武汉理工大学网络专升本线性代数与概率统计阶段作业一

合集下载

下半年华工继续教育线性代数与概率统计随堂练习参考答案

下半年华工继续教育线性代数与概率统计随堂练习参考答案

1.(单项选择题 ) 计算?A.;B.;C.;D..答题: A. B. C. D.(已提交)参照答案: A问题分析:2.(单项选择题 )队列式?A. 3;B. 4;C. 5;D. 6.答题: A. B. C. D.(已提交)参照答案: B问题分析:3. ( 单项选择题 )计算队列式. A. 12;B. 18;C. 24;D. 26.答题: A. B. C. D.(已提交)参照答案: B问题分析:4. ( 单项选择题 )利用队列式定义计算n 阶队列式:=? A.;B.;C.;D..答题: A. B. C. D.(已提交)参照答案: C问题分析:5. ( 单项选择题 )计算队列式睁开式中,的系数。

A. 1, 4;B. 1,-4;C. -1 ,4;D. -1 ,-4.答题: A. B. C. D.(已提交)参照答案: B问题分析:6. ( 单项选择题 )计算队列式=?A. -8;B. -7;C. -6;D. -5.答题: A. B. C. D.(已提交)参照答案: B问题分析:7. ( 单项选择题 )计算队列式=?A. 130 ;B. 140;C. 150;D. 160.答题: A. B. C. D.(已提交)参照答案: D问题分析:8. ( 单项选择题 )四阶队列式的值等于多少?A.;B.;C.;D..答题: A. B. C. D.(已提交)参照答案: D问题分析:9. ( 单项选择题 )队列式=?A.;B.;C.;D..答题: A. B. C. D.(已提交)参照答案: B问题分析:10. (单项选择题 )已知,则?A. 6m;B. -6m;C. 12m;D. -12m.答题: A. B. C. D.(已提交)参照答案: A11.(单项选择题)设=,则?A. 15|A|;B. 16|A|;C. 17|A|;D. 18|A|.答题: A. B. C. D.(已提交)参照答案: D问题分析:12. ( 单项选择题 )设矩阵,求=?A. -1;B. 0;C. 1;D. 2.答题: A. B. C. D.(已提交)参照答案: B问题分析:13. ( 单项选择题 )计算队列式=?A. -1500;B. 0;C. -1800;D. -1200.答题: A. B. C. D.(已提交)参照答案: C问题分析:14. ( 单项选择题 )齐次线性方程组有非零解,则=?A. -1;B. 0;C. 1;D. 2.答题: A. B. C. D.(已提交)参照答案: C问题分析:15. ( 单项选择题 )齐次线性方程组有非零解的条件是=?A.1或-3 ;B.1或3 ;C.-1或3 ;D.-1或-3 .答题: A. B. C. D.(已提交)参照答案: A问题分析:16. ( 单项选择题 )假如非线性方程组系数队列式,那么,以下正确的结论是哪个?A.无解 ;B.独一解 ;C.一个零解和一个非零解;D.无量多个解 .答题: A. B. C. D.(已提交)参照答案: B问题分析:17. ( 单项选择题 )假如齐次线性方程组的系数队列式,那么,下列正确的结论是哪个?A.只有零解 ;B.只有非零解 ;C.既有零解,也有非零解;D.有无量多个解.答题: A. B. C. D.(已提交)参照答案: A问题分析:18. ( 单项选择题 )齐次线性方程组总有___解;当它所含方程的个数小于未知量的个数时,它必定有___ 解。

线性代数与概率论统计(专升本)试卷1

线性代数与概率论统计(专升本)试卷1

《线性代数与概率论统计》姓名 年级 层次 专业 准考证号一、填空题(每小题4分,共20分。

)1.若,A B 都是3阶方阵,且A =2,B = 3E ,则T A B = .2. 设3阶方阵11124133A -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭x 相似于矩阵1101220003-⎛⎫⎪= ⎪ ⎪⎝⎭B .则常数=x .3.设A ,B 为互不相容的两个事件,()0.2P A =,()0.3P B =,则()P A B = .4. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,则目标被命中的概率为 .5.设~()X P λ,则()D X = . 二、选择题(每小题4分,共20分。

)1. 设, A B 为n 阶方阵,E 为n 阶单位矩阵,则下列等式成立的是( ).(A) ()()22A B A B A B -+=-; (B) ()()2A E A E A E -+=-; (C) AB BA =; (D) ()A B E A B E +=++. 2. 若方阵A 满足230A E -=,则A 必有一个特征值为( ). (A) 2; (B) 3; (C) 3/2; (D) 2/3.3. 设A ,B 为两个随机事件,且A B ⊂,则下列各式中正确的是( ).(A) ()()P A B P A =; (B) ()()P AB P B =; (C) (|)()P B A P B =; (D) ()()()P B A P B P A -=-. 4. 设随机变量Y X ,独立,且)1,1(~),1,0(~N Y N X ,则( ).(A) 21}0{=≤+Y X P ; (B) 21}1{=≤+Y X P ;(C) 21}0{=≤-Y X P ; (D) 21}1{=≤-Y X P ;5. 设12,,,n X X X 是来自正态总体X2(,)N μσ的一个样本,则下列各式中正确的是( ).(A) 2~X μσ⎛⎫- ⎪⎝⎭2(1)χ; (B) 2~X n ⎛⎫- ⎪⎝⎭μσ2(1)χ;(C) 2~X μσ⎛⎫- ⎪⎝⎭(1)t ; (D) 2~X n ⎛⎫- ⎪⎝⎭μσ(1)t .三、线代计算题(每小题10分,共30分。

课程:线性代数(专升本)试题和答案

课程:线性代数(专升本)试题和答案

课程:线性代数(专升本)--习题和答案1.(单选题) 对于元齐次线性方程组,以下命题中,正确的是( )(本题3.5分)A、若的列向量组线性无关,则有非零解;B、若的行向量组线性无关,则有非零解;C、若的列向量组线性相关,则有非零解;D、若的行向量组线性相关,则有非零解。

