(新)高数第七版下册

合集下载

高等数学(同济第七版下)课后习题及解答

高等数学(同济第七版下)课后习题及解答

1.设u=a-b+2c,v=-a+3b-c.试用a,b,c表示2u-3v.解2u-3v=2(a-b+2c)-3(-a+3b-c)=5a-11b+7c.2.如果平面上一个四边形的对角线互相平分,试用向量证明它是平行四边形.证如图8-1,设四边形ABCD中AC与BD交于M,已知AM=MC,DM MB.故AB AM MB MC DM DC.即AB//DC且|A B|=|DC|,因此四边形ABCD是平行四边形.3.把△ABC的BC边五等分,设分点依次为D1,D2,D3,D4,再把各分点与点A连接.试以AB=c,BC=a表向量D1A,D2A,D3A,D A4.证如图8-2,根据题意知1 BD a,151D1D a,251D2D a,351 D3D a,45故D A1=-(AB BD1)=- 15a-cD2A=-(AB BD2)=- 25a-cD3A=-(AB BD3)=- 35a-cD4 A=-(AB BD)=-445a-c.4.已知两点M1(0,1,2)和M2(1,-1,0).试用坐标表示式表示向量M1M2及-2M1M2.解M1M2=(1-0,-1-1,0-2)=(1,-2,-2).-2M1M2=-2(1,-2,-2)=(-2,4,4).5.求平行于向量a=(6,7,-6)的单位向量.解向量a的单位向量为aa,故平行向量a的单位向量为a a =1(6,7,-6)=1167,,1111611 ,22 2其中a67(6)11.6.在空间直角坐标系中,指出下列各点在哪个卦限?A(1,-2,3),B(2,3,-4),C(2,-3,-4),D(-2,-3,1).解A点在第四卦限,B点在第五卦限,C点在第八卦限,D点在第三卦限.7.在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A(3,4,0),B(0,4,3),C(3,0,0),D(0,-1,0).解在坐标面上的点的坐标,其特征是表示坐标的三个有序数中至少有一个为零,比如xOy面上的点的坐标为(x0,y0,0),xOz面上的点的坐标为(x0,0,z0),yOz面上的点的坐标为(0,y0,z0).在坐标轴上的点的坐标,其特征是表示坐标的三个有序数中至少有两个为零,比如x轴上的点的坐标为(x0,0,0),y轴上的点的坐标为(0,y0,0),z轴上的点的坐标为(0,0,z0).A点在xOy面上,B点在yOz面上,C点在x轴上,D点在y轴上.8.求点(a,b,c)关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标.解(1)点(a,b,c)关于xOy面的对称点(a,b,-c),为关于yOz面的对称点为(-a,b,c),关于zOx面的对称点为(a,-b,c).(2)点(a,b,c)关于x轴的对称点为(a,-b,-c),关于y 轴的对称点为(-a,b,-c),关于z轴的对称点为(-a,-b,c).(3)点(a,b,c)关于坐标原点的对称点是(-a,-b,-c). 9.自点P(0x0,y0,z0)分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标.解设空间直角坐标系如图8-3,根据题意,P0F为点P0关于xOz 面的垂线,垂足F坐标为(x0,0,z0);P0D为点P0关于xOy面的垂线,垂足D坐标为(,,0)x0y;P0E为点P0关于yOz面的垂线,垂足E坐标为(0),y0,z o.P0A为点P0关于x轴的垂线,垂足A坐标为(x o,0,0);P0B为点P0关于y轴的垂线,垂足B坐标为(0,y0,0);P0C为点P0关于z轴的垂线,垂足C坐标为(0,0,)z.10.过点P(0x0,y0,z0)分别作平行于z轴的直线和平行于xOy面的平面,问在它们上面的点的坐标各有什么特点?解如图8-4,过P0且平行于z轴的直线l上的点的坐标,其特点是,它们的横坐标均相同,纵坐标也均相同.而过点P0且平行于xOy面的平面上的点的坐标,其特点是,它们的竖坐标均相同.11.一边长为a的正方体放置在xOy面上,其底面的中心在坐标原点,底面的顶点在x轴和y轴上,求它各顶点的坐标.2 解 如图 8-5,已知 AB=a ,故 OA=OB=a2,于是各顶点的坐 22 2 标分别为 A0 0)(a ,, ,B ((0,a ,0)),C (-a222,0,0),D 2 (0,- a 2 2 ,0),E ( a 2 2 ,0,a ),F (0, a 2 2 ,a ),G (- a2, 2 0,a ),H (0,- a 2,a ). 12.求点 M (4,-3,5)到各坐标轴的距离 .2 2解 点 M 到 x 轴的距离为 d 1=( 3) 534,点 M 到 y 22轴 的 距 离 为 d 2=4541, 点 M 到 z 轴 的 距 离 为 22.d 3=4 ( 3) 25 513.在 yOz 面上,求与三点 A (3,1,2),B (4,-2,-2),C (0,5, 1)等距离的点 .解 所求点在 yOz 面上,不妨设为 P (0,y ,z ),点 P 与三点 A ,2y 2 z 2B ,C 等距离, PA 3( 1) ( 2) , PB2 y 2 z 4 ( 2)(2) 2,PC(y 2z1) 2 .5)(由 PAPBPC 知,2( 1)2 ( 2)2 42 (2)( 2)223yz yz2( 1)2( y 5)z ,即9 ( y 1) 9 ( y 1) 2 2 2 (z 2) 16 ( y 2) 22 2 (z 2) ( y 5)( z( z21) . 2 2), 解上述方程组,得 y=1,z=-2.故所求点坐标为( 0,1,-2). 14.试证明以三点 A (4,1,9),B (10,-1,6),C (2,4,3)为顶 点的三角形是等腰直角三角形 .证 由AB (10 24)( 1 1) 2( 6 29)7, AC (2 24)( 4 1)22(3 9)7,BC(2 210)(4 1) 2(3 26)98 7 2 222知.ABAC 及 BCABAC 故△ABC 为等腰直角三角形.15. 设已知两点为 M 1(4, 2 ,1),M 2(3,0,2),计算向量 M 1M 2的模、方向余弦和方向角 .解 向量M 1M=(3-4,0-2 ,2-1)=(-1,- 2 ,-1),2其模-1 2- 2 2 12 4 2M1M()().其方向余弦分2别为cos=- 12,cos=-22,cos=12.方向角分别为23,34,3.16.设向量的方向余弦分别满足(1)cos=0;(2)cos=1;(3)cos=cos=0,问这些向量与坐标轴或坐标面的关系如何?解(1)由cos=0得知,故向量与x轴垂直,平行于2yOz面.(2)由cos=1得知=0,故向量与y轴同向,垂直于xOz面.(3)由cos=cos=0知,故向量垂直于x轴和y轴,2即与z轴平行,垂直于xOy面.,求r在u轴上的投影.17.设向量r的模是4,它与u轴的夹角为3解已知|r|=4,则Prju r=|r|cos=4?cos 3 =4×12 =2.18.一向量的终点在点B(2,-1,7),它在x轴、y轴和z轴上的投影依次为4,-4和7,求这向量的起点A的坐标.解设A点坐标为(x,y,z),则AB=(2-x,-1-y,7-z),由题意知2-x=4,-1-y=-4,7-z=7,故x=-2,y=3,z=0,因此A点坐标为(-2,-3,0).19.设m=3i+4j+8k,n=2i-4j-7k和p=5i+j-4k.求向量a=4m+3n-p在x轴上的投影及在y轴上的分向量.解a=4m+3n-p=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k,a在x轴上的投影为13,在y轴上的分向量为7j.1.设a3i j2k,b i2j k,求(1)a b及a b;(2)(-2a)3b及a2b;(3)a,b的夹角的余弦.解(1)a b(3,-1,-2)(1,2,-1)31(-12-2-1 3)()(),i j ka b31 2=(5,1,7).12 1(2)(2a)3b6(a b)6318a2b2(a b)2(5,1,7)(10,2,14)(3 cos(a,b) aabb32(1)(2)12(1)222 232 3 31462212.设a,b,c为单位向量,满足a b c0,求a b b c c a.解已知a b c1,a b c0,故(a b c)(a b c)0.22 2即2220a b c a b b c c a.因此a b b c c a 122 2(a b c)2-323.已知M1(1,-1,2),M2(3,3,1)M3(3,1,3).求与M1M2,M2M3同时垂直的单位向量.解M1M2=(3-1,3-(-1),1-2)=(2,4,-1)M 2M=(3-3,1-3,3-1)=(0,-2,2)3由于 M 1M 2 M 2M 3 与M 1M 2,M 2M 3 同时垂直,故所求向量可取为a(M M1 2M M12M M23M M2)3,ij k 由M 1M 2 M 2M 3 =2 4 1 022=(6,-4,-4),M 1M M M2 232 6 ( 24) ( 24)68 2 17 132 2知). a(6, 4, 4)(, , 2 171717174. 设质量为 100kg 的物体从点 M1(3,1,8)沿直线移动到点 M2(1,4,2), 计算重力所作的功(坐标系长度单位为 m ,重力方向为 z 轴负方向).解M 1M 2 =(1-3,4-1,2-8)=(-2,3,-6)F=(0,0,-100×9.8)=(0,0,-980)W=F?M 1M 2 =(0,0,-980)?(-2,3 ,-6 )=588(0 J ).1处,有一与O P 1 5.在杠杆上支点 O 的一侧与点 O 的距离为 x 1 的点 P 成角 1 的力 F1作用着;在 O 的另一侧与点 O 的距离为 x 2 的点 P2处,有一与OP2成角2的力F2,F1,F2作用着(图8-6),问1,2,x1,x2符合怎样的条件才能使杠杆保持平衡?解如图8-6,已知有固定转轴的物体的平衡条件是力矩的代数和为零,又由对力矩正负符号的规定可得杠杆保持平衡的条件为F1x sin1F2x2sin20,1即F1x1sin1F2x2sin2.6.求向量a(4,-3,4)在向量b(2,2,1)上的投影.a b(4,3,4)(2,2,1) 6解 2Pr j b a.22 2b 322 17.设a(3,5,2),b(2,1,4),问与有怎样的关系,能使a b与z轴垂直?解a b=(3,5,-2)+(2,1,4)=(32,5,24).要a b与z轴垂直,即要(a b)(0,0,1),即(a b)?(0,0,1)=0,亦即(32,5,24)?(0,0,1)=0,故(24)=0,因此2时能使a b与z轴垂直.8.试用向量证明直径所对的圆周角是直角.证如图8-7,设AB是圆O的直径,C点在圆周上,要证∠ACB=,2 只要证明AC BC0即可.由AC BC=(AO OC)(BO OC)2AO BO AO OC OC BO OC =2 2=0AO AO OC AO OC OC.故AC BC,∠ACB为直角.9.已知向量a2i3j k,b i j3k和c i2j,计算:(1)(a b)c(a c)b(2)(a b)(b c)(3)(a b) c 解(1)a b(2,3,1)(1,1,3)8,a c(2,3,1)(1,2,0)8,(a b)c(a c)b8(1,2,0)8(1,1,3)(0,8,24)8i24k.(2)a b=(2,-3,1)+(1,-1,3)=(3,-4,4),b c=(1,-1,3)+(1,-2,0)=(2,-3,3),i j k(a b)(b c)344(0,1,1)j k.23323 1(3)(ab) c2. 1 1 3 12 010. 已知OA i 3k,OB j 3k ,求△OAB 的面积.解 由向量积的几何意义知1△OAB= OA OB S2,ij kOA OB 1 0 3 ( 3, 3,1) , 0 1 32 2OA OB( 3) ( 3) 119S△OAB19 211. 已知( , , ), ( , , ), ( , , )a a x a a bb b b cc c c ,试利用yzxyzxyz行列式的性质证明:(a b) c (b c) a (c a) baxa yazbxbybz证因为(), a b c bbbx y z (b c) acxcyczcxc yc zaxayazcx cy cz(c a) baxayaz,bxbybz而由行列式的性质知a x a y a zb x b y b zc x c y cz b x b y b z c x c y c z = a x a y a z ,故 c x c y c z a x a y a zb x b ybz(a b) c (b c) a (c a) b .12. 试用向量证明不等式:222222a 1aabbba ba b a b ,231231 12 23 3其中a 1,a 2 ,a 3,b 1,b 2,b 3 为任意实数 . 并指出等号成立的条件.证 设向量 a ( a 1,a ,a ),b (b 1,b 2,b 3).23由ab a b cos(a, b ) a b ,从而222222 a 1ba ba baaa bbb ,1 2 23 3121 233当a 1,a 2 ,a 3与b 1,b 2 ,b 3 成比例,即a1b1a 2b2a 3b3时,上述等式成立.1.求过点(3,0,-1)且与平面3x7y5z120平行的平面方程.解所求平面与已知平面3x7y5z120平行.因此所求平面的法向量可取为n=(3,-7,5),设所求平面为3x7y5z D0.将点(3,0,-1)代入上式得D=-4.故所求平面方程为3x7y5z40.2.求过点M0(2,9,-6)且与连接坐标原点及点M0的线段OM0垂直的平面方程.解OM(2,9,6.所求平面与0)O M垂直,可取n=OM0,0设所求平面方程为2x9y6z D0.将点M0(2,9,-6)代入上式得D=-121.故所求平面方程为2x9y6z1210.3.求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.x1y1z 1解由021212 1,得x3y2z0,11112 1即为所求平面方程.注设M(x,y,z)为平面上任意一点,M(x,y,z)(i1,2,3)i为i i i平面上已知点.由()0,M1M M M M M即1213x x1 y y1z z1x 2 x1y2y1z2z10,x 3 x1y3y1z3z1它就表示过已知三点M i(i=1,2,3)的平面方程.4.指出下列各平面的特殊位置,并画出各平面:(1)x=0;(2)3y-1=0;(3)2x-3y-6=0;(4)x-3y=0;(5)y+z=1;(6)x-2z=0;(7)6x+5y-z=0.解(1)—(7)的平面分别如图8—8(a)—(g). (1)x=0表示yOz坐标面.1(2)3y-1=0表示过点(,00,)且与y轴垂直的平面.3(3)2x-3y-6=0表示与z轴平行的平面.(4)x-3y=0表示过z轴的平面.(5)y+z=1表示平行于x轴的平面.(6)x-2z=0表示过y轴的平面.(7)6x+5y-z=0表示过原点的平面.5.求平面2x2y z50与各坐标面的夹角的余弦.解平面的法向量为n=(2,-2,1),设平面与三个坐标面xOy,yOz,zOx的夹角分别为1,2,3.