七年级下学期期末考试数学试题(含答案)
(完整版)七年级数学下册期末测试题及答案(共五套)
李庄七年级数学下册期末测试题及答案姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A 。
16=±4B 。
±16=4 C.327-=-3 D 。
2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B ) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A 。
135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C 。
331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210。
2022年七年级第二学期数学期末考试试题(含答案)(山东地区)
七年级下学期数学期末考试试题(满分:150分时间:120分钟)一.单选题。
(共10小题,每小题4分,共40分)3、下列运算正确的是()A、a5+a5=a10B、(a3)3=a9C、(ab4)4=ab8D、a6÷a3=a24.如图,将一个含有30°的直角三角板的顶点放在直尺的一边,若∠1=46°,则∠2的度数是()A.46°B.76°C.94°D.104°(第4题图)(第5题图)(第6题图)(第7题图)6.如图,y=2x+10表示了自变量与因变量y的关系,当x每增加1时,y增加()A.1B.2C.6D.127.如图,2019年6月12日京张铁路轨道全线贯通,当高铁匀速通过隧道(隧道长大于火车长)时,高铁在隧道内的长度y与高铁进入隧道的时间x之间的关系用图象描述大致是()A.AASB.SASC.SSSD.ASA(第8题图)(第9题图)(第10题图)9.如图,在△ABC中,AB,AC的垂直平分线分别交BC于点E,F,若∠BAC=114°,则∠EAF 的度数为()A.40°B.44°C.48°D.52°二.填空题。
(共6小题,每小题4分,共24分)11、计算:a(a+3)= 。
12、一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上,如果每块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是。
(第12题图)(第15题图)(第16题图)13、若(x-6)2=x2+kx+36,则k的值是。
14、在弹性限度内,弹簧挂上物体后会伸长,已知一弹簧的长度y(cm)与所挂物体的质量x(kg)之间的关系如下表:写出y与x的关系式。
15、如图,直线a∥b,将一含30°角的直角三角板ABC按如图方式放置,其中一条直角边的两顶点C 和A 分别落在直线a ,b 上,若∠1=25°,则∠2= 。
2021-2022学年七年级下学期期末考试数学试题(含答案解析)
2021-2022学年七年级下学期期末考试数学试卷一.选择题(共10小题,满分20分,每小题2分)1.(2分)在平面直角坐标系中,点P(﹣2020,2021)在()A.第一象限B.第二象限C.第三象限D.第四象限解:∵P(﹣2020,2021)的横坐标小于0,纵坐标大于0,∴点P(﹣2020,2021)在第二象限,故选:B.2.(2分)下列调查中,最适宜采用普查方式的是()A.对全国初中学生视力状况的调査B.对“十一国庆”期间全国居民旅游出行方式的调查C.旅客上飞机前的安全检查D.了解某种品牌手机电池的使用寿命解:A、对全国初中学生视力状况的调査,范围广,适合抽样调查,故A错误;B、对“十一国庆”期间全国居民旅游出行方式的调查范围广,适合抽样调查,故B错误;C、旅客上飞机前的安全检查,适合普查,故C正确;D、了解某种品牌手机电池的使用寿命,适合抽样调查,故D错误;故选:C.3.(2分)如图是某电商今年1﹣5月份销售额统计图,根据图中信息,可以判断相邻两个月销售额变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月解:1月至2月,30﹣23=7(万元),2月至3月,30﹣25=5(万元),3月至4月,25﹣15=10(万元),4月至5月,19﹣15=4(万元),则相邻两个月销售额变化最大的是3月至4月. 故选:C .4.(2分)下列说法正确的是( ) A .1的平方根是1 B .25的算术平方根是±5C .(﹣6)2没有平方根D .立方根等于本身的数是0和±1解:A .1的平方根是±1,故本选项不合题意; B .25的算术平方根是5,故本选项不合题意; C .(﹣6)2的平方根是±6,故本选项不合题意; D .立方根等于本身的数是0和±1,故本选项符合题意. 故选:D .5.(2分)如图,直线a ,b 被直线c 所截,a ∥b ,若∠2=45°,则∠1等于( )A .125°B .130°C .135°D .145°解:如图,∵a ∥b ,∠2=45°, ∴∠3=∠2=45°, ∴∠1=180°﹣∠3=135°, 故选:C .6.(2分)若a <b ,则下列不等式正确的是( ) A .3a >3bB .﹣2a >﹣2bC .a2>b2D .3﹣a <3﹣b解:A .不等式两边都乘以一个正数,不等号方向不改变,则A 错误; B .不等式两边都乘以一个负数,不等号方向改变,则B 正确;C.不等式两边都除以一个正数,不等号方向不改变,则C错误;D.因a<b,则﹣a>﹣b,于是3﹣a>3﹣b,则D错误.故选:B.7.(2分)√13的值在()A.1与2之间B.2与3之间C.3与4之间D.5与6之间解:∵√9<√13<√16,∴3<√13<4,故选:C.8.(2分)已知点A(2,2√2),B(5,√2),若线段CD是由线段AB沿y轴方向向下平移2√2个单位得到的,则线段CD两端点的坐标分别为()A.(2−2√2,2√2),(5−2√2,√2)B.(2,4√2),(5,3√2)C.(2,0),(5,−√2)D.(2,0),(5,﹣2)解:点A(2,2√2),B(5,√2),线段AB沿y轴方向向下平移2√2个单位,即把各点的纵坐标都减2√2,即可得到线段CD两端点的坐标.则C(2,0),D(5,−√2).故选:C.9.(2分)下列命题为假命题的是()A.对顶角相等B.如果AB⊥CD,垂足为O,那么∠AOC=90°C.经过一点,有且只有一条直线与这条直线平行D.两直线平行,同位角相等解:A、对顶角相等,是真命题;B、如果AB⊥CD,垂足为O,那么∠AOC=90°,是真命题;C、∵经过直线外一点,有且只有一条直线与这条直线平行,∴本选项说法是假命题;D、两直线平行,同位角相等,是真命题;故选:C.10.(2分)为了奖励学习进步的同学,某班准备购买甲、乙、丙三种不同的笔记本作为奖品,其单价分别为2元、3元、4元,购买这些笔记本需要花60元;经过协商,每种笔记本单价下降0.5元,只花了49元,那么以下哪个结论是正确的()A .乙种笔记本比甲种笔记本少4本B .甲种笔记本比丙种笔记本多6本C .乙种笔记本比丙种笔记本多8本D .甲种笔记本与乙种笔记本共12本解:设分别甲、乙、丙三种不同的笔记本x 、y 、z , 根据题意得:{2x +3y +4z =60①1.5x +2.5y +3.5z =49②,①﹣②得:x +y +z =22 ③, ③×3﹣①得,x ﹣z =6,故甲种笔记本比丙种笔记本多6本, 故选:B .二.填空题(共6小题,满分12分,每小题2分)11.(2分)某品牌电脑的成本为2200元,售价为2800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x 折销售,请依据题意列出关于x 的不等式: 2800×x10−2200≥2200×5% . 解:由题意得:2800×x10−2200≥2200×5%, 故答案为:2800×x10−2200≥2200×5%. 12.(2分)不等式组{x >a x >2的解集为x >2,则a 的取值范围是 a ≤2 .解:由不等式组{x >a x >2的解集为x >2,可得a ≤2.故答案为:a ≤213.(2分)如图,直线AB ,CD 相交于点O ,EO ⊥AB ,垂足为O ,∠AOD =118°,则∠EOC 的度数为 28° .解:∵∠AOD =118°,∴∠BOC=∠AOD=118°,∵EO⊥AB,∴∠BOE=90°,∴∠EOC=∠BOC﹣∠BOE=28°,故答案为:28°.14.(2分)某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有300人.解:由统计图可得,这所学校赞成举办演讲比赛的学生有:1200×(1﹣40%﹣35%)=1200×25%=300(人),故答案为:300.15.(2分)如果|a﹣2|=2﹣a,那么(a﹣3,a﹣4)在第三象限.解:∵|a﹣2|=2﹣a,∴a﹣2≤0,解得a≤2,∴a﹣3<0,a﹣4<0,∴(a﹣3,a﹣4)在第三象限.故答案为:三.16.(2分)已知,a,b是正整数.若√7a+√10b是整数,则满足条件的有序数对(a,b)为(7,10)或(28,40).解:∵a,b是正整数.√7a+√10b是整数,∴a=7,b=10或a=4×7,b=4×10,即满足条件的有序数对(a,b)为(7,10)或(28,40).故答案为(7,10)或(28,40). 三.解答题(共8小题,满分68分) 17.(8分)计算:(1)√25+√−273+√214; (2)2√2−|√2−1|. 解:(1)√25+√−273+√214 =5+(﹣3)+32=2+32 =72.(2)2√2−|√2−1| =2√2−√2+1 =√2+1.18.(8分)解方程组:{5(x −9)=6(y −2)x 4−y+13=2.解:方程组整理得:{5x −6y =33①3x −4y =28②,①×2﹣②×3得:10x ﹣12y ﹣3(3x ﹣4y )=66﹣84, 解得:x =﹣18,把x =﹣18代入①得:y =﹣20.5, 则方程组的解为{x =−18y =−20.5.19.(8分)(1)解不等式4x ﹣3<2x +1,并把解集表示在数轴上. (2)解不等式组{3x +2>x2−4(x −4)≥2x,并写出它的整数解.解:(1)移项得,4x ﹣2x <1+3, 合并同类项得,2x <4, 系数化为1得,x <2. 在数轴上表示为:.(2){3x+2>x①2−4(x−4)≥2x②,解①得:x>﹣1,解②得:x≤3,故不等式的解集为:﹣1<x≤3,其的整数解为0,1,2,3.20.(8分)南开中学为了培养学生的地理实践能力,举办了“自制地球仪”比赛.我校地理老师在全校学生的参赛作品中随机抽取了部分作品进行质量评估,成绩如下:61,62,62,63,64,64,64,65,65,65,65,65,66,67,69,71,71,72,72,72,73,73,73,74,74,75,75,75,75,75,75,76,78,78,78,82,82,83,85,85,85,87,87,88,88,291,92,95,97,98,并将成绩统计后绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题:分数x频数(人)频率60≤x<70150.370≤x<80a80≤x<90b90≤x≤1005合计c1(1)频数分布表中,a=0.4,b=10,c=50;(2)补全频数分布直方图;(3)本次比赛学校共收到参赛作品900件,若80分以上(含80分)的作品将被展出,试估计全校将展出的作品数量.解:(1)分别统计各组的频数可得,70≤x<80的频数为20,80≤x<90的频数为10,因此a=20÷50=0.4,b=10,c=15+20+10+5=50,故答案为:0.4,10,50,(2)补全频数分布直方图如图所示:(3)900×10+550=270(人),答:全校将展出的作品数量为270件.21.(8分)完成下面的证明:如图,AB和CD相交于点O,AC∥BD,∠A=∠AOC.求证∠B=∠BOD.证明:∵AC∥BD(已知)∴∠A=∠B(两直线平行,内错角相等).∵∠A=∠AOC(已知)∴∠B=∠AOC(等量代换).∵∠AOC=∠∠BOD(对顶角相等).∴∠B=∠BOD(等量代换).证明:∵AC∥BD(已知)∴∠A=∠B(两直线平行,内错角相等).∵∠A=∠AOC(已知)∴∠B=∠AOC(等量代换).∵∠AOC=∠BOD(对顶角相等).∴∠B=∠BOD(等量代换).故答案为:两直线平行,内错角相等;等量代换;∠BOD,对顶角相等.22.(8分)如图为东明一中新校区分布图的一部分,方格纸中每个小方格都是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的位置坐标为B(﹣2,﹣1),解答以下问题:(1)在图中找到坐标系中的原点,并建立直角坐标系;(2)若体育馆的坐标为C(1,﹣3),食堂坐标为D(2,0),请在图中标出体育馆和食堂的位置;(3)顺次连接教学楼、图书馆、体育馆、食堂得到四边形ABCD,求四边形ABCD的面积.解:(1)建立平面直角坐标系如图所示;(2)体育馆C (1,﹣3),食堂D (2,0)如图所示;(3)四边形ABCD 的面积=4×5−12×3×3−12×2×3−12×1×3−12×1×2, =20﹣4.5﹣3﹣1.5﹣1, =20﹣10, =10.23.(10分)某景点的门票价格如下表:购票人数(人) 1~50 51~99 100以上(含100)门票单价(元)484542(1)某校七年级1、2两个班共有102人去游览该景点,其中1班人数少于50人,2班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付4737元,两个班各有多少名学生?(2)该校八、九年级自愿报名浏览该景点,其中八年级的报名人数不超过50人,九年级的报名人数超过50人,但不超过80人.若两个年级分别购票,总计支付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元,问八年级、九年级各报名多少人?解:(1)设七年级1有x 名学生,2班有y 名学生, 由题意得:{x +y =10248x +45y =4737,解得:{x =49y =53, 答:七年级1有49名学生,2班有53名学生;(2)设八年级报名x 人,九年级报名y 人,分两种情况:①若x +y <100,由题意得:{48x +45y =491445(x +y)=4452, 解得:{x =154y ≈−55,(不合题意舍去); ②若x +y ≥100,由题意得:,{48x +45y =491442(x +y)=4452, 解得:{x =48y =58,符合题意; 答:八年级报名48人,九年级报名58人.24.(10分)如图,A 、B 、C 和D 、E 、F 分别在同一条直线上,且∠1=∠2,∠C =∠D ,试完成下面证明∠A =∠F 的过程.证明:∵∠1=∠2(已知),∠2=∠3( 对顶角相等 ),∴ ∠1=∠3 (等量代换)∴BD ∥CE ( 同位角相等,两直线平行 )∴∠D +∠DEC =180°( 两直线平行,同旁内角互补 ),又∵∠C =∠D ( 已知 ),∴∠C +∠DEC =180°( 等量代换 ),∴ DF ∥AC ( 同旁内角互补,两直线平行 ),∴∠A =∠F ( 两直线平行,内错角相等 ).证明:∵∠1=∠2(已知),∠2=∠3(对顶角相等),∴∠1=∠3(等量代换),∴BD ∥CE (同位角相等,两直线平行),∴∠D +∠DEC =180°(两直线平行,同旁内角互补),又∵∠C=∠D(已知),∴∠C+∠DEC=180°(等量代换),∴DF∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等).故答案为:对顶角相等;∠1=∠3;同位角相等,两直线平行;两直线平行,同旁内角互补;已知;等量代换;DF∥AC;同旁内角互补,两直线平行;两直线平行,内错角相等.。
河南省安阳市殷都区2023-2024学年七年级下学期期末数学试题(含答案)
2023-2024学年第二学期期末教学质量检测七年级数学试卷注意事项:1.本试卷分试题卷和答题卡两部分,试题卷共4页,三个大题,满分120分,考试时间100分钟.2.请直接将答案写在答题卡上,写在试题卷上的答案无效.3.答题时,必须使用2B 铅笔按要求规范填涂,用0.5毫米的黑色墨水签字笔书写.一、选择题(每小题3分,共30分)1.甲骨文是我国的一种古代文字,是汉字的最早形式,下列甲骨文中,能用其中一部分平移得到的是()A. B. C. D.2.下列调查中,最适合采用抽样调查的是( )A.调查某中学七年级一班学生的视力情况B.中央电视台《2024年第九季诗词大会》的收视率C.选出某校短跑最快的学生参加全市比赛D.对乘坐高铁的乘客进行安检3.下列各点中,在第二象限的点是( )A. B. C. D.4.下列无理数中,介于4和5之间的数是( )5.如图是木匠师傅利用直尺和三角尺过已知直线外一点作直线的平行线的方法,其直接理由是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.同旁内角互补,两直线平行D.平面内垂直于同一条直线的两条直线互相平行6.已知,下列式子不一定成立的是( )A. B. C. D.7.下列命题中,属于假命题的是( )A.带根号的数都是无理数B.对顶角相等C.同角的补角相等D.两直线平行,内错角相等8.已知x ,y 满足方程组,则的值是( )()4,2-()4,2--()4,2()4,2-a b >11a b ->-22a b-<-3131a b +>+ma mb>2728x y x y +=⎧⎨+=⎩x y +A.3B.5C.7D.99.中国清代算书《御制数理精蕴》中有这样一题:“马六匹、牛五头,共价四十四两;马二匹、牛三头共价二十四两,问马,牛各价几何?”译文:“有6匹马,5头牛,总价值44两;有2匹马,3头牛,总价值24两.求每匹马价值多少两,每头牛价值多少两?”设每匹马价值x 两,每头牛价值y 两,根据题意可列方程组为().A. B. C. D.10.如图,科技兴趣小组爱好编程的同学编了一个“步步高升”程序,已知点A 在平面直角坐标系中按规律跳动,开始时,已知,,,,,……以此类推,则的坐标为( )A. B. C. D.二、填空题(每小题3分,共15分)11.9的平方根是_______.12.若点在y 轴上,则_______.13.在对某班50名同学的身高进行统计时,发现最高的为,最矮的为.若以为组距分组,则应分为_______组.14.如图,点E 在的延长线上,在不添加任何辅助线和字母的情况下,添加一个条件_______,使(填一个即可).15.定义一种法则“”如下:,例如:,.若,则m 的取值范围是_______.三、解答题(本大题共8个小题,满分75分)16.(10分)计算:56443224x y x y +=⎧⎨+=⎩62445324x y x y +=⎧⎨+=⎩65442324x y x y +=⎧⎨+=⎩65242344x y x y +=⎧⎨+=⎩123O A A A →→→→ ()11,2A ()22,1A ()33,3A ()44,2A ()55,4A ()66,3A 100A ()100,50()100,51()101,50()100,52()3,4M a a +-a =177cm 153cm 5cm AB AB DC ∥⊗()()a ab a b b a b >⎧⎪⊗=⎨≤⎪⎩525⊗=233⊗=()351111m -+⊗=(1(217.(8分)解方程组18.(9分)解不等式组,请按下列步骤完成解答:(1)解不等式①,得________;(2)解不等式②,得________;(3)将不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为________.19.(9分)某中学计划组织七年级学生前往4个安阳市景点中的1个开展研学活动,这4个景点为:A.林州红旗渠;B.殷墟博物馆;C.汤阴岳飞庙;D.中国文字博物馆.该中学数学兴趣小组针对七年级学生的意向目的地开展抽样调查(注:每位被抽样调查的学生选择且只选择1个意向前往的景点),并将调查结果绘制成如下两幅不完整的统计图:请结合图中所给信息,解答下列问题:(1)本次被抽样调查的学生共有_______名,并补全条形统计图;(2)在扇形统计图中,“C.汤阴岳飞庙”对应的圆心角度数为______;(3)该校七年级共有学生500名,请你估计七年级意向前往“D.中国文字博物馆”的学生人数.20.(9分)如图,点O 在直线上,,与互余.(1)求证:;(2)平分交于点F ,若,补全图形,并求的度数.21.(9分)如图,在平面直角坐标系中,三角形的顶点都在正方形网格的格点上,其中点A 的坐标为,现将三角形平移,使得点A 变换为点,点,分别是点B ,C 的对应点.-)12332x y x y -=⎧⎨+=⎩①②11321x x x x -⎧<+⎪⎨⎪+≥⎩①②AB OC OD ⊥D ∠1∠DE AB ∥OF BOD ∠DE 58OFD ∠=︒1∠ABC ()1,3-ABC A 'B 'C '(1)请画出平移后的三角形(不写画法);(2)点的坐标为______,点的坐标为______;(3)若三角形内部有一点P ,其平移后的对应点为,则点P 的坐标为______.22.(10分)北京时间2024年5月3月17时27分,嫦蛾六号探测器由长征五号遥八运载火箭在中国文昌航天发射场发射,之后准确进入地月转移轨道,发射任务取得圆满成功.某超市为了满足广大航天爱好者的需求,计划购进A 、B 两种型号运载火箭模型进行销售,据了解,2件A 种型号运载火箭模型和4件B 种型号运载飞船模型的进价共计140元;3件A 种型号运载火箭模型和2件B 种型号运载火箭模型的进价共计130元.(1)求A 、B 两种型号运载火箭模型每件的进价分别为多少元?(2)若该超市计划用不超过800元的资金购进这两种型号运载火箭模型共30件,求A 种型号运载火箭模型最多能购买多少件?23.(11分)综合与实践问题情境:数学课上,老师让同学们以“三角板与平行线”为主题开展数学活动.如图1,已知,直角三角板中,,将其顶点A 放在直线上,并使边于点D ,与相交于点H .(1)试判断边与直线的位置关系并说明理由;操作探究:(2)如图2,将图1中三角板的直角顶点B 放在平行线之间,两直角边,分别与,相交于点E ,F ,得到和,试探究与的数量关系并说明理由;下面是小明不完整的解答过程,请你补充完整.解:,理由:过点B 作直线,如图4所示.因为(已知)A B C '''B 'C 'ABC ()3,1P '-12l l ∥ABC 90B ∠=︒2l 1AB l ⊥AC 1l BC 1l ABC AB CB 1l 2l 1∠2∠1∠2∠1290∠+∠=︒1BN l ∥12l l ∥所以(______________)所以,________(______________)因为________,所以深入探究:(3)受小明启发,同学们继续探究下列问题.在图2中作线段和,使它们分别平分和的顶角,如图3,请直接写出的度数.2BN l ∥1ABN ∠=∠2∠=NBC ABC +∠=∠90ABC ∠=︒1290∠+∠=︒EO FO 1∠2∠EOF ∠2023——2024学年第二学期七年级数学参考答案及评分标准评分说明:解答题中,对于一题多解的题目,视学生解法过程的合理性恰当评分。
人教七年级下册数学期末测试题(附答案)