学生答案:未答题标准答案:C解析:得分:2.(单选题) 设A是方阵,如有矩阵关系式AB=AC,则必有( )(本题3.5分)A、 A =0B、B C时A=0C、A0时B=CD、|A|0时B=C学生答案:未答题标准答案:D解析:得分:3.(单选题) 设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有( )(本题3.5分)B、k<3C、k=3D、k>3学生答案:未答题标准答案:A解析:得分:4.(单选题) 已知为四维列向量组,且行列式,,则行列式( )(本题3.5分)A、;B、 B.;C、;D、。

学生答案:未答题标准答案:D解析:得分:5.(单选题) 设A=(a ij)3×3,|A|=2,A ij表示|A|中元素a ij的代数余子式(i,j=1,2,3),则(a11A21+a12A22+a13A23)2+(a21A21+a22A22+a23A23)2+(a31A21+a32A22+a33A23)2=( ).(本题3.0分)B、 2C、 3D、 4学生答案:未答题标准答案:D解析:得分:6.(单选题) 设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( )(本题3.5分)A、有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B、有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C、有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D、有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=0学生答案:未答题标准答案:D解析:得分:7.(单选题) 设A是一个n(≥3)阶方阵,下列陈述中正确的是( )(本题3.5分)A、如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B、如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C、A的2个不同的特征值可以有同一个特征向量D、如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关学生答案:未答题标准答案:B解析:得分:8.(单选题)( ).(本题3.0分)A、 3B、 5C、 6D、8学生答案:未答题标准答案:C解析:得分:9.(单选题) 设矩阵A=,已知α=是它的一个特征向量,则α所对应的特征值为( ).(本题3.0分)A、 1B、 2D、 4学生答案:未答题标准答案:A解析:得分:10.(单选题) 已知,则以下选项中正确的是( )(本题3.5分)A、;B、;C、;D、。

(武汉函授)线性代数与概率统计作业

(武汉函授)线性代数与概率统计作业

武汉理工大学成人教育《线性代数与概率统计》作业试题备注:所有答案写在后面答题纸上,期末考试前答题纸回交学习中心(后面附答题纸)第一部分选择题单项选择题(本大题共14小题)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题二、填空题,不写解答过程,将正确的答案写在每小题的空格内。

武汉理工大学高起本高等数学(下)阶段作业一标准答案

武汉理工大学高起本高等数学(下)阶段作业一标准答案

1-10英语写法The English language is a rich and diverse means of communication that has evolved over centuries. From the simple counting of one to ten, the English language offers a wide range of numerical expressions that convey meaning and nuance. Understanding the written form of these numbers is an essential building block for any student of the language.The number one is expressed as "one" in English. This simple monosyllabic word is derived from the Old English "an" and the Proto-Germanic "*ainaz," ultimately tracing back to the Proto-Indo-European root "*oinos." The word "one" conveys the concept of a single, individual unit, and is a fundamental building block of numerical systems.Moving to the number two, the English word is "two." This too is a monosyllabic word, derived from the Old English "twā" and the Proto-Germanic "*twai." The Proto-Indo-European root is "*dwo," reflecting the binary nature of this number. "Two" represents the idea of a pair, of duality, and is a crucial component of counting andquantifying.The number three is expressed as "three" in English. This word derives from the Old English "thrēo" and the Proto-Germanic "*þrīz," with the Proto-Indo-European root being "*tréyes." The word "three" conveys the concept of a triad, a trinity, or a set of three elements. It is a pivotal number in many cultural and religious traditions.The number four is written as "four" in English. This word originates from the Old English "fēower" and the Proto-Germanic "*fedwōr," with the Proto-Indo-European root being "*kwetwóres." The word "four" represents the idea of a quadrant, a set of four elements, and is a fundamental building block of many mathematical and spatial concepts.Moving to the number five, the English word is "five." This word derives from the Old English "fīf" and the Proto-Germanic "*fimf," with the Proto-Indo-European root being "*pénkwe." The word "five" conveys the concept of a quintuple, a set of five elements, and is a significant number in many cultural and numerical systems.The number six is expressed as "six" in English. This word originates from the Old English "siex" and the Proto-Germanic "*sehss," with the Proto-Indo-European root being "*swéḱs." The word "six" represents the idea of a hexad, a set of six elements, and is animportant number in various mathematical and geometric contexts.The number seven is written as "seven" in English. This word derives from the Old English "seofon" and the Proto-Germanic "*sebun," with the Proto-Indo-European root being "*septḿ." The word "seven" conveys the concept of a heptad, a set of seven elements, and is a significant number in numerous cultural, religious, and mythological traditions.The number eight is expressed as "eight" in English. This word originates from the Old English "eahta" and the Proto-Germanic "*ahtau," with the Proto-Indo-European root being "*oḱtṓ." The word "eight" represents the idea of an octad, a set of eight elements, and is an important number in various mathematical and scientific contexts.The number nine is written as "nine" in English. This word derives from the Old English "nīgan" and the Proto-Germanic "*newn," with the Proto-Indo-European root being "*newṃ." The word "nine" conveys the concept of a ennead, a set of nine elements, and is a significant number in numerous cultural and numerical systems.Finally, the number ten is expressed as "ten" in English. This word originates from the Old English "tēn" and the Proto-Germanic"*tehun," with the Proto-Indo-European root being "*déḱm̥." Theword "ten" represents the idea of a decad, a set of ten elements, and is a fundamental building block of the decimal numerical system that is widely used throughout the world.Understanding the written forms of these numbers from one to ten is crucial for any student of the English language. These basic numerical expressions not only serve as the foundation for counting and quantifying, but also hold deeper cultural and symbolic significance in various contexts. Mastering the written forms of these numbers is an essential step in developing proficiency in the English language.。