则根据平面的方向余弦知cosn kcos1n k(2,222,1)(0,0,1)21( 22)113,cos2cos nnii(2, 2,1)3(1,0,0)123,cos3 cos nnjj(2, 2,1)3(10,1,0)23.6.一平面过点(1,0,-1)且平行于向量a(2,1,1)和b(1,1,0),试求这个平面方程.解所求平面平行于向量a和b,可取平面的法向量i j kn a b211(1,1,3).110故所求平面为1(x1)1(y0)3(z1)0,即x y3z40.7.求三平面x3y z1,2x y z0,x2y2z3的交点.解联立三平面方程x3y z1,2x y z0,x2y2z 3.解此方程组得x1,y1,z 3.故所求交点为(1,-1,3). 8.分别按下列条件求平面方程:(1)平行于xOz面且经过点(2,-5,3);(2)通过z轴和点(-3,1,-2);(3)平行于x轴且经过两点(4,0,-2)和(5,1,7).解(1)所求平面平行于xOz面,故设所求平面方程为By D0.将点(2,-5,3)代入,得5B D0,即D5B.因此所求平面方程为By5B0,即y50.(2)所求平面过z轴,故设所求平面为Ax By0.将点(-3,1,-2)代入,得3A B0,即B3A.因此所求平面方程为Ax3Ay0,即x3y0.(3)所求平面平行于x轴,故设所求平面方程为By Cz D0. 将点(4,0,-2)及(5,1,7)分别代入方程得2C D0及B7C D0.C D2, B92D .因此,所求平面方程为9 2DDy z D0,2即9y z20.9.求点(1,2,1)到平面x2y2z100的距离.解利用点(,,)M0x y o z o到平面Ax By Cz D0的距离公式dA xABy2B2CzC2D1 2212 22212210 331.1.求过点(4,-1,3)且平行于直线x3y z21 51的直线方程.解所求直线与已知直线平行,故所求直线的方向向量s(2,1,5),直线方程即为x 4y1z 21 5 3 .2.求过两点M1(3,2,1)和M2(1,0,2)的直线方程.解取所求直线的方向向量s M1M(13,0(2),21)(4,2,1),2因此所求直线方程为x 3y2z4 2 1 1 .3.用对称式方程及参数方程表示直线x y z1,2x y z 4.解根据题意可知已知直线的方向向量i j ks111(2,1,3).21 1取x=0,代入直线方程得yzy z1,4.3 5解得.y,z这2 2样就得到直线经过的一点(3 50,,).因此直线的对称式方程为2 2x30y z22 1 352 .参数方程为x2t,y 32t ,z 523t.注由于所取的直线上的点可以不同,因此所得到的直线对称式方程或参数方程得表达式也可以是不同的.4.求过点(2,0,-3)且与直线x2y4z70,3x5y2z10垂直的平面方程.解根据题意,所求平面的法向量可取已知直线的方向向量,即i j kn s124(16,14,11),35 2故所求平面方程为16(x2)14(y0)11(z3)0.即16x14y11z650.5.求直线5x3x3y2y3zz91 00,与直线2x3x28yyzz23180,的夹角的余弦.解两已知直线的方向向量分别为i j k i j ks533(3,4,1),s221(10,5,10), 1 232138 1因此,两直线的夹角的余弦cos(cos s1,)s2 s1s1s2s22 332410(1)4252101(1025)2100.6.证明直线x 2yz2xyz7,7与直线3x2x6yy 3zz 08,平行.证已知直线的方向向量分别是i j k i j ks 1 121(3,1,5),s2363(9,3,15), 21121 1由s23s1知两直线互相平行.7.求过点(0,2,4)且与两平面x2z1和y3z2平行的直线方程.解所求直线与已知的两个平面平行,因此所求直线的方向向量可取i j ks n1 n102(201 32,3,1),故所求直线方程为x 2 0y2z3 14.注本题也可以这样解:由于所求直线与已知的两个平面平行,则可视所求直线是分别与已知平面平行的两平面的交线,不妨设所求直线为x2z a,y3z b.将点(0,2,4)代入上式,得a8,b10.故所求直线为x2z8,y3z10.8.求过点(3,1,-2)且通过直线x54y3z2 1的平面方程.解利用平面束方程,过直线x54y3z2 1的平面束方程为x4y3y 3(z)0,52 211将点(3,1,-2)代入上式得.因此所求平面方程为20x4y311y5220 23(z) 0,即8x9y22z590.9.求直线xxyy3zz0,与平面x y z10的夹角.i j k解已知直线的方向向量(2,4,2),s113平面11 1的法向量n(1,1,1).设直线与平面的夹角为,则sin cos(n, s) ssnn 2221244((1)22)21(2)((1) 21)( 21)0,即0.10.试确定下列各组中的直线和平面间的关系;(1)x3y4z27 3和4x2y2z3;(2)x3y2z7 和3x2y7z8;(3)x32y2z134和x y z 3.解设直线的方向向量为s,平面的法向量为n,直线与平面的夹角为,且s nsin cos(n,s).s n (1)s(2,7,3),n(4,2,2),sin ( 2) ( 2 2) ( 4 2 7) ( 7) 2 3 ( 2) 2 4 3 ( ( 2 2)2) ( 2) 20, 则0.故直线平行于平面或在平面上, 现将直线上的点 A (-3,-4,0)代入平面方程,方程不成立 .故点 A 不在平面上,因此直线不在平 面上,直线与平面平行 . (2)s(3, 2,7), n (3, 2,7),由于s n 或sin 2 3 3( 3 2) 2( 2) 2 7 ( 2)2 3 7 ( 7 2) 22 71,知,故直线与平面垂直 .2(3)s( 3,1, 4), n (1,1,1),由于s n 0或sin 2 3 3 2 1 1 ( 1 1 4) 2( 4) 2 1 1 2 1 21 0, 知0,将直线上的点 A (2,-2,3)代入平面方程,方程成立,即点 A 在平面上 .故直线在平面上 . 11.求过点(1,2,1)而与两直线x x2 yy z 1 0, 2x y z z 1 0xy z 00,和 平行的平面的方程.解 两直线的方向向量为i j k i j ks 1 121(1,2,3),s2211(0,1,1), 11111 1i j k取(1,1,1),n s s12 31 201 1则过点(1,2,1),以n为法向量的平面方程为1(x1)1(y2)1(z1)0,即x y z0.12.求点(-1,2,0)在平面x2y z10上的投影.解作过已知点且与已知平面垂直的直线.该直线与平面的交点即为所求.根据题意,过点(-1,2,0)与平面x2y z10垂直的直线为x 1 1y2z21,将它化为参数方程x1t,y22t,z t,代入平面方程得1t2(22t)(t)10,整理得2t.从而所求点(-1,2,0)在平面x2y z10上的3投影为(53,23,23).13.求点P(3,-1,2)到直线x2xy z 1y z 40,的距离.i j k解直线的方向向量(0,3,3).s11 121 1在直线上取点(1,-2,0),这样,直线的方程可表示成参数方程形式x 1, y 2 3t,z 3t.(1)又,过点 P (3,-1,2),以s (0, 3, 3)为法向量的平面方程为3(y 1) 3(z 2) 0,即y z 1 0.(2)将式(1)代入式(2)得11 3t,于是直线与平面的交点为 (1, , ),2 2 2故所求距离为 d (321) ( 1 1 2 ) 2 (2 3 2 ) 2322.14.设 M 0 是直线 L 外一点,M 是直线 L 上任意一点,且直线的方向向 量为s ,试证:点 M 0 到直线 L 的距离dM M ss.证 如图 8-9,点 M 0 到直线 L 的距离为 d.由向量积的几何意义知M 0 表示以 M 0M ,s 为邻边的平行四边形的面积 .而M s M 0Mss表示以 s为边长的该平面四边形的高, 即为点 M 0 到直线L 的距离.于是dM 0 Mss.15.求直线2x3x4yy z2z0,9 0在平面4x y z1上的投影直线的方程.解作过已知直线的平面束,在该平面束中找出与已知平面垂直的平面,该平面与已知平面的交线即为所求.设过直线2x3x4yy z2z0,9 0的平面束方程为2x4y z(3x y2z9)0,经整理得(23)x(4)y(12)z90. 由(23)4(4)(1)(12)10,得1311.代入平面束方程,得17x31y37z1170.因此所求投影直线的方程为17x31y37z1170,4x y z 1.16.画出下列各平面所围成的立体的图形.(1)x0,y0,z0,x2,y1,3x4y2z120;y(2).x0,z0,x1,y2,z4解(1)如图8-10(a);(2)如图8-10(b).1.一球面过原点及A(4,0,0),B(1,3,0)和C(0,0,-4)三点,求球面的方程及球心的坐标和半径.解设所求球面的方程为2()()2 22(x a)y b z c R,将已知点的坐标代入上式,得2b c R22 2a,(1)2b2c2R2(a4),(2)( 2b2c2R2a1)(3),(3)2b2(4c)2R2a,(4)联立(1)(2)得a2,联立(1)(4)得c2,将a2代入(2)(3)并联立得b=1,故R=3.因此所求球面方程为(x2y2z2)(1)(2) 2 9,其中球心坐标为(2,1,2),半径为3.2.建立以点(1,3,-2)为球心,且通过坐标原点的球面方程.解设以点(1,3,-2)为球心,R为半径的球面方程为(x1)2y z R22 2(3)(2),球面经过原点,故2R (021) ( 0 3)2 2(02) 14,从而所求球面方程为(x1)2(y3)2(z2)214.2y z x y z2 23.方程x2420表示什么曲面?解将已知方程整理成(x2y2z1)(2)( 1) 2 2(6) ,所以此方程表示以(1,-2,-1)为球心,以6为半径的球面.4.求与坐标原点O及点(2,3,4)的距离之比为1:2的点的全体所组成的曲面的方程,它表示怎样的曲面?解设动点坐标为(x,y,z),根据题意有2(x0) (y (x22) ( y220)3)((zz220)4)12,化简整理得(x 232y2z)(1)(43)2 (它表示以(23,1,43 2)为球心,以293为25.将xOz坐标面上的抛物线z5x 绕x轴旋转一周,求所生成的旋转曲面的方程.解以2z 22y代替抛物线方程z5x中的z,得22)2(y z5x,即y2z25x.注xOz面上的曲线F(x,z)0绕x轴旋转一周所生成的旋转2z2曲面方程为(,)0F x y.2z26.将xOz坐标面上的圆x9绕z轴旋转一周,求所生成的旋转曲面的方程.解以2y22z2x代替圆方程x9中的x,得9,( 2y22z2x)2y2z2即9.x2y27.将xOy坐标面上的双曲线4x936分别绕x轴及y轴旋转一周,求所生成的旋转曲面的方程.解以2z22y2y代替双曲线方程4936x中的y,得该双曲线绕x轴旋转一周而生成的旋转曲面方程为4 2y2z2 x9(2) 36,即4x29(y2z2)36.以2z22y2x代替双曲线方程4936x中的x,得该双曲线绕y轴旋转一周而生成的旋转曲面方程为4( 2z y22 2x)936,即4(x2z2)9y236.8.画出下列各方程所表示的曲面:2y2 a2a x2 2(1));(x)y((2)1;22492z2x(3)1;9 4(4)y2z0;(5)z2x2.解(1)如图8-11(a);(2)如图8-11(b);(3)如图8-11(c);(4)如图8-11(d);(5)如图8-11(e).9.指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形:(1)x2;(2)y x1;2y22y2(3)4;x(4)x 1.解(1)x2在平面解析几何中表示平行于y轴的一条直线,在空间解析几何中表示与yOz面平行的平面.(2)y x1在平面解析几何中表示斜率为1,y轴截距也为1的一条直线,在空间解析几何中表示平行于z轴的平面.2y2(3) 4x在平面解析几何中表示圆心在原点,半径为2的圆,在空间解析几何中表示母线平行于z轴,准线为2x2y4, z0的圆柱面.(4)x2y21在平面解析几何中表示以x轴为实轴,y轴为虚轴的双曲线,在空间解析几何中表示母线平行于z轴,准线为2 x2y1,的双曲柱面.z010.说明下列旋转曲面是怎样形成的:2y2z2x(1)1;49922y z2 (2)1;x4(3)x2y2z21;(4)(z a)2x2y2.2y2z22y2 xx解(1)1表示x Oy面上的椭圆 1绕x 499492z2 x轴旋转一周而生成的旋转曲面,或表示xOz面的椭圆 1绕49x轴旋转一周而生成的旋转曲面.2 22y z2y2(2) 1x表示xOy面上的双曲线x1绕y轴4 42y2旋转一周而生成的旋转曲面,或表示yOz面的双曲线 1z4绕y轴旋转一周而生成的旋转曲面.(3)x2y2z21表示xOy面上的双曲线x2y21绕x轴2z2旋转一周而生成的旋转曲面,或表示xOz面的双曲线 1x绕x轴旋转一周而生成的旋转曲面.(4)22 2(z a)x y表示x Oz面上的直线z x a或z x a绕z轴旋转一周而生成的旋转曲面,或表示yOz面的直线z y a或z y a绕z轴旋转一周而生成的旋转曲面.11.画出下列方程所表示的曲面:(1)4x2y2z24;(2)x2y24z24;2y2z x(3).349解(1)如图8-12(a);(2)如图8-12(b);(3)如图8-12(c);12.画出下列各曲面所围立体的图形:(1)z0,z3,x y0,x3y0,x2y21(在第一卦限内);222,22 2 x0,y0,z0,x y R y z R(在第一卦(2)限内).解(1)如图8-13所示;(2)如图8-14所示.1.画出下列曲线在第一卦限内的图形;(1)xy1,2;(2)zx y4 2 x0;y 2 ,(3)2x2x2y2z2a,2a.解(1)如图8-15(a);(2)如图8-15(b);(3)如图8-15(c).2.指出下列方程组在平面解析几何中与在空间解析几何中分别表示什么图形:(1)yy5x2x1,3;(2)2x4y2y3.91,解(1)yy5x2x1,3在平面解析几何中表示两直线的交点.在空间解析几何中表示两平面的交线,即空间直线.(2)2xy 32y91,2y2x在平面解析几何中表示椭圆 1与449 其切线y3的交点,即切点.在空间解析几何中表示椭圆柱面2y2 x49与其切平面y3的交线,即空间直线. 13.分别求母线平行于x轴及y轴而且通过曲线22x2x2y2z2z2y16,的柱面方程.解在22x2x2y2zy2z216,中消去x,得3 2z2y16,即为母线平行于x轴且通过已知曲线的柱面方程.在22x2xy2z2y2z216,中消去y,得2z23x 216,即为母线平行于y轴且通过已知曲线多的柱面方程.2y z2 2x与平面x z1的交线在xOy面上的投4.求球面9影的方程.解在2x2y2z 9, 中消去z,得x z 12y2x2x y2 2 x(1)9,即2x28,它表示母线平行于z轴的柱面,故2 22x2x yz08,表示已知交线在xOy面上的投影的方程.5.将下列曲线的一般方程化为参数方程:(1)2x(x1)y x;z0.2y2z 9, (2)2 2y ( z21) 4,。