人教七年级下册数学期末测试题(附答案) 一、选择题 1.81的算术平方根是()A .3B .﹣3C .﹣9D .9 2.下列现象中是平移的是( ) A .翻开书中的每一页纸张 B .飞碟的快速转动C .将一张纸沿它的中线折叠D .电梯的上下移动3.在平面直角坐标系中位于第二象限的点是( )A .()2,3B .()2,3-C .()2,3-D .()2,3-- 4.下列四个命题:①4±是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有( )个A .1B .2C .3D .45.如图,直线12//l l ,23216∠+∠=°,则1∠的度数为( )A .216︒B .36︒C .44︒D .18︒6.下列算式,正确的是( )A .42±=±B .42±=C .382--=-D .()288-=- 7.如图,AB //CD ,∠EBF =2∠ABE ,∠ECF =3∠DCE ,设∠ABE =α,∠E =β,∠F =γ,则α,β,γ的数量关系是( )A .4β﹣α+γ=360°B .3β﹣α+γ=360°C .4β﹣α﹣γ=360°D .3β﹣2α﹣γ=360°8.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把P 1(y ﹣1,﹣x ﹣1)叫做点P 的友好点,已知点A 1的友好点为A 2,点A 2的友好点为A 3,点A 3的友好点为A 4,这样依次得到各点.若A 2021的坐标为(﹣3,2),设A 1(x ,y ),则x +y 的值是( )A .﹣5B .3C .﹣1D .5九、填空题9.364--________.十、填空题10.若点P(a,b)关于y 轴的对称点是P 1 ,而点P 1关于x 轴的对称点是P 2 ,若点P 2的坐标为(-3,4),则a=_____,b=______十一、填空题11.如图,已知AD 是ABC 的角平分线,CE 是ABC 的高,∠BAC =60°,∠BCE =40°,则∠ADB =_____.十二、填空题12.如图,直线m 与∠AOB 的一边射线OB 相交,∠3=120°,向上平移直线m 得到直线n ,与∠AOB 的另一边射线OA 相交,则∠2-∠1=_______º.十三、填空题13.如图,在△ABC 中,将∠B 、∠C 按如图所示的方式折叠,点B 、C 均落于边BC 上的点Q 处,MN 、EF 为折痕,若∠A=82°,则∠MQE= _________十四、填空题14.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.十五、填空题15.已知ABC ∆的面积为16,其中两个顶点的坐标分别是()()7,0,1,0A B -,顶点C 在y 轴上,那么点C 的坐标为 ____________十六、填空题16.如图,点()00,0A ,()11,2A ,()22,0A ,()33,2A -,()44,0A ,……根据这个规律,探究可得点2021A 的坐标是________.十七、解答题17.计算:(1)3840.04--- (2)23(2)279-+-十八、解答题18.求下列各式中x 的值:(1)()2125x -=;(2)381250x -=. 十九、解答题19.完成下面的证明.如图,AB ∥CD ,∠B +∠D =180°,求证:BE ∥DF .分析:要证BE ∥DF ,只需证∠1=∠D .证明:∵AB ∥CD (已知)∴∠B +∠1=180°( )∵∠B +∠D =180°(已知)∴∠1=∠D ( )∴BE ∥DF ( )二十、解答题20.已知:如图,把△ABC 向上平移4个单位长度,再向右平移3个单位长度,得到△A ′B ′C ′,(1)画出△A ′B ′C ′,写出A ′、B ′、C ′的坐标;(2)点P 在y 轴上,且S △BCP =4S △ABC ,直接写出点P 的坐标.二十一、解答题21.任意无理数都是由整数部分和小数部分构成的.已知一个无理数a ,它的整数部分是b ,则它的小数部分可以表示为-a b .例如:469<<,即263<<,显然6的整数部分是2,小数部分是62-.根据上面的材料,解决下列问题:(1)若11的整数部分是m ,5的整数部分是n ,求5m n -+的值.(2)若714+的整数部分是2x ,小数部分是y ,求142x y -+的值. 二十二、解答题22.如图,用两个面积为28cm 的小正方形纸片剪拼成一个大的正方形.(1)大正方形的边长是________cm ;(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为214cm 的长方形纸片,使它的长宽之比为2:1,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.二十三、解答题23.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.(1)根据图1填空:∠1=°,∠2=°;(2)现把三角板绕B点逆时针旋转n°.①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.二十四、解答题24.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学∠=∠∠=∠,请判断光线a与光线b是否平行,并说明理由.知识有12,34(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线α与水平线OC的夹角为40︒,问如何放置平面镜MN,可使反射光线b正好垂直照射到井底?(即求MN与水平线的夹角)(3)如图3,直线EF上有两点A、C,分别引两条射线AB、CD.105∠=︒,BAFDCF∠=︒,射线AB、CD分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转65动,设时间为t,在射线CD转动一周的时间内,是否存在某时刻,使得CD与AB平行?若存在,求出所有满足条件的时间t.二十五、解答题AB CD,E、F是AB、CD上的两点,直线l与AB、CD分别交于点25.如图,直线//G、H,点P是直线l上的一个动点(不与点G、H重合),连接PE、PF.(1)当点P 与点E 、F 在一直线上时,GEP EGP ∠=∠,60FHP ∠=︒,则PFD ∠=_____.(2)若点P 与点E 、F 不在一直线上,试探索AEP ∠、EPF ∠、CFP ∠之间的关系,并证明你的结论.【参考答案】一、选择题1.A解析:A【分析】 819=,再计算9的算术平方根即可.【详解】 819=,993=故选A【点睛】 819是解题的关键.2.D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A :翻开书中的每一页纸张,这是翻折现象;B :飞碟的快速转动,这是旋转现解析:D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A :翻开书中的每一页纸张,这是翻折现象;B :飞碟的快速转动,这是旋转现象;C :将一张纸沿它的中线折叠,这是轴对称现象;D :电梯的上下移动这是平移现象.故选:D .【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.B【分析】第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可.【详解】解:根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有B (-2,3)符合,故选:B .【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B【分析】根据立方根和算术平方根的定义、平行线的性质、点到直线的距离逐项判断即可.【详解】64的立方根是4,故①是假命题; 25的算数平方根是5,故②是真命题;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故③是真命题;与两坐标轴距离都是2的点有(2,2)、(2,-2)、(-2,2)、(-2,-2)共4点,故④是假命题.故选:B .【点睛】本题考查命题真、假的判断.正确掌握相关定义、性质与判定是解题关键.5.B【分析】记∠1顶点为A ,∠2顶点为B ,∠3顶点为C ,过点B 作BD ∥l 1,由平行线的性质可得∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,由此得到∠3+∠2+(180°-∠1)=360°,再结合已知条件即可求出结果.【详解】如图,过点B 作BD ∥l 1,∵12//l l ,∴BD ∥l 1∥l 2,∴∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,∴∠3+∠DBC+∠ABD+(180°-∠1)=360°,即∠3+∠2+(180°-∠1)=360°,又∵∠2+∠3=216°,∴216°+(180°-∠1)=360°,∴∠1=36°.故选:B.【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键.6.A【分析】根据平方根、立方根及算术平方根的概念逐一计算即可得答案.【详解】A.42±=±,计算正确,故该选项符合题意,B.42±=±,故该选项计算错误,不符合题意,C.38(2)2--=--=,故该选项计算错误,不符合题意,D.()288-=,故该选项计算错误,不符合题意,故选:A.【点睛】本题考查平方根、立方根、算术平方根的概念,熟练掌握定义是解题关键.7.A【分析】由∠EBF=2∠ABE,可得∠EBF=2α.由∠EBF+∠BEC+∠F+∠ECF=360°,可得∠ECF=360°﹣(2α+β+γ),那么∠DCE=13ECF∠.由∠BEC=∠M+∠DCE,可得∠M=∠BEC﹣∠DCE.根据AB//CD,得∠ABE=∠M,进而推断出4β﹣α+γ=360°.【详解】解:如图,分别延长BE、CD并交于点M.∵AB//CD,∴∠ABE=∠M.∵∠EBF=2∠ABE,∠ABE=α,∴∠EBF=2α.∵∠EBF+∠BEC+∠F+∠ECF=360°,∴∠ECF=360°﹣(2α+β+γ).又∵∠ECF =3∠DCE ,∴∠DCE =11(3602)33ECF a βγ︒∠=---. 又∵∠BEC =∠M +∠DCE ,∴∠M =∠BEC ﹣∠DCE =β﹣1(3602)3a βγ︒---. ∴β﹣1(3602)3a βγ︒---=α. ∴4β﹣α+γ=360°.故选:A .【点睛】本题考查了平行线的性质,三角形的外角性质,角度的计算,构造辅助线转化角度是解题的关键.8.C【分析】列出部分An 点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A2021的坐标为(﹣3,2),找出A1的坐标,由此即可得出x 、y 的值,二者相加即可得出结论.【解析:C【分析】列出部分A n 点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A 2021的坐标为(﹣3,2),找出A 1的坐标,由此即可得出x 、y 的值,二者相加即可得出结论.【详解】解:∵A 2021的坐标为(﹣3,2),根据题意可知:A 2020的坐标为(﹣3,﹣2),A 2019的坐标为(1,﹣2),A 2018的坐标为(1,2),A 2017的坐标为(﹣3,2),…∴A 4n +1(﹣3,2),A 4n +2(1,2),A 4n +3(1,﹣2),A 4n +4(﹣3,﹣2)(n 为自然数).∵2021=505×4•••1,∵A 2021的坐标为(﹣3,2),∴A 1(﹣3,2),∴x +y =﹣3+2=﹣1.故选:C .【点睛】本题考查了规律型中的点的坐标的变化,解决该题型题目时,根据友好点的定义列出部分点的坐标,根据坐标的变化找出变化规律是关键.九、填空题9.2【分析】先求出=4,再求出算术平方根即可.【详解】解:∵=4,∴的算术平方根是2,故答案为:2.【点睛】本题考查了立方根和算术平方根的应用,主要考查学生的计算能力.解析:2【分析】,再求出算术平方根即可.先求出【详解】,解:∵∴2,故答案为:2.【点睛】本题考查了立方根和算术平方根的应用,主要考查学生的计算能力.十、填空题10.a=3 b=-4【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-解析:a=3 b=-4【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P2,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),则a=3,b=-4.【点睛】此题考查关于x轴、y轴对称的点的坐标,难度不大十一、填空题11.100°【分析】根据AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,可得∠BAD和∠CAD相等,都为30°,∠CEA=90°,从而求得∠ACE的度数,又因为∠BCE=40°,∠ADB解析:100°【分析】根据AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,可得∠BAD和∠CAD相等,都为30°,∠CEA=90°,从而求得∠ACE的度数,又因为∠BCE=40°,∠ADB=∠BCE+∠ACE+∠CAD,从而求得∠ADB的度数.【详解】解:∵AD是ABC的角平分线,∠BAC=60°.∠BAC=30°,∴∠BAD=∠CAD=12∵CE是ABC的高,∴∠CEA=90°.∵∠CEA+∠BAC+∠ACE=180°.∴∠ACE=30°.∵∠ADB=∠BCE+∠ACE+∠CAD,∠BCE=40°.∴∠ADB=40°+30°+30°=100°.故答案为:100°.【点睛】本题考查三角形的内角和、角的平分线、三角形的一个外角等于和它不相邻的内角的和,关键是根据具体目中的信息,灵活变化,求出相应的问题的答案.十二、填空题12.60【分析】延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.【详解】解:延长BO交直线n于点C,如图,∵直线m向上平移直解析:60【分析】延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.【详解】解:延长BO交直线n于点C,如图,∵直线m 向上平移直线m 得到直线n ,∴m ∥n ,∴∠ACB =∠1,∵∠3=120°,∴∠AOC =60°∵∠2=∠ACO +∠AOC =∠1+60°,∴∠2-∠1=60°.故答案为60.【点睛】本题考查了平移的性质,平行线的性质,以及三角形外角的性质,作辅助线构造三角形是解答此题的关键.十三、填空题13.【分析】根据折叠的性质得到,,再根据的度数即可求出的度数,再根据求解即可.【详解】解:∵折叠,∴,,∵,∴,∴.故答案是:.【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质解析:82︒【分析】根据折叠的性质得到B MQN ∠=∠,C EQF ∠=∠,再根据A ∠的度数即可求出MQN EQF ∠+∠的度数,再根据()180MQE MQN EQF ∠=︒-∠+∠求解即可.【详解】解:∵折叠,∴B MQN ∠=∠,C EQF ∠=∠,∵82A ∠=︒,∴1808298MQN EQF B C ∠+∠=∠+∠=︒-︒=︒,∴()1801809882MQE MQN EQF ∠=︒-∠+∠=︒-︒=︒.故答案是:82︒.【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质.十四、填空题14.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.十五、填空题15.或【分析】已知,可知AB=8,已知的面积为,即可求出OC 长,得到C 点坐标.【详解】∵∴AB=8∵的面积为∴=16∴OC=4∴点的坐标为(0,4)或(0,-4)故答案为:(0,4)解析:(0,4)或(0,4) -【分析】已知()()7,0,1,0A B -,可知AB=8,已知ABC ∆的面积为16,即可求出OC 长,得到C 点坐标.【详解】∵()()7,0,1,0A B -∴AB=8∵ABC ∆的面积为16 ∴12AB OC ⨯⨯=16 ∴OC=4∴点C 的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解. 十六、填空题16.【分析】由图形得出点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,继而求得答案.【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、解析:()2021,2【分析】由图形得出点的横坐标依次是0、1、2、3、4、⋯、n ,纵坐标依次是0、2、0、2-、0、2、0、2-、⋯,四个一循环,继而求得答案.【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、⋯、n ,纵坐标依次是0、2、0、2-、0、2、0、2-、⋯,四个一循环,202145051÷=⋯,故点2021A 坐标是(2021,2).故答案是:(2021,2).【点睛】本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律.十七、解答题17.(1);(2).直接利用立方根以及算术平方根的定义化简得出答案.【详解】(1)(2)【点睛】此题主要考查了实数运算,正确化简各数是解题关键.解析:(1) 4.2-;(2)2.【分析】直接利用立方根以及算术平方根的定义化简得出答案.【详解】(1220.2=---4.2=-(2233=+-2=【点睛】此题主要考查了实数运算,正确化简各数是解题关键.十八、解答题18.(1)或;(2)【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可.【详解】解:(1)∵,∴,∴,∴或;(2)∵,∴,∴.【点睛】本题主解析:(1)6x =或4x =-;(2)52x =(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可.【详解】解:(1)∵()2125x -=,∴15x -=±,∴15x =±,∴6x =或4x =-;(2)∵381250x -=, ∴31258x =, ∴52x =. 【点睛】本题主要考查了利用求平方根和求立方根的方法解方程,解题的关键在于能够熟练掌握相关知识进行求解.十九、解答题19.两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE ∥DF ,只需证∠1=∠D ,由AB ∥CD 可知∠B+∠1=180°,又有∠B+∠D =180°,由此即可证得.【详解】解析:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE ∥DF ,只需证∠1=∠D ,由AB ∥CD 可知∠B +∠1=180°,又有∠B +∠D =180°,由此即可证得.【详解】证明:∵AB ∥CD (已知)∴∠B +∠1=180°(两直线平行,同旁内角互补)∵∠B +∠D =180°(已知)∴∠1=∠D (同角的补角相等),∴BE ∥DF (同位角相等,两直线平行)故答案为:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.二十、解答题20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m解析:(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m),构建方程解决问题即可.【详解】解:(1)如图,△A′B′C′即为所求,A′(1,5),B′(0,2),C′(4,2);(2)设P(0,m),由题意:12×4×|m+2|=4×12×4×3,解得m=10或-12,∴P(0,10)或(0,-12).【点睛】本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质.二十一、解答题21.(1)0;(2)【分析】(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算.【详解】解:(1)∵,∴,∴的整数部分是解析:(1)0;(2)112 【分析】(1(27【详解】解:(1)∵∴34<, ∴3,即m=3, ∵∴23<<,∴2,即n=2,∴;(2)∵< ∴10711<, ∴710,即2x=10,∴x=5, ∴77103,即3,∴2x y -)532-112. 【点睛】本题考查了二次根式的整数和小数部分.看懂题例并熟练运用是解决本题的关键. 二十二、解答题22.(1)4;(2)不能,理由见解析.【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再解析:(1)4;(2)不能,理由见解析.【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.【详解】解:(1)两个正方形面积之和为:2×8=16(cm2),∴拼成的大正方形的面积=16(cm2),∴大正方形的边长是4cm;故答案为:4;(2)设长方形纸片的长为2xcm,宽为xcm,则2x•x=14,解得:7x ,2x=27>4,∴不存在长宽之比为2:1且面积为214cm的长方形纸片.【点睛】本题考查了算术平方根,能够根据题意列出算式是解此题的关键.二十三、解答题23.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②结合图形,分A B、B C、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n=90°时,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);当n=120°时,∴AB⊥DE(GF).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.二十四、解答题24.(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解;(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF 的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.【详解】解:(1)平行.理由如下:如图1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(内错角相等,两直线平行);(2)如图2:∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,∴∠1=∠2,∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=1×50°=25°,2∴MN与水平线的夹角为:25°+40°=65°,即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底;(3)存在.如图①,AB与CD在EF的两侧时,∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠ACD=∠BAC,即115-3t=105-t,解得t=5;如图②,CD旋转到与AB都在EF的右侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠DCF=∠BAC,即295-3t=105-t,解得t=95;如图③,CD旋转到与AB都在EF的左侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,则∠DCF=∠BAC,即3t-295=t-105,解得t=95,此时t>105,∴此情况不存在.综上所述,t为5秒或95秒时,CD与AB平行.【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论.二十五、解答题25.(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点P与点E、F在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可∠=∠=60°,计算∠PFD即可;以推出GEP EGP(2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;②当点P在AB 上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可.【详解】(1)当点P与点E、F在一直线上时,作图如下,∠=∠,∵AB∥CD,∠FHP=60°,GEP EGP∠=∠=∠FHP=60°,∴GEP EGP∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案为:120°;(2)满足关系式为∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.证明:根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时,过点P作PQ∥AB,如下图,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF =∠AEP+∠CFP;②当点P在AB上方时,如下图所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③当点P在CD下方时,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,综上所述,∠AEP、∠EPF、∠CFP之间满足的关系式为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【点睛】本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.。
