读题目,理解题目要求。
(2)关注题目中的关键词,如“证明”、“计算”、“求解”等。
(3)审题过程中,注意题目中的已知条件和未知量,为解题提供方向。
2.解答题技巧(1)解答题步骤清晰,条理分明。
(2)注意运用数学符号和公式,准确表达解题过程。
(3)对于复杂问题,先简化问题,再逐步求解。
3.选择题和填空题技巧(1)运用排除法,筛选出正确答案。
(2)注意选项中的细微差别,避免粗心大意导致失分。
(3)对于拿不准的题目,合理猜测,提高猜中的概率。
4.时间管理(1)合理安排答题时间,确保每道题都能完成。
(2)遇到难题时,先做标记,待解决其他题目后再回来处理。
(3)最后检查答案,确保试卷整洁、得分较高。
四、心态调整1.保持冷静,自信应对考试。
2.遇到难题时,保持积极心态,相信自己能够解决。
3.考试过程中,注意休息,保持良好的精神状态。
掌握初中数学试卷的应试技巧,有助于提高学生的考试成绩。
然而,要想在数学领域取得优异成绩,还需在日常学习中扎实基础,培养良好的数学素养。
希望本文能为广大初中生提供有益的参考,助力他们在数学考试中取得优异成绩。
平实中见方法 细微处蕴思想——浙江省绍兴市中考数学试卷亮点赏析.doc
平实中见方法细微处蕴思想——2016年浙江省绍兴市中考数学试卷亮点赏析绍兴市柯桥区实验中学 xxx摘要:2016年浙江省绍兴市中考数学试题在继续保持前几年中考命题所形成的清新风格的基础上,以创新的手法进行精心设计,与生活结合紧密,创新气息浓郁,考查层次丰富,体现数学的实用价值.尤其在当前严格规范办学行为,切实减轻学生过重学业负担,全面推进素质教育的背景之下, 试题特别重视基础的考查,能力立意,关注过程应用,渗透思想方法. 为学生水平发挥提供了广阔的空间,有利于甄别学生的思维层次和数学素养,具有较高的信度、较好的效度和恰当的区分度.这不仅有利于高一级学校选拔合格的新生,而且对初中数学教学和减轻学生的课业负担都具有良好的导向作用。
关键词:中考创新试卷评析2016年浙江省绍兴市中考数学试题在继承前几年中考命题整体思路的基础上,坚持立足基础,关注过程,渗透思想,突出能力,重视应用,注重创新的命题原则,突出对基础知识,基本技能和基本数学思想方法的考查,关注学生的数学基础知识和能力、数学学习过程和数学应用与创新意识,涌现出大量新颖别致的特色亮点题,试题尽显新课标教学理念,对今后日常教学必将产生深远的影响。
一、创新考查角度,落实“三基”要求数学基础知识和基本技能是学好数学的基石,在不同的环境中灵活运用它们是学好数学的反映,试卷在关注对基础知识和基本技能考查的同时,特别注意让考察方式的多样化和考查角度的新颖性。
例1(第8题)如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.312B.36C.33D.32【评析】此题运用选择题型,巧妙考察尺规作图的同时,进一步考察直角三角形性质和锐角三角函数概念的应用,要求学生在理解题意的基础上作出正确的图形,否者要顺利选出正确答案是有一定难度的,由于结合图形进行考察,这为进行抽象思维提供了方便,在一定程度上降低了考查内容的难度,就考察形式而言,如此设计,考题更具新颖性。
2016年江苏省无锡市中考数学试卷及答案解析
2016年江苏省无锡市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分 1.(3分)﹣2的相反数是( ) A .12B .±2C .2D .−122.(3分)函数y =√2x −4中自变量x 的取值范围是( ) A .x >2B .x ≥2C .x ≤2D .x ≠23.(3分)sin30°的值为( ) A .12B .√32C .√22D .√334.(3分)初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(个) 1 2 3 4 5 7 人数(人)114231这12名同学进球数的众数是( ) A .3.75B .3C .3.5D .75.(3分)下列图案中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .6.(3分)如图,AB 是⊙O 的直径,AC 切⊙O 于A ,BC 交⊙O 于点D ,若∠C =70°,则∠AOD 的度数为( )A .70°B .35°C .20°D .40°7.(3分)已知圆锥的底面半径为4cm ,母线长为6cm ,则它的侧面展开图的面积等于( ) A .24cm 2B .48cm 2C .24πcm 2D .12πcm 28.(3分)下列性质中,菱形具有而矩形不一定具有的是( ) A .对角线相等 B .对角线互相平分 C .对角线互相垂直D .邻边互相垂直9.(3分)一次函数y =43x ﹣b 与y =43x ﹣1的图象之间的距离等于3,则b 的值为( ) A .﹣2或4B .2或﹣4C .4或﹣6D .﹣4或610.(3分)如图,Rt △ABC 中,∠C =90°,∠ABC =30°,AC =2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是( )A .√7B .2√2C .3D .2√3二、填空题:本大题共8小题,每小题2分,共16分 11.(2分)分解因式:ab ﹣a 2= .12.(2分)某公司在埃及新投产一座鸡饲料厂,年生产饲料可饲养57000000只肉鸡,这个数据用科学记数法可表示为 . 13.(2分)分式方程4x =3x−1的解是 .14.(2分)若点A (1,﹣3),B (m ,3)在同一反比例函数的图象上,则m 的值为 . 15.(2分)写出命题“如果a =b ”,那么“3a =3b ”的逆命题 .16.(2分)如图,矩形ABCD 的面积是15,边AB 的长比AD 的长大2,则AD 的长是 .17.(2分)如图,已知▱OABC 的顶点A 、C 分别在直线x =1和x =4上,O 是坐标原点,则对角线OB 长的最小值为 .18.(2分)如图,△AOB 中,∠O =90°,AO =8cm ,BO =6cm ,点C 从A 点出发,在边AO 上以2cm /s 的速度向O 点运动,与此同时,点D 从点B 出发,在边BO 上以1.5cm /s 的速度向O 点运动,过OC 的中点E 作CD 的垂线EF ,则当点C 运动了 s 时,以C 点为圆心,1.5cm 为半径的圆与直线EF 相切.三、解答题:本大题共10小题,共84分 19.(8分)(1)|﹣5|﹣(﹣3)2﹣(√7)0 (2)(a ﹣b )2﹣a (a ﹣2b )20.(8分)(1)解不等式:2x ﹣3≤12(x +2) (2)解方程组:{2x =3−y ⋯①3x +2y =2⋯②.21.(8分)已知,如图,正方形ABCD 中,E 为BC 边上一点,F 为BA 延长线上一点,且CE =AF .连接DE 、DF .求证:DE =DF .22.(8分)如图,OA =2,以点A 为圆心,1为半径画⊙A 与OA 的延长线交于点C ,过点A 画OA 的垂线,垂线与⊙A 的一个交点为B ,连接BC (1)线段BC 的长等于 ;(2)请在图中按下列要求逐一操作,并回答问题:①以点 为圆心,以线段 的长为半径画弧,与射线BA 交于点D ,使线段OD 的长等于√6②连OD ,在OD 上画出点P ,使OP 的长等于2√63,请写出画法,并说明理由.23.(6分)某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表活动次数x频数频率0<x≤3100.203<x≤6a0.246<x≤9160.329<x≤1260.1212<x≤15m b15<x≤182n根据以上图表信息,解答下列问题:(1)表中a=,b=;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?24.(8分)甲、乙两队进行打乒乓球团体赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)25.(10分)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;(2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)26.(10分)已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP:PD=2:3(1)求A、B两点的坐标;(2)若tan∠PDB=54,求这个二次函数的关系式.27.(10分)如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B 1恰好落在y 轴上,试求nm的值.28.(8分)如图1是一个用铁丝围成的篮筐,我们来仿制一个类似的柱体形篮筐.如图2,它是由一个半径为r 、圆心角90°的扇形A 2OB 2,矩形A 2C 2EO 、B 2D 2EO ,及若干个缺一边的矩形状框A 1C 1D 1B 1、A 2C 2D 2B 2、…、A n B n ∁n D n ,OEFG 围成,其中A 1、G 、B 1在A 2B 2̂上,A 2、A 3…、A n 与B 2、B 3、…B n 分别在半径OA 2和OB 2上,C 2、C 3、…、∁n 和D 2、D 3…D n 分别在EC 2和ED 2上,EF ⊥C 2D 2于H 2,C 1D 1⊥EF 于H 1,FH 1=H 1H 2=d ,C 1D 1、C 2D 2、C 3D 3、∁n D n 依次等距离平行排放(最后一个矩形状框的边∁n D n 与点E 间的距离应不超过d ),A 1C 1∥A 2C 2∥A 3C 3∥…∥A n ∁n (1)求d 的值;(2)问:∁n D n 与点E 间的距离能否等于d ?如果能,求出这样的n 的值,如果不能,那么它们之间的距离是多少?2016年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分 1.(3分)﹣2的相反数是( ) A .12B .±2C .2D .−12【解答】解:﹣2的相反数是2; 故选:C .2.(3分)函数y =√2x −4中自变量x 的取值范围是( ) A .x >2B .x ≥2C .x ≤2D .x ≠2【解答】解:依题意有: 2x ﹣4≥0, 解得x ≥2. 故选:B .3.(3分)sin30°的值为( ) A .12B .√32C .√22D .√33【解答】解:sin30°=12, 故选:A .4.(3分)初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(个) 1 2 3 4 5 7 人数(人)114231这12名同学进球数的众数是( ) A .3.75B .3C .3.5D .7【解答】解:观察统计表发现:1出现1次,2出现1次,3出现4次,4出现2次,5出现3次,7出现1次,故这12名同学进球数的众数是3. 故选:B .5.(3分)下列图案中,是轴对称图形但不是中心对称图形的是( )A.B.C.D.【解答】解:A、是轴对称图形,但不是中心对称图形,故本选项正确;B、既是轴对称图形,又是中心对称图形,故本选项错误;C、既不是轴对称图形,又不是中心对称图形,故本选项错误;D、不是轴对称图形,但是中心对称图形,故本选项错误.故选:A.6.(3分)如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为()A.70°B.35°C.20°D.40°【解答】解:∵AC是圆O的切线,AB是圆O的直径,∴AB⊥AC.∴∠CAB=90°.又∵∠C=70°,∴∠CBA=20°.∴∠DOA=40°.故选:D.7.(3分)已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A.24cm2B.48cm2C.24πcm2D.12πcm2【解答】解:底面半径为4cm,则底面周长=8πcm,侧面面积=12×8π×6=24π(cm2).故选:C.8.(3分)下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直【解答】解:(A)对角线相等是矩形具有的性质,菱形不一定具有;(B )对角线互相平分是菱形和矩形共有的性质;(C )对角线互相垂直是菱形具有的性质,矩形不一定具有; (D )邻边互相垂直是矩形具有的性质,菱形不一定具有. 故选:C .9.