高等数学同济第七版7版下册习题全解

高等数学同济第七版7版下册习题全解

数,故/, = Jj( x2 + y1)3d(j = 2jj(x2+ y1) 3dcr.fh i)i又由于D3关于;t轴对称,被积函数(/ +r2)3关于y是偶函数,故jj(x2+j2)3dcr=2j(x2+y2)3da=2/2.Dy 1):从而得/, = 4/2.(2)利用对称性来计算二重积分还有以下两个结论值得注意:如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y)= -f(x,y) ,P Jjf/(x,y)da =0;D如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则=0.D«3.利用二重积分定义证明:(1)jj da=(其中(7为的面积);IJ(2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数);o n(3 ) JJ/( x,y)clcr = JJ/( x,y)drr + jJ/( x ,y) dcr ,其中 /) = /)! U /)2,,A 为两个I) b\ lh尤公共内点的W K域.证(丨)由于被枳函数./U,y)=1,故山二t积分定义得n"jj'ltr = Hm y^/( ,rji) A<r, = lim ^ Ac,=l i m cr= a.A—0n(1)Ji/(x,j)(Ic7=lim^i)1n=A lim y/(^(,i7,)A(7-,=k \\f{x,y)Aa.A-°台•{!(2)因为函数/U,y)在闭区域/)上可积,故不论把£»怎样分割,积分和的极限总是不变的.因此在分割D时,可以使和/)2的公共边界永远是一条分割线.这样fix.y)在A U D2上的积分和就等于&上的积分和加D2上的积分和,记为^/(^, ,17,) A CT, = ^/( ^, , 17,) A CT, + ^/(^, ,17,) A CT,./)(U0, ", l):令所有的直径的最大值A-0,上式两端同时取极限,即得Jf(x,y)i\a=j j f(x,y)d a+J J/(x f y)d a.p,un} V, n;Sa4.试确定积分区域/),使二重积分][(1-2x2-y2)d«l y达到最大值.I)解由二重积分的性质可知,当积分区域/>包含了所有使被积函数1 -2.v2 -V2 大于等于零的点,而不包含使被积函数1 -2/ -y2小于零的点,即当£»是椭圆2/ +y2 = l 所围的平面闭区域时,此二重积分的值达到最大.& 5.根据二重积分的性质,比较下列积分的大小:(1)Ju+y)2山7与J[U,其中积分区域D是由x轴、^轴与直线A+.、=D I)1所围成;(2)J(x+7)2如与■,其中积分区域0是由圆周(.r-2)2+(.v-l)2=t) n2所围成;(3)I'm A;+y)(l o r与!"[I n(X+y)]2(1(7,其中Z>是三角形闭K域,三顶点分别为l)"(1,0),(1,1),(2,0);(3)J p n(:r+y)d c r与I n(:t+y)]2f W,其中/)=|(.r,.v)|3,0彡、彡1 .i) i)解(1)在积分K域0上,故有(x + j) 3 ^ (x + y) 2.根据二重积分的性质4,可得J(.r + y) \lrx ^ J (.\ + v)0D由于积分区域0位于半平面| (A:,V) | .V+ •、彡1 1内,故在/)|:&(.f + y) 2彡(A + y) 3•从『("• J( v + > ):drr ^ jj ( x + y) \l f r.(1)由于积分区域D位于条形区域1U,y)|1彡1+7彡2丨内,故知区域/)上的点满足0彡InU+y)彡1,从而有[lnU+y)]2彡lnU+.y).因此j j[l n(a:+y)]2(J o-^+y)d(2)由于积分区域/)位于半平面丨(x,y) | .v+y彡e|内,故在Z)上有l n(x+y)彡1,从而:I n(-v+)')]2彡I n(:c+)').因此Jj^ 1 n(.r + y) ] 2dcr ^ Jln( x + y) da.i) a3 6.利用二重积分的性质估计下列积分的值:(1) / = |^7(文+7)心,其中/)= \ (x ,y) 1,0 1|;n(2)/=j^sin^sin^do■,其中/)=j(A:,y)|0^^^TT,0^y^TT1;i)(3)/= J*(A:+y + l)d(7,其中/>= { {x,y) |0^x^l,0^j^2[;it(4)/=J(x2 +4y2 +9)do•,其中D= \{x,y) \x2 +y2 ^ 4|.I)解(1)在积分区域D上,0矣;<:矣1,0英y矣1,从而0矣巧•(*+y)矣2•又£»的面积等于1,因此(2)在积分区域/)上,0矣sin J:矣1,0^sin1,从而0彡sin2A:sin2y彡1,又0的面积等于TT2,W此(3)在积分K域"上有\^x+y +\«4,/)的而积等于2,因此(4)W为在积分K域/>»上有0矣;t2+y2苳4,所以有9^+4r2+9^4( x2+y2)+9矣25.34I)的酣枳等于4TT,W此36TT^[[(x2+4/+9)(Ur^lOO-ir.二重积分的计算法.^1.计算下列二甩积分:可编辑l<3x 十2) ;dcr ,其中"是由两坐标轴及直线-X - + v = 2听围成的闭区域; b ( 3 J jj( x J + 3x 2 \ + v 3 ) da ,其中 D = ( x , v ) 0 ^ A : ^ 1 .0 ^ v ^ 1 ; u ( 4 ) jjxcas( X + Y j do ■,其中Z >是顶点分别为( 0 .0 j < 77 ,0 )和( 77 , 77 )的三角形闭区域. m (1 x 2 4- V 2 )d(T = f dxf (X 2 -h V 2 ) d V dx j fh 2 D 不等式表示为 2 r 2 -x 3xy +y 2]l~x dx =| (4+ 2x - 2x 2 ) dx 20 3(+ 3x 2y + y 3 )da = d > (文3 + 3.r 2 v +、、)ch . + x y + v " JC di (4) l )可用不等式表示为 0 ^ V ^ A : , 0 ^ .t ^ 7T . 于是 |A :COS (JC + y ) da = I cos(.v + v )d I [ sin (.t + y ) ] Q ()^ = J V ( sin 2.v - sin .v ) <1 x x(\( cos .v —丄(.<,s 2.v ) 卜( 1X (-TT r T X cos .v - —rus TT. & 2. _出枳分ix:域,斤i 卜r): v 列m 分:x2^y^J^,0矣x矣1(图10-2).0«^^/4-y2,-2矣7矣2(图10-3),(2)J^^do■,其中/)是由两条抛物线7=v^,y=*2所围成的闭区域;D(3)jfxy2dcr,其中D是由圆周x2+J2=4及y轴所围成的右半闭区域;I)(3)JV+'dcr,其中/)=I(%,)•)||A;|+|J|^1!;D(4)|"U2+/-x)<lo•,其中D是由直线y:l、y二xh :2*所围成的闭区域.D解(1)0可用不等式表示为于是(4)D可用不等式表示为(3)如阁I()-4,W=/\U"2,其中/>1= \(x,y)\-x-\ ^y^Jc + 1,-1 ^a;^0|,I)2=\(x,y) |*-1 +因此Ea3.如果二重积分|/( .r,y)心办的被积函数/(x,v)是两个函数/](O及)的乘n积,即/(X,y) =f\(x)./“y),积分区域/)={(.V,y)I(1^V^/>,r^,证叫这个二重积分等于两个单积分的乘枳,即|*/|U) -/2(r) fl atl y = [ J/, (.v)(l.v] - [ [/:( > )^v]-证Jj./1(x)•.,2(/)dvd V~J[f J \(v)■ ./:t^]l^x*在上式右端的第一次单枳分f/,(.V)•/2(.V)d v中,./,(A.)1J fut变招:、无关,nn见为常数提到积分5外,W此上式“端笏T可编辑fix/ = j [ dy ^/(*,y )tk .而在这个积分中,由于f/2 (y ) d y 为常数,故又可提到积分号外,从而得到• f 2<,y)^xAy= [| /2(y )dj ] - [ J n /, (x )dx ]证毕. ^4.化二重积分/ = Jf(x ,y )daI)为二次积分(分别列出对两个变量先后次序不同的两个二次积分),其中积分区域£>是:(1) 由直线及抛物线y 2 =4x 所围成的闭区域; (2) 由x 轴及半圆周/ +y 2 =r 2(y 英0)所围成的闭区域;(3) 由直线y =x ,;c = 2及双曲线:K = ^-(*>0)所围成的闭区域;X(4) 环形闭区域 IU ,y ) | 1+y 2^4(.解(1)直线y =x 及抛物线y 2 =4;c 的交点为(0,0)和(4,4)(图10-6).于是f(x,y)dy,(1)将/)用不等式表示'fyO^y^r 2 -x 2,- r ^ W /•,于是可将/化为如下的先 对y 、后对*的二次积分:r/ = J (1文Jf(x ,y)(\y ;如将0叫不等式表示为~Vr 2 -y 2^x^Vr 2 - y 2 ,0各/•,则可将/化为如卜的 先对*、后对y 的二次枳分:可编辑dr x,y) dx. (3)如图 10-7. :条边界曲线两两相交,先求得3个交点为(1 ,1 ),2,y 和(2,2).于是dy (i_/(^,y)+ tlj /( x ,y)dx.dx• \/4J\x y y)dy + d.vl(1%/T/(A :,y)clr + d.vl ■ y A -x 2/(.r ,v )d > -f/(.v V v ) dv ./(.v ,v )d.v -f.\/4-、 /( \ , > ) d.v-f厂、/4 -、•'•I-v^ W"/( v , y) (l .\.| dxj[f(x,y)dy.注本题说明,将二重积分化为二次积分时,需注意根据积分区域的边界曲线 的情况,选取恰当的积分次序.本题中的积分区域/)的上、下边界曲线均分别由—个 方程给出,而左边界曲线却分为两段,由两个不同的方程给出,在这种情况下采取先 对y 、后对^的积分次序比较有利,这样只需做一个二次积分,而如果采用相反的枳 分次序则需计算两个二次积分.需要指出,选择积分次序时,还需考虑被积函数/U , y )的特点.具体例子n ]'见教 材下册第144页上的例2.(4)将D 按图10 - 8( a )和图10 - 8( 1>)的两种不同方式則分为4块,分別得x ,r) d.t.(5) (lx\ f{x,y)Ay\广2 f yix -x2(4)|叫2f{x,y)dy-,fix /-sin x(6)I Ax\J(x,y)Ay.JO J - siny图10-8,5.设/U,Y)在D上连续,其中/)是由直线;==所围成的闭区域,证明dx| f(x,y)Ay证等式两端的二次积分均等于二重积分J/U,y)d o•,因而它们相等.I)^6.改换下列二次积分的积分次序:(2) J) dj|:f(x,y)dx;解(丨)所给二次积分等于二重积分J[/U,;K)(^,其中o =丨h,y)1° ^ ^ ^r-"0 ^ j ^ I(. /> n|■改写为 | Uj) | * 矣y矣 1,0 ^ ^ I | (罔 10 - 9),于是原式=丄<ixj/(x,y)dy.(3)所给一.次枳分等于二'Ti积分|/U,y)山,.K:中/)=I|.y2^^<2y,0 ^21. M I) njm为{u’y) I 音矣 j ^ 7^,0 ^ x 在4)( 1冬 1 1(> - I0),W此原式=J,i\xjy/(x,y)i\y.-y 2^.V ^1$、飞 V 彡1(4) 所给二次积分等于二重积分.其中D = : (.v .v ) | - V 1UX ^ J 1 - y 2 ,0彡 >•彡 1 ; •又 D 可表示为:(JC ,)*)丨0彡 y 彡 V 1 - .r 2 , - 1 = (图10 -11),因此f 1f V 1 -X~原式=J ^ dxj/(x , v )dy .(5) 所给二次积分等于二重积分其中D = : (.v .v ) ' 2 -hs/lx - x 1 %\ 彡.r 彡2 :.又 D 可表示为:(A :,V ) | 2 - 1彡.t •彡 1 + Y 1 — v 2,0 : (图 10 -12),故原式=丄 d)j f(x %y)dx.(6)所给二次积分等于二重积分]|/(.10 )(1^,)1:中/)= 1(.v .v ) | 0 ^ v ^I)x 彡e | •又/)可表示为| ( A :,>•) | e 、彡A •彡e ,0彡、彡1 i ( |劄10 - 1,故原式=L (I .、| ,./X .、,.、) (l .v .m1()-14,将积分|><:域/)丧示为/),U/)2,其中A),=j U,、)|arcsin>^可编辑/(x,y)dx. y广 1 r ir - arcsin > 原式=Idyf(x yy)c\xJO Jarcsin )T T - arcsin y ,0彡 y 彡 1 |1,D 2 = | (.r,y)一 2arcsi n , 一 1 彡)'彡0|.于是rt-x + xydrAy~d\ c\) ''i x E | o»•Y = s i n A的反闲数足A = i i r r s»My- -1 x足ih y - H in x = sin ( T T - x) "n!J TT - x ^ ar cKin y,从ifii 得反闲数 ^(子•中,TTT T - iin-Hiny.^7.设平面薄片所占的闭区域D 由直线;t = 2,y = 和;r 轴所围成,它的面密度/x (.t ,v ) = x 2 +y 2,求该薄片的质量.解 D 如图10-15所示.所求薄片的质M = jJ/Lt( x 9y) dcr = ^ dyj ( x 2 + y 2 ) dxr[+(2”)3+2,12| 冬| 10 - 158. i |灯|l |四个平而A : = 0,y = 0,;t = I ,v = I 所闲成的柱休被平面z = 0及2.r +3y + z 6藏得的立休的体积.V - (I 6 - ^ x 2 + y 2) dx(\y6 ( 1 - x ) - x 2+——f 1\1_6"*10-17m 10 - 18解 江力一 E J .它??芪是;c 0:. S 二苎泛7:省•。