【人教版】七年级下册数学《期末考试卷》含答案解析
人教版数学七年级下学期期 末 测 试 卷(时间:120分钟 总分:120分) 学校________ 班级________ 姓名________ 座号________一.选择题1.下列命题不成立的是( )A. 等角的补角相等B. 两直线平行,内错角相等C. 同位角相等D. 对顶角相等 2.已知12x y =-⎧⎨=⎩是关于x 、y 的二元一次方程mx ﹣y =3的一个解,则m 的值是( ) A. ﹣1B. 1C. ﹣5D. 5 3.下列各式由左边到右边的变形中,属于分解因式的是( )A. ()a x y ax ay -=-B. 22()()a b a b a b -=+-C. 243(4)3x x x x -+=-+D. 211()a a a a+=+ 4.不等式组42x x ≤⎧⎨>⎩的解集在数轴上表示正确的是( ) A.B. C. D.5.下列运算正确的是( )A. 236x x x ⋅=B. 2242x x x +=C. 358(3)(5)15a a a -⋅-=D. 22(2)4x x -=- 6.下列多项式不能使用平方差公式的分解因式是( )A. 22m n --B. 2216x y -+C. 22b a -D. 22449a n - 7.已知a ,b ,c 是△ABC 的三条边长,化简|a +b ﹣c |+|b ﹣a ﹣c |的结果为( )A. 2a +2bB. 2a +2b ﹣2cC. 2b ﹣2cD. 2a 8.一副三角板按如图所示方式叠放在一起,则图中∠α等于( )A. 105oB. 115oC. 120oD. 135o 9.若m n >,下列不等式不一定成立的是( )A. 33m n ++>B. 33m n ﹣<﹣C. 33m n >D. 22m n > 10.若3x =15,3y =5,则3x-y 等于( )A. 5B. 3C. 15D. 1011.如果不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,m 的取值范围为( ) A .m <4B. m ≥4C. m ≤4D. 无法确定 12.计算(-2)2019+(-2)2018的值是( )A -2 B. 20182 C. 2 D. -2018213. 如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长为( )A. 6B. 8C. 10D. 1214.甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么( )A. 甲20岁,乙14岁B. 甲22岁,乙16岁C. 乙比甲大18岁D. 乙比甲大34岁 15.如图,AB//EF ,C 90∠=o ,则α、β、γ的关系为( )A. βαγ=+B. αβγ180++=oC. βγα90+-=oD. αβγ90+-=o16.如图,D 是△ABC 的边BC 上任意一点,E 、F 分别是线段AD .CE 的中点,且△ABC 的面积为20cm 2,则△BEF 的面积是( )A. 10B. 9C. 6D. 5二.填空题17.(13)0=______. 18.如果a-b=3,ab=7,那么a 2b-ab 2=______.19.一根长为1的绳子恰好围成一个三角形,则这个三角形的最长边x 的取值范围是_________.20.如图,将△ABC 沿着平行于BC 的直线DE 折叠,点A 落到点A′,若∠C=125°,∠A=20°,则∠BDA′的度数为______.21.已知:如图,∠1=∠2,∠3=∠E ,试说明:∠A=∠EBC ,(请按图填空,并补理由,)证明:∵∠1=∠2(已知),∴______∥______,________∴∠E=∠______,________又∵∠E=∠3(已知),∴∠3=∠______(等量代换),∴______∥______(内错角相等,两直线平行),∴∠A=∠EBC ,________三.解答题22.按要求解下列问题(1)计算-a3(b3)2+(2ab2)3;(2)解不等式组()2x13x1 x523⎧+≥-⎪⎨+⎪⎩<.23.解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.24.请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:______;方法2:______.(2)从中你能发现什么结论?请用等式表示出来:______;(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b=ab=4,求阴影部分的面积.25.某商店从厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元;(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该商店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于870元,则甲种商品至少可购进多少件?26.如图,在△ABC中,AD⊥BC,AE平分∠BAC(1)若∠B=70°,∠C=30°,求;①∠BAE的度数.②∠DAE度数.(2)探究:如果只知道∠B=∠C+40°,那么能求岀∠DAE度数吗?若能,请你写出求解过程;若不能,请说明理由.答案与解析一.选择题1.下列命题不成立的是()A. 等角的补角相等B. 两直线平行,内错角相等C. 同位角相等D. 对顶角相等【答案】C【解析】分析:对各个命题一一判断即可.详解:A. 等角的补角相等,正确.B. 两直线平行,内错角相等,正确.C.两直线平行,同位角相等.这是平行线的性质,没有两直线平行的前提,同位角相等,错误.D.对顶角相等,正确.故选C.点睛:考查命题真假的判断.比较简单.注意平行线的性质.2.已知12xy=-⎧⎨=⎩是关于x、y的二元一次方程mx﹣y=3的一个解,则m的值是()A. ﹣1B. 1C. ﹣5D. 5 【答案】C【解析】分析】把x与y值代入方程计算即可求出m的值.【详解】把12xy=-⎧⎨=⎩代入方程得:﹣m﹣2=3,解得:m =﹣5,故选:C .【点睛】考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.下列各式由左边到右边的变形中,属于分解因式的是( )A. ()a x y ax ay -=-B. 22()()a b a b a b -=+-C. 243(4)3x x x x -+=-+D. 211()a a a a+=+ 【答案】B【解析】【分析】根据分解因式的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解,逐一判定即可.【详解】A 选项,不属于分解因式,错误;B 选项,属于分解因式,正确;C 选项,不属于分解因式,错误;D 选项,不能确定a 是否为0,错误;故选:B.【点睛】此题主要考查对分解因式的理解,熟练掌握,即可解题. 4.不等式组42x x ≤⎧⎨>⎩的解集在数轴上表示正确的是( ) A.B. C.D.【答案】C【解析】【分析】写出不等式解集,然后在数轴上表示出来.【详解】不等式组的解集为24x <≤ ∴答案选D.【点睛】本题主要考查了不等式在数轴上的表示,要注意实心与空心圆点的区别.5.下列运算正确的是( )A. 236x x x ⋅=B. 2242x x x +=C. 358(3)(5)15a a a -⋅-=D. 22(2)4x x -=-【答案】C【解析】【分析】 直接利用同底数幂的乘法运算法则.积的乘方运算法则以及单项式乘以单项式运算法则,即可得出答案.【详解】解:A .x 2•x 3=x 5,故此选项错误;B .x 2+x 2=2x 2,故此选项错误;C .(-3a 3)•(-5a 5)=15a 8,故此选项正确;D .(-2x )2=4x 2,故此选项错误;故选:C .【点睛】此题考查用同底数幂的乘法运算,积的乘方运算和单项式乘以单项式运算,正确掌握相关运算法则是解题关键.6.下列多项式不能使用平方差公式的分解因式是( )A. 22m n --B. 2216x y -+C. 22b a -D. 22449a n -【答案】A【解析】【分析】原式各项利用平方差公式的结构特征即可做出判断.【详解】下列多项式不能运用平方差公式分解因式的是22m n --.故选A .【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.7.已知a ,b ,c 是△ABC 的三条边长,化简|a +b ﹣c |+|b ﹣a ﹣c |的结果为( )A. 2a +2bB. 2a +2b ﹣2cC. 2b ﹣2cD. 2a 【答案】D【解析】【分析】先根据三角形三条边的关系判断a+b-c 和b-a-c 的正负,然后根据绝对值的定义化简即可.【详解】解:∵a 、b 、c 为△ABC 的三条边长,∴a +b ﹣c >0,b ﹣a ﹣c <0,∴原式=a +b ﹣c ﹣(b ﹣a ﹣c )=a +b ﹣c +c +a ﹣b =2a .故选:D .【点睛】本题考查了三角形三条边的关系,以及绝对值的定义,熟练掌握三角形三条边的关系是解答本题的关键. 三角形任意两边之和大于第三边,任意两边之差小于第三边.8.一副三角板按如图所示方式叠放在一起,则图中∠α等于( )A. 105oB. 115oC. 120oD. 135o【答案】A【解析】【分析】 利用三角形内角和定理计算即可.【详解】解:由三角形的内角和定理可知:α=180°﹣30°﹣45°=105°,故选A .【点睛】本题考查三角形内角和定理,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考基础题.9.若m n >,下列不等式不一定成立的是( )A. 33m n ++>B. 33m n ﹣<﹣C. 33m n >D. 22m n >【答案】D【解析】【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,即可得到答案.【详解】解:A 、不等式的两边都加3,不等号的方向不变,故A 错误;B 、不等式的两边都乘以﹣3,不等号的方向改变,故B 错误;C 、不等式的两边都除以3,不等号的方向不变,故C 错误;D 、如2223m n m n m n =,=﹣,>,<;故D 正确;故选D .【点睛】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.10.若3x=15,3y=5,则3x-y等于()A. 5B. 3C. 15D. 10【答案】B【解析】试题分析:3x-y=3x÷3y=15÷5=3;故选B.考点:同底数幂的除法.11.如果不等式组26x xx m-+<-⎧⎨>⎩的解集为x>4,m的取值范围为()A. m<4B. m≥4C. m≤4D. 无法确定【答案】C【解析】【分析】表示出不等式组中第一个不等式的解集,根据不等式组的解集确定出m的范围即可.【详解】解不等式﹣x+2<x﹣6得:x>4,由不等式组26x xx m-+<-⎧⎨>⎩的解集为x>4,得到m≤4,故选C.【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.12.计算(-2)2019+(-2)2018的值是()A.-2B. 20182C. 2D. -20182【答案】D 【解析】【分析】直接利用提取公因式法分解因式进而计算得出答案.【详解】解:(-2)2019+(-2)2018=(-2)2018×(-2+1)=-22018.故选:D.【点睛】此题考查提取公因式法分解因式,正确找出公因式是解题关键.13. 如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A. 6B. 8C. 10D. 12【答案】C【解析】解:根据题意,将周长为8个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选C.14.甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么()A. 甲20岁,乙14岁B. 甲22岁,乙16岁C. 乙比甲大18岁D. 乙比甲大34岁【答案】A【解析】【分析】设甲现在的年龄为x岁,乙现在的年龄为y岁,根据题意列出二元一次方程组即可求解.【详解】设甲现在的年龄为x岁,乙现在的年龄为y岁.依题意得()8()26y x yx x y--=⎧⎨+-=⎩,解2014xy=⎧⎨=⎩.故选A【点睛】此题主要考查二元一次方程组的应用,解题的关键根据题意找到等量关系列方程求解.15.如图,AB//EF,C90∠=o,则α、β、γ的关系为()A. βαγ=+B. αβγ180++=oC. βγα90+-=oD. αβγ90+-=o【答案】D【解析】解:方法一:延长DC 交AB 于G ,延长CD 交EF 于H .直角BGC V 中,190α∠=︒-;EHD △中,2βγ∠=-.因为AB EF P ,所以12∠=∠,于是90αβγ︒-=-,故90αβγ+-=︒.故选D .方法二:过点C 作CM AB ∥,过点D 作DN AB ∥,则由平行线的性质可得:BCM α∠=∠,NDE γ∠=,MCD CDN ∠=∠,∴90αβγ︒-∠=∠-∠,故90αβγ∠+∠-∠=︒,故选D 项.点睛:本题考查通过构造辅助线,同时利用三角形外角的性质以及平行线的性质建立角之间的关系. 16.如图,D 是△ABC 的边BC 上任意一点,E 、F 分别是线段AD .CE 的中点,且△ABC 的面积为20cm 2,则△BEF 的面积是( )A. 10B. 9C. 6D. 5 【答案】D【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】解:∵点E是AD的中点,∴S△ABE=12S△ABD,S△ACE=12S△ADC,∴S△ABE+S△ACE=12S△ABC=12×20=10cm2,∴S△BCE=12S△ABC=12×20=10cm2,∵点F是CE的中点,∴S△BEF=12S△BCE=12×10=5cm2.故选:D.【点睛】此题考查三角形的面积,解题关键在于利用三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.二.填空题17.(13)0=______.【答案】1【解析】【分析】根据零指数幂的性质计算.【详解】解:原式=1故答案为:1【点睛】此题考查零指数幂,解题关键在于掌握运算法则.18.如果a-b=3,ab=7,那么a2b-ab2=______.【答案】21【解析】【分析】直接将原式提取公因式ab,进而将已知代入数据求出答案.【详解】解:∵a-b=3,ab=7,∴a2b-ab2=ab(a-b)=3×7=21.故答案为:21.【点睛】此题考查提取公因式分解因式,正确分解因式是解题关键.19.一根长为1的绳子恰好围成一个三角形,则这个三角形的最长边x的取值范围是_________.【答案】11 32x≤<【解析】【分析】设其他两边的边长分别为y、z,然后根据三角形三边关系和x为最长边,列出不等式可得出结论. 【详解】设其他两边的边长分别为y、z,∵三角形周长为1,∴x+y+z=1,由三角形三边关系可得y+z>x,即1-x>x,解得12x<,又∵x为最长边,∴x≥y,x≥z,∴2x≥y+z,即2x≥1-x,解得13 x≥,综上可得11 32x≤<.【点睛】本题考查三角形的三边关系,掌握两较短边之和大于最长边是本题的关键.20.如图,将△ABC沿着平行于BC的直线DE折叠,点A落到点A′,若∠C=125°,∠A=20°,则∠BDA′的度数为______.【答案】110°【解析】【分析】根据三角形的内角和等于180°求出∠B,根据两直线平行,同位角相等可得∠ADE=∠B,再根据翻折变换的性质可得∠A′DE=∠ADE,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠C=125°,∠A=20°,∴∠B=180°-∠A-∠C=180°-20°-125°=35°,∵△ABC沿着平行于BC的直线折叠,点A落到点A′,∴∠ADE=∠B=35°,∴∠A′DE=∠ADE=35°,∴∠A′DB=180°-35°-35°=110°.故答案为:110°.【点睛】此题考查平行线的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.21.已知:如图,∠1=∠2,∠3=∠E,试说明:∠A=∠EBC,(请按图填空,并补理由,)证明:∵∠1=∠2(已知),∴______∥______,________∴∠E=∠______,________又∵∠E=∠3(已知),∴∠3=∠______(等量代换),∴______∥______(内错角相等,两直线平行),∴∠A=∠EBC,________【答案】 (1). DB (2). EC (3). 内错角相等,两直线平行 (4). 4 (5). 两直线平行,内错角相等 (6). 4 (7). AD (8). BE (9). 两直线平行,同位角相等【解析】【分析】根据平行线的判定得出DB ∥EC ,根据平行线的性质得出∠E=∠4,求出∠3=∠4,根据平行线的判定得出AD ∥BE 即可.【详解】证明:∵∠1=∠2(已知),∴DB ∥EC (内错角相等,两直线平行),∴∠E=∠4(两直线平行,内错角相等),又∵∠E=∠3(已知),∴∠3=∠4( 等量代换),∴AD ∥BE (内错角相等,两直线平行),∴∠A=∠EBC (两直线平行,同位角相等),故答案为:DB ,EC ,内错角相等,两直线平行,4,两直线平行,内错角相等,4,AD ,BE ,两直线平行,同位角相等.【点睛】此题考查平行线的性质和判定定理,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.三.解答题22.按要求解下列问题(1)计算-a 3(b 3)2+(2ab 2)3;(2)解不等式组()2x 13x 1x 523⎧+≥-⎪⎨+⎪⎩<. 【答案】(1)7a 3b 6;(2)x <1.【解析】【分析】(1)根据整式的运算法则即可求出答案;(2)根据不等式组的解法即可求出答案.【详解】解:(1)原式=-a 3b 6+8a 3b 6=7a 3b 6(2)()2x13x1x523⎧+≥-⎪⎨+⎪⎩①<②,由①得:x≤3,由②得:x<1,∴不等式组的解集为:x<1.【点睛】此题考查整式的加减运算,解一元一次不等式组,解题的关键是熟练运用运算法则,本题属于基础题型.23.解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.【答案】(1)(x﹣y)(3a+2b)(3a﹣2b);(2)m=6,n=9,(x+3)2.【解析】【分析】(1)用提取公因式和平方差公式进行因式分解即可解答;(2)根据已知条件分别求出m和n的值,然后进行因式分解即可解答.【详解】解:(1)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)∵(x+2)(x+4)=x2+6x+8,甲看错了n,∴m=6.∵(x+1)(x+9)=x2+10x+9,乙看错了m,∴n=9,∴x2+mx+n=x2+6x+9=(x+3)2.【点睛】本题考查了用提取公因式和平方差公式进行因式分解,熟练掌握解题的关键.24.请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:______;方法2:______.(2)从中你能发现什么结论?请用等式表示出来:______;(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b=ab=4,求阴影部分的面积.【答案】(1)a2+b2,(a+b)2-2ab;(2)a2+b2=(a+b)2-2ab;(3)阴影部分的面积=2.【解析】【分析】(1)方法1:两个正方形面积和,方法2:大正方形面积-两个小长方形面积;(2)由题意可直接得到;(3)由阴影部分面积=正方形ABCD的面积+正方形CGFE的面积-三角形ABD的面积-三角形BGF的面积,可求阴影部分的面积.【详解】解:(1)由题意可得:方法1:a2+b2方法2:(a+b)2-2ab,故答案为:a2+b2,(a+b)2-2ab;(2)a2+b2=(a+b)2-2ab,故答案为:a2+b2=(a+b)2-2ab;(3)∵阴影部分的面积=S正方形ABCD+S正方形CGFE-S△ABD-S△BGF=a2+b2-12a2-12(a+b)b∴阴影部分的面积=12a2+12b2-12ab=12[(a+b)2-2ab]-12ab,∵a+b=ab=4,∴阴影部分的面积=12[(a+b)2-2ab]-12ab=2.【点睛】此题考查完全平方公式的几何背景,用代数式表示图形的面积是解题的关键.25.某商店从厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元;(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该商店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于870元,则甲种商品至少可购进多少件?【答案】(1)甲120元,乙100元;(2)14件【分析】1)设甲种商品每件进价是x 元,乙种商品每件进价是y 元,根据“乙商品每件进价比甲商品每件进价多20元,若购进甲商品5件和乙商品4件共需要1000元”列出方程组解答即可;(2)设购进甲种商品a 件,则乙种商品(40﹣a )件,根据“全部售出后总利润(利润=售价﹣进价)不少于870元”列出不等式解答即可.【详解】(1)设甲商品进价每件x 元,乙商品进价每件y 元,根据题意得:20541000y x x y -=⎧⎨+=⎩解得:120100x y =⎧⎨=⎩. 答:甲商品进价每件120元,乙商品进价每件100元.(2)设甲商品购进a 件,则乙商品购进(40﹣a )件(145-120)a +(120-100)(40-a )≥870∴a ≥14.∵a 为整数,∴a 至少为14.答:甲商品至少购进14件.【点睛】本题主要考查了二元一次方程组的应用以及一元一次不等式的应用,解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式.26.如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC(1)若∠B=70°,∠C=30°,求;①∠BAE 的度数.②∠DAE 的度数.(2)探究:如果只知道∠B=∠C+40°,那么能求岀∠DAE 的度数吗?若能,请你写出求解过程;若不能,请说明理由.【答案】(1)①∠BAE=40°;②∠DAE=20°;(2)∠DAE=20°.【解析】(1)①利用三角形的内角和定理求出∠BAC,再利用角平分线定义求∠BAE.②先求出∠BAD,就可知道∠DAE的度数.(2)用∠B,∠C表示∠DAE,即可求岀∠DAE的度数.【详解】解:(1)①∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵AE平分∠BAC,∴∠BAE=40°;②∵AD⊥BC,∠B=70°,∴∠BAD=90°-∠B=90°-70°=20°,而∠BAE=40°,∴∠DAE=20°;(2)∵AE为角平分线,∴∠BAE=12(180°-∠B-∠C),∵∠BAD=90°-∠B,∴∠DAE=∠BAE-∠BAD=12(180°-∠B-∠C)-(90°-∠B)=12(∠B-∠C),又∵∠B=∠C+40°,∴∠B-∠C=40°,∴∠DAE=20°.【点睛】此题考查了三角形内角和定理,熟练运用角平分线定义和三角形的内角和定理是解题的关键。