武汉理工大学whut线性代数考试试题及其参考答案

武汉理工大学whut线性代数考试试题及其参考答案

标准答案及评分标准用纸课程名称:线性代数 ( A 卷)一、填空题(每小题3分,共15分)1、23-; 2、E; 3、-15; 4、5t ≠; 5、 2 二、选择题(每小题3分,共15分)1、C2、A3、B4、C 5 、D 三、解答题(每小题8分,共32分)1、 121000121000(1)2121000121121n n n x xn x n x n n D x x n n x x n n n n-+-++⎡⎤==+⎢⎥⎣⎦+-+--L L L L MMLM M M M L MM L L LL………………(4分)(1)12(1)(1)2n n n n n x x --+⎡⎤=-+⎢⎥⎣⎦………………………………………………………………(8分) 2、 由题意(1,2)B AE = ……………………………………………………………………………………(4分)又BX A =,即(1,2)AE X A =,所以1(1,2)X E -=(1,2)E =……………………………………………(8分)3、 记1200A A A ⎛⎫=⎪⎝⎭,则1111200A A A ---⎛⎫= ⎪⎝⎭, ……………………………………………………………(2分) 又*11211,10A A ⎛⎫==⎪-⎝⎭,故112110A -⎛⎫= ⎪-⎝⎭…………………………………………………………(4分)*21211,31A A -⎛⎫=-= ⎪-⎝⎭,故122131A --⎛⎫= ⎪-⎝⎭………………………………………………………(6分)所以121010*******031A -⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭。

…………………………………………………………………(8分)4、记()1234,,,A αααα=,对A 进行行初等变换,将其化为行最简形:1211241012213631A -⎛⎫ ⎪- ⎪= ⎪--- ⎪-⎝⎭~1211003200320064-⎛⎫ ⎪- ⎪ ⎪- ⎪-⎝⎭~121100320000000-⎛⎫⎪- ⎪ ⎪⎪⎝⎭~112032001300000000⎛⎫-⎪⎪⎪-⎪ ⎪⎪ ⎪⎝⎭…………………(4分)()2R A =,又显然13,αα线性无关,所以13,αα即为原向量组的一个最大无关组;………………………(6分)且212αα=,4131233ααα=--。

武汉理工大学线性代数考试试题

武汉理工大学线性代数考试试题

⎝⎭武汉理工大学教务处试题标准答案及评分标准用纸 课程名称:线性代数 ( A 卷) 一、选择题(每小题3分,共12分) 1.B 2.C 3.B 4.D二、填空题(每小题3分,共12分)1.2;2.113021002⎛⎫ ⎪- ⎪ ⎪⎝⎭; 3.a=1;4. 2,2,5;(注:本小题每个数字为一分,错一个则减一分)三、解答题(每小题8分,共40分)1. 解:从第二列起,将其后各列加到第一列,有:1(1)1110111011011101(1)1011101111111111c n n n n D n n n ÷---==---121(1)(2)(1)12200010010(1)01001111(1)(1)(1)(1)(1)n n n nr r r r r r n n n n n n n n -----+----=--=-⋅--=--4分注:若采用其他方法计算出正确结果也应给满分,其正确的步骤也相应给分。

2. 由题,有E A B E A +=-)(2 2分且2202030360,402A E --==≠--故2()A E -可逆。

2分在等式左右两边左乘21()A E --得21()()B A E A E -=-+ 2分 11001001/2()010*********A E ---⎛⎫⎛⎫⎪ ⎪=-== ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭3.解:2分2分2分2分11111131132231213331 3--------=-=-=-⎛⎫=- ⎪⎝⎭*()A A A A A A A A A 2分 1133-=∴= ,A A ,上式=311339⎛⎫-⨯=- ⎪⎝⎭2分注:若前面所有步骤正确,最后计算出现符号错误,扣一分。

4.解:令矩阵123413011031(,,,)271241420A αααα⎛⎫⎪-- ⎪== ⎪⎪⎝⎭,并通过初等行变化化成最简形,有:1301103010310110271200014142A r -⎛⎫⎛⎫⎪ ⎪--⎪ ⎪= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭4分 故向量组A 的的一个最大无关组为124,,ααα, 2分 且3123ααα=-+。

网络提交《线性代数与概率统计》模拟题一(2013.11,90分钟)

网络提交《线性代数与概率统计》模拟题一(2013.11,90分钟)

华南理工大学网络教育学院《线性代数与概率统计》模拟试题一一.单项选择题(每小题5分,共8小题,总计40分)1.计算11221212x x x x ++=++?( A )A .12x x -B .12x x +C .21x x -D .212x x -2.用行列式的定义计算行列式143122317905311x x x x ---中展开式4x ,3x 的系数。

BA .1, 4B .1,-4C .-1,4D .-1,-43.设,A B 为n 阶对称矩阵,则下面结论中不正确的是( C )A .AB +为对称矩阵B .对任意的,n n P ⨯ TP AP 为对称矩阵 C .AB 为对称矩阵D .若,A B 可换,则AB 为对称矩阵4.111111111111kkAkk⎛⎫⎪⎪=⎪⎪⎝⎭,且()3r A=,则k=?(B )A.1B.-3C.1或-3D.-15.写出下列随机试验的样本空间及下列事件的集合表示:掷一颗骰子,出现奇数点。