高等数学下册同济第七版

高等数学下册同济第七版
链式法则
复合函数的求导法则,即一个复合函数的导数等于其内部函数的导数乘以外部函数的导数。
乘法法则
复合函数的求导法则,即两个函数的乘积的导数等于第一个函数的导数乘以第二个函数加上第二个函 数的导数乘以第一个函数。
隐函数的求导公式
隐函数
一个方程可以确定一个函数,这样的函 数称为隐函数。
VS
隐函数的求导公式
曲面及其方程
曲面的概念
曲面是一维图形在三维空间中的表现形式,它由多个点组成,每个 点都对应于空间中的一个位置。
曲面方程
曲面方程是描述曲面形状和大小的数学表达式。对于给定的曲面, 可以通过在其上任取一点,并建立该点的坐标系来得到该曲面的方 程。
常见曲面及其方程
例如,球面、锥面、柱面等都有对应的方程式。这些方程式描述了这 些曲面的形状和大小,并且可以通过图形来直观地表现出来。
VS
详细描述
对坐标的曲面积分主要用于计算曲面图形 上某部分区域内某物理量的累积值,如流 量、速度等。求解方法通常为定义法、参 数方程法、公式法等。在具体问题中,还 需考虑积分曲面的方向、不同部分的分界 线等因素。
THANK YOU
重积分的应用
总结词
重积分的应用非常广泛,包括求面积、求体 积、求质量等。
详细描述
重积分的应用包括求曲顶柱体的体积、求空 间物体的质量、求平面的面积等。例如,利 用二重积分可以求出平面区域的面积,利用 三重积分可以求出空间物体的质量。此外, 重积分还可以用于求解某些物理问题,如力
学、电磁学、光学等问题。
两个向量的向量积是一个向量,记作 $\overset{\longrightarrow}{a} \times \overset{\longrightarrow}{b}$,其 大小等于两个向量对应分量乘积的矢 量和,其方向垂直于两个向量所确定 的平面。

高等数学第七版下册复习纲要

高等数学第七版下册复习纲要

高等数学第七版下册复习纲要Chapter 7: XXXI。

XXX1.Order of a XXX: The highest order of the unknown n'XXX is called the order of the XXX.2.XXX an identity is called a XXX.XXX the same number of independent arbitrary constants as the order of the n is called the general XXX.Particular XXX.3.XXX: A particular XXX initial ns。

or it can be directly observed from the n of the XXX。

XXX not always XXX.II。

XXX1.XXX1) Form of the n: g(y)dy = f(x)dx.2) XXX: n of variables.3) n steps:① Separate the variables and write XXX(y)dy =② XXX(y) = F(x) + C in the form of ∫g(y)dy = ∫f(x)dx;③ Make the XXX.2.XXX1) Form of the n:dyφdx2) XXX: Variable n.3) n steps:① Introduce a new variable u = y/x。

then y = ux and dy/dx = u + xdu/dx;② Substitute y = ux and dy/dx = u + xdu/dx into the original n to get u + xdu/dx = φ(u);③ Separate variables and XXX;④ Substitute u back to get the n in terms of y and x.3.XXX1) Form of the n:dy/dx + P(x)y = Q(x).XXX: dy/dx + P(x)y = 0.Non-XXX: dy/dx + P(x)y = Q(x) ≠ 0.2) XXX:XXX: XXX variables.The general XXX is y = Ce^(-∫P(x)dx)。