(3分)一次函数y =43x ﹣b 与y =43x ﹣1的图象之间的距离等于3,则b 的值为( ) A .﹣2或4B .2或﹣4C .4或﹣6D .﹣4或6【解答】解:设直线y =43x ﹣1与x 轴交点为C ,与y 轴交点为A ,过点A 作AD ⊥直线y =43x ﹣b 于点D ,如图所示.∵直线y =43x ﹣1与x 轴交点为C ,与y 轴交点为A , ∴点A (0,﹣1),点C (34,0),∴OA =1,OC =34,AC =√OA 2+OC 2=54, ∴sin ∠CAO =OC AC =35. ∵AC ∥BD , ∴∠ABD =∠CAO .∵AD =3,sin ∠ABD =AD AB =35, ∴AB =5.∵直线y =43x ﹣b 与y 轴的交点为B (0,﹣b ), ∴AB =|﹣b ﹣(﹣1)|=5, 解得:b =﹣4或b =6.故选:D.方法二:解:∵直线y=43x﹣1与x轴交点为C,与y轴交点为A,∴点A(0,﹣1),∵直线y=43x﹣b,AD=3,∴BD=4,∴AB=5,∴AB=|﹣b﹣(﹣1)|=5,解得:b=﹣4或b=6.故选:D.10.(3分)如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D 的长度是()A.√7B.2√2C.3D.2√3【解答】解:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,BC=2√3,∵CA=CA1,∴△ACA1是等边三角形,AA1=AC=BA1=2,∴∠BCB1=∠ACA1=60°,∵CB=CB1,∴△BCB1是等边三角形,∴BB1=2√3,BA1=2,∠A1BB1=90°,∴BD=DB1=√3,∴A1D=√A1B2+BD2=√7.故选:A.二、填空题:本大题共8小题,每小题2分,共16分11.(2分)分解因式:ab ﹣a 2= a (b ﹣a ) .【解答】解:ab ﹣a 2=a (b ﹣a ).故答案为:a (b ﹣a ).12.(2分)某公司在埃及新投产一座鸡饲料厂,年生产饲料可饲养57000000只肉鸡,这个数据用科学记数法可表示为 5.7×107 .【解答】解:将57000000用科学记数法表示为:5.7×107.故答案为:5.7×107.13.(2分)分式方程4x =3x−1的解是 x =4 .【解答】解:分式方程的两边同时乘x (x ﹣1),可得4(x ﹣1)=3x解得x =4,经检验x =4是分式方程的解.故答案为:x =4.14.(2分)若点A (1,﹣3),B (m ,3)在同一反比例函数的图象上,则m 的值为 ﹣1 .【解答】解:∵点A (1,﹣3),B (m ,3)在同一反比例函数的图象上,∴1×(﹣3)=3m ,解得:m =﹣1.故答案为:﹣1.15.(2分)写出命题“如果a =b ”,那么“3a =3b ”的逆命题 如果3a =3b ,那么a =b .【解答】解:命题“如果a =b ”,那么“3a =3b ”的逆命题是:如果3a =3b ,那么a =b , 故答案为:如果3a =3b ,那么a =b .16.(2分)如图,矩形ABCD 的面积是15,边AB 的长比AD 的长大2,则AD 的长是 3 .【解答】解:由边AB 的长比AD 的长大2,得AB =AD +2.由矩形的面积,得AD (AD +2)=15.解得AD =3,AD =﹣5(舍),故答案为:3.17.(2分)如图,已知▱OABC 的顶点A 、C 分别在直线x =1和x =4上,O 是坐标原点,则对角线OB 长的最小值为 5 .【解答】解:过点B 作BD ⊥直线x =4,交直线x =4于点D ,过点B 作BE ⊥x 轴,交x 轴于点E ,直线x =1与OC 交于点M ,与x 轴交于点F ,直线x =4与AB 交于点N ,如图:∵四边形OABC 是平行四边形,∴∠OAB =∠BCO ,OC ∥AB ,OA =BC ,∵直线x =1与直线x =4均垂直于x 轴,∴AM ∥CN ,∴四边形ANCM 是平行四边形,∴∠MAN =∠NCM ,∴∠OAF =∠BCD ,∵∠OF A =∠BDC =90°,∴∠FOA =∠DBC ,在△OAF 和△BCD 中,{∠FOA =∠DBC OA =BC ∠OAF =∠BCD,∴△OAF ≌△BCD .∴BD=OF=1,∴OE=4+1=5,∴OB=√OE2+BE2.由于OE的长不变,所以当BE最小时(即B点在x轴上),OB取得最小值,最小值为OB=OE=5.故答案为:5.18.(2分)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了178s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.【解答】解:当以点C为圆心,1.5cm为半径的圆与直线EF相切时,此时,CF=1.5,∵AC=2t,BD=32t,∴OC=8﹣2t,OD=6−32t,∵点E是OC的中点,∴CE=12OC=4﹣t,∵∠EFC=∠O=90°,∠FCE=∠DCO ∴△EFC∽△DOC,∴EF OD =CF OC∴EF =3OD 2OC =3(6−32t)2(8−2t)=98由勾股定理可知:CE 2=CF 2+EF 2,∴(4﹣t )2=(32)2+(98)2,解得:t =178或t =478, ∵0≤t ≤4,∴t =178. 故答案为:178三、解答题:本大题共10小题,共84分19.(8分)(1)|﹣5|﹣(﹣3)2﹣(√7)0(2)(a ﹣b )2﹣a (a ﹣2b )【解答】解:(1)原式=5﹣9﹣1=﹣5;(2)原式=a 2﹣2ab +b 2﹣a 2+2ab =b 2.20.(8分)(1)解不等式:2x ﹣3≤12(x +2)(2)解方程组:{2x =3−y ⋯①3x +2y =2⋯②. 【解答】解:(1)2x ﹣3≤12(x +2)去分母得:4x ﹣6≤x +2,移项,合并同类项得:3x ≤8,系数化为1得:x ≤83;(2){2x =3−y ⋯①3x +2y =2⋯②. 由①得:2x +y =3③,③×2﹣②得:x =4,把x =4代入③得:y =﹣5,故原方程组的解为{x =4y =−5. 21.(8分)已知,如图,正方形ABCD 中,E 为BC 边上一点,F 为BA 延长线上一点,且CE =AF .连接DE 、DF .求证:DE =DF .【解答】证明:∵四边形ABCD 是正方形,∴AD =CD ,∠DAB =∠C =90°,∴∠F AD =180°﹣∠DAB =90°.在△DCE 和△DAF 中,{CD =AD ∠C =∠DAF CE =AF,∴△DCE ≌△DAF (SAS ),∴DE =DF .22.(8分)如图,OA =2,以点A 为圆心,1为半径画⊙A 与OA 的延长线交于点C ,过点A 画OA 的垂线,垂线与⊙A 的一个交点为B ,连接BC(1)线段BC 的长等于 √2 ;(2)请在图中按下列要求逐一操作,并回答问题:①以点 A 为圆心,以线段 BC 的长为半径画弧,与射线BA 交于点D ,使线段OD 的长等于√6②连OD ,在OD 上画出点P ,使OP 的长等于2√63,请写出画法,并说明理由.【解答】解:(1)在Rt △BAC 中,AB =AC =1,∠BAC =90°,∴BC =√AB 2+AC 2=√2.故答案为:√2.(2)①在Rt △OAD 中,OA =2,OD =√6,∠OAD =90°,∴AD =√OD 2−OA 2=√2=BC .∴以点A 为圆心,以线段BC 的长为半径画弧,与射线BA 交于点D ,使线段OD 的长等于√6.依此画出图形,如图1所示.故答案为:A ;BC .②∵OD =√6,OP =2√63,OC =OA +AC =3,OA =2,∴OA OC =OP OD =23, ∴AP ∥CD .故作法如下:连接CD ,过点A 作AP ∥CD 交OD 于点P ,P 点即是所要找的点.依此画出图形,如图2所示.23.(6分)某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表活动次数x频数 频率 0<x ≤310 0.20 3<x ≤6a 0.24 6<x ≤916 0.32 9<x ≤126 0.12 12<x ≤15m b15<x≤182n根据以上图表信息,解答下列问题:(1)表中a=12,b=0.08;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?【解答】解:(1)由题意可得:a=50×0.24=12(人),∵m=50﹣10﹣12﹣16﹣6﹣2=4,∴b=450=0.08;故答案为:12,0.08;(2)如图所示:;(3)由题意可得,该校在上学期参加社区活动超过6次的学生估计有:1200×(1﹣0.20﹣0.24)=672(人),答:该校在上学期参加社区活动超过6次的学生估计有672人.24.(8分)甲、乙两队进行打乒乓球团体赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)【解答】解:根据题意画出树状图如下:一共有4种等可能情况,确保两局胜的有3种,所以,P =34.25.(10分)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y (万元)与月份x (月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p (万元)与销售额y (万元)之间函数关系的图象图2中线段AB 所示.(1)求经销成本p (万元)与销售额y (万元)之间的函数关系式;(2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)【解答】解:(1)设p =ky +b ,(100,60),(200,110)代入得{100k +b =60200k +b =110解得{k =12b =10, ∴p =12y +10.(2)∵y =150时,p =85,∴三月份利润为150﹣85=65万元.∵y =175时,p =97.5,∴四月份的利润为175﹣97.5=77.5万元.(3)设最早到第m 个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元∵5月份以后的每月利润为90万元(y =200,求得p =110,200﹣110=90),∴65+77.5+90(m ﹣2)﹣40x ≥200,∴m ≥4.75,∴最早到第5个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元.26.(10分)已知二次函数y =ax 2﹣2ax +c (a >0)的图象与x 轴的负半轴和正半轴分别交于A 、B 两点,与y 轴交于点C ,它的顶点为P ,直线CP 与过点B 且垂直于x 轴的直线交于点D ,且CP :PD =2:3(1)求A 、B 两点的坐标;(2)若tan ∠PDB =54,求这个二次函数的关系式.【解答】解:(1)过点P 作PE ⊥x 轴于点E ,∵y =ax 2﹣2ax +c ,∴该二次函数的对称轴为直线:x =1,∴OE =1∵OC ∥PE ∥BD ,∴CP :PD =OE :EB ,∴OE :EB =2:3,∴EB =32,∴OB =OE +EB =52,∴B (52,0) ∵A 与B 关于直线x =1对称,∴A(−12,0);(2)过点C作CF⊥BD于点F,交PE于点G,令x=1代入y=ax2﹣2ax+c,∴y=c﹣a,令x=0代入y=ax2﹣2ax+c,∴y=c∴PG=a,∵CF=OB=5 2,∴tan∠PDB=CF FD,∴FD=2,∵PG∥BD∴△CPG∽△CDF,∴PGFD =CPCD=25∴PG=4 5,∴a=4 5,∴y=45x2−85x+c,把A(−12,0)代入y=45x2−85x+c,∴解得:c=﹣1,∴该二次函数解析式为:y=45x2−85x﹣1.27.(10分)如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求nm的值.【解答】解:(1)如图1,∵▱ABCD与四边形AB1C1D关于直线AD对称,∴四边形AB1C1D是平行四边形,CC1⊥EF,BB1⊥EF,∴BC∥AD∥B1C1,CC1∥BB1,∴四边形BCEF、B1C1EF是平行四边形,∴S▱BCEF=S▱BCDA=S▱B1C1DA=S▱B1C1EF,∴S▱BCC1B1=2S▱BCDA.