【苏科版】数学七年级下册《期末考试试卷》(附答案)
苏科版七年级下学期期末考试数学试题一、选择题1.若|a|>-a,则a的取值范围是( ).A. a>0B. a≥0C. a<0D. 自然数.2.有意义的x的取值范围()A. x>2B. x≥2C. x>3D. x≥2且x≠33.不等式组11023x+2>-1x⎧-≥⎪⎨⎪⎩的解集是()A. -1<x≤2B. -2≤x<1C. x<-1或x≥2D. 2≤x<-14.用配方法将代数式a2+4a-5变形,结果正确的是()A. (a+2)2-1B. (a+2)2-5C. (a+2)2+4D. (a+2)2-95.化简293xx-+的结果是()A. x+3B. x–9C. x-3D. x+96.已知a<b,则下列关系式不成立的是()A. 4a<4bB. -4a<-4bC. a+4<b+4D. a-4<b-47.如果把分式22xx y+中的x和y都缩小2倍,那么分式的值()A. 扩大2倍B. 缩小2倍C. 扩大4倍D. 不变8.设a,b是常数,不等式1xa b+>解集为15x<,则关于x的不等式0bx a->的解集是()A.15x>B. 15x<-C. 15x>-D. 15x<二、填空题9.如果分式11x+有意义,那么x的取值范围是________10.白天的温度是28℃,夜间下降了t℃,则夜间的温度是__________℃11.的倒数是 . 平方等于9的数是__ __12. 李华同学身高1.595m ,保留3个有效数字的近似值为__________m.13. 一件衣服标价130元,若以9折降价出售,仍可获利17%,则这件衣服的进价是 元。
14. 前年,某大型工业企业落户万州,相关建设随即展开.到去年年底,工程进入到设备安装阶段.在该企业的采购计划中,有A 、B 、C 三种生产设备.若购进3套A ,7套B ,1套丙,需资金63万元;若购进4套A ,10套B ,1套丙,需资金84万元.现在打算同时购进A 、B 、C 各10套,共需资金___________________万元.15.观察下列数据:2345,,,,357911x x x x x ,它们是按一定规律排列的,依照此规律,第n 个数据是_________ 16. 进价为380元的商品,按标价的九折出售,可获利47.5元,则该商品的标价为_______.17. 请写出一个小于0的整数___________.18.如果21(2)0x y -+-=,则2009()x y -=___________.三、解答题 19.解不等式组:20{314(2)x x x -≤-<+(利用数轴求解集) 20.(1)计算:12cos603o -+--(2)解不等式组351? {51812? x x ->-≤①②21.(1)解不等式:112x x >+;(2)计算:0(1)123π+22. 在数轴上,A 点表示2,现在点A 向右移动两个单位后到达点B ;再向左移动10个单位到达C 点:(1)请在数轴上表示出A 点开始移动时位置及B 、C 点位置;(2)当A 点移动到C 点时,若要再移动到原点,问必须向哪个方向移动多少个单位?(3)请把A 点从开始移动直至到达原点这一过程,用一个有理数算式表达出来.23.已知A=2x 2+3xy +2x ﹣1,B=x 2+xy +3x ﹣2.(1)当x=y=﹣2时,求A ﹣2B 值;(2)若A ﹣2B 的值与x 无关,求y 的值.24.关于x 的不等式3x 一2a ≤一2的解集如图所示,则a 是多少?24. 如图,是一个计算装置示意图,A、B是数据输入口,C是计算输出口,计算过程是由A、B分别输入自然数m和n,经计算后得自然数K由C输出,此种计算装置完成的计算满足以下三个性质:(1)若A、B分别输入1,则输出结果为1;(2)若A输入任何固定的自然数不变,B输入自然数增大1,则输出结果比原来增大2;(3)若B输入任何固定的自然数不变,A输入自然数增大1,则输出结果为原来的2倍。
四川省自贡市富顺县2022-2023学年七年级下学期期末数学试题(含答案解析)
四川省自贡市富顺县2022-2023学年七年级下学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在某次考试中,某班级的数学成绩统计图如图所示,下列说法中错误的是()A .得分在~80分之间的人数最多B .该班总人数为40人C .得分在90~100分之间的人数最少D .不低于60分为及格,该班的及格率为80%2.点P 的坐标是(2-a ,3a +6),且点P 到两坐标轴的距离相等,则点P 坐标是()A .(3,3)B .(3,-3)C .(6,-6)D .(3,3)或()66-,3.如图,在ABC ∆中,90150C EF AB ∠=︒∠=︒∥,,,则B ∠的度数为()A .50︒B .60︒C .30︒D .40︒4.给出下列4个命题:①垂线段最短;②互补的两个角中一定是一个为锐角,另一个为钝角;③同旁内角相等,两直线平行;④同旁内角的两个角的平分线互相垂直.其中真命题的个数为()A .1B .2C .3D .45.如图,O 是△ABC 的∠ABC ,∠ACB 的角平分线的交点,OD ∥AB 交BC 于D ,OE ∥AC 交BC 于E ,若BC =10,则△ODE 的周长是()A .16B .10C .8D .以上都不对6.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A .带③去B .带②去C .带①去D .带①②去7.在平面直角坐标系中,将点P 先向左平移2个单位长度,再向下平移3个单位长度后的对应点的坐标为P (﹣1,3),则点P 的坐标为()A .(2,3)B .(﹣2,﹣3)C .(2,5)D .(1,6)8.下列实数:3π,223,3.140.1010010001……(每相邻两个1之间依次增加一个0)中,无理数的个数是()A .1个B .2个C .3个D .4个9.如图,在△ABC 中,AB=AC=13,BC=10,D 是BC 的中点,DE ⊥AB,垂足为点E ,则DE 的长是()A .12013B .7513C .6013D .151310.在平面直角坐标系中,点A (3,﹣5)所在象限为()A .第一象限B .第二象限C .第三象限D .第四象限二、填空题11.将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是________12.已知OA ⊥OB ,∠AOC ∶∠AOB =2∶3,则∠BOC 的度数为____________________°.13.如图,在△ABC 中,DE 是AB 的垂直平分线,交BC 于点D ,交AB 于点E ,已知AE =1cm ,△ACD 的周长为12cm ,则△ABC 的周长是________cm.14.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向不断地移动,每次移动1个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A2019的坐标为________.15.已知4755'40,A B ''∠=︒∠与A ∠互余,则B ∠=__________.16.若一个角的补角是这个角2倍,则这个角度数为________度.三、解答题17.如图,△ABC 在直角坐标系中,(1)若把△ABC 向右平移2个单位,再向下平移3个单位得到△A′B′C′,写出A′、B′、C′的坐标,并在图中画出平移后图形.(2)如果在第二象限内有一点P (m ,3),四边形ACOP 的面积为(用含m的式子表示)(3)在(2)的条件下,是否存在点P ,使四边形ACOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标;若不存在,请说明理由.18.[(38)(2)(4)(4)](2)x x x x x -+--+÷-.19.问题情景:如图1,AB ∥CD,∠PAB=130°,∠PCD=120°,求∠APC 的度数.(1)天天同学看过图形后立即口答出:∠APC=110°,请你补全他的推理依据.如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD.(___)∴∠A+∠APE=180°.∠C+∠CPE=180°.(___)∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°∴∠APC=∠APE+∠CPE=110°.(___)问题迁移:(2)如图3,AD∥BC,当点P在A.B两点之间运动时,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α、∠β之间有何数量关系?请说明理由.(3)在(2)的条件下,如果点P在A.B两点外侧运动时(点P与点A.B.O三点不重合),请你直接写出∠CPD与∠α、∠β之间的数量关系.20.据报道,截止到2013年12月31日我国微信用户规模已达到6亿.以下是根据相关数据制作的统计图表的一部分:2012年及2013年电话、短信、微信的截止到2013年12月31日微信用户对日人均使用时长统计表单位:分钟“微信公众平台”参与关注度统计图请根据以上信息,回答以下问题:(1)从2012年到2013年微信的日人均使用时长增加了分钟;(2)截止到2013年12月31日,在我国6亿微信用户中偶尔使用微信用户约为亿(结果精确到0.1).21.解不等式组组215 311 2x x x -<⎧⎪⎨+-≥⎪⎩①②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得______;(Ⅱ)解不等式②,得______;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为______.22.(1)计算:011(2)( 3.14)()3π---+-+-(2)化简:2(2)(1)2a a b a a+-++23.如图,已知在平面直角坐标系中,三角形ABC 的位置如图所示.(1)请写出A 、B 、C 三点的坐标;(2)你能想办法求出三角形ABC 的面积吗?(3)将三角形ABC 向右平移6个单位,再向上平移2个单位,请在图中作出平移后的三角形A ′B ′C ′,并写出三角形A ′B ′C ′各点的坐标.24.已知:如图,123180B ∠=∠∠+∠=︒,,:5:4DEF EFH ∠∠=,求DEF ∠的度数.参考答案:1.D【分析】A 、根据条形统计图找出人数最多的分数段即可做出判断;B 、各分数段人数相加求出总人数即可做出判断;C 、根据条形统计图找出人数最少的分数段即可做出判断;D 、找出不低于60分的人数,除以总人数求出及格率即可做出判断.【详解】根据图形得:50~60分之间的人数为4人;60~70分之间的人数为12人;70~80分之间的人数为14人;80~90分之间的人数为8人;90~100分之间的人数为2人,则得分在70~80分之间的人数最多;得分在90~100分之间的人数最少;总人数为4+12+14+8+2=40人;不低于60分为及格,该班的及格率为(12+14+8+2)÷40=90%,故选D.2.D【分析】由点P 到两坐标轴的距离相等,建立绝对值方程236,a a -=+再解方程即可得到答案.【详解】解: 点P 到两坐标轴的距离相等,236,a a ∴-=+236a a ∴-=+或2360,a a -++=当236a a -=+时,44,a -=1,a ∴=-()3,3P ∴,当2360a a -++=时,4,a ∴=-()6,6,P ∴-综上:P 的坐标为:()3,3P 或()6,6.P -故选D .【点睛】本题考查的是平面直角坐标系内点的坐标特点,点到坐标轴的距离与坐标的关系,一元一次方程的解法,掌握以上知识是解题的关键.3.D【详解】根据三角形内角和定理和平行线的性质计算.解:∵∠C=90°,∴∠CFE=90°-∠CEF=40°,又∵EF∥AB,∴∠B=∠CFE=40°.故选D.本题主要考查了三角形内角和定理和平行线的性质.解题的关键是对这些基本性质的掌握.4.A【分析】①根据垂线段的性质即可判断,②如果两个都是直角则可判断,③根据平行线的判定定理可判断,④因为没说明两直线平行,所以不能得出.【详解】①应该是连接直线为一点与直线上的所有线段,垂线段最短,所以错误;②如果两个都是直角则可判断“互补的两个角中一定是一个为锐角,另一个为钝角”错误;③根据平行线的判定定理可判断同旁内角相等,两直线平行正确;④因为没说明两直线平行,所以不能得出,故错误.故选A【点睛】本题考查垂线段的性质、平行线的判定,解题的关键是掌握垂线段的性质、平行线的判定.5.B【分析】根据角平分线的性质以及平行线的性质,把△ODE三条边转移到同一条线段BC上,即可解答.【详解】解:∵OC、OB分别是∠ACB、∠ABC的角平分线,∴∠5=∠6,∠1=∠2,∵OD∥AB,OE∥AC,∴∠4=∠6,∠1=∠3.∴∠4=∠5,∠2=∠3,即OD=BD,OE=CE.∴△ODE的周长=OD+DE+OE=BD+DE+CE=BC=10cm.故选:B.【点睛】此题比较简单,利用的是角平分线的定义,平行线及等腰三角形的性质.6.A【分析】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.【详解】③中含原三角形的两角及夹边,根据ASA 公理,能够唯一确定三角形.其它两个不行.故选:A【点睛】此题主要考查全等三角形的运用,熟练掌握相关的判定即可解题.7.D【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减即可解决问题.【详解】解:设点P 的坐标为(x ,y ),由题意,得:x ﹣2=﹣1,y ﹣3=3,求得x =1,y =6,所以点P 的坐标为(1,6).故选D .【点睛】本题考查坐标与图形变化-平移,用到的知识点为:左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.8.D【分析】无理数包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.【详解】3π,223,3.140.1010010001……(每相邻两个1之间依次增加一个0)中无理数有:3π0.1010010001……(每相邻两个1之间依次增加一个0)共计4个.故选D.【点睛】考查了对无理数的定义的理解和运用,注意:无理数是指无限不循环小数,包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数.9.C【分析】首先由题意可判定△ABC 为等腰三角形,可得AD ⊥BC ,BD=CD=5,然后根据勾股定理,得AD=12,通过两种方法求ABD S ,可得出DE.【详解】解:连接AD ,如图所示,∵在△ABC 中,AB=AC=13,BC=10,D 是BC 的中点,∴AD ⊥BC ,BD=CD=5根据勾股定理,得∴ABD 1=BD AD 2S △=1512=302 =1AB DE 2 ∴DE=6013.故答案为C.【点睛】此题主要考查等腰三角形的性质,关键是利用不同的底和高求同一三角形的面积,即可得解.10.D【详解】解:根据各象限的坐标特征,点A (3,﹣5)在第四象限故选:D .11.(0,0)【详解】解:将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是(1-1,2-2),即(0,0).故答案填:(0,0).点评:此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.12.30°或150°【分析】根据题意作图,分两种情况进行求解即可.【详解】如图,∵OA⊥OB,∴∠AOB=90°,∵∠AOC∶∠AOB=2∶3,∴∠AOC=60°,故∠BOC=∠AOB-∠AOC=30°,或∠BOC=∠AOB+∠AOC=150°故填30°或150°【点睛】此题主要考查角度的计算,解题的关键是分两种情况进行讨论.13.14cm【详解】:∵DE是AB的垂直平分线,∴AB=2AE=2×1=2cm;DB=DA∴△ABC的周长为BA+AC+CD+DB=BA+(AC+CD+DA)=2+12=14cm.△ABC的周长是14cm.故答案为:14cm.14.(1009,0)【分析】结合图象可知:纵坐标每四个点循环一次,而2019=505×4-1,故A2019的纵坐标与A3的纵坐标相同,都等于0;由A2(1,1),A6(3,1),A10(5,1)…可得到以下规律,A4n-1(2n-1,0)(n为不为0的自然数),当n=505时,A2018(1009,1),A2019(1009,0).故答案为(1009,0)【详解】解:由A2(1,1),A6(3,1),A10(5,1)…可得到以下规律,A4n-1(2n-1,0)(n为不为0的自然数),当n=505时,A2019(1009,0).故答案为(1009,0)【点睛】本题属于循环类规律探究题,考查学生归纳猜想的能力,结合图象找准循环节是解15.424'20''︒【分析】利用90︒减去∠A 即可直接求解.【详解】∠B =90︒−∠A =90︒−4755'40''︒=424'20''︒.故答案为:424'20''︒.【点睛】本题考查了余角的定义,如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角,理解定义是关键.16.60【详解】设这个角为x °,则它的补角为(180−x )°.依题意,有180−x =2x ,解得x =60.故这个角的度数为60°.故答案为6017.(1)A′(2,-1)、B′(6,1)、C′(6,-3),见解析;(2)S 四边形ABOP =4﹣m ;(3)存在,点P (﹣4,3)使S 四边形ABOP =S △ABC .【分析】(1)利用平移的性质,描出A 、B 、C 平移后的点,再顺次连接即可;(2)S 四边形ACOP =S △ACO +S △APO ,利用各点的坐标以及三角形的面积公式即可求得;(3)求出S △ABC 的面积,再利用S 四边形ACOP =S △ABC 即可求出m 的值,即可得出点P 的坐标.【详解】解:(1)平移得到△A B C '''如图所示A′(2,-1)、B′(6,1)、C′(6,-3)(2)四边形ACOP 的面积为(4-m )∵S △ACO =12×2×4=4,S △APO =12×2×(﹣m )=﹣m ,∴S 四边形ACOP =S △ACO +S △APO =4+(﹣m )=4﹣m ,即S 四边形ACOP =4﹣m ;(3)因为S △ABC =12×4×4=8,∵S 四边形ACOP =S △ABC ∴4﹣m=8,所以存在点P (﹣4,3)使S 四边形ACOP =S △ABC .【点睛】本题考点涉及平面直角坐标内的三角形平移、点的坐标以及三角形面积公式的运用,难度较低,坐标的灵活运用是解题关键.18.-x +1【分析】运用多项式乘多项式、多项式除以单项式的法则计算即可.【详解】()()()()()382442x x x x x ⎡⎤-+--+÷-⎣⎦()()()2236816162x x x x x ⎡⎤=+----÷-⎣⎦()()223216162x x x x =---+÷-()()2222x x x =-÷-1x =-+.【点睛】考查了多项式乘多项式、多项式除以单项式的法则,解题关键是熟记并运用其运算法则(①多项式乘以多项式的法则:用一个多项式里的每一项分别乘以另一个多项式中的每一项,再把所得的积相加;②多项式除以单项式:先把这个多项式每一项分别除以这个单项式,再把所得的商相加).19.(1)平行于同一条直线的两条直线平行;两直线平行同旁内角互补;等量代换;(2)∠CPD =∠α+∠β;(3)∠CPD=∠β−∠α,∠CPD=∠α−∠β.【分析】(1)根据平行线的判定与性质填写即可;(2)过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;(3)画出图形(分两种情况①点P在BA的延长线上,②点P在AB的延长线上),根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【详解】(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD.(平行于同一条直线的两条直线平行)∴∠A+∠APE=180°.∠C+∠CPE=180°.(两直线平行同旁内角互补)∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°∴∠APC=∠APE+∠CPE=110°.