高等数学同济第七版下册辅导教材

高等数学同济第七版下册辅导教材

高等数学同济第七版下册辅导教材高等数学是大学阶段的一门重要的数学课程,对于理工科生来说尤为重要。

本文将对同济大学出版社出版的高等数学第七版下册辅导教材进行介绍和评价。

首先,该教材的内容安排非常合理。

教材将高等数学下册的各个章节分为不同的单元,每个单元都涵盖了该章节的主要知识点和要点。

这种分单元的方式方便了学生的学习和复习,使其更加系统地学习高等数学,掌握各个章节的重点内容。

其次,教材的语言表达简洁明了,易于理解。

无论是定义、定理还是例题,教材都能用通俗易懂的语言进行解释和阐述。

这种语言表达的方式非常适合初学者,能够帮助他们更好地理解和掌握高等数学的概念和原理。

再次,教材中的例题和习题设计很充实。

每个单元的末尾都附有大量的习题,这些习题既能复习本单元的知识点,又能巩固和扩展学生的理解能力。

除了基础习题外,教材还设计了一些附加习题,这些习题在形式和难度上更具挑战性,能够培养学生的分析和解决问题的能力。

此外,教材还给出了习题的部分答案和详细解析,这对于学生自学和自我评估非常有帮助。

通过参考教材给出的答案和解析,学生可以检验自己的解题思路和方法是否正确,并及时发现和纠正错误。

总的来说,高等数学同济第七版下册辅导教材是一本内容全面、讲解详细、习题丰富的教材。

它能够帮助学生建立起对高等数学的整体认识和理解,提升他们的数学分析和解决问题的能力。

推荐给需要学习高等数学的同学使用。

(以上内容仅为根据题目描述所书写的文章,仅供参考)。

高等数学同济第七版7版下册习题 全解

高等数学同济第七版7版下册习题 全解

第十章重积分95数,故/, = Jj( x2 + y1)3d(j = 2jj(x2+ y1) 3dcr.fh i)i又由于D3关于;t轴对称,被积函数(/+r2)3关于y是偶函数,故jj(x2+j2)3dcr=2j(x2+y2)3da=2/2.Dy1):从而得/, = 4/2.(2)利用对称性来计算二重积分还有以下两个结论值得注意:如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y) = -f(x,y) ,PJjf/(x,y)da =0;D如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则=0.D«3.利用二重积分定义证明:(1)jj da=(其中(7为的面积);IJ(2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数);o n(3 ) JJ/( x,y)clcr = JJ/( x,y)drr + jJ/( x ,y) dcr ,其中 /) = /)! U /)2,, A 为两个I)b\lh尤公共内点的WK域.96一、《高等数学》(第七版)下册习题全解jj'ltr = Hm y^/( ,rji) A<r, = lim ^ Ac,=l i m cr= a.A—0n(2)Ji/(x,j)(Ic7=lim^i)1n=A lim y/(^(,i7,)A(7-,=k\\f{x,y)Aa.A-°台•{!(3)因为函数/U,y)在闭区域/)上可积,故不论把£»怎样分割,积分和的极限总是不变的.因此在分割D时,可以使和/)2的公共边界永远是一条分割线.这样fix.y)在A U D2上的积分和就等于&上的积分和加D2上的积分和,记为^/(^, ,17,) A CT, = ^/( ^, , 17,) A CT, + ^/(^, ,17,) A CT,./)(U0,",l):令所有的直径的最大值A-0,上式两端同时取极限,即得Jf(x,y)i\a=jjf(x,y)da+JJ/(x f y)da.p,un}V,n;Sa4.试确定积分区域/),使二重积分][(1-2x2-y2)d«l y达到最大值.I)解由二重积分的性质可知,当积分区域/>包含了所有使被积函数1-2.v2-V2 大于等于零的点,而不包含使被积函数1-2/-y2小于零的点,即当£»是椭圆2/+y2= l所围的平面闭区域时,此二重积分的值达到最大.& 5.根据二重积分的性质,比较下列积分的大小:(1)Ju+y)2山7与J[U,其中积分区域D是由x轴、^轴与直线A+.、=D I)1所围成;(2)J(x+7)2如与■,其中积分区域0是由圆周(.r-2)2+(.v-l)2=t)n2所围成;(3)I'M A;+y)(lor与!"[In(X+y)]2(1(7,其中Z>是三角形闭K域,三顶点分别为l)"(1,0),(1,1),(2,0);(4)Jpn(:r+y)dcr与In(:t+y)]2fW,其中/)=|(.r,.v)|3,0彡、彡1 .i)i)解(1)在积分K域0上,故有(x + j) 3 ^ (x + y) 2.根据二重积分的性质4,可得J(.r + y) \lrx ^ J (.\ + v)0D(2)由于积分区域0位于半平面|(A:,V) | .V+ •、彡1第十章重积分97(3)由于积分区域D位于条形区域1U,y)|1彡1+7彡2丨内,故知区域/)上的点满足0彡InU+y)彡1,从而有[lnU+y)]2彡lnU+.y).因此jj[ln(A:+y)]2(Jo-^+y)d(4)由于积分区域/)位于半平面丨(x,y)| .v+y彡e|内,故在Z)上有ln(x+y)彡1,从而:In(-v+)')]2彡In(:c+)').因此Jj^ 1 n(.r + y) ] 2dcr ^ Jln( x + y) da.i)a36.利用二重积分的性质估计下列积分的值:(1) / = |^7(文+7)心,其中/)= \ (x ,y)1,01|;n(2)/=j^sin^sin^do■,其中/)=j(A:,y)|0^^^TT,0^y^TT1;i)(3)/= J*(A:+y + l)d(7,其中/>= { {x,y) |0^x^l,0^j^2[;it(4)/=J(x2 +4y2 +9)do•,其中D= \{x,y) \x2 +y2 ^ 4|.I)解(1)在积分区域D上,0矣;<:矣1,0英y矣1,从而0矣巧•(*+y)矣2•又£»的面积等于1,因此(2)在积分区域/)上,0矣sin J:矣1,0^sin1,从而0彡sin2A:sin2y彡1,又0的面积等于TT2,W此(3)在积分K域"上有\^x+y +\«4,/)的而积等于2,因此(4)W为在积分K域/>»上有0矣;t2+y2苳4,所以有9^+4r2+9^4( x2+y2)+9矣25.34I)的酣枳等于4TT,W此36TT^[[(x2+4/+9)(Ur^lOO-ir.二重积分的计算法.^1.计算下列二甩积分:98{高等数学> (第七叛)下册习题全第十) ;,其中"是由两坐标轴及直线-- + =听围成的闭区域;b ( 3 J jj( x J + 3x 2 \ + v 3 ) da ,其中 D =( x , v )0 ^ A : ^ 1 .0 ^ v ^ 1;u( 4 ) jjxcas( X + Y j do ■,其中Z >是顶点分别为( 0 .0 j < 77 ,0 )和( 77 , 77 )的三角形闭区域. 4- 2 2 ) dx fh 2) D 可用不等式表示为 2 r 3xy +y 2 ]l~x dx = | (4 + 2x - 2x 2 ) dx 203(+ + 3 > (文3+ 3.2 +、、).+ + "JC di (4l )可用不等式表示为0 ^ V ^ A : ,0 ^ .t ^ 7T .于是|A :COS JC + ) = + ) d I [ sin (.t + y ) ]Q ()^ = J V ( sin 2.v - sin .v ) <1 x x(\( cos .v —丄(.<,s 2.v )卜(1X (-TT r T X cos .v —rus TT.& 2. _出枳分ix:域,斤i 卜r): v 列m 分:第十章重积分99 x2^y^J^,0矣x矣1(图10-2).0«^^/4-y2,-2矣7矣2(图10-3),(1)J^^do■,其中/)是由两条抛物线7=v^,y=*2所围成的闭区域;D(2)jfxy2dcr,其中D是由圆周x2+J2=4及y轴所围成的右半闭区域;I)(3)JV+'dcr,其中/)=I(%,)•)||A;|+|J|^1!;D(4)|"U2+/-x)<lo•,其中D是由直线y:l、y二xh :2*所围成的闭区域.D解(1)0可用不等式表示为于是(2)D可用不等式表示为(3)如阁I()-4,W=/\U"2,其中/>1= \(x,y)\-x-\ ^y^Jc + 1,-1 ^a;^0|,I)2=\(x,y) |*-1+因此100一、《高等数学》(第七版)下册习题全解Ea 3.如果二重积分|/( .r ,y )心办的被积函数/( x ,v )是两个函数/] ( O 及)的乘n积,即/(X ,y) = f\(x) ./“y ),积分区域/) = { (.V , y ) I (1 ^ V ^ />, r ^,证叫这个二重积分等于两个单积分的乘枳,即|*/|U) -/2(r) flatly = [ J/, (.v)(l.v] - [ [/:( > )^v]-证Jj./1 ( x ) • .,2 ( / ) dvd V ~ J [ f J \ ( v ) ■ ./: t ^] l ^x *在上式右端的第一次单枳分f /,(.V )•/2(.V )dv 中,./,(A .)1Jfut 变招:、无关,nn 见为 常数提到积分5外,W 此上式“端笏T第十章重积分101fix/ = j [ dy ^/(*,y )tk.而在这个积分中,由于f/2 (y ) d y 为常数,故又可提到积分号外,从而得到• f 2<,y)^xAy= [| /2(y )dj ] - [ J n /, (x )dx ]证毕.^4.化二重积分/ = Jf(x ,y )daI)为二次积分(分别列出对两个变量先后次序不同的两个二次积分),其中积分区域£>是:(1)由直线及抛物线y 2 =4x 所围成的闭区域;(2)由x 轴及半圆周/ +y 2 =r 2(y 英0)所围成的闭区域;(3)由直线y =x ,;c = 2及双曲线:K = ^-(*>0)所围成的闭区域;X(4)环形闭区域 IU ,y ) | 1+y 2^4(.解(1)直线y =x 及抛物线y 2 =4;c 的交点为(0,0)和(4,4)(图10-6).于是f(x,y)dy,(2)将/)用不等式表示'fyO^y^r 2 -x 2,- r ^ W /•,于是可将/化为如下的先对y 、后对*的二次积分:r/ = J (1文Jf(x ,y)(\y ;如将0叫不等式表示为~Vr 2 -y 2^x^Vr 2 - y 2 ,0各/•,则可将/化为如卜的先对*、后对y 的二次枳分:102一、《高等数学》(第七版)下册习题全解dr x,y) dx.(3)如图 10-7.:条边界曲线两两相交,先求得3个交点为(1 ,1 ),2,y 和(2,2).于是dy (i_/(^,y)+ tlj /( x ,y)dx.dx • \/4J\x y y)dy + d.vl(1%/T /(A :,y)clr +d.vl■ yA -x 2/(.r ,v )d > -f/(.v V v ) dv ./(.v ,v )d.v -f.\/4-、/( \ , > ) d.v -f厂、/4 -、•'•I-v^ W"/( v , y) (l .\.| dxj[f(x,y)dy.注本题说明,将二重积分化为二次积分时,需注意根据积分区域的边界曲线的情况,选取恰当的积分次序.本题中的积分区域/)的上、下边界曲线均分别由—个方程给出,而左边界曲线却分为两段,由两个不同的方程给出,在这种情况下采取先对y 、后对^的积分次序比较有利,这样只需做一个二次积分,而如果采用相反的枳 分次序则需计算两个二次积分.需要指出,选择积分次序时,还需考虑被积函数/U , y )的特点.具体例子n ]'见教材下册第144页上的例2.(4)将D 按图10 - 8( a )和图10 - 8( 1>)的两种不同方式則分为4块,分別得o 第十章重积分103x ,r)d.t.(5) (lx\ f{x,y)Ay\广2 f yix -x2(4)|叫2f{x,y)dy-,fix /-sin x(6)I Ax\J(x,y)Ay.JO J - siny图10-8,5.设/U,Y)在D上连续,其中/)是由直线;==所围成的闭区域,证明dx| f(x,y)Ay证等式两端的二次积分均等于二重积分J/U,y)d o•,因而它们相等.I)^6.改换下列二次积分的积分次序:(2) J) dj|:f(x,y)dx;解(丨)所给二次积分等于二重积分J[/U,;K)(^,其中o=丨h,y)1°^^^r-"0 ^ j ^ I(. /> n|■改写为 | Uj) | * 矣y矣 1,0 ^^ I | (罔 10 - 9),于是原式=丄<ixj/(x,y)dy.(2)所给一.次枳分等于二'Ti积分|/U,y)山,.K:中/)=I|.y2^^<2y,0^21. M I) njm为{u’y) I 音矣 j ^ 7^,0 ^ x 在4)( 1冬1 1(> - I0),W此原式=J,i\xjy/(x,y)i\y.104一、《高等数学>(第七版)下册习题全解-y2^.V ^1$、飞V彡1(3)所给二次积分等于二重积分.其中D=:(.v.v)|-V 1UX^J1-y2,0彡>•彡1;•又D可表示为:(JC,)*)丨0彡y 彡V 1- .r2,-1=(图10-11),因此f 1 f V1 -X~原式=J^dxj/(x,v)dy.(4)所给二次积分等于二重积分其中D=:(.v.v)'2-hs/lx -x1%\彡.r彡2:.又D可表示为:(A:,V)|2-1彡.t•彡1+Y1—v2,0:(图10-12),故原式=丄d)j f(x %y)dx.(5)所给二次积分等于二重积分]|/(.10)(1^,)1:中/)=1(.v.v)|0^v^I)x彡e|•又/)可表示为|(A:,>•)|e、彡A•彡e,0彡、彡1i(|劄10-1,故原式=L(I.、|,./X .、,.、)(l.v.(6)m1()-14,将积分|><:域/)丧示为/),U/)2,其中A),=j U,、)|arcsin>^o 第十章重积分105/(x,y)dx.y广 1r ir - arcsin >原式=I dyf(x y y)c\xJO Jarcsin )T T - arcsin y ,0彡 y 彡 1 | 1 ,D 2 = |(.r, y)一 2arcsin, 一1彡)'彡0|.于是rt-x + xydrAy~d\2x c\)''i x E | o»•Y = s i n A 的反闲数足A = i i r r s »M y- -1 x足ih y - H in x = sin ( T T - x) "n!J T T - x ^ arcKiny,从ifii 得反闲数 ^(子•中,TTT T - iin-Hiny.^7.设平面薄片所占的闭区域D 由直线;t = 2,y = 和;r 轴所围成,它的面密度/x (.t ,v ) = x 2 +y 2,求该薄片的质量.解 D 如图10-15所示.所求薄片的质M = jJ/Lt( x 9y) dcr = ^ dyj ( x 2 + y 2 ) dxr[+(2”)3+2,12| 冬| 10 - 158. i |灯|l |四个平而A : = 0,y = 0,;t = I ,v = I 所闲成的柱休被平面z = 0及2.r +3y+z6藏得的立休的体积.V - (I 6 - ^ x 2 + y 2 ) dx(\y6 ( 1 - x ) - x 2 +——f 1\1_6"*10-17m 10 - 18解江力一 E J .它??芪是;c 0:. S 二苎泛7:省•。

高等数学第七版下册复习纲要

高等数学第七版下册复习纲要

高等数学第七版下册复习纲要第七章:微分方程一、微分方程的相关概念1. 微分方程的阶数:方程中所含未知函数导数的最高阶数叫做微分方程的阶.2. 微分方程的解:使微分方程成为恒等式的函数称为微分方程的解.通解:所含独立的任意常数的个数与方程的阶数相同的解称为微分方程的通解. 特解:确定了任意常数的通解称为微分方程的特解.3. 特解与通解的关系:可通过初始条件确定通解中的常数而得到满足条件的特解;也可通过方程的表达式直接观察得到特解,因此特解不总包含在通解中. 二、微分方程的常见类型及其解法 1. 可分离变量的微分方程及其解法 (1).方程的形式:dx x f dy y g )()(= .(2). 方程的解法:分离变量法 (3). 求解步骤①. 分离变量,将方程写成dx x f dy y g )()(=的形式;②. 两端积分:=dx x f dy y g )()(,得隐式通解C x F y G +=)()(;③. 将隐函数显化. 2. 齐次方程及其解法(1).方程的形式:=x y dx dy ?. (2).方程的解法:变量替换法 (3). 求解步骤①.引进新变量x y u=,有ux y =及dxdux u dx dy +=;②.代入原方程得:)(u dxdux u ?=+;③.分离变量后求解,即解方程xdxu u du =-)(?;④.变量还原,即再用xy代替u . 3. 一阶线性微分方程及其解法 (1).方程的形式:)()(x Q y x P dxdy=+. 一阶齐次线性微分方程:0)(=+y x P dxdy.一阶非齐次线性微分方程:0)()(≠=+x Q y x P dxdy.(2).一阶齐次线性微分方程0)(=+y x P dxdy的解法: 分离变量法. 通解为-=x d x P Ce y )(,(R C ∈).(公式)(3).一阶非齐次线性微分方程0)()(≠=+x Q y x P dxdy的解法: 常数变易法. 对方程)()(x Q y x P dxdy=+,设?-=x d x P e x u y )()(为其通解,其中)(x u 为未知函数,从而有 ?---'=?x d x P x d x P e x P x u x u dxdy)()()()(e )(,代入原方程有 )()()()()(e)()()()(x Q e x u x P e x P x u x u x d x P x d x P xd x P =+-'?-?--?,整理得 ?='x d x P x Q x u )(e )()(,两端积分得 C dx ex Q x u xd x P +=)()()(,再代入通解表达式,便得到一阶非齐次线性微分方程的通解))(()()(C dx e x Q e y x d x P x d x P +=-dx e x Q e Ce x d x P x d x P x d x P ?-?-+=)()()()(,(公式)即非齐次线性方程通解=齐次线性方程通解+非齐次线性方程特解.第八章:空间解析几何与向量代数一、向量 ),,(),,,(),,,(c c c b b b a a a z y x c z y x b z y x a ===1.向量),,(a a a z y x a =与),,(b b b z y x b = 的数量积:b a b b b a z z y x x x b a b a ++==??cos;2. 向量),,(a a a z y x a = 与),,(b b b z y x b = 的向量积:bb b a a a z y x z y x k j i b a=?.sin b a b a =?的几何意义为以b a,为邻边的平行四边形的面积. 3. 向量),,(z y x r=的方向余弦:222222222cos ,cos ,cos zy x y zy x y zy x x ++=++=++=γβα,1cos cos cos 222=++γβα;2sin sin sin 222=++γβα. 4. 向量) ,,(a a a z y x a =与),,(b b b z y x b =垂直的判定:00=++?=??⊥b a b b b a z z y x x x b a b a.5. 向量),,(a a a z y x a =与),,(b b b z y x b =平行的判定:k z z y x x x k b k a b a b a ba b b b a ===?≠=?=??0,0//.6. 三向量共面的判定: ?=++0 c n b m a k c b a,,共面.7. 向量),,(a a a z y x a = 在),,(b b b z y x b = 上的投影:222Pr aa a ba b b b a a z y x z z y x x x a b a b j ++++=?= .二、平面1. 过点),,(000z y x P ,以),,(C B A n=为法向量的平面的点法式方程:0)()()(000=-+-+-z z C y y B x x A .2. 以向量),,(C B A n=为法向量的平面的一般式方程:0=+++D Cz By Ax .3. 点),,(111z y x M 到平面0=+++D Cz By Ax 的距离222111CB A D cz By Ax d +++++=错误!未找到引用源。