∵A(n,0)、B(m,0)、D(0,2n)、m=3,∴AB=m﹣n=3﹣n,OD=2n,∴S▱BCDA=AB•OD=(3﹣n)•2n=﹣2(n2﹣3n)=﹣2(n−32)2+92,∴S▱BCC1B1=2S▱BCDA=﹣4(n−32)2+9.∵﹣4<0,∴当n=32时,S▱BCC1B1最大值为9;(2)当点B 1恰好落在y 轴上,如图2,∵DF ⊥BB 1,DB 1⊥OB ,∴∠B 1DF +∠DB 1F =90°,∠B 1BO +∠OB 1B =90°,∴∠B 1DF =∠OBB 1.∵∠DOA =∠BOB 1=90°,∴△AOD ∽△B 1OB ,∴OA OD =OB 1OB , ∴n 2n =OB 1m, ∴OB 1=m 2.由轴对称的性质可得AB 1=AB =m ﹣n .在Rt △AOB 1中,n 2+(m 2)2=(m ﹣n )2, 整理得3m 2﹣8mn =0.∵m >0,∴3m ﹣8n =0,∴n m =38.28.(8分)如图1是一个用铁丝围成的篮筐,我们来仿制一个类似的柱体形篮筐.如图2,它是由一个半径为r 、圆心角90°的扇形A 2OB 2,矩形A 2C 2EO 、B 2D 2EO ,及若干个缺一边的矩形状框A 1C 1D 1B 1、A 2C 2D 2B 2、…、A n B n ∁n D n ,OEFG 围成,其中A 1、G 、B 1在A 2B 2̂上,A 2、A 3…、A n 与B 2、B 3、…B n 分别在半径OA 2和OB 2上,C 2、C 3、…、∁n 和D 2、D 3…D n 分别在EC 2和ED 2上,EF ⊥C 2D 2于H 2,C 1D 1⊥EF 于H 1,FH 1=H 1H 2=d ,C 1D 1、C 2D 2、C 3D 3、∁n D n 依次等距离平行排放(最后一个矩形状框的边∁n D n 与点E 间的距离应不超过d ),A 1C 1∥A 2C 2∥A 3C 3∥…∥A n ∁n(1)求d 的值;(2)问:∁n D n 与点E 间的距离能否等于d ?如果能,求出这样的n 的值,如果不能,那么它们之间的距离是多少?【解答】解:(1)在Rt △D 2EC 2中,∵∠D 2EC 2=90°,EC 2=ED 2=r ,EF ⊥C 2D 2, ∴EH 2=√22r ,FH 2=r −√22r , ∴d =12(r −√22r )=2−√24r , (2)假设∁n D n 与点E 间的距离能等于d ,由题意1n−1•√22r =2−√24r , 这个方程n 没有整数解,所以假设不成立.∵√22r ÷2−√24r =2+2√2≈4.8, ∴直角三角形△C 2ED 2最多分成5份,∴n =6,此时∁n D n 与点E 间的距离=√22r ﹣4×2−√24r =3√2−42r .。
2016年福建省厦门市中考数学试卷含答案解析
2016年福建省厦门市中考数学试卷一、选择题(本大题 10小题,每小题4分,共40分)1. 1°等于( )A. 10' B . 12' C . 60' D . 100'22 .方程x - 2x=0的根是() A. x 1 =x 2=0 B . x 1=x 2=2 C. x 1=0, x 2=2 D. x 1=0, x 2= - 23.如图,点 E , F 在线段BC 上,△ ABF 与厶DCE 全等,点 A 与点D,点B 与点C 是对应顶点, AF 与过点C 作CF// BD 交DE 的延长线于点F ,则下列结论正确的是 (6.已知甲、乙两个函数图象上部分点的横坐标x 与对应的纵坐标y 分别如表所示,两个函数图象仅有一个交点,则交点的纵坐标y 是( ) 甲 B .- 5 V x w 3 C. x >- 5 D. x V 3/ AFB(2s<64 .不等式组(”,的解集是(A . - 5W x V 3 CF V BD D. EF > DEy 0 2A. 0B. 1C. 2D. 37 .已知△ ABC的周长是I , BC=l - 2AB,则下列直线一定为△ ABC的对称轴的是()A.\ ABC的边AB的垂直平分线B. Z ACB的平分线所在的直线C. A ABC的边BC上的中线所在的直线D. A ABC的边AC上的高所在的直线&已知压强的计算公式是段时间后,就好变钝,如果刀刃磨薄, 刀具就会变得锋利•下列说法中,能正确解释刀具变得锋利这一现象的是()A. 当受力面积一定时,压强随压力的增大而增大B. 当受力面积一定时,压强随压力的增大而减小C. 当压力一定时,压强随受力面积的减小而减小D. 当压力一定时,压强随受力面积的减小而增大9•动物学家通过大量的调查估计,某种动物活到现年20岁的这种动物活到25岁的概率是(A. 0.8B. 0.75 C . 0.6 D. 0.4820岁的概率为0.8,活到25岁的概率为0.6,则)10. 设681 X 2019- 681 X 2018=a, 2015X 2016- 2013 X 2018=b,呂?+[ 358+690+6T呂二£,贝a,b, c的大小关系是()A. b v c v aB. a v c v bC. b v a v cD. c v b v a、填空题(本大题有6小题,每小题4分,共24分)11. 不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是________,我们知道,刀具在使12.化简:13 .如图,在△ ABC中,DE// BC,且AD=2 DB=3 则近似值公式得到 U2 _x3 二 M 2屋12 iW —- + ;…依此算法, 所得 匸的近似值会越来越精确.当k 「I 取得近似值』一时,近似公式中的a 是15.已知点P (m n )在抛物线y=ax 2- x - a 上,当m >- 1时,总有nW 1成立,则a 的取值范围是16.如图,在矩形 ABCD 中,AD=3以顶点D 为圆心,1为半径作O D,过边BC 上的一点P 作射线PQ M 连接AP,若AP+PQ 駆|,/ APB=/ QPC 则/ QPC 的大小约 sin11 ° 32' 1 ,tan36° 52'=三、解答题(共86分)17 .计算: 伽鲜(尹剳牛片gL5 18 .解方程组丿d , _ .4買+y 二-呂19.某公司内设四个部门,2015年各部门人数及相应的每人所创年利润如表所示,求该公司 年平均每人所创年利润.2015部门 人数 每人所创年利润/ 14•公元3世纪,我国古代数学家刘徽就能利用近似公式 計备得到的近似值•他的算法 是:先将回看出心^寸:由近似公式得到 厉切朽打二;再将匝看成J (上,由与O D 相切于点Q,且交边AD 于点611y=1,求此函数的解析式,并在平面直角坐标系中画出此22.如图,在△ ABC 中,/ ACB=90 , AB=5, BC=4,将厶ABC绕点C 顺时针旋转 90°,若点 A , B 的对应点分别是点 D, E ,画出旋转后的三角形,并求点 A 与点D之间的距离.(不要求尺规作图)后的时间x (小时)变化的图象(图象由线段 O A 与部分双曲线AB 组成)•并测得当 y=a 时,该药物才具有疗效.若成人用药 4小时,药物开始产生疗效,且用药后 9小时,药物仍具有疗效,则成 万元3627 16OC=OE / C=25,求证:AB// CD/ BCD 是钝角,AB=AD BD 平分/ ABC 若 CD=3 BD=V] 24.如图,是药品研究所所测得的某种新药在成人用药后,血液中的药物浓度 y (微克/毫升) 用药 D 20 函数图象.3,sin / DB人用药后,血液中药物浓则至少需要多长时间达到最大度?25.如图,在平面直角坐标系中xOy中,已知点A (1, m+1 , B (a, m+1), C (3, m+3), D( 1,m+a , m> 0, 1v a v 3,点P (n - m n)是四边形ABCD内的一点,且△卩人。
如何出一份好试卷
2.效度
试卷的效度是衡量考试结果与预定要达到 的考试目标相符合的程度,效度反映了试 卷的有效程度。如果测试的结果与学生平 时学习的情况基本一致,这样的试卷有较 高的效度,说明试卷内容恰恰是需要考查 的内容;如果试卷的效度低,则说明所要 考查的内容没有完全考查到。
D=2(XH—XL)/W
其中,D为区分度,XH为高分组平均分,XL为低 分组平均分,W为试卷总分(一般为100分或150 分)。
一般在-1~+1之间,值越大区分度越好。试题 的区分度在0.4以上表明此题的区分度很好, 0.3~0.39表明此题的区分度较好,0.2~0.29 表明此题的区分度不太好需修改,0.19以下表 明此题的区分度不好应淘汰。
命制一份合适的试卷,是很不容易的。依我看
,命题可见命题者的真正功力。不会独立命题,其 实是教师水平与能力的缺陷。一般来说,命题大都 经历三部曲:拿来、模仿、创造。先是从众多的试 卷中,筛选自以为满意的部分试卷,用于日常练习 与考试中。这样做,最大的弊端是它未必与自己教 学要求以及学生实际情况吻合;其次,把若干他们 试卷中的试题按照自己的需要重新整合,拼凑成一 份试卷。这样做省时省力,目前较为普遍存在。其 缺点是教师无法按照自己的个性化要求去有针对性 地测试学生。最后,就是自己独立命制试卷。这有 风险与困难,却是需要教师们尽力追求的。
5.创新性原则
创新性主要体现在试题的新颖性上,而试题 的新颖性则主要反映在取材的新颖性、创设 情境的新颖性、设问的创新性以及考查角度 的独到性等方面。严格来讲,在一份试卷中, 至少应有20%-30%的试题是新命题才算较 好地体现了创新性原则。如果一份试卷全部 选用他人的现成试题,这样的试卷哪怕是具 有很好的信度和效度,也会让人觉得有瑕疵。
2016年湖北省孝感市中考数学试卷附详细答案(原版+解析版)
2016年湖北省孝感市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列各数中,最小的数是()A.5 B.﹣3 C.0 D.22.如图,直线a,b被直线c所截,若a∥b,∠1=110°,则∠2等于()A.70°B.75°C.80°D.85°3.下列运算正确的是()A.a2+a2=a4B.a5﹣a3=a2C.a2•a2=2a2D.(a5)2=a104.如图是由四个相同的小正方体组成的几何体,则这个几何体的主视图是()A.B.C.D.5.不等式组的解集是()A.x>3 B.x<3 C.x<2 D.x>26.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为()A.(,﹣1)B.(1,﹣)C.(,﹣)D.(﹣,)7.在2016年体育中考中,某班一学习小组6名学生的体育成绩如下表,则这组学生的体育成绩的众数,中位数,方差依次为()A.28,28,1 B.28,27.5,1 C.3,2.5,5 D.3,2,58.“科学用眼,保护视力”是青少年珍爱生命的具体表现.科学证实:近视眼镜的度数y(度)与镜片焦距x(m)成反比例.如果500度近视眼镜片的焦距为0.2m,则表示y与x函数关系的图象大致是()A.B.C.D.9.在▱ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,则AB的长为()A.3 B.5 C.2或3 D.3或510.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(共6小题,每小题3分,满分18分)11.若代数式有意义,则x的取值范围是.12.分解因式:2x2﹣8y2=.13.若一个圆锥的底面圆半径为3cm,其侧面展开图的圆心角为120°,则圆锥的母线长是cm.14.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是步.15.如图,已知双曲线y=与直线y=﹣x+6相交于A,B两点,过点A作x轴的垂线与过点B作y 轴的垂线相交于点C,若△ABC的面积为8,则k的值为.16.如图示我国汉代数学家赵爽在注解《周脾算经》时给出的“赵爽弦图”,图中的四个直角三角形是全等的,如果大正方形ABCD的面积是小正方形EFGH面积的13倍,那么tan∠ADE的值为.三、解答题(共8小题,满分72分)17.计算:+|﹣4|+2sin30°﹣32.18.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.19.为弘扬中华优秀传统文化,我市教育局在全市中小学积极推广“太极拳”运动.