(等量代换)故答案为平行于同一条直线的两条直线平行;两直线平行同旁内角互补;等量代换. (2)∠CPD=∠α+∠β,理由是:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)当P在BA延长线时,过P作PE∥AD交CD于E,如图4同(2)可知:∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠β−∠α;当P在AB延长线时,过P作PE∥AD交CD于E,如图5同(2)可知:∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠α−∠β.【点睛】此题考查平行线的判定与性质,解题关键在于作辅助线和掌握判定定理. 20.(1)6.7;(2)2.5【分析】(1)由统计表可得即可求得答案;(2)总人数乘以扇形图中偶尔使用对应的百分比可得.【详解】解:(1)从2012年到2013年微信的日人均使用时长增加了9.7-3.0=6.7(分钟),故答案为6.7;(2)截止到2013年12月31日,在我国6亿微信用户中偶尔使用微信用户约为6×(1-13.0%-7.4%-13.0%-24.2%)≈2.5(亿),故答案为2.5.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.21.(I)x<3;(II)x≥1;(III)见解析;(IV)1≤x<3.【分析】(I)根据不等式的性质求出不等式的解集即可;(II)根据不等式的性质求出不等式的解集即可;(III)在数轴上表示出来即可;(IV )根据数轴得出即可.【详解】(I )解不等式①得:x <3,故答案为x <3;(II )解不等式②得:x≥1,故答案为x≥1;(III )把不等式①和②的解集在数轴上表示出来为:;(IV )原不等式组的解集为1≤x <3,故答案为1≤x <3.【点睛】本题考查了解一元一次不等式组的应用,能根据找不等式组解集的规律找出不等式组的解集是解此题的关键.22.(1)3;(2)2ab -1.【分析】(1)根据相反数、零指数幂、立方根、负整数指数幂的意义进行计算即可;(2)根据单项式乘以多项式法则以及完全平方公式计算,去括号合并即可得到结果.【详解】解:(1)原式=2+1+3−3=3;(2)原式=22221221a ab a a a ab +---+=-.【点睛】本题考查了实数的运算及整式乘法公式,熟练掌握运算法则是解题的关键.23.(1)A (0,4);B (-2,2);C (-1,1);(2)2;(3)A '(6,6),B '(4,4),C '(5,3).【分析】(1)根据各点所在象限的符号和距坐标轴的距离可得各点的坐标;(2)通过补全法可求得S △ABC =2;(3)根据平移的规律,把△ABC 的各顶点向右平移6个单位,再向上平移2个单位,顺次连接各顶点即为△A ′B ′C ′;直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.【详解】(1)A (0,4);B (-2,2);C (-1,1);(2)如图:补成一个长方形,则S △ABC =S 矩形ADFE -S △ADB -S △BCF -S △ACE =6-1.5-0.5-2=2;(3)如图,A '(6,6),B '(4,4),C '(5,3).【点睛】本题考查了作图---平移变换;难点在于直接计算△ABC 的面积不好计算,但是可以用三角形所在的矩形面积减去多余三角形的面积计算得出所求三角形面积.24.100︒.【分析】延长CB FH 、交于M 点.首先证明FM DE ,利用平行线的性质即可解决问题.【详解】如图所示,延长CB FH 、交于M 点.∵1ABC ∠=∠,∴FG BC ∥,∴2M ∠=∠,又∵23180∠+∠=︒,∴3180M ∠+∠=︒,∴FM DE ,∴180DEF EFH ∠+∠=︒,∵:5:4DEF EFH ∠∠=,∴51801009DEF ∠=⨯︒=︒.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.。
2022年七年级第二学期数学期末考试试题(含答案)(山东地区)
七年级下学期数学期末考试试题(满分:150分时间:120分钟)一.单选题。
(每小题4分,共48分)1.北京冬奥会圆满落下帷幕,中国交出满分答卷,得到世界高度赞扬,组成本次会徽的四个图案中是轴对称图形的是()A. B. C. D.2.某病毒直径大约长0.00000012米,数字0.00000012用科学记数法表示为()A.1.2×10﹣7B.12×10﹣8C.120×106D.0.12×10﹣93.下列计算正确的是()A.a6÷a2=a3B.a6•a2=a12C.(﹣2a2)2=4a4D.b3+b2=2b54.已知三角形的两边长分别是3和8,则此三角形第三边长可能是()A.4B.5C.10D.115.小明的钱包原有80元,他在新年一周里抢红包,钱包里的钱随着时间的变化而变化,在上述过程中,因变量是()A.时间B.小明C.80元D.钱包里的钱6.下列事件属于必然事件的是()A.掷一枚质地均匀的骰子,掷出的点数是奇数B.车辆随机经过一个路口,遇到红灯C.任意画一个三角形,其内角和是180°D、有三条线段,将这三条线段首尾顺次相接可以组成一个三角形7.如图,AB∥CD,∠A=30°,DA平分∠CDE,则∠DEB的度数为()A.45°B.60°C.75°D.80°(第7题图)(第8题图)(第9题图)8.如图,一根垂直于地面的旗杆在离地面5m的B处折断,旗杆顶部落在旗杆底部12m的A 处,则旗杆折断前的高度为()A.18mB.13mC.12mD.5m9.如图,直线DE是△ABC边AC的垂直平分线,且与AC相交于点E,与AB相交于点D,连接CD,已知BC=8cm,AB=12cm,则△BCD的周长为()A.16cmB.18cmC.22cmD.20cm10.如图,点B,E,C,F四点在同一条直线上,∠B=∠DEF,BE=CF,添加一个条件,不能判定△ABC≌△DEF的是()A.AC=DFB.AB=DEC.AC∥DFD.∠A=∠D(第10题图)(第11题图)(第12题图)11.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于1MN长为半径画弧,两弧交于点O,作射线AO,交BC于2点E,已知AB=10,S△ABE=20,则CE的长为( C )A.6B.5C.4D.312.已知动点H以每秒1厘米的速度沿图1的边框(边框拐角处都互相垂直)按从A—B—C —D—E—F的路径匀速运动,相应的△HAF的面积S(cm2)关于时间t(s)的关系图象如图2,已知AF=8cm,下列说法错误的是()A.动点H的速度为2cm/sB.b的值为14C.BC的长度为6cmD.在运动过程中,当△HAF的面积为30cm2时,点H的运动时间是3.75s或9.25s二.填空题。
七年级下册期末考试数学试题含答案
七年级下册期末考试数学试题含答案七年级下册期末考试数学试题含答案想要提高数学能力,就要加强试题的训练。
数学与试题的分不开的。
下面店铺为大家带来一份七年级下册期末考试的数学试题,文末有答案,希望能对大家有帮助,更多内容欢迎关注应届毕业生网!一、选择题(共8小题,每小题3分,满分24分。
将正确答案字母填在括号内)1.(3分)9的算术平方根为( )A. 3B. ±3C. ﹣3D. 81考点:算术平方根.专题:计算题.分析:首先根据算术平方根的定义求出,然后再求出它的算术平方根即可解决问题.解答:解:∵ =3,而9的算术平方根即3,∴9的算术平方根是3.故选A.点评:此题主要考查了算术平方根的定义,特别注意:应首先计算的值,然后再求算术平方根.2.(3分)(2009•临沂)若x>y,则下列式子错误的是( )A. x﹣3>y﹣3B. 3﹣x>3﹣yC. x+3>y+2D.考点:不等式的性质.分析:看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.解答:解:A、不等式两边都减3,不等号的方向不变,正确;B、减去一个大数小于减去一个小数,错误;C、大数加大数依然大,正确;D、不等式两边都除以3,不等号的方向不变,正确.故选B.点评:主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.(3分)下列调查最适合于抽样调查的是( )A. 老师要知道班长在班级中的支持人数状况B. 某单位要对食堂工人进行体格检查C. 语文老师检查某学生作文中的错别字D. 烙饼师傅要知道正在烤的饼熟了没有考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、人数不多,容易调查,故适合全面调查;B、人数不多,关系到职工的健康,故必须全面调查;C、关系重大,不需进行前面调查;D、调查具有破坏性,因而适合抽查.故选D.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.(3分)(2009•邵阳)不等式组的解集在数轴上可以表示为( )A. B. C. D.考点:在数轴上表示不等式的解集.分析:先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上,即可.解答:解:解不等式得:1≤x<3,即表示1与3之间的数且包含3.表示在数轴上:故选B.点评:不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)如图,将四边形ABCD先向左平移2个单位长度,再向上平移1个单位长度,那么点B的对应点B′的坐标是( )A. (4,﹣1)B. (﹣4,﹣1)C. (4,1)D. (5,1)考点:坐标与图形变化-平移.分析:由于将四边形ABCD先向左平移2个单位,再向上平移1个单位,则点B也先向左平移2个单位,再向上平移1个单位,据此即可得到点B′的坐标.解答:解:∵四边形ABCD先向左平移2个单位,再向上平移1个单位,∴点B也先向左平移2个单位,再向上平移1个单位,∵由图可知,B点坐标为(6,﹣2),∴B′的坐标为(4,﹣1).故选A.点评:本题考查了坐标与图形的变化﹣﹣平移,本题本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.6.(3分)如图,直线a,b被直线c所截,则下列推理中,正确的是( )A. 因为∠1+∠2=90°,所以a∥bB. 因为∠1=∠2,所以a∥bC. 因为a∥b,所以∠1=∠2D. 因为a∥b,所以∠1+∠2=180°考点:平行线的判定与性质.分析:根据平行线的判定以及性质定理即可作出解答.解答:解:A、因为∠1+∠2=180°,所以a∥b,选项错误;B、因为∠1=∠3即,∠1+∠2=180°,所以a∥b,故选项错误;C、因为a∥b,所以∠1=∠3,即∠1+∠2=180°,故选项错误;D、正确.故选D.点评:本题考查了平行线的判定以及性质定理,理解定理是关键.7.(3分)如果方程组的解x、y的值相同,则m的值是( )A. 1B. ﹣1C. 2D. ﹣2考点:解三元一次方程组.分析:由题意将方程组中的两个方程相减,求出y值,再代入求出y值,再根据x=y求出m的值.解答:解:由已知方程组的两个方程相减得,y=﹣,x=4+ ,∵方程组的解x、y的值相同,∴﹣ =4+ ,解得,m=﹣1.故选B.点评:此题主要考二元一次方程组的解法,一般先消元求出x,再代入其中一个方程求出y值,比较简单.8.(3分)在一次小组竞赛中,遇到了这样的情况:如果每组7人,就会余3人;如果每组8人,就会少5人.问竞赛人数和小组的组数各是多少?若设人数为x,组数为y,根据题意,可列方程组( )A. B. C. D.考点:由实际问题抽象出二元一次方程组.分析:每组人数乘以组数加上剩余的人数或减去缺少的人数等于总人数.解答:解:若每组7人,则7y=x﹣3;若每组8人,则8y=x+5.故选C.点评:本题难点为:根据每组的人数与人数总量的关系列出方程.下载文档。
福建省泉州市惠安县2023-2024学年七年级下学期期末数学试题(含答案)
惠安县2023—2024学年度下学期七年级期末教学质量检测数学试题(考试满分:150分;考试时间:120分钟)友情提示:所有解答必须填写到答题卡相应的位置上.学校________姓名________考生号________一、选择题:共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.方程的解是A .B .C .D .2.正六边形的外角和是()A .180°B .360°C .540°D .720°3.将一副三角板按如图所示叠放在一起,则图中∠1的度数是A .20°B .10°C .15°D .5°4.如图所示,为估计池塘岸边A 、B 的距离,在池塘的一侧选取一点O ,测得米,米,设米,则a 的取值范围是A .B .C .D .5.剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟,下列剪纸中,既是轴对称图形,又是中心对称图形的是A .B .C .D .6.下列用数轴表示不等式组的解集正确的是42x =-12x =-12x =2x =2x =-12OA =9OB =AB a =912a <<921a <<312a <<321a <<12x x ⎧⎨<⎩…A .B .C .D .7.若是关于x ,y 的二元一次方程,则A .1 B .±2 C .2 D .-28.使不等式成立的a 值中,最大的整数是A . B .C .D .9.我国明代数学家程大位的《算法统宗》中有这样一个问题:隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两.问所分的银子共几两?(注:明代时1斤=16两,故有“半斤八两”这一成语).设有x 人,银子有y 两,下列方程组正确的是A .B .C .D .10.三个边长分别为a ,b ,c ()的正方形按如图放置,则图中阴影部分的面积可表示为A.B .C .D .二、填空题:共6小题,每题4分,共24分.11.已知方程,用含x 的代数式表示y ,则________.12.写出仅用一种正多边形能把地面铺满的是________.(写出一种即可)13.数轴上,点A ,B 分别表示数,,且点A 在点B 的左侧.则m 的取值范围为________.14.已知是二元一次方程的一个解,则代数式的值是________.15.如图,将Rt △ABC 绕点A 顺时针旋转α得到△AB 'C ',点C 恰好落在AB 上,连接BB ',若,则________.||1(2)0k k x y-++=k =21a ->1a =0a =1a =-2a =-7498x y x y =-⎧⎨=+⎩7498x y x y =+⎧⎨=-⎩4789y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩4789y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩a b c ≠≠2221()2a b c ++1()2a ab +1()2a bc +1()2c a b +28x y +=y =21m -1m +x a b y =⎧⎨=⎩23x y -=42a b -+''30BB C ∠=︒α=16.如图,四边形ABCD 中,,,作于E ,若四边形ABCD 的面积是4,则________.20.(8分)如图,平行四边形ABCD 中,EF 过对角线的交点O ,且与边AB 、CD 分别相交于E 、F .(1)判断图形的面积关系:________;(2)若,,,求四边形BCFE 的周长.21.(8分)为了加强体育锻炼,班级准备购进一批排球和篮球.已知排球的单价比篮球的单价少20元,用1200元购买篮球的数量和用900元购买排球的数量相等.(1)求篮球和排球的单价;(2)若班级准备购买篮球和排球共12个,且排球不超过篮球数量的两倍,设购买篮球和排球所需总费用为y 元,购买排球a 个,求y 与a 之间的函数关系式,并设计一种费用最少的购买方案.22.(10分)矩形ABCD 中,,.(1)尺规作图:求作一点E ,使得△AEC 和△ABC 关于对角线AC 对称;(不写作法,保留作图痕迹)(2)在(1)的条件下,设CE 与AD 相交于点F ,求△ACF 的面积.23.(10分)某数学兴趣小组以“脚长与标准鞋码(欧码)的对应关系”为主题,开展综合实践活动.已知鞋子尺码,又叫鞋号,常见有以下标法:国际、欧洲、美国和英国.国际标准鞋号表示的是脚长的毫米数.中国标准采用毫米数或厘米数为单位来衡量鞋的尺码大小.而欧洲码数(欧码)则以20~0之间的整数作为码数大小.小组同学通过收集数据、建立函数模型来研究该问题,研究过程如下:(ⅰ)收集数据90DAB BCD ∠=∠=︒BC CD =CE AB ⊥CE =AEFD S =四边形ABCD S 四边形5AB =3AD = 1.3OF =4AB =8BC =脚长(单位:mm ) (235)238245253255…对应鞋子的码数(欧码)…3738394041…(ⅱ)建立模型,在平面直角坐标系中,描出这些数据对应的点,发现这些点大致位于同一个函数图象上,则这个函数最有可能是________;(填“正比例函数”、“一次函数”或“反比例函数”)(ⅲ)求解模型:为使得所描的点尽可能多地落在函数图象上,根据(ⅱ)所选择的函数类型,求出该函数的表达式;(ⅳ)解决问题:根据个人脚长,选择购买合适码数的鞋子.阅读以上材料,解决下面问题:(1)完成小组同学的研究过程(ⅱ);(要求在坐标系中描点,画出最恰当的函数图象,并指出其函数类型)(2)求出对应函数的表达式;(3)若某同学的脚长为268mm ,请为他挑选合脚且尽量宽松的鞋子码数.24.(12分)定义:若关于x 的一元一次方程(的常数)的解满足,则称该方程为“差解方程”,例如:方程的解为,而,,则方程为“差解方程”,根据题意,解决下面问题:(1)方程________(填“是”或“不是”)“差解方程”;(2)关于x 的一元一次方程是“差解方程”,求m 的值;(3)若是“差解方程”,试求k 的值.25.(14分)小明学习“图形的旋转”以后,对数学很感兴趣,于是亲自动手剪出2块等腰直角三角形△ABC 和△CDE 纸片,,,,并按如图1放置,进行数学探究.ax b =0a ≠x b a =-24x =2x =2x =242=-24x =24x -=321x m =-b ak =90ACB DCE ∠=∠=︒CA CB =CD CE =(1)实践与探究探究一:如图1,连结AD ,将△ACD 绕点C 逆时针旋转90°,请在图1中画出这对全等三角形,并写出AD 与其对应线段的数量关系,即________;探究二:如图2,连结AE ,BD 得到△ACE 和△BCD .问这两个三角形的的面积是否相等?请说明理由.(2)发现新结论探究三:把原来等腰直角三角形△ABC 改为一般△ABC 如图3所示,分别以△ABC 的三边向外侧作正方形ACDE 、BCFG 和ABMN ,发现图中3个阴影三角形的面积之和存在最大值,设,,求出其最大值.惠安县2023—2024学年度下学期七年级期末教学质量检测参考答案与评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.一、选择题(每题4分,共10小题40分)1.A2.B3.C4.D5.D6.C7.C8.C9.A10.B二、填空题(每题4分,共6小题24分)11.;12.等边三角形(正三边形或正方形或正六边形,写出一种即可);13.;14.-6;15.60°;16.2三、解答题(共9道题86分)17.(8分)解:,去括号,得,移项,得,合并同类项,得,系数化为1,得.18.(8分),解:把①代入②得,,解得,把代入①得,,AD =AC a =BC b =82y x =-2m <()51211x x -=+55211x x -=+52115x x -=+316x =163x =32,29x y x y =-⎧⎨+=-⎩①②()2329x x +-=-5x =5x =3257y =-⨯=-∴原方程组的解是.19.(8分)解:由①得,由②得,将不等式的解集表示在数轴上,如图所示.∴原不等式组的解集是.20.(8分)解:如图,(1)即为所求的;(2)即为所求的;(3)点P 即为所求作的点.21.(8分)证明:△ABC 中,,∵∠ACD 是△ABC 中∠ACB 的一个外角,∴,∴.22.(10分)解:(1)设跳绳单价为x 元/条,毽子的单价为y 元/个,根据题意,得57x y =⎧⎨=-⎩513(1),112x x x -<+⎧⎪⎨+-⎪⎩①②…2x <3x -…32x -<…111A B C △222A B C △180A B ACB ∠+∠+∠=︒180ACD ACB ∠+∠=︒ACD A B ∠=∠+∠20305901010260x y x y +=⎧⎨+=⎩解得答:跳绳单价为19元/条,毽子的单价为7元/个.(2)设B 班级的跳绳最多能买m 条,则可以买毽子个,根据题意,得解此不等式得,,∵m 为正整数,∴m 的最大整数解为20,答:B 班级的跳绳最多能买20条.23.(10分)解:(1)∵,,∴∵CE 是∠ACB 的角平分线,∴∵CD 是AB 边上的高,∴∴∴∴.(2)(方法一)如图1,∵CE 是∠ACB 的角平分线,∴∵,∴,∵,又∵∴.∵FG 是AB 边上的高,∴197x y =⎧⎨=⎩()50m -()19750600m m +-…12520.836m ≈…26A ∠=︒50B ∠=︒1802650104ACB ∠=︒-︒-︒=︒111045222ECB ACB ∠=∠=⨯︒=︒CD AB⊥90CDB ∠=︒905040DCB ∠=︒-︒=︒524012ECD ECB DCB ∠=∠-∠=︒-︒=︒12ECB ACB =∠∠180ACB A B ∠=︒-∠-∠1(180)2ECB A B ∠=︒-∠-∠180ECB B CEB FGE F GEF ∠+∠+∠=∠+∠+∠=︒CEB GEF∠=∠ECB B FGE F ∠+∠=∠+∠FG AB⊥∴,∴,整理,得(或)(方法二)如图2,过点C 作于点P ∵∴,∵∴∵CE 是∠ACB 的角平分线,∴∵∴∴(或)24.(12分)解:(1)不是;(2)∵一元一次方程是“差解方程”,由题意,得,又∵,∴,解得;(3)∵,∴k 是方程()的一个解,∴,90FGE ∠=︒1(180)902A B B F ︒-∠-∠+∠=︒+∠1122F B A ∠=∠-∠2F B A ∠=∠-∠CP AB ⊥90EPC FGE ∠=∠=︒90ECP PEC FEG F ∠+∠=∠+∠=︒GEF PEC∠=∠ECP F∠=∠11(180)22ECB ACB A B ∠=∠=︒-∠-∠(90)ECP ECB PCB ECB B ∠=∠-∠=∠-︒-∠(90)F ECB B ∠=∠-︒-∠()()1180902A B B =︒-∠-∠-︒-∠11909022A B B =︒-∠-∠-︒+∠1122B A =-∠∠1122F B A ∠=∠-∠2F B A ∠=∠-∠321x m =-21324x m m =--=-213m x -=21243m m -=-114m =b ak =ax b =0a ≠x k =由定义,得,∴,∴,下面分两种情况讨论:当时,即,又已知,故此方程无解,则k 不存在;当时,.25.(14分)解:(1)如图1,BE ;(2).理由如下:(方法一)如图2,∵,∴将△ACE 绕点C 顺时针方向旋转90°得到△A 'CD ,∴,且,∴,,即A '、C 、B 三点共线,∵DC 为三角形△A 'DB 的A 'B 边上的中线.∴∴(方法二)如图3,∵,,∴将△BCD 绕点C 逆时针旋转90°得到△FCE ,即.∵,x ak a =-()0ak a k a -=≠()()10k a a a -=≠10a -=1a =0a ≠1a ≠1a k a =-BCD ACE S S =△△90ACB ECD ∠=∠=︒CE CD='ACE A CD ≌△'90A CA ∠=︒'A C AC BC =='180A CA ACB ∠+∠=︒BCD A CD S S '=△△BCD ACES S =△△CD CE =90DCE ∠=︒BCD FCE ≌△△12360DCE ACB ∠+∠+∠+∠=︒又∴由旋转性质,得,,∴∴点A 、C 、F 三点共线.∵,∴,即EC 为三角形△AEF 的AF 边上的中线.∴∴(3)如图4,连结CE 、BN ,由(2)可知,同理可得,∴设,,BC 边上的高为h ,如图5.则,∵,∴当,即时,.∴阴影部分的面积和的最大值为.90ACB DCE ∠=∠=︒12180∠+∠=︒13∠=∠CB CF =23180∠+∠=︒AC CB =CB CF=AC CF =ACE FCES S =△△ACE BCDS S =△△AEN ABCS S =△△DCF ABC S S =△△BMG ABCS S =△△3ABCS S =阴影部分面积和△AC a =BC b =12ABC S bh =△h a …h a =90ACB ∠=︒133322ABC S S ab ab ==⨯=阴影部分面积和△32ab。