D A.样本空间为{1,2,3,4,5,6}Ω=,事件“出现奇数点”为{2,4,6}B.样本空间为{1,3,5}Ω=,事件“出现奇数点”为{1,3,5}C.样本空间为{2,4,6}Ω=,事件“出现奇数点”为{1,3,5}D.样本空间为{1,2,3,4,5,6}Ω=,事件“出现奇数点”为{1,3,5}6.设A,B为随机事件,()0.2P A=,()0.45P B=,()0.15P AB=,(|)P A B=?BA.1 6B.1 3C.1 2D.2 37.已知随机变量X在[0,1]服从均匀分布,试求[]XE e为()A.eB.1e-C.1 eD.21e+8.抛掷一枚匀称的骰子,出现的点数为随机变量X ,求“出现的点数不超过3”的概率为( C )A .16B .13C .12D .34二.计算题(每小题8分,共6小题,总计48分)1.已知行列式2512371446125927-----,写出元素43a 的代数余子式43A ,并求43A 的值.解:()()()54281*26573224435264722644732521433443=--=⎪⎪⎭⎫⎝⎛--+-----=----=-=+M A2.设1100010000100021A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦,求2A .解:⎪⎪⎪⎪⎪⎭⎫⎝⎛=10000100001000212A3..解齐次线性方程组123412341234123424023450413140750x x x x x x x x x x x x x x x x --++=⎧⎪+--=⎪⎨--+=⎪⎪--+=⎩.解:对系数矩阵施以初等变换:A=⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------0000100100000000321025010000000032104121963018126032104121571114134154324121与原方程组同解的方程组为:⎩⎨⎧=-+=+-03025432431x x x x x x 所以:方程组的一般解为⎩⎨⎧--=+=4324313225x x x x x x (其中,4,3x x 为自由未知量)4.袋中有10个球,分别编有号码1到10,从中任取一球,设A={取得球的号码是偶数},B={取得球的号码是奇数},C={取得球的号码小于5},问下列运算表示什么事件:(1)A+B ;(2)AB ;(3)AC ;(4)AC ;(5)B C +;(6)A-C. (1)A+B={取得球的号码是整数}(2)AB={取得球的号码既是奇数又是偶数} (3) AC={取得球的号码是2.4}(4)AC ={取得球的号码是1.3.5.6.7.8.9.10} (5)C B +={取得球的号码是6.8} (6)A-C={取得球的号码是6.8.10}5.一批产品有10件,其中4件为次品,现从中任取3件,求取出的3件产品中有次品的概率。

武汉理工大学专升本线性代数与概率统计题库

武汉理工大学专升本线性代数与概率统计题库

一、单选( 每题参考分值2.5分)1、若总体为正态分布,方差未知,检验,对抽取样本,则拒绝域仅与()有关A.样本值,显著水平B.样本值,显著水平,样本容量C.样本值,样本容量D.显著水平,样本容量错误:【D】2、设函数,方程组的基础解系中含有1个向量,则必有()A.B.C.D.与不成比例错误:【D】3、下列命题正确的是()A.B.C.D.错误:【D】4、已知随机变量,则随机变量的概率密度()A.B.C.D.错误:【A】5、A.B.C.D.错误:【C】6x的分布列为30.70.3则D(X)=()A.0.21B.0.25C.0.84D.1.2错误:【A】7、A.B.C.D.错误:【B】8、来自总体的样本,已知,则有()A.B.C.D.错误:【A】9、若都存在,则下面命题中错误的是()A.B.C.D.错误:【D】10、A,B为两事件,若,,则与比较应满足A.B.C.D.无确定的大小关系错误:【C】11、设随机变量的概率密度函数为则()A.0B.C.2D.错误:【B】12、向量组和向量组等价的定义是向量组()A.和可互相线性表出B.和中有一组可由另一组线性表出C.和中所含向量的个数相等D.和的秩相等错误:【A】13、若方程组仅有零解,则()A.B.C.D.错误:【C】14、A.B.C.D.错误:【D】15、设随机变量与相互独立,且服从区间上的均匀分布,服从参数为3的指数分布,则()A.1B.3C.D.错误:【D】16、将两封信随机地投入4个邮筒中,则未向前两个邮筒中投信的概率为()A.B.C.D.错误:【A】17、设随机变量,则()A.B.C.D.错误:【A】18、设随机变量服从上的均匀分布,则()A.B.C.D.错误:【B】19、若为齐次线性方程组且的一个基础解系则()A.也是它的一个基础解系B.基础解系具有唯一性C.不一定是的基础解系D.以上答案都不对错误:【A】20、A.B.C.D.错误:【B】21、若二次型为正定二次型,则的取值范围为()A.B.C.D.错误:【C】22、设随机变量相互独立,概率密度分别为则二维随机变量的联合密度函数为()A.B.C.D.错误:【A】23、某种动物活20年的概率为0.8,活25年的概率为0.6,现有一只该动物已经活了20年,它能活到25年的概率是()A.0.48B.0.6C.0.8D.0.75错误:【D】24、总体的一个样本为,记则=()A.B.C.1D.4错误:【C】25、若则()A.它们的特征值不相同B.C.它们的特征向量相同D.都不对错误:【B】26、称是来自总体的一个简单随机样本(简称样本),即满足()A.相互独立,不一定同分布B.相互独立同分布,但与总体分布不一定相同C.相互独立且均与总体同分布D.与总体同分布,但不一定相互独立错误:【C】27、已知是正定矩阵,则()28、A.B.C.D.错误:【B】28、A.B.5C.D.错误:【B】29、A.B.C.D.错误:【D】30、()时,则方程组有无穷多解A.1B.2C.3D.4错误:【C】31、设为随机变量X的分布函数,则()A.一定连续B.一定右连续C.一定是不增的D.一定左连续错误:【B】32、设总体服从正态分布,其中已知,未知,为其样本,,则下列说法中正确的是()A.是统计量B.是统计量C.是统计量D.是统计量错误:【D】33、设A、B、C是三个事件,且,,,则A、B、C至少有1个发生的概率为()A.B.C.D.错误:【C】34、已知矩阵有特征值,则属于特征值0的线性无关特征向量的个数为()A.3B.2C.1D.0错误:【B】35、二次型是正定的,则应满足的条件的是()A.B.C. C.D. D.错误:【A】36、设是来自正态总体的样本,则统计量服从()A.正态分布B.分布C.分布D.分布错误:【D】37、设是一个阶阶方阵,下列陈述中正确的是()A.如存在数和向量使,则是的属于特征值的特征向量B.如存在数和非零向量,使,则是的特征值C.的2个不同的特征值可以有同一个特征向量D.是的3个互不相同的特征值,依次是的属于的特征向量,则有可能线性相关错误:【B】38、设随机变量是独立同分布的,对于,用切比雪夫不等式可估计()A.B.C.D.错误:【B】39、设随机变量的数学期望,方差,则由切比雪夫不等式有()A.B.C.D.错误:【B】40、设4维向量组中的线性相关,则()A.可由线性表出B.是的线性组合C.线性相关D.线性无关错误:【C】41、设,即服从参数为的泊松分布,则()A. 1B.C. 2D. 4错误:【A】42、下列矩阵中不是正交矩阵的是()A.B.C.D.错误:【D】43、设随机变量X服从参数的泊松分布,为X的分布函数,则下列正确的是()A.B.C.D.错误:【B】44、已知,则()A. 6B. 22C. 30D. 46错误:【B】45、实二次型为正定的充要条件是()A. 的秩为B. 的正惯性指数为C. 的正惯性指数等于的秩D. 的负惯性指数为错误:【B】46、已知是阶方阵,且,则的个行向量中()A. 任意个行向量线性无关B. 必有个行向量线性无关C. 任一行向量都可由其余个行向量线性表出D. 任意个行向量都为极大无关组错误:【B】47、设,则与相似的一个矩阵是()A.B.C.D.错误:【C】48、二维随机变量概率密度为则常数为()A.B.C.D.错误:【C】49、A.B.C.D.错误:【C】50、若连续型随机变量的分布函数,则常数的取值为()A.B.C.D.错误:【B】。