弘孝中学为争创“太极拳”示范学校,今年3月份举行了“太极拳”比赛,比赛成绩评定为A,B,C,D,E五个等级,该校七(1)班全体学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)该校七(1)班共有名学生;扇形统计图中C等级所对应扇形的圆心角等于度;并补全条形统计图;(2)A等级的4名学生中有2名男生,2名女生,现从中任意选取2名学生作为全班训练的示范者,请你用列表法或画树状图的方法,求出恰好选到1名男生和1名女生的概率.20.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①作∠ACB的平分线,交斜边AB于点D;②过点D作AC的垂线,垂足为点E.(2)在(1)作出的图形中,若CB=4,CA=6,则DE=.21.已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x12+x22=6x1x2时,求m的值.22.孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.23.如图,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G.(1)求证:AD平分∠CAB;(2)若OH⊥AD于点H,FH平分∠AFE,DG=1.①试判断DF与DH的数量关系,并说明理由;②求⊙O的半径.24.在平面直角坐标系中,已知抛物线y=x2+bx+c的顶点M的坐标为(﹣1,﹣4),且与x轴交于点A,点B(点A在点B的左边),与y轴交于点C.(1)填空:b=,c=,直线AC的解析式为;(2)直线x=t与x轴相交于点H.①当t=﹣3时得到直线AN(如图1),点D为直线AC下方抛物线上一点,若∠COD=∠MAN,求出此时点D的坐标;②当﹣3<t<﹣1时(如图2),直线x=t与线段AC,AM和抛物线分别相交于点E,F,P.试证明线段HE,EF,FP总能组成等腰三角形;如果此等腰三角形底角的余弦值为,求此时t的值.2016年湖北省孝感市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列各数中,最小的数是()A.5 B.﹣3 C.0 D.2【考点】有理数大小比较.【分析】根据有理数大小比较的法则解答即可.【解答】解:﹣3<0<2<5,则最小的数是﹣3,故选:B.【点评】本题考查的是有理数的大小比较,有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.如图,直线a,b被直线c所截,若a∥b,∠1=110°,则∠2等于()A.70° B.75° C.80° D.85°【考点】平行线的性质.【分析】根据平行线的性质求出∠3的度数,根据对顶角相等得到答案.【解答】解:∵a∥b,∴∠1+∠3=180°,∴∠3=180°﹣∠1=70°,∴∠2=∠3=70°,故选:A.【点评】本题考查的是平行线的性质和对顶角的性质,掌握两直线平行,同位角相等、两直线平行,内错角相等、两直线平行,同旁内角互补是解题的关键.3.下列运算正确的是()A.a2+a2=a4B.a5﹣a3=a2C.a2•a2=2a2D.(a5)2=a10【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】分别利用合并同类项法则以及同底数幂的乘法运算法则和幂的乘方运算法则分别化简判断即可.【解答】解:A、a2+a2=2a2,故此选项错误;B、a5﹣a3,无法计算,故此选项错误;C、a2•a2=a4,故此选项错误;D、(a5)2=a10,正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘法运算和幂的乘方运算,正确掌握相关运算法则是解题关键.4.如图是由四个相同的小正方体组成的几何体,则这个几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】主视图就是从主视方向看到的正面的图形,也可以理解为该物体的正投影,据此求解即可.【解答】解:观察该几何体发现:从正面看到的应该是三个正方形,上面1个,下面2个,故选C.【点评】本题考查了简单组合体的三视图,解题的关键是了解主视图的定义,属于基础题,难度不大.5.不等式组的解集是()A.x>3 B.x<3 C.x<2 D.x>2【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x>2,解②得:x>3,则不等式的解集是:x>3.故选:A.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为()A.(,﹣1)B.(1,﹣)C.(,﹣)D.(﹣,)【考点】坐标与图形变化-旋转.【分析】先根据题意画出点A′的位置,然后过点A′作A′C⊥OB,接下来依据旋转的定义和性质可得到OA′的长和∠COA′的度数,最后依据特殊锐角三角函数值求解即可.【解答】解:如图所示:过点A′作A′C⊥OB.∵将三角板绕原点O顺时针旋转75°,∴∠AOA′=75°,OA′=OA.∴∠COA′=45°.∴OC=2×=,CA′=2×=.∴A′的坐标为(,﹣).故选:C.【点评】本题主要考查的是旋转的定义和性质、特殊锐角三角函数值的应用,得到∠COA′=45°是解题的关键.7.在2016年体育中考中,某班一学习小组6名学生的体育成绩如下表,则这组学生的体育成绩的众数,中位数,方差依次为()A.28,28,1 B.28,27.5,1 C.3,2.5,5 D.3,2,5【考点】方差;中位数;众数.【分析】根据众数、中位数的定义和方差公式分别进行解答即可.【解答】解:这组数据28出现的次数最多,出现了3次,则这组数据的众数是28;把这组数据从小到大排列,最中间两个数的平均数是(28+28)÷2=28,则中位数是28;这组数据的平均数是:(27×2+28×3+30)÷6=28,则方差是:×[2×(27﹣28)2+3×(28﹣28)2+(30﹣28)2]=1;故选A .【点评】本题考查了众数、中位数和方差,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].8.“科学用眼,保护视力”是青少年珍爱生命的具体表现.科学证实:近视眼镜的度数y (度)与镜片焦距x (m )成反比例.如果500度近视眼镜片的焦距为0.2m ,则表示y 与x 函数关系的图象大致是( )A .B .C .D .【考点】函数的图象.【分析】由于近视眼镜的度数y (度)与镜片焦距x (米)成反比例,可设y=,由于点(0.2,500)在此函数解析式上,故可先求得k 的值.【解答】解:根据题意近视眼镜的度数y (度)与镜片焦距x (米)成反比例,设y=,由于点(0.2,500)在此函数解析式上,∴k=0.2×500=100,∴y=.故选:B .【点评】考查了根据实际问题列反比例函数关系式的知识,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.9.在▱ABCD 中,AD=8,AE 平分∠BAD 交BC 于点E ,DF 平分∠ADC 交BC 于点F ,且EF=2,则AB 的长为( )A .3B .5C .2或3D .3或5【考点】平行四边形的性质.【分析】根据平行线的性质得到∠ADF=∠DFC,由DF平分∠ADC,得到∠ADF=∠CDF,等量代换得到∠DFC=∠FDC,根据等腰三角形的判定得到CF=CD,同理BE=AB,根据已知条件得到四边形ABCD是平行四边形,根据平行四边形的性质得到AB=CD,AD=BC,即可得到结论.【解答】解:①如图1,在▱ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,∴∠BAE=∠DAE,∠ADF=∠CDF,∴∠BAE=∠AEB,∠CFD=∠CDF,∴AB=BE,CF=CD,∵EF=2,∴BC=BE+CF=2AB﹣EF=8,∴AB=5;②在▱ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,∴∠BAE=∠DAE,∠ADF=∠CDF,∴∠BAE=∠AEB,∠CFD=∠CDF,∴AB=BE,CF=CD,∵EF=2,∴BC=BE+CF=2AB+EF=8,∴AB=3;综上所述:AB的长为3或5.故选D.【点评】本题考查了等腰三角形的判定和性质,平行线的性质,平行四边形的性质,解答本题的关键是判断出BA=BE=CF=CD.10.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【专题】数形结合.【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,则当x=﹣1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=﹣=1,即b=﹣2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n﹣1有2个公共点,于是可对④进行判断.【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y 轴交于(0,c):抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(共6小题,每小题3分,满分18分)11.若代数式有意义,则x的取值范围是x≧2.【考点】二次根式有意义的条件.【专题】计算题.【分析】根据式子有意义的条件为a≥0得到x﹣2≥0,然后解不等式即可.【解答】解:∵代数式有意义,∴x﹣2≥0,∴x≥2.故答案为x≥2.【点评】本题考查了二次根式有意义的条件:式子有意义的条件为a≥0.12.分解因式:2x2﹣8y2=2(x+2y)(x﹣2y).【考点】提公因式法与公式法的综合运用.【分析】观察原式2x2﹣8y2,找到公因式2,提出公因式后发现x2﹣4y2符合平方差公式,所以利用平方差公式继续分解可得.【解答】解:2x2﹣8y2=2(x2﹣4y2)=2(x+2y)(x﹣2y).故答案为:2(x+2y)(x﹣2y).【点评】考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法(平方差公式).要求灵活运用各种方法进行因式分解.13.若一个圆锥的底面圆半径为3cm,其侧面展开图的圆心角为120°,则圆锥的母线长是9cm.【考点】圆锥的计算.【分析】利用圆锥的底面周长等于圆锥的侧面展开图的弧长即可求解.【解答】解:设母线长为l,则=2π×3解得:l=9.故答案为:9.【点评】考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是6步.【考点】三角形的内切圆与内心.【分析】根据勾股定理求出直角三角形的斜边,根据直角三角形的内切圆的半径的求法确定出内切圆半径,得到直径.【解答】解:根据勾股定理得:斜边为=17,则该直角三角形能容纳的圆形(内切圆)半径r==3(步),即直径为6步,故答案为:6.【点评】此题考查了三角形的内切圆与内心,掌握Rt△ABC中,两直角边分别为为a、b,斜边为c,其内切圆半径r=是解题的关键.15.如图,已知双曲线y=与直线y=﹣x+6相交于A,B两点,过点A作x轴的垂线与过点B作y 轴的垂线相交于点C,若△ABC的面积为8,则k的值为5.【考点】反比例函数与一次函数的交点问题.【分析】根据双曲线和直线的解析式,求出点A、B的坐标,继而求出AC、BC的长度,然后根据△ABC的面积为8,代入求解k值.【解答】解:,解得:,,即点A的坐标为(3﹣,3+),点B的坐标为(3+,3﹣),则AC=2,BC=2,∵S△ABC=8,∴AC•BC=8,即2(9﹣k)=8,解得:k=5.故答案为:5.【点评】本题考查了反比例函数与一次函数的交点问题,解答本题的关键是把两个函数关系式联立成方程组求出交点,然后根据三角形的面积公式求解.16.如图示我国汉代数学家赵爽在注解《周脾算经》时给出的“赵爽弦图”,图中的四个直角三角形是全等的,如果大正方形ABCD的面积是小正方形EFGH面积的13倍,那么tan∠ADE的值为.【考点】勾股定理;全等三角形的判定;锐角三角函数的定义.【分析】小正方形EFGH面积是a2,则大正方形ABCD的面积是13a2,则小正方形EFGH边长是a,则大正方形ABCD的面积是a,设AE=DH=x,利用勾股定理求出x,最后利用熟记函数即可解答.