七年级下学期数学期末试卷(含答案)
七年级下学期数学期末试卷(含答案)2017-2018学年度下学期期末学业水平检测七年级数学试题一、单项选择题(每小题2分,共12分)1.在数2,π,3-8,0.3333.中,其中无理数有()A。
1个B。
2个C。
3个D。
4个2.已知:点P(x,y)且xy=0,则点P的位置在()A。
原点B。
x轴上C。
y轴上D。
x轴上或y轴上3.不等式组2x-1>1。
4-2x≤的解集在数轴上表示为()4.下列说法中,正确的是()A。
图形的平移是指把图形沿水平方向移动B。
“相等的角是对顶角”是一个真命题C。
平移前后图形的形状和大小都没有发生改变D。
“直角都相等”是一个假命题5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已知中学生被抽到的人数为150人,则应抽取的样本容量等于()A。
1500B。
1000C。
150D。
5006.如图,点E在AC的延长线上,下列条件能判断AB∥CD的是()①∠1=∠2②∠3=∠4③∠A=∠XXX④∠D+∠ABD=180°A。
①③④B。
①②③C。
①②④D。
②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标。
8.-364的绝对值等于______。
9.不等式组{x-2≤x-1>的整数解是______。
10.如图,a∥b,∠1=55°,∠2=40°,则∠3的度数是______。
11.五女峰森林公园门票价格:成人票每张50元,学生票每张10元。
某旅游团买30张门票花了1250元,设其中有x 张成人票,y张学生票,根据题意列方程组是______。
12.数学活动中,XXX和XXX向老师说明他们的位置(单位:m): XXX:我这里的坐标是(-200,300);XXX:我这里的坐标是(300,300)。
则老师知道XXX与XXX之间的距离是______。
13.比较大小: 5-1/2______1(填“<”或“>”或“=”)。
七年级下学期期末考试数学试卷(附答案)
七年级下学期期末考试数学试卷(附答案)一、选择题(本大题共10小题,每小题4分,满分40分,)1、下列选项中能由如图平移得到的是()A.B.C.D.2、计算m6÷m2的结果是()A.m3B.m4C.m8D.m123、如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交4、若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm5、计算:(2x﹣y)2=()A.4x2﹣4xy+y2B.4x2﹣2xy+y2C.4x2﹣y2D.4x2+y26、若a<b,则下列结论中,不正确的是()A.a+2<b+2 B.a﹣2>b﹣2 C.2a<2b D.﹣2a>﹣2b7、学校计划用200元钱购买A、B两种奖品(两种都要买),A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.2种B.3种C.4种D.5种8、图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b29、将一个长为2a,宽为2b的长方形纸片(a>b),用剪刀沿图1中的虛线剪开,分成四块形状和大小都一样的小长方形纸片,然后按图2的方式拼成一个正方形,则中间小正方形的面积为( )A. a2+b2B. a2-b2C. (a+b)2D. (a-b)210、如图,已知AD∥EF∥BC,BD∥GF,且BD平分∠ADC,则图中与∠1相等的角(∠1除外)共有( )A. 4个B. 5个 C. 6个 D. 7个二、填空题(本大题共4小题,每小题5分,满分20分)11.8的立方根是________.12.因式分解:x3y2-x=________13.若分式方程mx−1+31−x=2的解为正数,则m的取值范围是________14.已知:AB∥CD,点C在点D的右侧,BE平分∠ABC,DE平分∠ADC,BE,DE所在直线交于点E,∠ADC=70°。
湖北省武汉市江汉区2023-2024学年七年级下学期期末考试数学试卷(含答案)
2023~2024学年度第二学期期末质量检测七年级数学试题(考试时间:120分钟试卷总分:150分)第Ⅰ卷(本卷满分100分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.估计的值()A.在2与3之间B.在3与4之间C.在4与5之间D.在5与6之间.2.以下调查中,适合进行抽样调查的是()A.飞船发射前对重要零部件的检查B.调查全班同学每周体育锻炼时间C.了解某批次节能灯的使用寿命D.乘坐飞机前,对乘客进行安全检查3.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集是()A. B. C. D..4.如图,在中,为边上一点,为边上一点,为延长线上一点,,,下列条件中不能证明的是()A. B. C. D..5.若是关于,的二元一次方程的解,则的值是()A.1B.C.2D.6.若,则下列式子不正确的是()A. B. C. D..7.为了考察某种大麦穗长的分布情况,在一块试验田里抽取了100根麦穗,量得它们长度(单位:cm),最大值为7.4,最小值为4.0,取组距为0.3,则可以分成()A.10组B.11组C.12组D.13组.8.我国古代数学名著《孙子算经》中有一道题,原文是“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长尺,绳长尺,可列方程组为()A. B. C. D.9.在平面直角坐标系中,点,,过点作直线轴,点是直线上的一个动点,当线段长度最小时,点的坐标是()A. B. C. D.10.若关于的不等式组的解集是,则的取值范围是()A. B. C. D.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.11.空调安装在墙上时,一般都会采用如图的方法固定,这种方法应用的几何原理是______.12.已知在第四象限,则的取值范围是______.13.用一条长为20cm的细绳围成一个等腰三角形,使其一边的长度为5cm,则另两边的长度分别是______cm.14.一个多边形的内角和比外角和多720°,它的边数是______.15.将一把长方形直尺和一个正六边形按如图所示的位置摆放,若,则______°.16.若关于,的方程组满足,则的取值范围是______.三、解答题(共5小题,共52分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.17.(本小题10分)(1)计算:;(2)解方程组:.18.(本小题10分)求满足不等式组的整数解.19.(本小题10分)某校组织开展了“英雄城市,先锋有我”的系列活动,要求每名学生在规定时间内必须且只能参加其中一项活动:A参观学习,B团史宣讲,C经典诵读,D文学创作.该校从全体学生中随机抽取部分学生,调查他们参加活动的意向,将收集的数据整理后,得到如下不完整的统计图表.活动意向统计表活动类别意向人数AB12CD16(1)上表中的______;______;请补全条形统计图;(2)项活动所在扇形的圆心角的度数是______°;(3)若该校有2000名学生,请估计其中意向参加“参观学习”活动的人数20.(本小题10分)如图,在中,是上一点,于点,于点,是上一点,且满足.(1)求证:;(2)若平分,,求的度数.21.(本小题12分)在的正方形网格中,建立如图所示的平面直角坐标系,网格线的交点称为格点,请用无刻度的直尺画图,并回答相关问题.已知,,把线段先向左平移3个单位长度,再向下平移3个单位长度,得到线段(其中点与点对应).(1)画出平移后的线段;(2)直接写出线段在两次平移中一共扫过的面积;(3)连接,,,在轴上画点,使;(画出一种即可)(4)图中使面积为6的格点共有______个.第Ⅱ卷(本卷满分50分)四、填空题(共4小题,每小题4分,共16分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.22.如图,小明一笔画成了如图所示的图形,若,,,则______°.23.已知三角形的三边长分别为6,9,,且关于的不等式组至少有四个整数解,则整数的值是______.24.若,满足,,则的取值范围是______.25.如图,在中,,分别是的高和角平分线,点在的延长线上,于点,分别交,,于点,,.下列四个结论:①;②;③;④.其中正确的结论是______(填写序号).五、解答题(共3小题,共34分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形,26.(本小题10分)苹果的进价是1.5元/千克,香梨的进价是2元/千克;李老板购进苹果的重量比香梨重量的3倍多20千克,一共花费420元;为方便销售,定价均为7元/千克.(销售量取整数)(1)李老板购进苹果和香梨各多少千克?(2)前4天,平均每天卖出苹果和香梨共50千克,若每天利润大于268元,且苹果的平均日销售量小于香梨平均日销售量的3倍.①这4天苹果和香梨的平均日销售量分别是多少千克?②由于天气炎热,苹果总量存在8%的损耗,为尽快清仓,李老板决定对剩下的苹果进行打折销售,为确保销售苹果的总利润不低于925元,最多可以打几折?(直接写出结果)27.(本小题12分)在中,,的角平分线,交于点.(1)【问题呈现】如图1,若,求的度数;(2)【问题推广】如图2,将沿折叠,使得点与点重合,若,求的度数;(3)【问题拓展】若,分别是线段,上的点,设,.射线与的平分线所在的直线相交于点(不与点重合),直接写出与之间的数量关系(用含,的式子表示).28.(本小题12分)定义:在平面直角坐标系中,已知点,,可以得到的中点的坐标为;当时,将点向上平移个单位,得到;当时,将点向下平移个单位,得到,我们称点为关于的中心平移点.例如:,,的中点的坐标为,关于的中心平移点的坐标为.(1)已知,,,直接写出关于的中心平移点及关于的中心平移点的坐标;(2)已知,位于轴的同侧,关于的中心平移点为,若的面积比的面积大6,求的值;(3)已知,,将点向下平移1个单位得到,将点向上平移6个单位得到,分别过点与作轴的平行线与.若点在线段上,且关于的中心平移点在与之间(不含,),直接写出的取值范围.2023~2024学年度第二学期期末检测七年级数学试题参考答案及评分标准武汉市江汉区教育局教育培训中心命制2024.6一、选择题(共10小题,每小题3分,共30分)题号12345678910答案C C D B B D C C B A 二、填空题(共6小题,每小题3分,共18分)11.三角形具有稳定性12.13.7.5cm,7.5cm 14.815.7816.三、解答题(共8小题,共72分)17.解:(1)原式……3分.……5分(2)①+②得:……7分将代入①得:……9分该方程组的解为……10分18.解:由①得:……3分由②得:……6分该不等式组的解集为……8分该不等式组的整数解为:1,2,3,4.……10分19.(1);;见下图……4分(2)54°.……7分(3)(人)……9分答:估计其中意向参加“参观学习”活动的有800人.……10分20.(1)解:,,,,……2分,……3分,,……4分.……5分(2)解:平分,……6分又,,……7分在中,,,……9分,,.……10分21.(1)如图所示……3分(2)15……6分(3)如图所示……9分(4)5……12分四、填空题(每小题4分,共16分)22.88° 23.13、14 24.25.①③④五、解答题(共3小题,共34分)26.解:(1)设李老板购进苹果千克,购进香梨千克解得:.答:李老板购进苹果200千克,购进香梨60千克.……3分(2)设前10天,每天卖出苹果千克,则卖出香梨千克.……5分解得:取整数答:这4天苹果日销售量为37千克,香梨的日销量为13千克.……7分(3)7.5折(七五折)……10分27.解:(1)平分,平分,,中,,又,,,在中,.……4分(2)由折叠可知,,,,,,,,,,在中,,在中,,,,在中,.……8分(3),……10分或.……12分28.解:(1)……4分(2)取的中点,连接,由题意可知,……5分为的中点,,解得或.……9分(另解:也可以用围补法表示出两个三角形的面积,列方程求解)由题意可知,……5分当点、位于轴上方时,,解得……7分当点、位于轴下方时,,解得.……59分(3)……512分。
初中七年级数学第二学期期末考试试卷含答案(标准)
B ′C ′D ′O ′A ′O DC BA (第8题图)初中七年级数学第二学期期末考试试卷(标准)班级 姓名 分数(满分120分)一、选择题(每小题3分,计24分,请把各小题答案填到表格内)题号 1 2 3 4 5 6 78 答案1. 如图所示,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是A .某市5万名初中毕业生的中考数学成绩B .被抽取500名学生 (第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生 3. 下列计算中,正确的是A .32x x x ÷=B .623a a a ÷=C . 33x x x =⋅D .336x x x += 4.下列各式中,与2(1)a -相等的是A .21a -B .221a a -+C .221a a --D .21a +5.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个 D .无数个 6. 下列语句不正确...的是 A .能够完全重合的两个图形全等 B .两边和一角对应相等的两个三角形全等 C .三角形的外角等于不相邻两个内角的和 D .全等三角形对应边相等 7. 下列事件属于不确定事件的是A .太阳从东方升起B .2010年世博会在上海举行C .在标准大气压下,温度低于0摄氏度时冰会融化D .某班级里有2人生日相同 8.请仔细观察用直尺和圆规.....作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AAS D .SSS 二、填空题(每小题3分,计24分)9.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为 cm . 10.将方程2x+y=25写成用含x 的代数式表示y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的大小是 °. 12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是 °.13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率(第16题图)为 .14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出球的可能性最小.15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:试验者试验次数n 正面朝上的次数m 正面朝上的频率nm 布丰4040 2048 0.5069德·摩根4092 2048 0.5005费勤10000 4979 0.4979那么估计抛硬币正面朝上的概率的估计值是 .16.如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,方格纸中的△ABC的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图.在图①中画出与△ABC全等且有一个公共顶点的格点△CBA''';在图②中画出与△ABC全等且有一条公共边的格点△CBA''''''.18.计算或化简:(每小题4分,本题共8分)(1)(—3)0+(+0.2)2009×(+5)2010(2)2(x+4) (x-4)19.分解因式:(每小题4分,本题共8分)(1)xx-3(2)-2x+x2+120.解方程组:(每小题5分,本题共10分)OACPP′B(第16题图)能进行密铺的地砖的形状是( ).(A) ① (B) ② (C) ③ (D) ④6.如果4(1)6x y x m y +=⎧⎨--=⎩中的解x 、y 相同,则m 的值是( )(A)1(B)-1(C)2(D)-27.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( ) (A)3场(B)4场(C)5场(D)6场8.若使代数式312m -的值在-1和2之间,m 可以取的整数有( )(A )1个 (B )2个 (C )3个 (D )4个9.把不等式组110x x +⎧⎨-≤⎩>0,的解集表示在数轴上,正确的是( ).(A ) (B ) (C ) (D ) 10.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2”,这种说明问题的方式体现的数学思想 方法叫做( ).(A )代入法(B )换元法(C )数形结合(D )分类讨论二、填空题(每题3分,共30分)1.若∠1与∠2互余,∠2与∠3互补,若∠1=630,则∠3=2.已知P 1(a-1,5)和P 2(2,b-1)关于x 轴对称,则2005()a b +的值为 3.根据指令[s,A](s≥0,0º<A<180º),机器人在平面上能完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离s .现机器人在直角坐标系的坐标原点,且面对x 轴正方向(1)若给机器人下了一个指令[4,60º],则机器人应移动到点 ;(2)请你给机器人下一个指令 ,使其移动到点(-5,5). 4.右图是用12个全等的等腰梯形镶嵌成的图形,这个图形中等腰梯形的上底长与下底长的比是 .5.一个多边形的每一个外角都等于360,则该多边形的内角和等于 6. 已知2(234)370x y x y +-++-=,则x= ,y=7.已知方程组11235mx ny mx ny ⎧+=⎪⎨⎪+=⎩的解是32x y =⎧⎨=-⎩,则m= ,n= 8.若点(m-4,1-2m )在第三象限内,则m 的取值范围是 .9.绝对值小于100的所有的整数的和为a ,积为b ,则20042005a b +的值为 .-1 0 1-1 0 1 -1 0 1 -1 0 1 第10题图第4题图对54D3E 21C B A人都版七年级数学下学期末模拟试题(三)1. 若点P 在x 轴的下方,y 轴的左方,到每条坐标轴的距离都是3,则点P 的坐标为( )A 、()3,3B 、()3,3-C 、()3,3--D 、()3,3-2. △ABC 中,∠A=13∠B=14∠C,则△ABC 是( ) A.锐角三角形B.直角三角形 C.钝角三角形 D.都有可能3. 商店出售下列形状的地砖:①正方形;②长方形;③正五边形;@正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有.( )(A )1种 (B )2种 (C )3种 (D )4种4. 用代入法解方程组⎩⎨⎧-=-=-)2(122)1(327y x y x 有以下步骤: ①:由⑴,得237-=x y ⑶ ②:由⑶代入⑴,得323727=-⨯-x x ③:整理得 3=3 ④:∴x 可取一切有理数,原方程组有无数个解 以上解法,造成错误的一步是( )A 、① B 、② C 、③ D 、④5. 地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x 千米,黄河长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是( )A 、⎩⎨⎧=-=+128465836y x y x B 、⎩⎨⎧=-=-128456836y x y x C 、⎩⎨⎧=-=+128456836x y y x D 、⎩⎨⎧=-=-128456836x y y x6. 若x m-n -2y m+n-2=2007,是关于x,y 的二元一次方程,则m,n 的值分别是( )A.m =1,n=0B. m =0,n=1C. m =2,n=1D. m =2,n=3 7. 一个四边形,截一刀后得到的新多边形的内角和将( )A 、增加180ºB 、减少180ºC 、不变D 、以上三种情况都有可能 8. 如右图,下列能判定AB ∥CD 的条件有( )个.(1) ︒=∠+∠180BCD B ;(2)21∠=∠;(3) 43∠=∠;(4) 5∠=∠B . A.1 B.2 C.3 D.4 9. 下列调查:(1)为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥有一部手机;(3)为了解本班学生的平均上网时间;(4) 为了解中央电视台春节联欢晚会的收视率。
【苏科版】七年级下册数学《期末考试试题》(附答案)
【解析】
【分析】
分P在AB上、P在BC上、P在CE上三种情况,根据三角形的面积公式计算即可.
【详解】解:当P在AB上时,
∵△APE的面积等于5,
∴ x•3=5,
x= ;
当P在BC上时,
∵△APE的面积等于5,
∴S矩形ABCD-S△CPE-S△ADE-S△ABP=5,
∴ ×(x-4)=5,
【点睛】考核知识点:科学记数法.理解法则是关键.
12.10m= 3,,10n= 5,则103m-n= ______
【答案】
【解析】
【分析】
先把103m-n化为(10m)3÷10n运用同底数幂的除法,幂的乘方法则计算.
【详解】∵10m=3,10n=5,
∴103m-n=(10m)3÷10n=33÷5=5.4= ,
【答案】A
【解析】
【分析】
①+②,得4x+4y=2+2a,根据x+y= 0可求出a.
【详解】
①+②,得
4x+4y=2+2a
因为x+y= 0
所以0=2+2a
所以a=-1
故选A
【点睛】考核知识点:加减法在二元一次方程组中的运用.灵活运用加减法是关键.
10.二元一次方程2x+3y=10的正整数解有( )
A.0个B.1个
【答案】
【解析】
【分析】
根据非负数性质,求得x、y的值,然后代入所求求值即可.
【详解】∵ ,
∴ ,
解得
∴yx=2-1= .
故答案为
【点睛】考核知识点:非负数性质,负指数幂.利用非负数性质求解是关键..
17.如图,长方形ABCD中,AB=4cm,BC=3cm,E为CD的中点.动点P从A点出发,以每秒1cm的速度沿A-B-C-E运动,最终到达点E.若点P运动的时间为x秒,则当x=_______时,△APE的面积等于5.