线性代数与概率统计作业题答案

线性代数与概率统计作业题答案

《线性代数与概率统计》作业题第一部分 单项选择题 1.计算11221212x x x x ++=++?(A )A .12x x -B .12x x +C .21x x -D .212x x -2.行列式111111111D =-=--(B)A .3B .4C .5D .63.设矩阵231123111,112011011A B -⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB =?(B) A .-1B .0C .1D .24.齐次线性方程组123123123000x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=?(C )A .-1B .0C .1D .25.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=67356300B ,求AB =?(D ) A .1041106084⎛⎫⎪⎝⎭B .1041116280⎛⎫⎪⎝⎭C .1041116084⎛⎫ ⎪⎝⎭D .1041116284⎛⎫⎪⎝⎭6.设A 为m 阶方阵,B 为n 阶方阵,且A a =,B b =,00A C B⎛⎫=⎪⎝⎭,则C =?( D ) A .(1)mab - B .(1)n ab - C .(1)n m ab +-D .(1)nmab -7.设⎪⎪⎪⎭⎫⎝⎛=343122321A ,求1-A =?(D )A .13235322111⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭B .132********-⎛⎫⎪ ⎪- ⎪ ⎪-⎝⎭ C .13235322111-⎛⎫ ⎪⎪- ⎪ ⎪-⎝⎭ D .13235322111-⎛⎫⎪ ⎪-- ⎪ ⎪-⎝⎭8.设,A B 均为n 阶可逆矩阵,则下列结论中不正确的是(B )A .111[()]()()T T T AB A B ---=B .111()A B A B ---+=+C .11()()k k A A --=(k 为正整数)D .11()(0)n kA k A k ---=≠ (k 为正整数)9.设矩阵m n A ⨯的秩为r ,则下述结论正确的是(D ) A .A 中有一个r+1阶子式不等于零B .A 中任意一个r 阶子式不等于零C .A 中任意一个r-1阶子式不等于零D .A 中有一个r 阶子式不等于零10.初等变换下求下列矩阵的秩,321321317051A --⎛⎫⎪=- ⎪ ⎪-⎝⎭的秩为?(D )B .1C .2D .311.写出下列随机试验的样本空间及下列事件的集合表示:掷一颗骰子,出现奇数点。

《线性代数与概率统计》作业题(答案)~2015.03[推荐]

《线性代数与概率统计》作业题(答案)~2015.03[推荐]

《线性代数与概率统计》作业题(答案)~2015.03[推荐]第一篇:《线性代数与概率统计》作业题(答案)~2015.03[推荐] 《线性代数与概率统计》作业题第一部分单项选择题1.计算x1+1x1+2=?(A)x2+1x2+2A.x1-x2B.x1+x2C.x2-x1D.2x2-x112.行列式D=-11111=?(B)-1-11A.3B.4C.5 D.6⎡23-1⎤⎡123⎤⎥,B=⎢112⎥,求1113.设矩阵A=⎢AB=?(B)⎢⎥⎢⎥⎢⎢⎣0-11⎥⎦⎣011⎥⎦A.-1B.0C.1D.2⎧λx1+x2+x3=0⎪4.齐次线性方程组⎨x1+λx2+x3=0有非零解,则λ=?(C)⎪x+x+x=0⎩123A.-1B.0C.1 D.2⎛0⎫5.设A=⎛19766⎪⎫0⎪⎝0905⎪⎪3⎭,B=53⎪,求AB=?(D) ⎝76⎪⎪⎭A.⎛104110⎫⎝6084⎪⎭B. ⎛104111⎫⎝6280⎪⎭C.⎛104111⎫⎝6084⎪⎭D. ⎛104111⎫⎝6284⎪⎭6.设A为m阶方阵,B为n阶方阵,且A=a,B=b,C=⎛0⎝BA.(-1)mabB.(-1)nabC.(-1)n+mabD.(-1)nmab⎛123⎫7.设A=221⎪⎪,求A-1=?(D) ⎝343⎪⎭2A⎫0⎪⎭,则C=?(D)⎛132⎫A. -3-35⎪22⎪⎪⎝11-1⎪⎭⎛13-2⎫ B. 35⎪-3⎪22⎪⎝11-1⎪⎭⎛13-2⎫ C. 3-35⎪2⎪⎪2⎝11-1⎪⎭⎛13-2⎫⎪D. 3 --35 22⎪⎪⎝11-1⎪⎭8.设A,B均为n阶可逆矩阵,则下列结论中不正确的是(B)A.[(AB)T]-1=(A-1)T(B-1)TB.(A+B)-1=A-1+B-1C.(Ak)-1=(A-1)k(k为正整数)D.(kA)-1=k-nA-1(k≠0)(k为正整数)9.设矩阵Am⨯n的秩为r,则下述结论正确的是(D)A.A中有一个r+1阶子式不等于零B.A中任意一个r阶子式不等于零C.A中任意一个r-1阶子式不等于零D.A中有一个r阶子式不等于零⎛-1-3⎫10.初等变换下求下列矩阵的秩,A=32 2-131⎪⎝705-1⎪的秩为?(⎪⎭3D)A.0 B.1C.2 D.311.写出下列随机试验的样本空间及下列事件的集合表示:掷一颗骰子,出现奇数点。