【解答】解:设小正方形EFGH面积是a2,则大正方形ABCD的面积是13a2,∴小正方形EFGH边长是a,则大正方形ABCD的面积是a,∵图中的四个直角三角形是全等的,∴AE=DH,设AE=DH=x,在Rt△AED中,AD2=AE2+DE2,即13a2=x2+(x+a)2解得:x1=2a,x2=﹣3a(舍去),∴AE=2a,DE=3a,∴tan∠ADE=,故答案为:.【点评】此题中根据正方形以及直角三角形的面积公式求得直角三角形的三边,进一步运用锐角三角函数的定义求解.三、解答题(共8小题,满分72分)17.计算:+|﹣4|+2sin30°﹣32.【考点】实数的运算;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及结合绝对值、二次根式的性质分别化简求出答案.【解答】解:+|﹣4|+2sin30°﹣32=3+4+1﹣9=﹣1.【点评】此题主要考查了实数运算,根据相关运算法则正确化简是解题关键.18.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.【解答】证明;∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.【点评】本题考查全等三角形的判定和性质,解题的关键是明确题意,找出所求问题需要的条件.19.为弘扬中华优秀传统文化,我市教育局在全市中小学积极推广“太极拳”运动.弘孝中学为争创“太极拳”示范学校,今年3月份举行了“太极拳”比赛,比赛成绩评定为A,B,C,D,E五个等级,该校七(1)班全体学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)该校七(1)班共有50名学生;扇形统计图中C等级所对应扇形的圆心角等于144度;并补全条形统计图;(2)A等级的4名学生中有2名男生,2名女生,现从中任意选取2名学生作为全班训练的示范者,请你用列表法或画树状图的方法,求出恰好选到1名男生和1名女生的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由A的人数和其所占的百分比即可求出总人数;C的人数可知,而总人数已求出,进而可求出其所对应扇形的圆心角的度数;根据求出的数据即可补全条形统计图;(2)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【解答】解:(1)由题意可知总人数=4÷8%=50人;扇形统计图中C等级所对应扇形的圆心角=20÷50×100%×360°=144°;补全条形统计图如图所示:故答案为:50,144;(2)列表如下:得到所有等可能的情况有12种,其中恰好抽中一男一女的情况有8种,所以恰好选到1名男生和1名女生的概率=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①作∠ACB的平分线,交斜边AB于点D;②过点D作AC的垂线,垂足为点E.(2)在(1)作出的图形中,若CB=4,CA=6,则DE=.【考点】作图—基本作图.【分析】(1)以C为圆心,任意长为半径画弧,交BC,AC两点,再以这两点为圆心,大于这两点的线段的一半为半径画弧,过这两弧的交点与C在直线交AB于D即可,根据过直线外一点作已知直线的垂线的方法可作出垂线即可;(2)根据平行线的性质和角平分线的性质推出∠ECD=∠EDC,进而证得DE=CE,由DE∥BC,推出△ADE∽△ABC,根据相似三角形的性质即可推得结论.【解答】解:(1)如图所示;(2)解:∵DC是∠ACB的平分线,∴∠BCD=∠ACD,∵DE⊥AC,BC⊥AC,∴DE∥BC,∴∠EDC=∠BCD,∴∠ECD=∠EDC,∴DE=CE,∵DE∥BC,∴△ADE∽△ABC,∴=,设DE=CE=x,则AE=6﹣x,∴=,解得:x=,即DE=,故答案为:.【点评】本题考查了角的平分线的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,基本作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21.已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x12+x22=6x1x2时,求m的值.【考点】根与系数的关系;根的判别式.【分析】(1)根据一元二次方程x2﹣2x+m﹣1=0有两个实数根,可得△≥0,据此求出m的取值范围;(2)根据根与系数的关系求出x1+x2,x1•x2的值,代入x12+x22=6x1x2求解即可.【解答】解:(1)∵原方程有两个实数根,∴△=(﹣2)2﹣4(m﹣1)≥0,整理得:4﹣4m+4≥0,解得:m≤2;(2)∵x1+x2=2,x1•x2=m﹣1,x12+x22=6x1x2,∴(x1+x2)2﹣2x1•x2=6x1•x2,即4=8(m﹣1),解得:m=.∵m=<2,∴符合条件的m的值为.【点评】本题考查了根与系数的关系以及根的判别式,解答本题的关键是掌握两根之和与两根之积的表达方式.22.孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;(2)设购买A种树木为a棵,则购买B种树木为(100﹣a)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得a的取值范围,结合实际付款总金额=0.9(A种树的金额+B 种树的金额)进行解答.【解答】解:(1)设A种树每棵x元,B种树每棵y元,依题意得:,解得.答:A种树每棵100元,B种树每棵80元;(2)设购买A 种树木为a 棵,则购买B 种树木为(100﹣a )棵, 则a >3(100﹣a ), 解得a ≥75.设实际付款总金额是y 元,则y=0.9[100a+80(100﹣a )],即y=18a+7200. ∵18>0,y 随a 的增大而增大, ∴当a=75时,y 最小.即当a=75时,y 最小值=18×75+7200=8550(元).答:当购买A 种树木75棵,B 种树木25棵时,所需费用最少,最少为8550元.【点评】本题考查了一次函数的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.23.如图,在Rt △ABC 中,∠C=90°,点O 在AB 上,经过点A 的⊙O 与BC 相切于点D ,与AC ,AB 分别相交于点E ,F ,连接AD 与EF 相交于点G . (1)求证:AD 平分∠CAB ;(2)若OH ⊥AD 于点H ,FH 平分∠AFE ,DG=1. ①试判断DF 与DH 的数量关系,并说明理由; ②求⊙O 的半径.【考点】切线的性质;角平分线的性质;垂径定理.【分析】(1)连接OD .先证明OD ∥AC ,得到∠CAD=∠ODA ,再根据OA=OD ,得到∠OAD=∠ODA ,进而得到∠CAD=∠BAD ,即可解答.(2)①DF=DH ,利用FH 平分∠AFE ,得到∠AFH=∠EFH ,再证明∠DFH=∠DHF ,即可得到DF=DH .②设HG=x ,则DH=DF=1+x ,证明△DFG ∽△DAF ,得到,即,求出x=1,再根据勾股定理求出AF ,即可解答. 【解答】解:(1)如图,连接OD ,∵⊙O与BC相切于点D,∴OD⊥BC,∵∠C=90°,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠BAD,∴AD平分∠CAB.(2)①DF=DH,理由如下:∵FH平分∠AFE,∴∠AFH=∠EFH,又∠DFG=∠EAD=∠HAF,∴∠DFG=∠EAD=∠HAF,∴∠DFG+∠GFH=∠HAF+∠HFA,即∠DFH=∠DHF,∴DF=DH.②设HG=x,则DH=DF=1+x,∵OH⊥AD,∴AD=2DH=2(1+x),∵∠DFG=∠DAF,∠FDG=∠FDG,∴△DFG∽△DAF,∴,∴,∴x=1,∵DF=2,AD=4,∵AF为直径,∴∠ADF=90°,∴AF=∴⊙O的半径为.【点评】本题考查了切线的性质,相似三角形的判定和性质,本题涉及的知识点:两直线平行,等腰三角形的判定、三角形相似.24.在平面直角坐标系中,已知抛物线y=x2+bx+c的顶点M的坐标为(﹣1,﹣4),且与x轴交于点A,点B(点A在点B的左边),与y轴交于点C.(1)填空:b=2,c=﹣3,直线AC的解析式为y=﹣x﹣3;(2)直线x=t与x轴相交于点H.①当t=﹣3时得到直线AN(如图1),点D为直线AC下方抛物线上一点,若∠COD=∠MAN,求出此时点D的坐标;②当﹣3<t<﹣1时(如图2),直线x=t与线段AC,AM和抛物线分别相交于点E,F,P.试证明线段HE,EF,FP总能组成等腰三角形;如果此等腰三角形底角的余弦值为,求此时t的值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)根据顶点坐标列出关于b、c的方程组求解可得,由抛物线解析式求得A、C坐标,利用待定系数法可得直线AC解析式;(2)①设点D的坐标为(m,m2+2m﹣3),由∠COD=∠MAN得tan∠COD=tan∠MAN,列出关于m的方程求解可得;②求出直线AM的解析式,进而可用含t的式子表示出HE、EF、FP的长度,根据等腰三角形定义即可判定;由等腰三角形底角的余弦值为可得=,列方程可求得t的值.【解答】解:(1)∵抛物线y=x2+bx+c的顶点M的坐标为(﹣1,﹣4),∴,解得:,∴抛物线解析式为:y=x2+2x﹣3,令y=0,得:x2+2x﹣3=0,解得:x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),令x=0,得y=﹣3,∴C(0,﹣3),设直线AC的解析式为:y=kx+b,将A(﹣3,0),C(0,﹣3)代入,得:,解得:,∴直线AC的解析式为:y=﹣x﹣3;故答案为:2,﹣3,y=﹣x﹣3.(2)①设点D的坐标为(m,m2+2m﹣3),∵∠COD=∠MAN,∴tan∠COD=tan∠MAN,∴=,解得:m=±,∵﹣3<m<0,∴m=﹣,故点D的坐标为(﹣,﹣2);②设直线AM的解析式为y=mx+n,将点A (﹣3,0)、M (﹣1,﹣4)代入,得:,解得:,∴直线AM 的解析式为:y=﹣2x ﹣6,∵当x=t 时,HE=﹣(﹣t ﹣3)=t+3,HF=﹣(﹣2t ﹣6)=2t+6,HP=﹣(t 2+2t ﹣3), ∴HE=EF=HF ﹣HE=t+3,FP=﹣t 2﹣4t ﹣3, ∵HE+EF ﹣FP=2(t+3)+t 2+4t+3=(t+3)2>0, ∴HE+EF >FP ,又HE+FP >EF ,EF+FP >HE ,∴当﹣3<t <﹣1时,线段HE ,EF ,FP 总能组成等腰三角形;由题意得:=,即=,整理得:5t 2+26t+33=0,解得:t 1=﹣3,t 2=﹣,∵﹣3<t <﹣1,∴t=﹣.【点评】本题主要考查了待定系数法求二次函数解析式函数图象交点的求法等知识点、等腰三角形的判定等知识点,主要考查学生数形结合的数学思想方法.综合性强.。
如何出一套高质量的数学试卷
如何出一套高质量的数学试卷如何出一套高质量的数学试卷经过大家今天下午的讨论,都认为出一套合格的试卷是非常有必要的。
经过讨论后整理、总结如下:一、命题的题目的选择1、紧扣新课标,新教材,教材可以有多种版本,但课程标准却只有一个,出题时应选定考察内容,把每部分对应的分值先确定下来,避免主观意象出题,认真了解区域命题信息,学生现状分析。
2、试题要注意知识的覆盖面,单元检测知识覆盖面应达到98%,考查一册或一个年级的内容知识面应达到80%,而大型综合知识覆盖面应达到80%以上。
3、试题不脱离课本,要缘于课本,甚至可以有15-20%的原题,解题的基本理念和方法要能在课本上找到它的影子。
4、切忌在不经任何修改而在各种资料上去选择和组合试题。
5、试题要不偏不怪,常规题应从问题的情境、设问的方法来解决。
6、试题要注意数学知识的综合运用,解决问题的方法要灵活多样,但要重视通法。
7、试题要注意数学思想方法的渗透,数学思维能力的训练。
在试题中应始终贯穿一种逆向思维能力,这是数学素质的核心。
8、试题应注意渗透课改理念。
二、试题的布局1、坡度合理,由易到难。
2、方便改卷。
3、合理分类,代数与几何部分的排列。
三、学生模拟出题,增强对考试的应对能力教师对考试范围和目的进行说明。
特别强调考试的目的是检查学生是否把该掌握的知识、能力、思想、方法都已经掌握,考试不会出现偏题,怪题和过度的难题。