江苏省徐州市2023-2024学年七年级下学期期末数学试题(含答案)
2023~2024学年度第二学期期末抽测七年级数学试题(提醒:本卷共4页,满分为140分,考试时间为90分钟;答案全部涂、写在答题卡上,写在本卷上无效.)一、选择题(每小题3分,共24分)1.若某三角形的三边长分别为,则的值可以是( )A .1B .5C .7D .92.下列计算正确的是( )A .B .C .D .3.下列在数轴上表示不等式组的解集,正确的是( )A .B .C .D .4.已知,则下列结论正确的是( )A .B .C .D .5.下列说法,错误的是( )A .对顶角相等B .两直线平行,内错角相等C .若,则D.若,则6.如图,将沿方向平移至,已知,则平移的距离是()A .2B .3C .5D .77.如图,有一块长、宽的长方形纸板,在其四角各剪去一个边长为的小正方形,将四周突出部分折起,可制成一个无盖长方体盒子,该盒子的底面积为()A .B .3,4,m m 448a a a +=4416a a a ⋅=()4416a a =824a a a ÷=1,3x x ≤⎧⎨>-⎩10a ->11a a -<-<<11a a -<-<<11a a -<-<<11a a -<-<<0a =0ab =a b =a b=ABC △BC DEF △7,2BC EC ==30cm 20cm cm a 26004a -2600100a a -+C .D .8.已知摄氏温度与华氏温度之间存在对应关系(为常数),下表的数据满足该对应关系,则的值为()摄氏温度010100...华氏温度3250...A.B .32C .68D .212二、填空题(每小题4分,共32分)9.不等式的解集为______.10.我市“五一”假期接待游客约5720000人次,5720000用科学记数法表示为______.11.已知,则的值为______.12.一个多边形的每个外角都是,该多边形的边数为______.13.据《九章算术》记载:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,问绳长井深各几何?”译文:用绳子测量水井深度,若将绳子折成三等份,则每等份井外余绳四尺;若将绳子折成四等份,则每等份井外余绳一尺.问绳长和井深各几尺?设绳长尺,井深尺.由题意,可得方程组:______.14.当光线从空气斜射入水中时,传播方向会发生改变.如图,水面与水底平行,光线从出发,经过水面点折射到水底处,若为的延长线,,,则的大小为______.15.如图,已知图1、图2均为正方形拼图,其中所有直角三角形的形状及大小都相同,两个拼图中阴影部分的面积分别记为,则的值为______.16.某商品进价40元,标价50元出售,商家准备打折销售,但其利润率不能少于,则最多可打______折.26001002a a -+26001004a a -+c f 1.8f c a =+a b c fb340931x ->2210,2x y x y -=-=x y +40︒x y MN PQ A B C BD AB 42ABN ∠=︒14DBC ∠=︒BCQ ∠︒12,S S 12S S -10%三、解答题(共84分)17.(本题8分)计算:(1);(2).18.(本题8分)因式分解:(1);(2).19.(本题10分)求代数式的值,其中.20.(本题10分)(1)解方程组:(2)解不等式组:21.(本题6分)完成下面的证明.已知:如图,中,点分别在上,连接,点分别在上,连接.求证:.证明:(已知),(______).______.(______.)(已知),(______).______(两直线平行,同位角相等).(______).22.(本题10分)在所给的方格纸中,用无刻度的直尺分别按要求画图.(1)在图1中,已知为格点,将向右平移2格,再向上平移1格,得到,画出1031202423-⎛⎫-+- ⎪⎝⎭()352822a a a a a ⋅+-+÷2269x xy y -+2416x -()()()()222341a a a a +---++12a =-2,2 5.x y x y -=⎧⎨+=⎩211,1 1.3x xx ->⎧⎪+⎨<-⎪⎩ABC △,D E ,AB AC ,CD DE ,G F ,AB BC ,,FG BGF BDC AED ACB ∠∠∠∠==EDC BFG ∠∠=AED ACB ∠∠= DE BC ∴∥EDC ∴∠=BGF BDC ∠=∠ FG CD ∴∥BFG ∴∠=EDC BFG ∴∠=∠,,A B C ABC △A B C '''△;(2)在图2中,已知均为格点,与交于点,画,使其同时满足下列条件:①点为格点;②的一个角等于.23.(本题10分)已知与都是关于的方程的解.(1)求的值;(2)若的值不小于0,求的取值范围;(3)若,求的取值范围.24.(本题10分)用二元一次方程组解决问题:A 、B 两地相距,甲骑电动车从A 地出发到B 地,与此同时,乙骑电动车从B 地出发到A 地,两人均保持匀速行驶.已知第10分钟两人相遇,又经过4分钟,里剩余路程是乙剩余路程的8倍.求甲、乙二人的骑行速度.25.(本题12分)已知:,点在直线上,连接.(1)如图1,若.求证:;(2)若,的平分线与分别交于点.①如图2,当点在边上(不与重合)时,求证:;②当点在的延长线上时,“”是否依然成立?画出图形,并说明理由.2023~2024学年度第二学期期末抽测七年级数学参考答案题号12345678选项BCA BD CDD9.10.11.512.9A B C '''△,,,D E F G DE FG ,O DOF α∠=DEM △M DEM △α1,2x y =-⎧⎨=⎩2,5x y =⎧⎨=⎩x y 、y kx b =+,k b y x 23x -<≤y 12km ABC △D AB CD 90,ACB CD AB ︒∠=⊥ACD ABC ∠=∠ACD ABC ∠=∠BAC ∠,CB CD ,E F D AB ,A B CFE CEF ∠=∠D AB CFE CEF ∠=∠4x >657210⨯.13.14.15.1616.8.817.(1)原式.(2)原式.18.(1)原式.(2)原式.19.原式.当时,原式.20.(1)(法一)由②-①,得 . 将代入①,得原方程组的解为(法二)由①得 代入②,,解得.从而. 原方程组的解是(2)解不等式①,得.解不等式②,得.原不等式组的解集为.21.同位角相等,两直线平行;;两直线平行,内错角相等;同位角相等,两直线平行;;等量代换;22.(1)(2)4,314xy x y ⎧-=⎪⎪⎨⎪-=⎪⎩.56︒318=-+-10=-6668a a a=-+66a =-()222313x xy y =-⨯⨯+()23x y =-()244x =-()()422x x =+-2246944a a a a =--+-++109a =-12a =-1109142⎛⎫=⨯--=- ⎪⎝⎭33y =1y =1y =3x =∴3,1x y =⎧⎨=⎩.2x y =+225y y ++=1y =3x =∴3,1x y =⎧⎨=⎩.1x >2x >∴2x >DCB ∠DCB ∠23.(1)将与代入,得解得(2),且,解得.(3).(法一),.(法二).24.(1)(法一)设甲的速度为,乙的速度为.由题意,得 解得答:甲的速度为,乙的速度为.(法二)设甲的速度为,乙的速度为.由题意,得 解得答:甲的速度为,乙的速度为.25.(1).. .(2)①平分....②存在.如图.1,2x y =-⎧⎨=⎩2,5x y =⎧⎨=⎩y kx b =+252k b k b ⎧⎨⎩=-+=+1,3k b =⎧⎨=⎩.3y x =+ 0,30y x ≥∴+≥3x ≥-3,3y x x y =+∴=- 23x -<≤ 321633y y y ->-⎧∴∴<≤⎨-≤⎩.23,23316x y y -<≤∴-<-≤∴<≤ .km/min x km/min y ()101012,121481214x y x y +=⎧⎨-=-⎩0408x y =⎧⎨=⎩..04km /min .08km /min .km /h x km /h y 101012,60601414128126060x y x y ⎧+=⎪⎪⎨⎛⎫⎪-=- ⎪⎪⎝⎭⎩24,48x y =⎧⎨=⎩.24km /h 48km /h ,9090CD AB CDB B BCD ⊥∴∠=∴∠+∠=.90,90ACB ACD BCD ︒︒∠=∴∠+∠= ACD B ∠∠∴=AE ,BAC CAE BAE ∠∴∠=∠,ACD ABC CAE ACD BAE ABC ∠=∠∴∠+∠=∠+∠ ,CFE CAE ACD CEF BAE ABC ∠=∠+∠∠=∠+∠ CFE CEF ∴∠=∠CFE CEF ∠=∠平分..且.又.注:以上解法仅供参考,如有它解,请参照给分.AE ,BAC CAE BAE ∠∴∠=∠180,180CFE CAF ACD AEB BAE ABC ∠=-∠-∠∠=∠︒--∠︒ ,ACD ABC CFE AEB ∠=∠∴∠=∠CEF AEB CFE CEF ∠=∠∴∠=∠ .。
2021-2022学年七年级下学期数学期末考试试题(含答案)
【15题答案】
【答案】50°##50度
【16题答案】
【答案】①②⑤
【17题答案】
【答案】4
【18题答案】
【答案】①②④
三、解答题(本大题共7小题,共计78分.解答要写出必要的文字说明、证明过程或演算步骤.)
【19题答案】
【答案】(1)
(2) ,图见解析
【20题答案】
【答案】(1)
(2)
【21题答案】
二、填空题(本题共6小题,计24分,只要求填写最后结果,每小题填对得4分.)
13. 相反数是______.
14.若点 在第二象限,则点 在第______象限.
15.如图,直线 、 相交于点 ,若 ,则 度数为______.
16.如图,现给出下列条件:①∠1=∠B;②∠2=∠5;③∠3=∠4;④∠BCD+∠D=180°,其中能够得到AB∥CD的条件是_______.
A. B.
C. D.
11.如图,AB DE,BC⊥CD,则以下说法中正确的是( )
A.α,β 角度数之和为定值
B.α随β增大而增大
C.α,β的角度数之积为定值
D.α随β增大而减小
12.一列数 , , ,…, ,其中 , , ,…, .则 的值为()
A.1009B. C. D.1008
第Ⅱ卷(非选择题共102分)
七年级数学期末考试试题
第Ⅰ卷(选择题共48分)
一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.)
【1题答案】
【答案】C
【2题答案】
【答案】B
【3题答案】
【人教版】数学七年级下学期《期末考试卷》有答案解析
人教版数学七年级下学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列运算,正确的是( )A. (-a3b)2=a6b2B. 4a-2a=2C. a6÷a3=a2D. (a-b)2=a2-b22. 下列图形中不是轴对称图形的是()A. B. C. D. 3. 如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是A. 15° B. 25° C. 35° D. 45°4. 一辆汽车和一辆摩托车分别从A、B两地去同一城市,它们离A地的距离随时间变化的图像如图所示.则下列结论错误..的是( ) A. 摩托车比汽车晚到1 h B. A、B两地的距离为20 km C. 摩托车的速度为45 km/h D. 汽车的速度为60 km/h5. 若一个三角形的两边长分别为5和8,则第三边长可能是( )A. 14B. 10C. 3D. 26. 在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的个数为( ) A. 2 B. 3 C. 4 D. 127. 如图,在△ABC 中,AB =AC,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( ) A. 30°B. 45°C. 50°D. 75° 8. 如图,//AB CD ,BE 和CE 分别平分ABC ∠和BCD ∠,AD 过点E ,且与AB 互相垂直,点P 为线段BC 上一动点,连接PE .若8AD =,则PE 的最小值为( )A . 8B. 6C. 5D. 4 二、填空题9. 已知()22116x m x -++能变形为()24x -,则m 值为_____. 10. 如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是____________.11. 如图,CD 是ABC 的边AB 上的高,且28AB BC ==,点B 关于直线CD 的对称点恰好落在AB 的中点E 处,则BEC △的周长为_____.12. 李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD,设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是_________________.13. 如图,直线EF 与CD 相交于点O ,OA OB ⊥,且OC 平分AOF ∠,若40AOE ∠︒=,则BOD ∠的度数为_____.14. 在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为________.15. 如图,在ABC 中,AB AC =,点D 为BC 中点,35BAD ∠=︒,则C ∠的度数为_____.16. 已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.三、解答题17. 计算:(1)213314()2()22--⨯--÷-;(2)22019201820201-⨯+ (运用整式乘法公式计算).18. 化简:(1)()()211x x x +-+;(2)()()()()222a b a b a b a b +----. 19. 先化简,再求值:()()()()222x y x y x y y x y y ⎡⎤+--⎣-⎦-+÷,其中1x =,3y -=. 20. 如图,已知AD BC ⊥,EF BC ⊥,3C ∠∠=,试说明:12∠∠=.请将以下不完整的推理过程补充完整:解:因AD BC ⊥,EF BC ⊥, 所以90ADC EFC ∠∠︒==,根据“同位角相等,两直线平行”,所以//AD EF ,根据“ ”,所以1CAD ∠∠=. 因为3C ∠∠=,根据“ ”,所以//DG ,根据“ ”,所以2CAD ∠∠=.所以12∠∠=.21. 某数学活动小组在研究蜡烛燃烧时间与剩余长度之间关系时,通过实验得出如表所示的相关数据: 燃烧时间x/分 010 20 30 …剩余长度y/厘米2018 16 14 … (1)蜡烛每分钟燃烧的长度是 cm ;(2)若蜡烛燃烧的长度为p (厘米),写出燃烧的长度p 与燃烧时间x 之间的关系式;(3)写出剩余长度y 与燃烧时间x 之间的关系式;(4)求这只蜡烛多长时间后全部燃尽?22. 如图,BC CA ⊥,BC CA =,DC CE ⊥,DC CE =,直线BD 与AE 相交于点F ,与AC 相交于点G .(1)BCD △与ACE △全等吗?请说明理由;(2)试判断BF 与AE 的位置关系,并说明理由.23. 某商场文具专柜为了吸引顾客,设立了一个可以自由转动的转盘(转盘被等分成16份),如图所示,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、蓝色、绿色区域,顾客获得的奖品分别为玩具熊、童话书、彩色笔、文具盒.若甲顾客购物消费125元,乙顾客购物消费89元,请解答以下问题:(1)甲顾客获得一次转动转盘机会的概率为,乙顾客获得一次转动转盘机会的概率为.(2)甲顾客获得哪种奖品的概率最大?请说明理由.24. 已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E,(1)如图1,①线段CD和BE的数量关系是;②请写出线段AD,BE,DE之间的数量关系并证明.(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD,BE,DE之间的数量关系.参考答案一、选择题1. 下列运算,正确的是( )A. (-a3b)2=a6b2B. 4a-2a=2C. a6÷a3=a2D. (a-b)2=a2-b2【答案】A【解析】A.结果是a6b2,故本选项正确;B.结果是2a,故本选项错误;C.结果是a3,故本选项错误;D.结果是a2−2ab+b2,故本选项错误;故选A.2. 下列图形中不是轴对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念对各图形分析判断即可.【详解】A、此选项中的图形是轴对称图形,故不符合题意;B、此选项中的图形不是轴对称图形,故符合题意;C、此选项中的图形是轴对称图形,故不符合题意;D、此选项中的图形是轴对称图形,故不符合题意,故选:B.【点睛】本题考查了轴对称图形的概念,理解轴对称图形的概念,寻找到对称轴是解答的关键.3. 如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是A. 15°B. 25°C. 35°D. 45°【答案】C【解析】分析:如图,∵直尺的两边互相平行,∠1=25°, ∴∠3=∠1=25°.∴∠2=60°﹣∠3=60°﹣25°=35°.故选C.4. 一辆汽车和一辆摩托车分别从A、B两地去同一城市,它们离A地的距离随时间变化的图像如图所示.则下列结论错误..的是( )A. 摩托车比汽车晚到1 hB. A、B两地的距离为20 kmC. 摩托车的速度为45 km/hD. 汽车的速度为60 km/h【答案】C【解析】试题分析:分析图象可知A、4-3=1,摩托车比汽车晚到1h,故选项正确;B、因为汽车和摩托车分别从A,B两地去同一城市,从y轴上可看出A,B两地的路程为20km,故选项正确;C、摩托车的速度为(180-20)÷4=40km/h,故选项错误;D、汽车的速度为180÷3=60km/h,故选项正确.故选C.考点:函数的图象.5. 若一个三角形的两边长分别为5和8,则第三边长可能是()A. 14B. 10C. 3D. 2【答案】B【解析】【分析】【详解】设第三边是x,由三角形边的性质可得:8-5<x<8+5,∴3<x<13.所以选B.6. 在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的个数为()A. 2B. 3C. 4D. 12 【答案】B【解析】试题分析:首先设袋中白球的个数为x个,然后根据概率公式,可得15344x++=,解得:x=3.经检验:x=3是原分式方程的解.∴袋中白球的个数为3个.故选B.考点:概率公式.7. 如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )A. 30°B. 45°C. 50°D. 75°【答案】B【解析】 试题解析:∵AB =AC ,∠A =30°,∴∠ABC =∠ACB =75°,∵AB 的垂直平分线交AC 于D ,∴AD =BD ,∴∠A =∠ABD =30°,∴∠BDC =60°,∴∠CBD =180°﹣75°﹣60°=45°.故选B . 8. 如图,//AB CD ,BE 和CE 分别平分ABC ∠和BCD ∠,AD 过点E ,且与AB 互相垂直,点P 为线段BC 上一动点,连接PE .若8AD =,则PE 的最小值为( )A. 8B. 6C. 5D. 4【答案】D【解析】【分析】 根据平行线定理判定AD CD ⊥,再有垂线段最短性质,作出辅助线,最后由角平分线性质解题即可.【详解】//AB CD AD AB ⊥,,AD CD ∴⊥,根据垂线段最短的原则,得,当PE BC ⊥时, PE 取最小值,如图,BE 和CE 分别平分ABC ∠和BCD ∠PE AE PE DE ∴==,,8AD =142PE AE DE AD ∴==== 故选:D .【点睛】本题考查平行线定理、垂线段最短性质、角平分线性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.二、填空题9. 已知()22116x m x -++能变形为()24x -,则m 的值为_____. 【答案】3【解析】【分析】根据完全平方公式的结构可知m+1=4,解之即可.【详解】∵()24x -=2816x x -+,∴()22116x m x -++=2816x x -+, ∴2(1)8m -+=-,即m+1=4,解得:m=3,故答案为:3.【点睛】本题考查了完全平方公式,熟记完全平方公式是解答的关键.10. 如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是____________.【答案】4【解析】试题分析:由中线性质,可得AG=2GD,则11212111222232326BGF CGE ABG ABD ABC S S S S S ===⨯=⨯⨯=⨯=,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.考点:中线的性质.11. 如图,CD 是ABC 的边AB 上的高,且28AB BC ==,点B 关于直线CD 的对称点恰好落在AB 的中点E 处,则BEC △的周长为_____.【答案】12.【解析】【分析】由轴对称的性质可知:BC=CE=4,由点E 是AB 的中点可知BE=12AB=4,从而可求得答案. 【详解】解:∵点B 与点E 关于DC 对称,∴BC=CE=4.∵E 是AB 的中点,∴BE=12AB=4. ∴△BEC 的周长12.故答案为:12.【点睛】本题主要考查的是轴对称的性质,由轴对称图形的性质得到BC=CE=4是解题的关键.12. 李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD,设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是_________________.【答案】y =-12x +12(0<x <24) 【解析】【分析】 根据题意可得2y+x=24,继而可得出y 与x 之间的函数关系式,及自变量x 的范围.【详解】解:根据题意可知,AB+BC+CD=24,即:2y+x=24.所以,y=2411222x x -=-+. 且x >0,11202x -+> 解得:0<x <24故答案为1122y x =-+(0<x <24). 【点睛】此题考查了根据实际问题列一次函数关系式的知识,属于基础题,解答本题关键是根据三边总长应恰好为24米,列出等式.13. 如图,直线EF 与CD 相交于点O ,OA OB ⊥,且OC 平分AOF ∠,若40AOE ∠︒=,则BOD ∠的度数为_____.【答案】20º.【解析】【分析】根据OA ⊥OB 可知∠AOB =90°,根据∠AOE =40°,OC 平分∠AOF ,∠AOF +∠AOE =180°,求出∠BOD 的大小.【详解】解:∵OA ⊥OB ,∴∠AOB =90°,又∵∠AOE =40°,∴∠AOF =180°−40°=140°,又∵OC 平分∠AOF ,∴∠AOC =12×140°=70°,∴∠BOD =180°−90°−70°=20°.故答案为:20°.【点睛】本题考查了角的计算,垂线、角平分线、邻补角.解题的关键的掌握角的计算方法,涉及垂线、角平分线、邻补角等概念,是一道关于角的综合题.14. 在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为________.【答案】14 【解析】试题分析:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据旋转的性质易证阴影区域的面积=正方形面积4份中的一份,故针头扎在阴影区域的概率为14;故答案为14. 考点:几何概率.15. 如图,在ABC 中,AB AC =,点D 为BC 中点,35BAD ∠=︒,则C ∠的度数为_____.【答案】55°【解析】【分析】由等腰三角形的三线合一性质可知∠BAC=70°,再由三角形内角和定理和等腰三角形两底角相等的性质即可得出结论.【详解】解:AB=AC ,D 为BC 中点,∴AD 是∠BAC 的平分线,∠B=∠C ,∵∠BAD=35°,∴∠BAC=2∠BAD=70°,∴∠C=12(180°-70°)=55°. 故答案为:55°.