高等数学同济第七版7版下册习题全解

高等数学同济第七版7版下册习题全解

数,故/, = Jj( x2 + y1)3d(j = 2jj(x2+ y1) 3dcr.fh i)i又由于D3关于;t轴对称,被积函数(/ +r2)3关于y是偶函数,故jj(x2+j2)3dcr=2j(x2+y2)3da=2/2.Dy 1):从而得/, = 4/2.(2)利用对称性来计算二重积分还有以下两个结论值得注意:如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y)= -f(x,y) ,P Jjf/(x,y)da =0;D如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则=0.D«3.利用二重积分定义证明:(1)jj da=(其中(7为的面积);IJ(2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数);o n(3 ) JJ/( x,y)clcr = JJ/( x,y)drr + jJ/( x ,y) dcr ,其中 /) = /)! U /)2,,A 为两个I) b\ lh尤公共内点的W K域.证(丨)由于被枳函数./U,y)=1,故山二t积分定义得n"jj'ltr = Hm y^/( ,rji) A<r, = lim ^ Ac,=l i m cr= a.A—0n(1)Ji/(x,j)(Ic7=lim^i)1n=A lim y/(^(,i7,)A(7-,=k \\f{x,y)Aa.A-°台•{!(2)因为函数/U,y)在闭区域/)上可积,故不论把£»怎样分割,积分和的极限总是不变的.因此在分割D时,可以使和/)2的公共边界永远是一条分割线.这样fix.y)在A U D2上的积分和就等于&上的积分和加D2上的积分和,记为^/(^, ,17,) A CT, = ^/( ^, , 17,) A CT, + ^/(^, ,17,) A CT,./)(U0, ", l):令所有的直径的最大值A-0,上式两端同时取极限,即得Jf(x,y)i\a=j j f(x,y)d a+J J/(x f y)d a.p,un} V, n;Sa4.试确定积分区域/),使二重积分][(1-2x2-y2)d«l y达到最大值.I)解由二重积分的性质可知,当积分区域/>包含了所有使被积函数1 -2.v2 -V2 大于等于零的点,而不包含使被积函数1 -2/ -y2小于零的点,即当£»是椭圆2/ +y2 = l 所围的平面闭区域时,此二重积分的值达到最大.& 5.根据二重积分的性质,比较下列积分的大小:(1)Ju+y)2山7与J[U,其中积分区域D是由x轴、^轴与直线A+.、=D I)1所围成;(2)J(x+7)2如与■,其中积分区域0是由圆周(.r-2)2+(.v-l)2=t) n2所围成;(3)I'm A;+y)(l o r与!"[I n(X+y)]2(1(7,其中Z>是三角形闭K域,三顶点分别为l)"(1,0),(1,1),(2,0);(3)J p n(:r+y)d c r与I n(:t+y)]2f W,其中/)=|(.r,.v)|3,0彡、彡1 .i) i)解(1)在积分K域0上,故有(x + j) 3 ^ (x + y) 2.根据二重积分的性质4,可得J(.r + y) \lrx ^ J (.\ + v)0D由于积分区域0位于半平面| (A:,V) | .V+ •、彡1 1内,故在/)|:&(.f + y) 2彡(A + y) 3•从『("• J( v + > ):drr ^ jj ( x + y) \l f r.(1)由于积分区域D位于条形区域1U,y)|1彡1+7彡2丨内,故知区域/)上的点满足0彡InU+y)彡1,从而有[lnU+y)]2彡lnU+.y).因此j j[l n(a:+y)]2(J o-^+y)d(2)由于积分区域/)位于半平面丨(x,y) | .v+y彡e|内,故在Z)上有l n(x+y)彡1,从而:I n(-v+)')]2彡I n(:c+)').因此Jj^ 1 n(.r + y) ] 2dcr ^ Jln( x + y) da.i) a3 6.利用二重积分的性质估计下列积分的值:(1) / = |^7(文+7)心,其中/)= \ (x ,y) 1,0 1|;n(2)/=j^sin^sin^do■,其中/)=j(A:,y)|0^^^TT,0^y^TT1;i)(3)/= J*(A:+y + l)d(7,其中/>= { {x,y) |0^x^l,0^j^2[;it(4)/=J(x2 +4y2 +9)do•,其中D= \{x,y) \x2 +y2 ^ 4|.I)解(1)在积分区域D上,0矣;<:矣1,0英y矣1,从而0矣巧•(*+y)矣2•又£»的面积等于1,因此(2)在积分区域/)上,0矣sin J:矣1,0^sin1,从而0彡sin2A:sin2y彡1,又0的面积等于TT2,W此(3)在积分K域"上有\^x+y +\«4,/)的而积等于2,因此(4)W为在积分K域/>»上有0矣;t2+y2苳4,所以有9^+4r2+9^4( x2+y2)+9矣25.34I)的酣枳等于4TT,W此36TT^[[(x2+4/+9)(Ur^lOO-ir.二重积分的计算法.^1.计算下列二甩积分:可编辑l<3x 十2) ;dcr ,其中"是由两坐标轴及直线-X - + v = 2听围成的闭区域; b ( 3 J jj( x J + 3x 2 \ + v 3 ) da ,其中 D = ( x , v ) 0 ^ A : ^ 1 .0 ^ v ^ 1 ; u ( 4 ) jjxcas( X + Y j do ■,其中Z >是顶点分别为( 0 .0 j < 77 ,0 )和( 77 , 77 )的三角形闭区域. m (1 x 2 4- V 2 )d(T = f dxf (X 2 -h V 2 ) d V dx j fh 2 D 不等式表示为 2 r 2 -x 3xy +y 2]l~x dx =| (4+ 2x - 2x 2 ) dx 20 3(+ 3x 2y + y 3 )da = d > (文3 + 3.r 2 v +、、)ch . + x y + v " JC di (4) l )可用不等式表示为 0 ^ V ^ A : , 0 ^ .t ^ 7T . 于是 |A :COS (JC + y ) da = I cos(.v + v )d I [ sin (.t + y ) ] Q ()^ = J V ( sin 2.v - sin .v ) <1 x x(\( cos .v —丄(.<,s 2.v ) 卜( 1X (-TT r T X cos .v - —rus TT. & 2. _出枳分ix:域,斤i 卜r): v 列m 分:x2^y^J^,0矣x矣1(图10-2).0«^^/4-y2,-2矣7矣2(图10-3),(2)J^^do■,其中/)是由两条抛物线7=v^,y=*2所围成的闭区域;D(3)jfxy2dcr,其中D是由圆周x2+J2=4及y轴所围成的右半闭区域;I)(3)JV+'dcr,其中/)=I(%,)•)||A;|+|J|^1!;D(4)|"U2+/-x)<lo•,其中D是由直线y:l、y二xh :2*所围成的闭区域.D解(1)0可用不等式表示为于是(4)D可用不等式表示为(3)如阁I()-4,W=/\U"2,其中/>1= \(x,y)\-x-\ ^y^Jc + 1,-1 ^a;^0|,I)2=\(x,y) |*-1 +因此Ea3.如果二重积分|/( .r,y)心办的被积函数/(x,v)是两个函数/](O及)的乘n积,即/(X,y) =f\(x)./“y),积分区域/)={(.V,y)I(1^V^/>,r^,证叫这个二重积分等于两个单积分的乘枳,即|*/|U) -/2(r) fl atl y = [ J/, (.v)(l.v] - [ [/:( > )^v]-证Jj./1(x)•.,2(/)dvd V~J[f J \(v)■ ./:t^]l^x*在上式右端的第一次单枳分f/,(.V)•/2(.V)d v中,./,(A.)1J fut变招:、无关,nn见为常数提到积分5外,W此上式“端笏T可编辑fix/ = j [ dy ^/(*,y )tk .而在这个积分中,由于f/2 (y ) d y 为常数,故又可提到积分号外,从而得到• f 2<,y)^xAy= [| /2(y )dj ] - [ J n /, (x )dx ]证毕. ^4.化二重积分/ = Jf(x ,y )daI)为二次积分(分别列出对两个变量先后次序不同的两个二次积分),其中积分区域£>是:(1) 由直线及抛物线y 2 =4x 所围成的闭区域; (2) 由x 轴及半圆周/ +y 2 =r 2(y 英0)所围成的闭区域;(3) 由直线y =x ,;c = 2及双曲线:K = ^-(*>0)所围成的闭区域;X(4) 环形闭区域 IU ,y ) | 1+y 2^4(.解(1)直线y =x 及抛物线y 2 =4;c 的交点为(0,0)和(4,4)(图10-6).于是f(x,y)dy,(1)将/)用不等式表示'fyO^y^r 2 -x 2,- r ^ W /•,于是可将/化为如下的先 对y 、后对*的二次积分:r/ = J (1文Jf(x ,y)(\y ;如将0叫不等式表示为~Vr 2 -y 2^x^Vr 2 - y 2 ,0各/•,则可将/化为如卜的 先对*、后对y 的二次枳分:可编辑dr x,y) dx. (3)如图 10-7. :条边界曲线两两相交,先求得3个交点为(1 ,1 ),2,y 和(2,2).于是dy (i_/(^,y)+ tlj /( x ,y)dx.dx• \/4J\x y y)dy + d.vl(1%/T/(A :,y)clr + d.vl ■ y A -x 2/(.r ,v )d > -f/(.v V v ) dv ./(.v ,v )d.v -f.\/4-、 /( \ , > ) d.v-f厂、/4 -、•'•I-v^ W"/( v , y) (l .\.| dxj[f(x,y)dy.注本题说明,将二重积分化为二次积分时,需注意根据积分区域的边界曲线 的情况,选取恰当的积分次序.本题中的积分区域/)的上、下边界曲线均分别由—个 方程给出,而左边界曲线却分为两段,由两个不同的方程给出,在这种情况下采取先 对y 、后对^的积分次序比较有利,这样只需做一个二次积分,而如果采用相反的枳 分次序则需计算两个二次积分.需要指出,选择积分次序时,还需考虑被积函数/U , y )的特点.具体例子n ]'见教 材下册第144页上的例2.(4)将D 按图10 - 8( a )和图10 - 8( 1>)的两种不同方式則分为4块,分別得x ,r) d.t.(5) (lx\ f{x,y)Ay\广2 f yix -x2(4)|叫2f{x,y)dy-,fix /-sin x(6)I Ax\J(x,y)Ay.JO J - siny图10-8,5.设/U,Y)在D上连续,其中/)是由直线;==所围成的闭区域,证明dx| f(x,y)Ay证等式两端的二次积分均等于二重积分J/U,y)d o•,因而它们相等.I)^6.改换下列二次积分的积分次序:(2) J) dj|:f(x,y)dx;解(丨)所给二次积分等于二重积分J[/U,;K)(^,其中o =丨h,y)1° ^ ^ ^r-"0 ^ j ^ I(. /> n|■改写为 | Uj) | * 矣y矣 1,0 ^ ^ I | (罔 10 - 9),于是原式=丄<ixj/(x,y)dy.(3)所给一.次枳分等于二'Ti积分|/U,y)山,.K:中/)=I|.y2^^<2y,0 ^21. M I) njm为{u’y) I 音矣 j ^ 7^,0 ^ x 在4)( 1冬 1 1(> - I0),W此原式=J,i\xjy/(x,y)i\y.-y 2^.V ^1$、飞 V 彡1(4) 所给二次积分等于二重积分.其中D = : (.v .v ) | - V 1UX ^ J 1 - y 2 ,0彡 >•彡 1 ; •又 D 可表示为:(JC ,)*)丨0彡 y 彡 V 1 - .r 2 , - 1 = (图10 -11),因此f 1f V 1 -X~原式=J ^ dxj/(x , v )dy .(5) 所给二次积分等于二重积分其中D = : (.v .v ) ' 2 -hs/lx - x 1 %\ 彡.r 彡2 :.又 D 可表示为:(A :,V ) | 2 - 1彡.t •彡 1 + Y 1 — v 2,0 : (图 10 -12),故原式=丄 d)j f(x %y)dx.(6)所给二次积分等于二重积分]|/(.10 )(1^,)1:中/)= 1(.v .v ) | 0 ^ v ^I)x 彡e | •又/)可表示为| ( A :,>•) | e 、彡A •彡e ,0彡、彡1 i ( |劄10 - 1,故原式=L (I .、| ,./X .、,.、) (l .v .m1()-14,将积分|><:域/)丧示为/),U/)2,其中A),=j U,、)|arcsin>^可编辑/(x,y)dx. y广 1 r ir - arcsin > 原式=Idyf(x yy)c\xJO Jarcsin )T T - arcsin y ,0彡 y 彡 1 |1,D 2 = | (.r,y)一 2arcsi n , 一 1 彡)'彡0|.于是rt-x + xydrAy~d\ c\) ''i x E | o»•Y = s i n A的反闲数足A = i i r r s»My- -1 x足ih y - H in x = sin ( T T - x) "n!J TT - x ^ ar cKin y,从ifii 得反闲数 ^(子•中,TTT T - iin-Hiny.^7.设平面薄片所占的闭区域D 由直线;t = 2,y = 和;r 轴所围成,它的面密度/x (.t ,v ) = x 2 +y 2,求该薄片的质量.解 D 如图10-15所示.所求薄片的质M = jJ/Lt( x 9y) dcr = ^ dyj ( x 2 + y 2 ) dxr[+(2”)3+2,12| 冬| 10 - 158. i |灯|l |四个平而A : = 0,y = 0,;t = I ,v = I 所闲成的柱休被平面z = 0及2.r +3y + z 6藏得的立休的体积.V - (I 6 - ^ x 2 + y 2) dx(\y6 ( 1 - x ) - x 2+——f 1\1_6"*10-17m 10 - 18解 江力一 E J .它??芪是;c 0:. S 二苎泛7:省•。