2019华工作业《线性代数与概率统计》随堂练习word版本

2019华工作业《线性代数与概率统计》随堂练习word版本

2019华工作业《线性代数与概率统计》随堂练习线性代数与概率统计•第一章行列式o 1.1 二阶与三阶行列式1.(单选题) 计算?A.;B.;C.;D..答题: A. B. C. D. (已提交)2.(单选题) 行列式?A.3;B.4;C.5;D.6.答题: A. B. C. D. (已提交)3.(单选题) 计算行列式.A.12;B.18;C.24;D.26.答题: A. B. C. D. (已提交)4.(单选题) 计算行列式?A.2;B.3;C.0;D..答题: A. B. C. D. (已提交)1.(单选题) 计算行列式?A.2;B.3;C.;D..答题: A. B. C. D. (已提交)2.(单选题) 计算行列式?A.2;B.3;C.0;D..答题: A. B. C. D. (已提交)oo 1.3 阶行列式的定义••1.(单选题) 利用行列式定义,计算n阶行列式:=? A.;B.;C.;D..答题: A. B. C. D. (已提交)2.(单选题) 计算行列式展开式中,的系数。

A.1, 4;B.1,-4;C.-1,4;D.-1,-4.1.(单选题) 计算行列式=?A.-8;B.-7;C.-6;D.-5.答题: A. B. C. D. (已提交)2.(单选题) 计算行列式=?A.130 ;B.140;C.150;D.160.答题: A. B. C. D. (已提交)3.(单选题) 四阶行列式的值等于多少?A.;B.;C.;D..答题: A. B. C. D. (已提交)4.(单选题) 行列式=?A.;B.;C.;D..答题: A. B. C. D. (已提交)5.(单选题) 已知,则?A.6m;A. B. C.1.(单选题) 设=,则? A.15|A|;B.16|A|;C.17|A|;D.18|A|.答题: A. B. C. D. (已提交)2.(单选题) 设矩阵,求=?A.-1;B.0;C.1;D.2.答题: A. B. C. D. (已提交)3.(单选题) 计算行列式=?A.-1500;B.0;C.-1800;•1.(单选题) 设,,求=?A.;B.;C.;D..答题: A. B. C. D. (已提交)2.(单选题) 设矩阵,,为实数,且已知,则的取值分别为什么?A.1,-1,3;B.-1,1,3;C.1,-1,-3;D.-1,1,-3.答题: A. B. C. D. (已提交)3.(单选题) 设矩阵,求=?A.-1;B.0;C.1;A. B. C.1.(单选题) 设, 满足, 求=?()A.;B.;C.;D..答题: A. B. C. D. (已提交)2.(单选题) 设,,求=?()A.;B.;C.;D..答题: A. B. C. D. (已提交)3.(单选题) 如果,则分别为?A.0,3;B.0,-3;C.1, 3;D.1,-3.答题: A. B. C. D. (已提交)4.(单选题) 设,矩阵,定义,则=?A.0;B.;C.;D..答题: A. B. C. D. (已提交)5.(单选题) 设,n>1,且n为正整数,则=?A.0 ;B.-1 ;C.1 ;D. .答题: A. B. C. D. (已提交)6.(单选题) 设为n阶对称矩阵,则下面结论中不正确的是哪个?A.为对称矩阵;B.对任意的为对称矩阵;C.为对称矩阵 ;D.若可换,则为对称矩阵 .答题: A. B. C. D. (已提交)7.(单选题) 设为m阶方阵,为n阶方阵,且,,,则=?A.;B.;C.;D..答题: A. B. C. D. (已提交)1.(单选题) 下列矩阵中,不是初等矩阵的是哪一个?A.;B.;C.;D. .答题: A. B. C. D. (已提交)2.(单选题) 设,则?A.;B.;C.;D..答题: A. B. C. D. (已提交)3.(单选题) 设,求=?()A.;B. ;C. ;D. .答题: A. B. C. D. (已提交)4.(单选题) 设,求矩阵=?A. B.C. D.答题: A. B. C. D. (已提交)5.(单选题) 设均为n阶矩阵,则必有().A. ;B. ;C. ;D. .答题: A. B. C. D. (已提交)6.(单选题) 设均为n阶矩阵,则下列结论中不正确的是什么?A.若,则都可逆;B.若,且可逆,则 ;C.若,且可逆,则;D.若,且,则 .答题: A. B. C. D. (已提交)7.(单选题) 设均为n阶可逆矩阵,则下列结论中不正确的是()A.;B. ;C.(k为正整数);D.(k为正整数).答题: A. B. C. D. (已提交)8.(单选题) 利用初等变化,求的逆=?()A.; B. ;C.; D. .答题: A. B. C. D. (已提交)9.(单选题) 设,则=?A. ; B. ;C. ; D. .答题: A. B. C. D. (已提交)10.(单选题) 设,是其伴随矩阵,则=?()A. ; B. ;C. ; D. .答题: A. B. C. D. (已提交)1.(单选题) 求矩阵的秩.A.0;B.1 ;C.2;D.3.答题: A. B. C. D. (已提交)2.(单选题) 利用初等变换下求下列矩阵的秩,的秩为?A.0;B.1;C.2;D.3.答题: A. B. C. D. (已提交)3.(单选题) 求的秩为?A.2;B.3;C.4;D.5.答题: A. B. C. D. (已提交)4.(单选题) ,且,则=?A.1;B.-3;C.1或-3;D.-1.答题: A. B. C. D. (已提交)5.(单选题) 判断:设,,则=? A. ; B. ;C. ; D. .答题: A. B. C. D. (已提交)6.(单选题) 求矩阵的秩=?A.1B.2C.3D.4答题: A. B. C. D. (已提交)7.(单选题) 设,则?A.B.C.D.答题: A. B. C. D. (已提交)1.(单选题) 用消元法解线性方程组,方程组有多少个解?A. B. C.2.(单选题) 用消元法解线性方程组,方程的解是哪个?A. ;B.;C. ;D..答题: A. B. C. D. (已提交)1.(单选题) 齐次线性方程组有非零解,则必须满足什么条件?A.;B.;C.;D..答题: A. B. C. D. (已提交)2.(单选题) 已知线性方程组:无解,则=?A.-1;B.0;C.1 ;D.2.答题: A. B. C. D. (已提交)3.(单选题) 非齐次线性方程组中未知量个数为n,方程个数为m,系数矩阵的秩为r,则下面哪个陈述是对的?A.r=m时,方程组有解 ;B.r=n时,方程组有唯一解;C.m=n时,方程组有唯一解;D.r<n时,方程组有无穷多个解.答题: A. B. C. D. (已提交)4.(单选题) 设是矩阵,齐次线性方程组仅有零解的充分条件是().A.的列向量组线性相关 ;B.的列向量组线性无关;C.的行向量组线性无关;D.的行向量组线性无关.答题: A. B. C. D. (已提交)5.(单选题) 线性方程组:有解的充分必要条件是=?A.;B.-1;C.;D.1.答题: A. B. C. D. (已提交)oo 3.4 线性方程组解的结构1.(单选题) 求齐次线性方程组的基础解系是()A.;B.;C.;D..答题: A. B. C. D. (已提交)2.(单选题) 求齐次线性方程组的基础解系为()A.;B. ;C.;D. .答题: A. B. C. D. (已提交)3.(单选题) 设n元非齐次方程组的导出组仅有零解,则()A.仅有唯一解 ;B.必有无穷多解 ;C.必无解 ;D.未必有解 .答题: A. B. C. D. (已提交)4.(单选题) 设为矩阵,线性方程组的对应导出组为,则下面结论正确的是()A.若仅有零解,则有唯一解;B.若有非零解,则有无穷多解;C.若有无穷多解,则有非零解;D.若有无穷多解,则仅有零解.A. B. C.1.(单选题) 写出下列随机试验的样本空间及下列事件的集合表示:掷一颗骰子,出现奇数点。