交待原则以后,要求学生自己出一套考试题,给出答案和评分标准,然后交给老师。
老师选择其中有代表性的两三人让他们对自己的命题进行说明,包括为什么某些知识没有考,选择某个题目的原因等等。
总之,命好一套高质量的复习试卷应做到:选题要精到,题型要新颖,知识点要全面,题量要充足而适度,既考察学生基础,又要考察学生综合运用数学知识的能力。
2016年河北省中考数学试卷附详细答案(原版+解析版)
2016年河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.(3分)计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5D.2a2•a﹣1=2a3.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.(3分)若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.(3分)关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.(3分)关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.(3分)图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.(3分)如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.(3分)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.(2分)点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:>0其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁12.(2分)在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+513.(2分)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.(2分)a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为015.(2分)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.16.(2分)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.(3分)8的立方根是.18.(3分)若mn=m+3,则2mn+3m﹣5mn+10=.19.(4分)如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.(9分)请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.(9分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.(9分)已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.(9分)如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.(10分)某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y (元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6x3=72x4…x n调整后的单价y(元)y1y2=4y3=59y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.(10分)如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为,此时点P,A间的距离为;点M与AB的最小距离为,此时半圆M的弧与AB所围成的封闭图形面积为;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.(12分)如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k >0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.2016年河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
2016年四川省成都市中考数学试卷-答案
四川省成都市2016年高中阶段教育学校统一招生考试数学答案解析第Ⅰ卷一、选择题1.【答案】A【解析】比2-小的数只有3-,故选A .【提示】利用两个负数,绝对值大的其值反而小,进而得出答案.【考点】有理数大小比较2.【答案】C【解析】从上面看易得横着的“”字,故选C .【提示】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【考点】简单组合体的三视图3.【答案】B【解析】181万61810000 1.8110==⨯,故选B .【提示】科学记数法的表示形式为10n a ⨯的形式,其中11||0a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【考点】科学记数法—表示较大的数4.【答案】D【解析】3262()x y x y -=,故选D .【提示】首先利用积的乘方运算法则化简求出答案.【考点】幂的乘方与积的乘方5.【答案】C【解析】12l l ∥,13∴∠=∠,156∠=︒,356∴∠=︒,23180∠+∠=︒,2124∴∠=︒,故选C .【提示】根据平行线性质求出3150∠=∠=︒,代入23180∠+∠=︒即可求出2∠.【考点】平行线的性质6.【答案】A【解析】点(2,3)P -关于x 轴对称的点的坐标为(2,3)--,故选A .【提示】直接利用关于x 轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.【考点】关于x 轴、y 轴对称的点的坐标7.【答案】B【解析】23x x =-,3x =-,经检验3x =-是原方程的解,故选B .【提示】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【考点】分式方程的解8.【答案】C【解析】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选C .【提示】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【考点】方差,算术平均数9.【答案】D【解析】A :2a =,则抛物线223y x =-的开口向上,所以A 选项错误;B :当2x =时,2435y =⨯-=,则抛物线不经过点(2,3),所以B 选项错误;C :抛物线的对称轴为直线0x =,所以C 选项错误;D :当0y =时,2230x -=,此方程有两个不相等的实数解,所以D 选项正确.故选D .【提示】根据二次函数的性质对A ,C 进行判断;根据二次函数图象上点的坐标特征对B 进行判断;利用方程2230x -=解的情况对D 进行判断.【考点】二次函数的性质10.【答案】B【解析】50OCA ∠=︒,OA OC =,50A ∴∠=︒,100BOC ∴∠=︒,4AB =,2BO ∴=,BC ∴的长为:100π210π1809⨯=,故选B . 【提示】直接利用等腰三角形的性质得出A ∠的度数,再利用圆周角定理得出BOC ∠的度数,再利用弧长公式求出答案.【考点】弧长的计算,圆周角定理第Ⅱ卷二、填空题11.【答案】2-【解析】由绝对值的意义得20a +=,解得:2a =-;故答案为2-.【提示】根据绝对值的意义得出20a +=,即可得出结果.【考点】绝对值12.【答案】120【解析】ABC A B C '''△≌△,24C C ∴∠=∠'=︒,180120B A C ∴∠=︒-∠-∠=︒,故答案为120°.【提示】根据全等三角形的性质求出C ∠的度数,根据三角形内角和定理计算即可.【考点】全等三角形的性质13.【答案】> 【解析】在反比例函数2xy =中20k =>,∴该函数在0x <内单调递减.120x x <<,12y y ∴>.【提示】根据一次函数的系数k 的值可知,该函数在0x <内单调递减,再结合120x x <<,即可得出结论.【考点】反比例函数图象上点的坐标特征,反比例函数的性质14.【答案】【解析】四边形ABCD 是矩形,OB OD ∴=,OA OC =,AC BD =,OA OB ∴=,AE 垂直平分OB ,AB AO ∴=,3OA AB OB ∴===,26BD OB ∴==,AD ∴==故答案为:【提示】由矩形的性质和线段垂直平分线的性质证出3OA AB OB ===,得出26BD OB ==,由勾股定理求出AD 即可.【考点】矩形的性质,线段垂直平分线的性质,等边三角形的判定与性质三、解答题15.【答案】(1)4-(2)13m -<【解析】(1)原式1842142=-+-⨯+=-. (2)2320x x m +-=没有实数解,24443()4120b ac m m ∴=-⨯⨯-=+-<, 解得:13m <-,故实数m 的取值范围是:13m <-.【提示】(1)直接利用有理数的乘方运算法则以及特殊角的三角函数值和零指数幂的性质分别化简求出答案;(2)直接利用根的判别式进而求出m 的取值范围.【考点】实数的运算,根的判别式,特殊角的三角函数值16.【答案】1x +【解析】原式2221(1)(1)(1)(1)1(1)(1)x x x x x x x x x x x x --+--=÷==+--. 【提示】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【考点】分式的混合运算17.【答案】13.9【解析】由题意得20AC =米, 1.5AB =米,32DBE ∠=︒,tan32200.6212.4DE BE ∴=︒≈⨯=米,12.4 1.513.9CD DE CE DE AB ∴=+=+=+≈(米).答:旗杆CD 的高度约13.9米.【提示】根据题意得20AC =米, 1.5AB =米,过点B 做BE CD ⊥,交CD 于点E ,利用32DBE ∠=︒,得到tan32DE BE =︒后再加上CE 即可求得CD 的高度.【考点】解直角三角形的应用-仰角俯角问题18.【答案】(1)图形见解析(2)12或树状图如下:(2)由(1)可知,共有12种可能的结果,每种出现的可能性相同,抽到的两张卡片上的数都是勾股数的有6种:(,)B C ,(,)B D ,(,)C B ,(,)C D ,(,)D B ,(,)D C ,61()==122P ∴抽到的两张卡片上的数都是勾股数. 【提示】(1)利用树状图展示12种等可能的结果数;(2)根据勾股数可判定只有A 卡片上的三个数不是勾股数,则可从12种等可能的结果数中找出抽到的两张卡片上的数都是勾股数的结果数,然后根据概率公式求解.【考点】列表法与树状图法,勾股数19.【答案】(1)正比例函数的表达式为y x =-,反比例函数的表达式为4y x=-(2)(4,1)C -,6ABC S ∆=【解析】(1)根据题意,将点(2,2)A -代入y kx =,得:22k -=,解得:1k =-, ∴正比例函数的解析式为:y x =-,将点()2,2A -代入m y x=,得:22m -=, 解得:4m =-; ∴反比例函数的解析式为:4y x =-;(2)直线OA :y x =-向上平移3个单位后解析式为:3y x =-+,则点B 的坐标为(0,3), 联立两函数解析式34y x y x =-+⎧⎪⎨=-⎪⎩,解得:14x y =-⎧⎨=⎩或41x y =⎧⎨=-⎩, ∴第四象限内的交点C 的坐标为(4,1)-,111(15)452216222ABC S ∴=⨯+⨯-⨯⨯-⨯⨯=△. 【提示】(1)将点A 坐标(2,2)-分别代入y kx =、m y x=求得k m 、的值即可; (2)由题意得平移后直线解析式,即可知点B 坐标,联立方程组求解可得第四象限内的交点C 得坐标,割补法求解可得三角形的面积.【考点】反比例函数与一次函数的交点问题20.