高数下册知识点 - 第七版

高数下册知识点 - 第七版

求出所有驻点,对于每一个驻点 ( x0 , y0 ) ,令
A f xx ( x0 , y0 ) , B f xy ( x0 , y0 ) , C f yy ( x0 , y0 ) ,
2 ① 若 AC B 0 , A 0 ,函数有极小值, 2 若 AC B 0 , A 0 ,函数有极大值;
2) a b a b 0 a b a x bx a y by a z bz 2、 向量积: c a b 大小: a b sin ,方向: a , b , c 符合右手规则 1) a a 0 2) a // b a b 0 i j k a b ax a y az bx by bz 运算律:反交换律 b a a b

x x0 mt y y0 nt 3、 参数式方程: z z0 pt 4、 两直线的夹角: s1 (m1 , n1 , p1 ) , s2 (m2 , n2 , p2 ) ,
cos
m1m2 n1n2 p1 p2
2 2 2 m12 n12 p12 m2 n2 p2
f y ( x0 , y0 ) lim
6、 方向导数:
y0
f ( x0 , y0 y) f ( x0 , y0 ) y
7、 梯度: z f ( x, y) ,则 gradf ( x0 , y0 ) f x ( x0 , y0 )i f y ( x0 , y0 ) j 。
cos 2 cos 2 cos 2 1
a a cos ,其中 为向量 a 与 u 5) 投影: Pr ju 的夹角。

高等数学同济第七版下册习题与答案完整版

高等数学同济第七版下册习题与答案完整版

高等数学同济第七版下册习题与答案完整版引言在学习高等数学课程中,习题是提高理解和掌握知识的重要方式。

然而,有时候我们在学习的过程中可能会遇到一些难题,不知道如何解答。

为了帮助同学们更好地学习和掌握高等数学知识,我们整理了高等数学同济第七版下册的习题与答案完整版,供大家参考。

第一章无穷级数习题1.11.讨论级数 $\\sum_{n=1}^{\\infty} \\frac{n^3 +2n}{(2n^2 + 3n - 4)^2}$ 的敛散性。

2.求级数 $\\sum_{n=1}^{\\infty} \\frac{(-1)^n}{n^2}$ 的和。

答案1.首先,我们将这个级数进行比较审敛法。

考虑到n3+2n的最高次项为n3,而(2n2+3n−4)2的最高次项为(2n2)2=4n4,因此我们可以得到 $\\frac{n^3 +2n}{(2n^2 + 3n - 4)^2} < \\frac{n^3 + 2n}{4n^4}$。

根据比较审敛法的基本原理,只需讨论 $\\sum_{n=1}^{\\infty} \\frac{n^3 + 2n}{4n^4}$ 的敛散性。

根据级数的性质,我们可以分别求前两项、前三项的和,并观察和的变化规律。

经过计算,可得前两项的和为 $\\frac{1}{16}$,前三项的和为 $\\frac{5}{96}$。

观察可以发现,当 n 的值逐渐增大时,和逐渐减小,并且趋于一个有限值。

因此,根据比较审敛法,原级数$\\sum_{n=1}^{\\infty} \\frac{n^3 + 2n}{(2n^2 + 3n - 4)^2}$ 也收敛。

2.我们可以使用交错级数的性质求解这个问题。

根据交错级数的性质,交错级数 $\\sum_{n=1}^{\\infty}\\frac{(-1)^n}{n^p}$ 的和为 $S = \\ln 2$,其中n=1。

对于这个问题,我们可以发现,级数$\\sum_{n=1}^{\\infty} \\frac{(-1)^n}{n^2}$ 的形式和交错级数一样,只是n=2。

高等数学第七版下册 同济 部分知识点

高等数学第七版下册 同济 部分知识点

2 ()
∭ (, , ) = ∫ ∫

Ω
2 (,)

1 ()
(, , )
1 (,)
=
三重积分转化为柱坐标计算 { =
=
⇒ ∭ (, , ) = ∭ (, , )
=0
当|| < 1时,级数收敛
当|| > 1时,级数发散
当|| = 1时,级数发散

1
调和级数 ∑ 发散

=1
基本性质:


如果级数 ∑ 收敛于和 s ,那么级数 ∑ 也收敛于和 (为常数)
=1

=1


∑ = , ∑ = ,那么 ∑ ( ) = ±

( )
的计算

1 当 = C即有( ) = ( + ) = ( + )




1
——sxd
( )

亦然
2 当 = (, )即有 ( ) = + ( &#= + ( + )

方向导数 │
(0 ,0 )
= (0 , 0 ) cos + (0 , 0 ) cos ,其中cos ,cos 是方向的方向余

梯度grad(0 , 0 ) =▽(0 , 0 ) = (0 , 0 ) → + (0 , 0 ) →


三元函数 = (, , ) 全微分 = + +
抽象函数的 z 偏导
= (, ), = (, ), = (, )