线性代数与概率统计作业完整版

线性代数与概率统计作业完整版

一.问答题1.叙述n 阶行列式的余子式和代数余子式的定义,并写出二者之间的关系。

答:定义:在n 阶行列式D 中划去a ij 所在的第i 行和第j 列的元素后,剩下的元素按原来相对位置所组成的(n-1)阶行列式,称为a ij 的余子式,记为M ij ,即nn j n j n n ni j i j i i n i j i j i i n j j ij a a a a a a a a a a a a a a a a M ,1,1,1,,11,11,11,1,11,11,11,111,11,11,1+-+++-++-+----+-=()ij j i M ⨯-+1称为a ij 的代数余子式,记为A ij ,即()ij j i ij M A ⨯-=+12.叙述矩阵的秩的定义。

答:定义:设A 为n m ⨯矩阵。

如果A 中不为零的子式最高阶为r ,即存在r 阶子式不为零,而任何r+1阶子式皆为零,则称r 为矩阵A 的秩,记作(秩)=r 或R(A)=r 。

3.齐次线性方程组的基础解系是什么?答:定义:设T 是⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++0...............................................0...0...221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a 的所有解的集合,若T 中存在一组非零解s v v v ,...,,21,满足(1)s v v v ,...,,21线性无关;(2)任意T v ∈,都可用s v v v ,...,,21,线性表出则称s v v v ,...,,21,是此方程组的一个基础解系4.试写出条件概率的定义。

答:条件概率的定义:在事件B 发生的条件下事件A 发生的概率定义为())0)(()()(>=B P B P AB P B A p5.试写出全概率公式和贝叶斯公式这两个定理。

线性代数与概率统计及答案

线性代数与概率统计及答案

线性代数部分第一章 行列式一、单项选择题1.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 22. =0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 2 3.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-4. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 25. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解. ( )(A)1- (B)2- (C)3- (D)06.设行列式na a a a =22211211,m a a a a =21231113,则行列式232221131211--a a a a a a 等于()A. m n -B.)(-n m +C. n m +D.n m -二、填空题1. 行列式=0100111010100111.2.行列式010...0002...0.........000 (10)0 0n n =-.3.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .4.行列式=--+---+---1111111111111111x x x x .5.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.6.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.7.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题2.y x yx x y x y y x y x+++;3.解方程0011011101110=x x xx ;6. 111...1311...1112...1.........111...(1)b b n b----7. 11111222123111...1..................nb a a a b b a a b b b a ; 8.121212123.....................n nn x a a a a x a a a a x a a a a x; 四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a . 2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++. 3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a d c b a +++------=.第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。