【答案】(1)证明:在Rt ABC △中,90ABC ∠=︒,90ABD DBC ∴∠=︒-∠,由题意知:D E 是直径,90DBE ∴∠=︒,90E BDE ∴∠=︒-∠,BC CD =,DBC BDE ∴∠=∠,∴ABD E ∠=∠,A A ∠=∠,ABD AEB ∴△∽△(2)12(3 【解析】(1)证明:在Rt ABC △中,90ABC ∠=︒,90ABD DBC ∴∠=︒-∠,由题意知:DE 是直径,90DBE ∴∠=︒,90E BDE ∴∠=︒-∠,BC CD =,DBC BDE ∴∠=∠,∴ABD E ∠=∠,A A ∠=∠,ABD AEB ∴△∽△;(2):4:3AB BC =,∴设4AB =,3BC =,5AC ∴==,3BC CD ==,532AD AC CD ∴=-=-=,由(1)可知:ABD AEB △∽△,AB AD BD AE AB BE∴==, 2•AB AD AE ∴=,242AE ∴=,8AE ∴=,在Rt DBE △中,41tan 82BD AB E BE AE ====. (3)过点F 作FM AE ⊥于点M ,:4:3AB BC =,∴设4AB x =,3BC x =,∴由(2)可知8AE x =,2AD x =,6DE AE AD x ∴=-=, AF 平分BAC ∠,BF AB EF AE∴=, 4182BF x EF x ∴==, 1tan 2E =,cos E ∴,sin E ,BE DE ∴=BE ∴=,23EF BE x ∴=,sin MF E EF ∴=, 85MF x ∴=, 1tan 2E =, 1625ME MF x ∴==, 245AM AE ME x ∴=-=, 222AF AM MF =+,222484()()5x x ∴=+,x ∴=,C ∴的半径为:38x =.【提示】(1)要证明ABD AEB △∽△,已经有一组对应角是公共角,只需要再找出另一组对应角相等即可.(2)由于:4:3AB BC =,可设4AB =,3BC =,求出AC 的值,再利用(1)中结论可得2•AB AD AE =,进而求出AE 的值,所以tan BD AB E BE AE ==.(3)设4AB x =,3BC x =,由于已知AF 的值,构造直角三角形后利用勾股定理列方程求出x 的值,即可知道半径3x 的值.【考点】圆的综合题四、填空题21.【答案】2700 【解析】根据题意得:909000(130%15%100%)900030%2700360⨯---⨯=⨯=(人),故答案为2700. 【提示】先求出非常清楚所占的百分比,再乘以该辖区的总居民,即可得出答案.【考点】扇形统计图,用样本估计总体22.【答案】8-【解析】把32x y =⎧⎨=-⎩代入方程组得:323327a b b a -=⎧⎨-=-⎩①②, 32⨯+⨯①②得:55a =-,即1a =-,把1a =-代入①得:3b =-,则原式22198a b ==-=--,故答案为:8-【提示】把x 与y 的值代入方程组求出a 与b 的值,代入原式计算即可得到结果.【考点】二元一次方程组的解23.【答案】392【解析】作直径AE ,连接CE ,90ACE ∴∠=︒,AH BC ⊥,∴90AHB ∠=︒,ACE ADB ∴∠=∠,B E ∠=∠,ABH AEC ∴△∽△,AB AH AE AC∴=, AH AE AB AC∴=, 24AC =,18AH =,226AE OC ==,182639242AB ⨯∴==,故答案为:392.【提示】首先作直径AE ,连接CE ,易证得ABH AEC △∽△,然后由相似三角形的对应边成比例,即可求得O 半径.【考点】三角形的外接圆与外心24.【答案】4【解析】2A M B M A B =,又BM AB AM =-,2()AM AB AM AB ∴=-,又2A B b a =-=,2(2)2AM AM ∴=-⨯,解得1AM =,同理1BN =,4MN AM BN AB ∴=+-=.【提示】先把各线段长表示出来,分别代入到2•AM BM AB =,2•BN AN AB =中,列方程组;两式相减后再将2b a -=和m n x -=整体代入,即可求出.【考点】实数与数轴25.【解析】ABE CDF PMQ △≌△≌△,AE DF PM ∴==,EAB FDC MPQ ∠=∠=∠,ADE BCG PNR △≌△≌△,AE BG PN ∴==,DAE CBG RPN ∠=∠=∠,PM PN ∴=,四边形ABCD 是平行四边形,45DAB DCB ∴∠=∠=︒,90MPN ∴∠=︒,MPN ∴△是等腰直角三角形,当PM 最小时,对角线MN 最小,即AE 取最小值,∴当AE BD ⊥时,AE 取最小值,过D 作DF AB ⊥于F ,平行四边形ABCD 的面积为6,3AB =,2DF ∴=,45DAB ∠=︒,2AF DF ∴==,1BF ∴=,BD ∴==DF AB AE BD ∴===,MN ∴==【提示】根据平移和翻折的性质得到MPN △是等腰直角三角形,于是得到当PM 最小时,对角线MN 最小,即AE 取最小值,当AE BD ⊥时,AE 取最小值,过D 作DF AB ⊥于F ,根据平行四边形的面积得到2DF =,根据等腰直角三角形的性质得到2AF DF ==,由勾股定理得到BD ==积得到DF AB AE BD === 【考点】平移的性质五、解答题26.【答案】(1)6005y x =-(2)果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个【解析】(1)平均每棵树结的橙子个数y (个)与x 之间的关系为:6005(0120)y x x =-≤<; (2)设果园多种x 棵橙子树时,可使橙子的总产量为w ,则225100600005(10)60500w x x x =-++=--+,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.【提示】(1)根据每多种一棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,利用配方法把二次函数化为顶点式,根据二次函数的性质进行解答即可.【考点】二次函数的应用27.【答案】(1)见解析(2)①AE =②12GH EF = 【解析】(1)在Rt AHB △中,45ABC ∠=︒,AH BH ∴=,在BHD △和AHC △中,90AH BH BHD AHC DH CH =⎧⎪∠=∠=︒⎨⎪=⎩,BHD AHC ∴△≌△,BD AC ∴=.(2)①如图,在Rt AHC △中,tan 3C =,3AH CH∴=, 设CH x =,3BH AH x ∴==,4BC =,34x x ∴+=,1x ∴=,3AH ∴=,1CH =,由旋转知,90EHF BHD AHC ∠=∠=∠=︒,3EH AH ==,CH DH FH ==,EHA FHC ∴∠=∠,1EH FH AH HC==, EHA FHC ∴△≌△,EAH C ∴∠=∠,tan tan 3EAH C ∴∠==,过点H 作HP AE ⊥,3HP AP ∴=,2AE AP =,在Rt AHP △中222AP HP AH +=,2239AP AP ∴+=(),AP ∴=,AE ∴= ②由①有,AEH △和FHC △都为等腰三角形,设直线AH ,CG 相交于Q ,90GAH HCG ∴∠=∠=︒,AGQ CHQ ∴△∽△,AQ GQ CQ HQ∴=, AQ CQ GQ HQ∴=, AQC GQE ∠=∠,AQC GQH ∴△∽△,12sin30EF AC AQ GH GH GQ ∴====︒, 12GH EF ∴= 【提示】(1)先判断出AH BH =,再判断出BHD AHC △≌△即可;(2)①先根据tan 3C =,求出3AH =,1CH =,然后根据EHA FHC △≌△,得到3HP AP =,2AE AP =,最后用勾股定理即可;②先判断出AGQ CHQ △∽△,得到AQ CQ CQ HQ=,然后判断出AQC GQH ∽△,用相似比即可. 【考点】几何变换综合题28.【答案】(1)13a =,(4,0)A -,(2,0)B(2)直线l 的函数表达式为22y x =+或4433y x =--(3)能,(1,1)N -【解析】(1)抛物线与y 轴交于点8(0,)3C -. 833a ∴-=-,解得:13a =, 21(1)33y x ∴=+- 当0y =时,有21(1)303x +-=, 12x ∴=,24x =-,(4,0)A ∴-,(2,0)B(2)(4,0)A -,(2,0)B ,8(0,)3C -,(1,3)D --, 1181833(3)121022323ADH BOC ABCD OCDH S S S S ∴=++=⨯⨯++⨯+⨯⨯=△△四边形梯形. 从面积分析知,直线l 只能与边AD 或BC 相交,所以有两种情况:①当直线l 与边AD 相交于点1M 时,则1310310AHM S =⨯=△, 113()32M y ∴⨯⨯-=- 1=2M y ∴-,点1(2,2)M --,过点(1,0)H -和1(2,2)M --的直线l 的解析式为22y x =+. ②当直线l 与边BC 相交于点2M 时,同理可得点21(,2)2M -,过点(1,0)H -和21(,2)2M -的直线l 的解析式为4433y x =--. 综上所述:直线l 的函数表达式为22y x =+或4433y x =--(3)设12(,)P x x 、22(,)Q x y 且过点(1,0)H -的直线PQ 的解析式为y kx b =+,0k b ∴+=﹣,b k ∴=,y kx k ∴=+. 由2128333y kx k y x x =+⎧⎪⎨=+-⎪⎩, 2128()0333x k x k ∴+---=, 1223x x k ∴+=-+,212123y y kx k kx k k +=+++=,点M 是线段PQ 的中点,由中点坐标公式的点233(1,)22M k k -. 假设存在这样的N 点如图,直线DN PQ ∥,设直线DN 的解析式为3y kx k =+- 由23128333y kx k y x x =+-⎧⎪⎨=+-⎪⎩,解得:11x =-,231x k =-,2(3133)N k k ∴--, 四边形DMPN 是菱形,DN DM ∴=,22222233(3)3()()(3)22k k k k ∴+=++, 整理得:42340k k --=,210k +>,2340k ∴-=,解得k =, 0k <,k ∴=,(1,6)P ∴-,(1,2)M ,(1,1)N -,PM DN ∴==PM DN ∥,∴四边形DMPN 是平行四边形,DM DN =,∴四边形DMPN 为菱形,∴以DP 为对角线的四边形DMPN 能成为菱形,此时点N 的坐标为(1,1)--.【提示】(1)把点C 代入抛物线解析式即可求出a ,令0y =,列方程即可求出点A 、B 坐标. (2)先求出四边形ABCD 面积,分两种情形:①当直线l 边AD 相交与点1M 时,根据1310310AHM S =⨯=△,求出点1M 坐标即可解决问题. ②当直线l 边BC 相交与点2M 时,同理可得点2M 坐标.(3)设11(),P x y 、22(),Q x y 且过点(1,0)H -的直线PQ 的解析式为y kx b =+,得到b k =,利用方程组求出点M 坐标,求出直线DN 解析式,再利用方程组求出点N 坐标,列出方程求出k ,即可解决问题.【考点】二次函数综合题。
2016中考数学考前指导教师必读
10
二、会而不对 对而不全
• 1、莫名其妙的笔误
• 2、不可理喻的失误
• 3、致命的计算错误
• 4、严重的丢三落四
• 5、缺少必要的步骤
• 6、推理上不够严谨
2021/5/22
11
三、时间分配不合理
遇难题花费过多时间,费时不得 分,劳而无功。
到交卷时还有简单的题处于空白 状态。
2021/5/22
2021/5/22
15
二慢二快二忌
●慢审题 快做答 ●慢验算 快书写 ●忌走马观花 匆忙下笔 ●忌似曾相识 思维定势
2021/5/22
16
审题独门绝技
大声的默读
用力的读给自己听
2021/5/22
17
临场超水平发挥 必须遵循的原则
2021/5/22
18
临场超水平发挥,必须遵循的原则一
充分利用考前五分钟, 通览全卷 做到把握大局 心中有数
二.正确变形,确保每一步变化正确。 常见的变形错误有: 1.在方程两边同除以(或同乘)一个代数式时,应 考虑此代数式的值是否为零. 2.在解不等式,应注意不等号方向的变化.