高等数学同济第七版7版下册习题全解

高等数学同济第七版7版下册习题全解

数,故/, = Jj( x2 + y1)3d(j = 2jj(x2+ y1) 3dcr.fh i)i又由于D3关于;t轴对称,被积函数(/ +r2)3关于y是偶函数,故jj(x2+j2)3dcr=2j(x2+y2)3da=2/2.Dy 1):从而得/, = 4/2.(2)利用对称性来计算二重积分还有以下两个结论值得注意:如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y)= -f(x,y) ,P Jjf/(x,y)da =0;D如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则=0.D«3.利用二重积分定义证明:(1)jj da=(其中(7为的面积);IJ(2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数);o n(3 ) JJ/( x,y)clcr = JJ/( x,y)drr + jJ/( x ,y) dcr ,其中 /) = /)! U /)2,,A 为两个I) b\ lh尤公共内点的W K域.证(丨)由于被枳函数./U,y)=1,故山二t积分定义得n"jj'ltr = Hm y^/( ,rji) A<r, = lim ^ Ac,=l i m cr= a.A—0n(1)Ji/(x,j)(Ic7=lim^i)1n=A lim y/(^(,i7,)A(7-,=k \\f{x,y)Aa.A-°台•{!(2)因为函数/U,y)在闭区域/)上可积,故不论把£»怎样分割,积分和的极限总是不变的.因此在分割D时,可以使和/)2的公共边界永远是一条分割线.这样fix.y)在A U D2上的积分和就等于&上的积分和加D2上的积分和,记为^/(^, ,17,) A CT, = ^/( ^, , 17,) A CT, + ^/(^, ,17,) A CT,./)(U0, ", l):令所有的直径的最大值A-0,上式两端同时取极限,即得Jf(x,y)i\a=j j f(x,y)d a+J J/(x f y)d a.p,un} V, n;Sa4.试确定积分区域/),使二重积分][(1-2x2-y2)d«l y达到最大值.I)解由二重积分的性质可知,当积分区域/>包含了所有使被积函数1 -2.v2 -V2 大于等于零的点,而不包含使被积函数1 -2/ -y2小于零的点,即当£»是椭圆2/ +y2 = l 所围的平面闭区域时,此二重积分的值达到最大.& 5.根据二重积分的性质,比较下列积分的大小:(1)Ju+y)2山7与J[U,其中积分区域D是由x轴、^轴与直线A+.、=D I)1所围成;(2)J(x+7)2如与■,其中积分区域0是由圆周(.r-2)2+(.v-l)2=t) n2所围成;(3)I'm A;+y)(l o r与!"[I n(X+y)]2(1(7,其中Z>是三角形闭K域,三顶点分别为l)"(1,0),(1,1),(2,0);(3)J p n(:r+y)d c r与I n(:t+y)]2f W,其中/)=|(.r,.v)|3,0彡、彡1 .i) i)解(1)在积分K域0上,故有(x + j) 3 ^ (x + y) 2.根据二重积分的性质4,可得J(.r + y) \lrx ^ J (.\ + v)0D由于积分区域0位于半平面| (A:,V) | .V+ •、彡1 1内,故在/)|:&(.f + y) 2彡(A + y) 3•从『("• J( v + > ):drr ^ jj ( x + y) \l f r.(1)由于积分区域D位于条形区域1U,y)|1彡1+7彡2丨内,故知区域/)上的点满足0彡InU+y)彡1,从而有[lnU+y)]2彡lnU+.y).因此j j[l n(a:+y)]2(J o-^+y)d(2)由于积分区域/)位于半平面丨(x,y) | .v+y彡e|内,故在Z)上有l n(x+y)彡1,从而:I n(-v+)')]2彡I n(:c+)').因此Jj^ 1 n(.r + y) ] 2dcr ^ Jln( x + y) da.i) a3 6.利用二重积分的性质估计下列积分的值:(1) / = |^7(文+7)心,其中/)= \ (x ,y) 1,0 1|;n(2)/=j^sin^sin^do■,其中/)=j(A:,y)|0^^^TT,0^y^TT1;i)(3)/= J*(A:+y + l)d(7,其中/>= { {x,y) |0^x^l,0^j^2[;it(4)/=J(x2 +4y2 +9)do•,其中D= \{x,y) \x2 +y2 ^ 4|.I)解(1)在积分区域D上,0矣;<:矣1,0英y矣1,从而0矣巧•(*+y)矣2•又£»的面积等于1,因此(2)在积分区域/)上,0矣sin J:矣1,0^sin1,从而0彡sin2A:sin2y彡1,又0的面积等于TT2,W此(3)在积分K域"上有\^x+y +\«4,/)的而积等于2,因此(4)W为在积分K域/>»上有0矣;t2+y2苳4,所以有9^+4r2+9^4( x2+y2)+9矣25.34I)的酣枳等于4TT,W此36TT^[[(x2+4/+9)(Ur^lOO-ir.二重积分的计算法.^1.计算下列二甩积分:可编辑l<3x 十2) ;dcr ,其中"是由两坐标轴及直线-X - + v = 2听围成的闭区域; b ( 3 J jj( x J + 3x 2 \ + v 3 ) da ,其中 D = ( x , v ) 0 ^ A : ^ 1 .0 ^ v ^ 1 ; u ( 4 ) jjxcas( X + Y j do ■,其中Z >是顶点分别为( 0 .0 j < 77 ,0 )和( 77 , 77 )的三角形闭区域. m (1 x 2 4- V 2 )d(T = f dxf (X 2 -h V 2 ) d V dx j fh 2 D 不等式表示为 2 r 2 -x 3xy +y 2]l~x dx =| (4+ 2x - 2x 2 ) dx 20 3(+ 3x 2y + y 3 )da = d > (文3 + 3.r 2 v +、、)ch . + x y + v " JC di (4) l )可用不等式表示为 0 ^ V ^ A : , 0 ^ .t ^ 7T . 于是 |A :COS (JC + y ) da = I cos(.v + v )d I [ sin (.t + y ) ] Q ()^ = J V ( sin 2.v - sin .v ) <1 x x(\( cos .v —丄(.<,s 2.v ) 卜( 1X (-TT r T X cos .v - —rus TT. & 2. _出枳分ix:域,斤i 卜r): v 列m 分:x2^y^J^,0矣x矣1(图10-2).0«^^/4-y2,-2矣7矣2(图10-3),(2)J^^do■,其中/)是由两条抛物线7=v^,y=*2所围成的闭区域;D(3)jfxy2dcr,其中D是由圆周x2+J2=4及y轴所围成的右半闭区域;I)(3)JV+'dcr,其中/)=I(%,)•)||A;|+|J|^1!;D(4)|"U2+/-x)<lo•,其中D是由直线y:l、y二xh :2*所围成的闭区域.D解(1)0可用不等式表示为于是(4)D可用不等式表示为(3)如阁I()-4,W=/\U"2,其中/>1= \(x,y)\-x-\ ^y^Jc + 1,-1 ^a;^0|,I)2=\(x,y) |*-1 +因此Ea3.如果二重积分|/( .r,y)心办的被积函数/(x,v)是两个函数/](O及)的乘n积,即/(X,y) =f\(x)./“y),积分区域/)={(.V,y)I(1^V^/>,r^,证叫这个二重积分等于两个单积分的乘枳,即|*/|U) -/2(r) fl atl y = [ J/, (.v)(l.v] - [ [/:( > )^v]-证Jj./1(x)•.,2(/)dvd V~J[f J \(v)■ ./:t^]l^x*在上式右端的第一次单枳分f/,(.V)•/2(.V)d v中,./,(A.)1J fut变招:、无关,nn见为常数提到积分5外,W此上式“端笏T可编辑fix/ = j [ dy ^/(*,y )tk .而在这个积分中,由于f/2 (y ) d y 为常数,故又可提到积分号外,从而得到• f 2<,y)^xAy= [| /2(y )dj ] - [ J n /, (x )dx ]证毕. ^4.化二重积分/ = Jf(x ,y )daI)为二次积分(分别列出对两个变量先后次序不同的两个二次积分),其中积分区域£>是:(1) 由直线及抛物线y 2 =4x 所围成的闭区域; (2) 由x 轴及半圆周/ +y 2 =r 2(y 英0)所围成的闭区域;(3) 由直线y =x ,;c = 2及双曲线:K = ^-(*>0)所围成的闭区域;X(4) 环形闭区域 IU ,y ) | 1+y 2^4(.解(1)直线y =x 及抛物线y 2 =4;c 的交点为(0,0)和(4,4)(图10-6).于是f(x,y)dy,(1)将/)用不等式表示'fyO^y^r 2 -x 2,- r ^ W /•,于是可将/化为如下的先 对y 、后对*的二次积分:r/ = J (1文Jf(x ,y)(\y ;如将0叫不等式表示为~Vr 2 -y 2^x^Vr 2 - y 2 ,0各/•,则可将/化为如卜的 先对*、后对y 的二次枳分:可编辑dr x,y) dx. (3)如图 10-7. :条边界曲线两两相交,先求得3个交点为(1 ,1 ),2,y 和(2,2).于是dy (i_/(^,y)+ tlj /( x ,y)dx.dx• \/4J\x y y)dy + d.vl(1%/T/(A :,y)clr + d.vl ■ y A -x 2/(.r ,v )d > -f/(.v V v ) dv ./(.v ,v )d.v -f.\/4-、 /( \ , > ) d.v-f厂、/4 -、•'•I-v^ W"/( v , y) (l .\.| dxj[f(x,y)dy.注本题说明,将二重积分化为二次积分时,需注意根据积分区域的边界曲线 的情况,选取恰当的积分次序.本题中的积分区域/)的上、下边界曲线均分别由—个 方程给出,而左边界曲线却分为两段,由两个不同的方程给出,在这种情况下采取先 对y 、后对^的积分次序比较有利,这样只需做一个二次积分,而如果采用相反的枳 分次序则需计算两个二次积分.需要指出,选择积分次序时,还需考虑被积函数/U , y )的特点.具体例子n ]'见教 材下册第144页上的例2.(4)将D 按图10 - 8( a )和图10 - 8( 1>)的两种不同方式則分为4块,分別得x ,r) d.t.(5) (lx\ f{x,y)Ay\广2 f yix -x2(4)|叫2f{x,y)dy-,fix /-sin x(6)I Ax\J(x,y)Ay.JO J - siny图10-8,5.设/U,Y)在D上连续,其中/)是由直线;==所围成的闭区域,证明dx| f(x,y)Ay证等式两端的二次积分均等于二重积分J/U,y)d o•,因而它们相等.I)^6.改换下列二次积分的积分次序:(2) J) dj|:f(x,y)dx;解(丨)所给二次积分等于二重积分J[/U,;K)(^,其中o =丨h,y)1° ^ ^ ^r-"0 ^ j ^ I(. /> n|■改写为 | Uj) | * 矣y矣 1,0 ^ ^ I | (罔 10 - 9),于是原式=丄<ixj/(x,y)dy.(3)所给一.次枳分等于二'Ti积分|/U,y)山,.K:中/)=I|.y2^^<2y,0 ^21. M I) njm为{u’y) I 音矣 j ^ 7^,0 ^ x 在4)( 1冬 1 1(> - I0),W此原式=J,i\xjy/(x,y)i\y.-y 2^.V ^1$、飞 V 彡1(4) 所给二次积分等于二重积分.其中D = : (.v .v ) | - V 1UX ^ J 1 - y 2 ,0彡 >•彡 1 ; •又 D 可表示为:(JC ,)*)丨0彡 y 彡 V 1 - .r 2 , - 1 = (图10 -11),因此f 1f V 1 -X~原式=J ^ dxj/(x , v )dy .(5) 所给二次积分等于二重积分其中D = : (.v .v ) ' 2 -hs/lx - x 1 %\ 彡.r 彡2 :.又 D 可表示为:(A :,V ) | 2 - 1彡.t •彡 1 + Y 1 — v 2,0 : (图 10 -12),故原式=丄 d)j f(x %y)dx.(6)所给二次积分等于二重积分]|/(.10 )(1^,)1:中/)= 1(.v .v ) | 0 ^ v ^I)x 彡e | •又/)可表示为| ( A :,>•) | e 、彡A •彡e ,0彡、彡1 i ( |劄10 - 1,故原式=L (I .、| ,./X .、,.、) (l .v .m1()-14,将积分|><:域/)丧示为/),U/)2,其中A),=j U,、)|arcsin>^可编辑/(x,y)dx. y广 1 r ir - arcsin > 原式=Idyf(x yy)c\xJO Jarcsin )T T - arcsin y ,0彡 y 彡 1 |1,D 2 = | (.r,y)一 2arcsi n , 一 1 彡)'彡0|.于是rt-x + xydrAy~d\ c\) ''i x E | o»•Y = s i n A的反闲数足A = i i r r s»My- -1 x足ih y - H in x = sin ( T T - x) "n!J TT - x ^ ar cKin y,从ifii 得反闲数 ^(子•中,TTT T - iin-Hiny.^7.设平面薄片所占的闭区域D 由直线;t = 2,y = 和;r 轴所围成,它的面密度/x (.t ,v ) = x 2 +y 2,求该薄片的质量.解 D 如图10-15所示.所求薄片的质M = jJ/Lt( x 9y) dcr = ^ dyj ( x 2 + y 2 ) dxr[+(2”)3+2,12| 冬| 10 - 158. i |灯|l |四个平而A : = 0,y = 0,;t = I ,v = I 所闲成的柱休被平面z = 0及2.r +3y + z 6藏得的立休的体积.V - (I 6 - ^ x 2 + y 2) dx(\y6 ( 1 - x ) - x 2+——f 1\1_6"*10-17m 10 - 18解 江力一 E J .它??芪是;c 0:. S 二苎泛7:省•。

同济高等数学第七版下册

同济高等数学第七版下册

同济高等数学第七版下册1. 引言《同济高等数学第七版下册》是同济大学数学系编写的一本高等数学教材。

本教材是数学专业本科生的必修课程,主要涵盖了微分方程、多元函数积分学、曲线积分与曲面积分等内容。

本文将对该教材进行全面的介绍和评价。

2. 教材概述《同济高等数学第七版下册》共分为十个章节,分别是:1.微分方程初步2.二阶线性常微分方程3.欧拉方程和二阶齐次线性微分方程4.变量分离方程和一阶线性微分方程5.常系数齐次线性微分方程6.变系数线性微分方程7.高阶线性微分方程8.多元函数微分学初步9.多元函数的偏导数与全微分10.曲线积分与曲面积分每个章节都有详细的讲解和例题,并配有练习题供读者练习。

3. 教材特点《同济高等数学第七版下册》的特点主要体现在以下几个方面:3.1. 内容全面教材内容全面涵盖了微分方程、多元函数积分学、曲线积分与曲面积分等重要的数学知识点。

每个章节的讲解都循序渐进,结构清晰,易于理解。

3.2. 理论与实践相结合教材不仅讲解了理论知识,还通过大量的例题和习题来巩固和应用所学知识。

这种理论与实践相结合的方式有助于学生更好地理解难点和掌握解题技巧。

3.3. 题目分类明确教材中的习题按照题型和难度进行分类,有助于学生选择适合自己水平的习题进行巩固训练。

每个章节还配有习题的解答,方便学生自我检验和纠正。

4. 教材优势4.1. 知识点详尽在每个章节的讲解中,教材都对重要的知识点进行了详尽的讲解,包括基本概念、性质、定理和定律等。

学生通过学习教材,可以全面了解和掌握数学中的基本概念和知识。

4.2. 解题方法详细教材中的例题和习题都给出了详细的解题方法和步骤,对于学生来说非常有帮助。

通过学习教材,学生可以了解到不同类型题目的解题思路和技巧。

4.3. 知识扩展教材还提供了一些扩展知识和拓展阅读的内容,进一步丰富了教材的知识面。

这对于对数学有浓厚兴趣的学生来说,可以提供更多的学习资源和学习机会。

5. 教材不足虽然《同济高等数学第七版下册》在内容和讲解方面都有一定的优势,但也存在一些不足之处:5.1. 难度适应问题教材的难度适应的问题不够良好,有些章节的内容对于一些学生来说可能较难理解,而有些章节的内容又相对简单。

同济大学数学系《高等数学》(第7版)(下册)配套题库【考研真题精选+章..

同济大学数学系《高等数学》(第7版)(下册)配套题库【考研真题精选+章..

目 录第一部分 考研真题精选第8章 向量代数与空间解析几何第9章 多元函数微分法及其应用第10章 重积分第11章 曲线积分与曲面积分第12章 无穷级数第二部分 章节题库第8章 向量代数与空间解析几何第9章 多元函数微分法及应用第10章 重积分第11章 曲线积分与曲面积分第12章 无穷级数第一部分 考研真题精选第8章 向量代数与空间解析几何填空题(把答案填在题中横线上)点(2,1,0)到平面3x+4y+5z=0的距离d=______。

[数一2006研]【答案】【解析】由点到平面的距离公式第9章 多元函数微分法及其应用一、选择题1设函数f(x,y)在点(0,0)处可微,f(0,0)=0,,且非零向量→d与→n垂直,则( )。

[数一2020研]A.存在B.存在C.存在D.存在A【答案】【解析】∵f(x,y)在(0,0)处可微,f(0,0)=0,∴;即。

∵,∴存在。

∴选A项。

2关于函数给出下列结论①∂f/∂x|(0,0)=1②∂2f/∂x∂y|(0,0)=1③④正确的个数为( )。

[数二2020研]A.4B.3C.2D.1【答案】B【解析】①因,故①正确。

②因,先求f x′(0,y),而当y≠0时,不存在;当y=0时,;综上可知,f x′(0,y)不存在。

故∂2f/∂x∂y|(0,0)不存在,因此②错误。

③当xy≠0时,,当(x,y)沿着y轴趋近于(0,0)点时,;当(x,y)沿着x轴趋近于(0,0)点时,;综上可知,,故③正确。

④当y=0时,;当y≠0时,,故,则,故④正确。

综上,正确个数为3。

故应选B。

3函数f(x,y,z)=x2y+z2在点(1,2,0)处沿向量→u=(1,2,2)的方向导数为( )。

[数一2017研]A.12B.6C.4D.2D【答案】计算方向余弦得:cosα=1/3,cosβ=cosγ=2/3。

偏导数f x′=2xy,f y′=x2,f z′=2z。

得∂f/∂u=f x′cosα+f y′cosβ+f z′cosγ=4·(1/3)+1·(2/3)+0·(2/3)=2。

高等数学同济第七版下册笔记

高等数学同济第七版下册笔记

高等数学同济第七版下册笔记
以下是高等数学同济第七版下册的部分笔记:
1. 向量代数与空间解析几何:
复习笔记:包括向量及其线性运算、数量积、向量积、混合积、平面及其方程、空间直线及其方程、曲面及其方程、空间曲线及其方程等。

课后习题详解:对每个章节的习题进行详细的解答,包括向量的线性运算、向量的数量积、向量的向量积、向量的混合积、平面方程、空间直线方程、曲面方程、空间曲线方程等。

2. 多元函数微分法及其应用:
复习笔记:包括多元函数的基本概念、偏导数、全微分、多元复合函数的求导法则、隐函数的求导公式、多元函数微分学的几何应用、方向导数与梯度、多元函数的极值及其求法等。

课后习题详解:对每个章节的习题进行详细的解答,包括多元函数的偏导数、全微分、多元复合函数的求导法则、隐函数的求导公式等。

3. 重积分:
复习笔记:包括二重积分的概念与性质等。

课后习题详解:对每个章节的习题进行详细的解答,包括二重积分的计算等。

以上是高等数学同济第七版下册的部分笔记,如需获取更多内容,建议查阅相关教辅练习或咨询专业人士。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档