【点睛】本题考查的是等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键. 16. 已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.【答案】1或7.【解析】【分析】存在2种情况满足条件,一种是点P 在BC 上,只需要BP=CE 即可得全等;另一种是点P 在AD 上,只需要AP=CE 即可得全等【详解】设点P 的运动时间为t 秒,当点P 在线段BC 上时,则2BP t =,∵四边形ABCD 为长方形,∴AB CD =,90B DCE ∠=∠=︒,此时有ABP DCE ∆∆≌,∴BP CE =,即22t =,解得1t =;当点P 在线段AD 上时,则2BC CD DP t ++=,∵4AB =,6AD =,∴6BC =,4CD =,∴()()6462162AP BC CD DA BC CD DP t t =++-++=++-=-,∴162AP t =-,此时有ABP CDE ∆∆≌,∴AP CE =,即1622t -=,解得7t =;综上可知当t 为1秒或7秒时,ABP ∆和CDE ∆全等.故答案为:1或7.【点睛】本题考查动点问题,解题关键是根据矩形的性质可得,要证三角形的全等,只需要还得到一条直角边相等即可三、解答题17. 计算:(1)213314()2()22--⨯--÷-;(2)22019201820201-⨯+ (运用整式乘法公式计算).【答案】(1)-5;(2)2.【解析】【分析】(1)先乘方,再乘除,最后算加减,注意负数的偶次方为正,负数的奇次方为负;(2)将20182020⨯转化成(20191)(20191)-+,再结合平方差公式计算即可. 【详解】计算:(1)解:原式=9114428-⨯-÷-() =94-+=-5;(2)解:原式=22019(20191)(20191)1--++=222019201911-++=2.【点睛】本题考查实数的混合运算、平方差公式等知识,是重要考点,难度较易,掌握相关知识是解题关键. 18. 化简:(1)()()211x x x +-+;(2)()()()()222a b a b a b a b +----.【答案】(1)1x +;(2)254ab b -【解析】分析】(1)先利用完全平方公式、单项式乘以多项式运算法则进行计算,再合并同类项即可解答;(2)先利用平方差公式、多项式乘以多项式运算法则进行计算,再去括号合并同类项即可解答.【详解】(1)原式=2221x x x x ++--=1x +;(2)原式=22222()(242)a b a ab ab b ----+=222222242a b a ab ab b --++-=254ab b -.【点睛】本题考查了整式的混合运算,涉及平方差公式、完全平方公式、单项式乘以多项式、多项式乘以多项式、合并同类项等知识,是基础题型,熟练掌握相关知识的运算法则是解答的关键.19. 先化简,再求值:()()()()222x y x y x y y x y y ⎡⎤+--⎣-⎦-+÷,其中1x =,3y -=. 【答案】22x y -,8.【解析】【分析】先根据平方差公式、完全平方公式、单项式乘多项式运算法则对括号内的算式进行计算,再根据多项式除以单项式的运算法则进行运算,最后代值计算即可求解.【详解】解:原式=22222[()(2)(22)]2x y x xy y xy y y ---++-÷=22222(222)2x y x xy y xy y y --+-+-÷=2(44)2y xy y -+÷=22x y -,当1x =,3y =-时,原式=222(6)8x y -=--=.【点睛】本题考查了整式的化简求值,解答的关键是利用乘法公式和整式的混合运算的运算法则对原式进行化简.20. 如图,已知AD BC ⊥,EF BC ⊥,3C ∠∠=,试说明:12∠∠=.请将以下不完整的推理过程补充完整: 解:因为AD BC ⊥,EF BC ⊥,所以90ADC EFC ∠∠︒==,根据“同位角相等,两直线平行”,所以//AD EF ,根据“ ”,所以1CAD ∠∠=. 因为3C ∠∠=,根据“ ”,所以//DG ,根据“ ”,所以2CAD ∠∠=.所以12∠∠=.【答案】两直线平行,同位角相等;同位角相等,两直线平行;AC ;两直线平行,内错角相等.【解析】【分析】根据平行线的判定和性质解题.【详解】解:因为AD⊥BC ,EF⊥BC ,所以∠ADC =∠EFC =90°,根据“同位角相等,两直线平行”,所以AD//EF,根据“两直线平行,同位角相等”,所以∠1=∠CAD .因为∠3=∠C ,根据“同位角相等,两直线平行”,所以DG//AC,根据“两直线平行,内错角相等”,所以∠2=∠CAD .所以∠1=∠2.故答案为:两直线平行,同位角相等;同位角相等,两直线平行;AC ;两直线平行,内错角相等.【点睛】本题考查平行线的判定和性质,根据题目已知条件灵活运用平行线的判定和性质求解是解题关键. 21. 某数学活动小组在研究蜡烛燃烧时间与剩余长度之间关系时,通过实验得出如表所示的相关数据: 燃烧时间x/分 010 20 30 …剩余长度y/厘米 2018 16 14 …(1)蜡烛每分钟燃烧的长度是 cm ;(2)若蜡烛燃烧的长度为p (厘米),写出燃烧的长度p 与燃烧时间x 之间的关系式;(3)写出剩余长度y 与燃烧时间x 之间的关系式;(4)求这只蜡烛多长时间后全部燃尽?【答案】(1)0.2;(2)0.2p x =;(3)200.2y x =-;(4)这只蜡烛100分钟后全部燃尽.【解析】【分析】(1)根据表格中的数据,可以计算出蜡烛每分钟燃烧的长度;(2)根据(1)中的结果和题意,可以写出燃烧的长度p 与燃烧时间x 之间的关系式;(3)根据(1)中的结果和题意,可以写出剩余长度y 与燃烧时间x 之间的关系式;(4)令(3)中的y=0,然后求出相应的x 值,即可解答本题.【详解】解:(1)蜡烛每分钟燃烧的长度是:(20−18)÷10=0.2(cm),故答案为:0.2;(2)由题意可得,p=0.2x ,即燃烧的长度p 与燃烧时间x 之间的关系式为p=0.2x ;(3)由题意可得,剩余长度y 与燃烧时间x 之间的关系式为y=20−0.2x ;(4)当y=0时,0=20−0.2x ,解得,x=100,即这只蜡烛100分钟后全部燃尽.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.22. 如图,BC CA ⊥,BC CA =,DC CE ⊥,DC CE =,直线BD 与AE 相交于点F ,与AC 相交于点G .(1)BCD △与ACE △全等吗?请说明理由;(2)试判断BF 与AE 的位置关系,并说明理由. 【答案】(1)△BCD ≌△ACE ,理由见解析;(2)BF ⊥AE ,理由见解析.【解析】【分析】 (1)根据等角的余角相等证明∠BCD=∠ACE ,进而证明△BCD ≌△ACE (SAS );(2)由(1)中的结论,结合全等三角形对应角相等的性质,得到∠CBG=∠CAF ,再由三角形内角和180度定理,证明∠BCA=∠AFG ,据此解题可得BF ⊥AE .【详解】解:(1)△BCD≌△ACE.理由如下:∵BC⊥CA,DC⊥CE,∴∠BCA=∠DCE=90°,∵∠BCD=∠BCA-∠DCG,∠ACE=∠DCE-∠DCG,∴∠BCD=∠ACE,在△BCD和△ACE中,BC=CA,∠BCD=∠ACE,DC=CE,∴△BCD≌△ACE(SAS);(2)BF⊥AE.理由如下:由(1)可知:∠BCA=90°,△BCD≌△ACE,∴∠CBG=∠CAF,∵∠BCA =180°-∠BGC-∠CBG,∠AFG =180°-∠AGF-∠CAF,∵∠BGC=∠AGF,∴180°-∠BGC-∠CBG=180°-∠AGF-∠CAF,∴∠BCA=∠AFG,∴∠AFG=90°,即BF⊥AE.【点睛】本题考查余角性质、全等三角形的判断与性质、三角形内角和定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.23. 某商场文具专柜为了吸引顾客,设立了一个可以自由转动的转盘(转盘被等分成16份),如图所示,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、蓝色、绿色区域,顾客获得的奖品分别为玩具熊、童话书、彩色笔、文具盒.若甲顾客购物消费125元,乙顾客购物消费89元,请解答以下问题:(1)甲顾客获得一次转动转盘机会的概率为 ,乙顾客获得一次转动转盘机会的概率为 . (2)甲顾客获得哪种奖品的概率最大?请说明理由.【答案】(1)1,0;(2得奖品文具盒的概率最大,理由见解析.【解析】【分析】(1)根据规定, 比较125、89与100的大小即可做出判断,进而求得概率;(2)分别求出获得各个奖品的概率,比较大小即可解答.【详解】解:(1)由125﹥100知,甲顾客一定获得一次转盘机会,是必然事件,所以甲顾客获得一次转动转盘机会的概率为1,由89﹤100知,顾客乙不可能获得一次转动转盘机会,是不可能事件,所以乙顾客获得一次转动转盘机会的概率为0,故答案为:1,0;(2)∵转盘被等分成16份,其中红色占1份,黄色占1份,蓝色占2份,绿色占4份,∴P (获得奖品玩具熊)=116, P (获得奖品童话书)=116, P (获得奖品彩色笔)=21=168, P (获得奖品文具盒)=41=164, ∵1114816>>, ∴甲顾客获得文具盒的概率最大.【点睛】本题考查了求等可能事件的概率,解答的关键是熟练掌握简单几何概率的求法:概率=相应的份数与总份数的比值.24. 已知:∠ACB =90°,AC =BC ,AD ⊥CM ,BE ⊥CM ,垂足分别为D ,E,(1)如图1,①线段CD 和BE 的数量关系是 ;②请写出线段AD ,BE ,DE 之间的数量关系并证明.(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD ,BE ,DE 之间的数量关系.【答案】(1)①CD =BE ;②AD =BE +DE .证明见解析;(2)②中的结论不成立.DE =AD +BE .【解析】【分析】(1)①此题可证明出△ACD 和△CBE 全等即可;②由①全等求解即可;(2)此时的结论不成立,此时变成DE =AD+BE ,依然用△ACD 和△CBE 全等证明即可.【详解】(1)①CD =BE .理由:∵AD ⊥CM ,BE ⊥CM ,∴∠ACB =∠BEC =∠ADC =90°,∴∠ACD+∠BCE =90°,∠BCE+∠CBE =90°,∴∠ACD =∠B ,在△ACD 和△CBE 中,ADC BEC ACD BAC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△CBE ,∴CD =BE .②AD =BE+DE .理由:∵△ACD ≌△CBE ,∴AD =CE ,CD =BE ,∵CE =CD+DE =BE+DE ,∴AD =BE+DE .(2)②中的结论不成立. DE =AD+BE . 理由:∵AD ⊥CM ,BE ⊥CM ,∴∠ACB =∠BEC =∠ADC =90°, ∴∠ACD+∠BCE =90°,∠BCE+∠CBE =90°, ∴∠ACD =∠B ,在△ACD 和△CBE 中,ADC BEC ACD BAC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△CBE ,∴AD =CE ,CD =BE ,∵DE =CD+CE =BE+AD ,∴DE =AD+BE .【点睛】此题考查全等三角形的性质及判定定理,灵活运用是关键.。
七年级下学期期末数学试卷(含答案)
七年级下学期期末数学试卷(时间:120分钟 满分:120分)亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 请认真审题,看清要求,仔细答题,要相信我能行。
一、认真填一填:(每题3分,共30分)1、剧院里5排2号可以用(5,2)表示,则(7,4)表示 。
2、不等式-4x ≥-12的正整数解为 .3、要使4 x 有意义,则x 的取值范围是_______________。
4、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_______________________.5、如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。
6、等腰三角形一边等于5,另一边等于8,则周长是_________ .7、如图所示,请你添加一个条件....使得AD ∥BC , 。
8、若一个数的立方根就是它本身,则这个数是 。
9、点P (-2,1)向上平移2个单位后的点的坐标为 。
10、某校去年有学生1000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%。
问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x 名,走读学生y 名,则可列出方程组为 。
二、细心选一选:(每题3分,共30分) 11、下列说法正确的是( )A 、同位角相等;B 、在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥c 。
C 、相等的角是对顶角;D 、在同一平面内,如果a ∥b,b ∥c ,则a ∥c 。
12、观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( )12.长为9,6,5,3的四根木条,选其中三根组成三角形,共有( )种选法.A .4B .3C .2D .113、有下列说法:(1) A B C DE C DBA C BA(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数; (3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级第二学期期末测试数学试题题号 一 二 三四 五总 分复 核19 20 21 22 23 24 得分一.选择题(请将答案写在后面的表格中,4分×12=48分)1. 如图所示,下列条件中,不能判断L 1∥L 2的是A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180 2. 如图,AB ∥CD ,∠1=110°∠ECD=70°,∠E 的大小是A .30°B .40°C .50°D .60° 3. 如图5,已知△ABC 为直角三角形,∠C =90°,若沿图中虚线剪去∠C ,则∠1+∠2等于A. 90°B. 135°C. 270°D. 315°第1题 第2题 第3题 4.下列计算中,正确的是A .33x x x =⋅B .623a a a ÷=C .32x x x ÷=D .336x x x += 5. 下列各式中,与2(1)a -相等的是 A .21a -B .221a a -+C .221a a --D .21a +6. 代数式2346x x -+的值为9,则2463x x -+的值为 A .7 B .18C .12D .97.以11x y =⎧⎨=-⎩为解的二元一次方程组是A .01x y x y +=⎧⎨-=⎩ B .01x y x y +=⎧⎨-=-⎩ C .02x y x y +=⎧⎨-=⎩ D .02x y x y +=⎧⎨-=-⎩8.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x 天精加工,y 天粗加工.为解决这个问题,所列方程组正确的是 A .14016615x y x y +=⎧⎨+=⎩ B .14061615x y x y +=⎧⎨+=⎩C .15166140x y x y +=⎧⎨+=⎩D .15616140x y x y +=⎧⎨+=⎩9. 如图是某厂20XX 年各季度产值统计图(单位:万元),则下列说法正确的是 A.每季度生产总值有增有减 B.前三季度生产总值增长较快10.如图,AB=DB ,∠1=∠2,添加下面哪个条件不能判断....△ABC ≌△DBE 的是 A .BC=BE B .AC=DE C .∠A=∠D D .∠ACB=∠DEB11.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(图甲),然后拼成一个平行四边形(图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式A .222()a b a b -=- B .222()2a b a ab b +=++ C .222()2a b a ab b -=-+ D .22()()a b a b a b -=+- 12. 如图,阴影部分的面积为A 、2a B 、a 2 C 、22a D 、24a π第11题 第12题aaaaaa甲乙请把选择题答案填写在下面表格中 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二.填空题(4分×6=24分)13. 若一个多边形的内角和是外角和的3.5倍,则此多边形的边数是14. 有人问某儿童,有几个兄弟、几个姐妹,他回答说:“有几个兄弟,就有几个姐妹。
”再问他妹妹,有几个兄弟、几个姐妹,她回答说:“我的兄弟是姐妹的两倍。
”聪明的同学,你知道他有几个兄弟、几个姐妹?答:有 个兄弟, 个姐妹。
15. 已知:,3,6-==+xy y x 则=+33xy y x ____________16. 小明从点A 向北偏东75°方向走到点B ,又从点B 向南偏西30°方向走到点C ,则∠ABC 的度数为________17.某种绿豆在相同条件下发芽的实验结果如下表,根据表中数据估计这种绿豆发芽的概率约是 (保留三位小数)。
18. 柜台上放着一堆罐头,它们摆放的形状见右图:第一层有23⨯听罐头, 第二层有34⨯听罐头, 第三层有45⨯听罐头,……根据这堆罐头排列的规律,第n (n 为正整数)层有 听罐头(用含n 的式子表示). 第18题 三、试试基本功(共40分) 19(8分).解方程组:2536x y x y +=-=⎧⎨⎩,.每批粒数 2 10 50 100 500 1000 2000 3000 发芽的粒数 2 9 44 92 463 928 1866 2794 发芽的频率10.90.880.920.9260.9280.9330.93120(10分).用两根同样长的铁丝分别围成一个长方形与一个正方形,若长方形的长为x 宽为y ,⑴正方形的边长可以表示为 ;⑵用代数式表示正方形与长方形的面积之差,并化简结果。
⑶设长方形长大于宽试说明正方形与长方形面积哪个大。
(提示,可以将⑵的结果分解因式后分析)21(12分).如图所示,已知AB ∥CD,分别探索下列四个图形中∠P 与∠A,∠C 的关系,•请你从所得的四个关系中任选一个加以说明.PD CBA PDC BA PDCB APD C B A(1) (2) (3) (4)22(10分).如图,把一个三角板(AB=BC ,∠ABC=90°)放入一个“U ”形槽中,使三角板的三个顶点A 、B 、C 分别槽的两壁及底边上滑动,已知∠D=∠E=90°,在滑动过程中你发现线段AD 与BE 有什么关系?试说明你的结论。
DEC AB四.生活与数学(共22分)23(10分).九(3)班学生参加学校组织的"绿色奥运"知识竞赛,老师将学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数分布表,并绘制频数分布直方图.所占百分比5% 22.5% 25.0% 35.0%(1)频数分布表中a= ,b= ;(2)把频数分布直方图补充完整;(3)学校设定成绩在69.5分以上的学生将获得一等奖或二等奖,一等奖奖励作业本15本及奖金50元,二等奖奖励作业本10本及奖金30元。
已知这部分学生共获得作业本335本,请你求出他们共获得的奖金。
24.(12分)团体购买公园门票票价如下:若分别购票,两团共计应付门票费1392元,若合在一起作为一个团体购票,总计应付门票费1080元.(1)请你判断乙团的人数是否也少于50人.(2)求甲、乙两旅行团各有多少人?五.探索与研究(16分)25.如图,已知△ABC 三边长相等,和点P ,设点P 到△ABC 三边AB 、AC 、BC (或其延长线)的距离分别为h 1、h 2、h 3,△ABC 的高为h .在图(1)中, 点P 是边BC 的中点,由S △ABP+S △ACP=S △ABC得,h BC h AC h AB ⋅=⋅+⋅21212121可得h h h =+21又因为h 3=0,所以:h h h h =++321.图(2)~(5)中,点P 分别在线段MC 上、MC 延长线上、△ABC 内、△ABC 外.(1)请探究:图(2)~(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)⑵ ⑶ ⑷ ⑸ (2)说明图(2)所得结论为什么是正确的; (3)说明图(5)所得结论为什么是正确的.F ABC DEP M (4)ABCDEPM (3)ABCDEP M (2)ABCDEM (P ) (1)ABCDEM(5)哦,终于做完了,我要冷静的检参考答案一选择题(每小题4分共48分) BBCCB ,ACDDB ,DA 二填空题(每小题4分共24分)13. 9 14. 3 , 3 15. -90 16. 45° 17. 0.931 18. (n+1)(n+2) 三试试基本功(共40分) 19. (8分)解:25,3 6.x y x y +=-=⎧⎨⎩①×3,得 6x +3y =15. ③ ②+③,得 7x =21, x =3. ……………………4′把x =3代入①,得2×3+y =5,y =-1.…………6′∴原方程组的解是31x y ==-⎧⎨⎩,. ……………………8′20. (10分)⑴2y x + ……………………2′⑵解: xy y x -⎪⎭⎫ ⎝⎛+22 ……………………2′ 4222xy y x -+= ……………………4′ ⑶解:xy y x -⎪⎭⎫ ⎝⎛+224222xy y x -+=4)(2y x -=……2′ 又因为y x >所以04)(2>-y x 所以正方形的面积大于长方形的面积。
……………………4′21. (12分) (1) ∠A+∠C+∠P=360 (2) ∠A+∠C =∠P(3) ∠A+∠P =∠C (4)∠C+∠P =∠A ………8′(每个空2分) 说明理由(略)………4′ 22.(10分).解:AD=BE ………2′因为:∠D=90°,所以∠ABD +∠BAD=90° 又因为:∠ABC=90°,所以∠ABD +∠EBC=90° 所以∠BAD=∠EBC ………5′ 又因为:AB=BC ∠D=∠E所以:△AB D ≌BCE (AAS )………8′ 所以:AD=BE ………10′ 四.生活与数学(共22分)23.解:(1)a=2,b=12.5%……………………4′ (2)……………………2′① ②(3)设一等奖x 人,二等奖y 人,依题意得291510335x y x y +=⎧⎨+=⎩……………………2′ 解得920x y =⎧⎨=⎩ 所以他们共获奖金=50×9+30×20=1050元。
………2′24.解:(1)∵100×13=1300<1392∴乙团的人数不少于50人,不超过100人 (4分)(2)设甲、乙两旅行团分别有x 人、y 人, (1分)则⎩⎨⎧=+=+1080)(913921113y x y x (5分)解得:⎩⎨⎧==8436y x (7分) 答:甲、乙两旅行团分别有36人、84人 (8分)五.探索与研究(16分)25.解:(1)图②—⑤ 中的关系依次是:h 1+h 2+h 3=h ; h 1-h 2+h 3=h ;h 1+h 2+h 3=h ; h 1+h 2-h 3=h . (8分,每个2分) (2)图②中,h 1+h 2+h 3=h .连结AP , 则S ΔAPB +S ΔAPC =S ΔABC . ∴12111222AB h AC h BC h ⨯+⨯=⨯. 又 h 3=0,AB =AC =BC , ∴ h 1+h 2+h 3==h . (4分)(3):图⑤中,h 1+h 2-h 3=h .连接PA 、PB 、PC ,则则S ΔAPB +S ΔAPC =S ΔABC +S ΔBPC . ∴12111222AB h AC h BC h ⨯+⨯=⨯321h BC ⨯+ 又 AB =AC =BC ,∴h 1+h 2 =h +h 3.∴ h 1+h 2-h 3=h . (4分)说明:(2)问,通过作辅助线,利用证全等三角形的方法类似给分.ABCDE PM(5)。