2021/5/22
49
相应策略
三.认真审题,不放过试题每一个字。 在审题时易忽视的细节有: 1.在有关方程或一元二次方程有实数根的时 候,应考虑二次项系数是否可以为零. 2.弄清概念.如无理数等相关概念.
比如:锐角三角形的高在内部,钝角三角形 的高在外部;一条弧所对的圆周角的度数 有一个而一条弦所对的圆周角的度数有两 个等等。
2021/5/223
C 30°
60° 150°
D
同一条弦 所对的圆周角 相等或互补。
31
3、填空题注意是否带单位,一定要把最终化 简的结果填在试卷上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何出好一份试卷
一套合格的试题应该具有较高的效度、相当的信度、适当的难度、必要的区分度。
有效地考查学生的知识、能力、技能、潜能和综合素质,充分发挥了考试评价的测评功能、选拔功能、发展功能、导向功能。
试题既要重视了对学生数学思考能力,问题解决能力等方面的发展状况的评价,也要重视学生数学认识水平和数学思想方法的把握评价。
试题坚持还应坚持以人为本,面向全体考生,做到了客观、公正、全面、准确地评价学生通过一段时间的学习后所获得的相应知识及相当时期内的发展。
觉得应该做好以下几方面的要求:出题时要考虑考试的目的:(1)练习反馈,巩固知识。
这样的试题应该以成绩为中等程度或偏下的学生为中心,题目以练习考查为主,区分度不能太大,让学生学了知识以后能有成就感,增强学习数学的兴趣和信心;(2)模拟选拔、检查补漏。
这样的试题应该以成绩中等或偏上的学生为重,题目要注重加大技能技巧型的题量,检验学生对所学知识的掌握和运用情况。
一、命题的题目的选择。
1、紧扣新课标,新教材,教材可以有多种版本,但课程标准却只有一个,出题时应选定考察内容,把每部分对应的分值先确定下来,避免主观意象出题,认真了解区域命题信息,学生现状分析。
2、试题要注意知识的覆盖面,单元检测知识覆盖面应达到98%,考查一册或一个年级的内容知识面应达到80%,而大型综合知识覆盖面应达到80%以上。
3、试题不脱离课本,要缘于课本,甚至可以有15-20%的原题,解题的基本理念和方法要能在课本上找到它的影子。
4、切忌在不经任何修改而在各种资料上去选择和组合试题。
5、试题要不偏不怪,常规题应从问题的情境、设问的方法来解决。
6、试题要注意数学知识的综合运用,解决问题的方法要灵活多样,但要重视通法。
7、试题要注意数学思想方法的渗透,数学思维能力的训练。
在试题中应始终贯穿一种逆向思维能力,这是数学素质的核心。
8、试题应注意渗透课改理念。
二、试题的布局。
1、坡度合理,由易到难。
2、方便改卷。
3、合理分类,代数与几何部分的排列。
三、学生模拟出题,增强对考试的应对能力。
教师对考试范围和目的进行说明。
特别强调考试的目的是检查学生是否把该掌握的知识、能力、思想、方法都已经掌握,考试不会出现偏题,怪题和过度的难题。
交待原则以后,要求学生自己出一套考试题,给出答案和评分标准,然后交给老师。
老师选择其中有代表性的两三人让他们对自己的命题进行说明,包括为什么某些知识没有考,选择某个题目的原因等等。
四、命题的基本原则
1.目的性原则
考试的功能是多方面的,目的不同,试卷编制的结构和试题的难度就不同。
前面提到,平常的检测主要是诊断教学内容的掌握情况。
期中、期末考试则主要是考查考生的学习水平,初中毕业学业考试的目的是评价学生的学业水平,也是为高中阶段的招生提供依据,而数学竞赛则是一种选拔性考试.目的各有侧重,命题就会不同。
2.科学性原则
编写的试题不但要求其本身没有科学性和知识性错误,而且试题表述要规范,尽可能采用数学术语。
从新课程命题的发展趋势来看,应根据《数学课程标准》的要求,按一定比例,设计一些能充分体现数学思想方法,动手操作实践等内容的试题。
3.简洁性原则
试题的语言表达要简洁、精练,每道试题应该清楚地提出一个或几个独立而明确的问题,学生阅读题干后能够明确他们要解答的内容,不存在理解题意的障碍。
4.层次性原则
层次性原则就是根据学生认知结构的差异性、教材内容的难易度、《数学课程标准》要求,编制的试卷必须具有一定的梯度。
一方面,试题本身要具有层次性,这主要体现在解答题中,即每一题中的各个小问题难度应有区别,要有一定的梯度,即使该题是难题,各小问中也应设计难度较小的问题;另一方面,整卷试题难度的分布要有层次性,通常是由易到难,由浅入深排列。
5.创新性原则
创新性主要体现在试题的新颖性上,而试题的新颖性则主要反映在取材的新颖性、创设情境的新颖性、设问的创新性以及考查角度的独到性等方面。
严格来讲,在一份试卷中,至少应有20%-30%的试题是新命题才算较好地体现了创新性原则。
如果一份试卷全部选用他人的现成试题,这样的试卷哪怕是具有很好的信度和效度,也会让人觉得有瑕疵。
五、试卷的编制程序
命题工作是一项周密而复杂的创造性劳动,命题过程必须要全面地考虑各种因素,这就需要命题工作按规范程序进行。
明确命题的程度,掌握命题程序的各项要求,才能编制出一份符合考试要求、高质量的试卷。
试卷的编制程序主要分为:确定考试目标、制定命题细目表、编选试题、组配成卷、试卷难度预测、试答全部试题、制定标准答案和评分细则七个步骤。
1.确定考试目标
考试目标是试卷编制的出发点和归宿,具有导向和制约功能.它可以根据教学目标,结合不同的测试目的、内容范围、时间限制加以确定。
考试目标包括考试内容、考查目的和各种量化指标(例如,试卷难度系数、考试及格率、优秀率、平均分等)。
2.制定双向细目表
在认真阅读《数学课程标准》、教材内容等相关内容的基础上,根据考试目的和《数学课程标准》的要求,依据教学内容和教学目标,制定出命题及制卷的具体计划.这个计划应包括测试内容(知识、能力)、题量、题型、时限、不同知识点所考查的学习水平以及所占的比例等各个方面的具体内容,并用命题双向细目表的形式反映出来。
命题双向细目表要依据《数学课程标准》规定的考试内容、考试范围和教科书中涉及的各项知识所要求掌握的程度来确定试题的分布范围、难易程度、重点、难点,要全面反映考试内容,保证试卷对考试内容的覆盖率,对试题的数量以及难度比例的确定要适当,既要考虑大部分学生考试成绩达标,又要考虑不同水平学生的成绩能拉开距离。
.
3.编选试题
编选试题要依据命题原则,紧扣命题内容,围绕命题双向细目表,严格选择材料,进行编选试题。
同时要在编制试题过程中同步写出每一道试题的答案,以便发现问题并及时纠正。
试题初步确定后,应做进一步的筛选和修订。
首先对照细目表,审查所编试题是否与各知识点及其学习水平的设计相符,并根据具体情况进行增补或删减;其次,依据测验的时间要求,确定题量,并对试题做进一步的调整.在以上工作的基础上,对已确定下来的题目,从科学性、逻
辑性、独立性以及语言表达等方面做最后的审定和修改。
教师在教学时,要把教材中重要的地方作上记号,在批发作业成绩试卷时,记下学生常犯的错误;要经常搜集各种书刊及其他现成的试题;随时把搜集到的或自编的试题存入电脑,并进行必要的分类,组成自己的试题库,便于以后命题时使用。
编选试题还应注意以下三个方面内容:
(1)题目内容、考试水平、试题难度应符合细目表;
(2)题目叙述简练、清楚、内容准确无误,符合科学性;
(3)编选试题的数量要比最后确定的试题数量多一些,以备筛选。
4.组配试卷
试题拟好或选取好后要按选择题、填空题、解答题的顺序排列,每大题又按先易后难的顺序编排,形成梯度,组配成卷,并编拟好指导语。
5.预测难度
组卷完成后,根据前面预测的试题的难度,估算学生各题的得分,从而估得全卷得分,由此估算全卷难度。
再结合考试目的,适当调整若干试题的难度、试题类型、试卷结构,使全卷试题的难度系数达到与考试目的的难度系数相符。
6.试答试题
命题结束后,命题教师必须对试题进行试答,并记录答题时间.一般情况下,用于实际考试的时间,为命题教师试答时间的三倍.根据试答试题的情况和答题的实际时间,对试题内容做最后一次调整。
7.制定评分标准
参考答案应具体明确,准确无误,各层次的分值要标明。
试题赋分根据试题难度和答题时间进行分配,试题难度较大,需花较长时间解答的,分值应大些。
六、编制试题的常用技巧
教师命题时的试题主要有两个来源:一是采用他人的现成试题;二是自己编写的新试题.自己编写新试题通常有改编试题和新编试题两种方式。
1.改编试题
改编试题是对原有试题进行改造,使之从形式上、考查功能上发生改变而成为新题.通常情况下,改编的试题往往难度会相应提高.由于是对现有材料的深挖掘,所以改编所得的新题一般带有一定的新颖性和创造性。
改编试题的方法有很多,例如:改变设问角度、改变已知条件、改变考查目标、转换题型、题目重组等。
2.新编试题
新编试题重点体现一个“新”字,即创设新情境,提供新材料.试题设问要新颖,思维性要强。
新编试题,首要的问题是材料背景的局限性。
通常可取材于国内外初中数学教材,或国内外高中招生考试试题,或国内外初中数学竞赛试题,或国内外热点时事、热点问题。
对教师来说,数学教材也是获取命题材料的非常好的渠道,教材中的许多例题、习题的背景都非常新颖、非常贴近现实生活,是很好的命题素材。
有了好的材料,如何选择利用而改编度试题,难度还很大。
一方面要求命题者要有较强的专业知识和对数学教材的深入理解;另一方面命题者还要有熟练的命题技巧。
因此,以新材料展开命题,往往带有一定的随机性和不确定性,偶尔获得一个好的材料,灵感突现,说不定就能命制出一道好的试题。