线性代数与概率统计及答案

线性代数与概率统计及答案

线性代数部分第一章 行列式一、单项选择题1.=0001001001001000 .A 0B 1-C 1D 22.=0001100000100100 .A 0B 1-C 1D 2 3.若a a a a a =22211211,则=21112212ka a ka a .A kaB ka -C a k 2D a k 2-4. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x .A 0B 3-C 3D 25. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.A 1-B 2-C 3-D 06.设行列式na a a a =22211211,m a a a a =21231113,则行列式232221131211--a a a a a a 等于A. m n -B.)(-n m +C. n m +D.n m -二、填空题1. 行列式=0100111010100111.2.行列式010...0002...0.........000 (10)0 0n n =-.3.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .4.行列式=--+---+---1111111111111111x x x x .5.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.6.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.7.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题2.yxyx x y x y y x y x+++;3.解方程0011011101110=x x xx ;6. 111...1311...1112 (1).........111...(1)b b n b----7. 11111222123111...1..................nb a a a b b a a b b b a ; 8.121212123.....................n nn x a a a a x a a a a x a a a a x;四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a dcbad c b a +++------=.第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是 ;a 22A A =b ))((22B A B A B A +-=- c AB A A B A -=-2)( d T T T B A AB =)( 2.设方阵A 、B 、C 满足AB=AC,当A 满足 时,B=C;a AB =BAb 0≠Ac 方程组AX=0有非零解d B 、C 可逆 3.若A 为n 阶方阵,k 为非零常数,则=kA ;a A kb A kc A k nd A k n4.设A 为n 阶方阵,且0=A ,则 ;a A 中两行列对应元素成比例b A 中任意一行为其它行的线性组合c A 中至少有一行元素全为零d A 中必有一行为其它行的线性组合 5.设A 为n 阶方阵,*A 为A 的伴随矩阵,则 ; (a) a 1*-=A A b A A =* c 1*+=n AA d 1*-=n AA6. 设A ,B 为n 阶方矩阵,22B A =,则下列各式成立的是 ; a B A = b B A -= c B A = d 22B A = 7.设A 为n 阶可逆矩阵,则下面各式恒正确的是 ; a T A A 22= b 112)2(--=A Ac 111])[(])[(---=T T T A Ad T T T T A A ])[(])[(11--=8.已知⎪⎪⎪⎭⎫ ⎝⎛=113022131A ,则 ;a A A T =b *1A A =-c ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛113202311010100001Ad ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛113202311010100001A9.设I C B A ,,,为同阶方阵,I 为单位矩阵,若I ABC =,则 ;a I ACB =b I CAB =c I CBA =d I BAC = 10.n 阶矩阵A 可逆的充要条件是 ; a A 的每个行向量都是非零向量 b A 中任意两个行向量都不成比例c A 的行向量中有一个向量可由其它向量线性表示d 对任何n 维非零向量X ,均有0≠AX 11. 设矩阵A=1,2,B=⎪⎪⎭⎫ ⎝⎛4321,C⎪⎪⎭⎫⎝⎛=654321则下列矩阵运算中有意义的是A .ACB B .ABC C .BACD .CBA 12.设矩阵A,B 均为可逆方阵,则以下结论正确的是DA .⎪⎪⎭⎫ ⎝⎛B A 可逆,且其逆为⎪⎪⎭⎫ ⎝⎛--11B AB .⎪⎪⎭⎫ ⎝⎛B A 不可逆 C .⎪⎪⎭⎫ ⎝⎛B A 可逆,且其逆为⎪⎪⎭⎫ ⎝⎛--11A BD .⎪⎪⎭⎫ ⎝⎛B A 可逆,且其逆为⎪⎪⎭⎫ ⎝⎛--11B A13.已知向量TT )0,3,4,1(23,)1,2,2,1(2--=β+α---=β+α,则β+α=AA .T)1,1,2,0(-- B.T)1,1,0,2(-- C .T)0,2,1,1(-- D .T)1,5,6,2(---14.设A 和B 为n 阶方阵,下列说法正确的是CA. 若AB AC =,则B C =B. 若0AB =,则0A =或0B =C. 若0AB =,则0A =或0B =D. 若0A E -=,则A E =6、设两事件A二、填空题1.设A 为n 阶方阵,I 为n 阶单位阵,且I A =2,则行列式=A _______2.行列式=---000c b c a ba_______3.设A 为5阶方阵,*A 是其伴随矩阵,且3=A ,则=*A _______4.设4阶方阵A 的秩为2,则其伴随矩阵*A 的秩为_______ 三、计算题1.解下列矩阵方程X 为未知矩阵.1 223221103212102X ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ ;2 0101320100211100110X ⎛⎫⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪-⎝⎭ ⎪ ⎪⎝⎭⎝⎭ ; 3 2AX A X =+,其中423110123A ⎛⎫⎪= ⎪⎪-⎝⎭;2.设A 为n 阶对称阵,且20A =,求A .3.设11201A ⎛⎫= ⎪⎝⎭,23423A ⎛⎫= ⎪⎝⎭,30000A ⎛⎫= ⎪⎝⎭,41201A ⎛⎫= ⎪⎝⎭,求1234A A A A ⎛⎫⎪⎝⎭.4.设211011101,121110110A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,求非奇异矩阵C ,使T A C BC =.四、证明题1. 设A 、B 均为n 阶非奇异阵,求证AB 可逆.2. 设0k A =k 为整数, 求证I A -可逆.4. 设n 阶方阵A 与B 中有一个是非奇异的,求证矩阵AB 相似于BA .5. 证明可逆的对称矩阵的逆也是对称矩阵.第三章 向量一、单项选择题1. 321,,ααα, 21,ββ都是四维列向量,且四阶行列式m =1321βααα,n =2321ααβα,则行列式)(21321=+ββαααn m a +)( n m b -)( n m c +-)( n m d --)(2. 设A 为n 阶方阵,且0=A ,则 ;成比例中两行(列)对应元素A a )( 线性组合中任意一行为其它行的A )b ( 零中至少有一行元素全为A c )( 线性组合中必有一行为其它行的A )d (3. 设A 为n 阶方阵,n r A r <=)(,则在A 的n 个行向量中 ;个行向量线性无关必有r a )(个行向量线性无关任意r )b (性无关组个行向量都构成极大线任意r c )(个行向量线性表示其它任意一个行向量都能被r )d (4. n 阶方阵A 可逆的充分必要条件是n r A r a <=)()( n A b 的列秩为)(零向量的每一个行向量都是非)(A c 的伴随矩阵存在)(A d5. n 维向量组12,,...,s ααα线性无关的充分条件是)(a 12,,...,s ααα都不是零向量)(b 12,,...,s ααα中任一向量均不能由其它向量线性表示 )(c 12,,...,s ααα中任意两个向量都不成比例 )(d 12,,...,s ααα中有一个部分组线性无关二、填空题1. 若T )1,1,1(1=α,T )3,2,1(2=α,T t ),3,1(3=α线性相关,则t=▁▁▁▁;2. n 维零向量一定线性▁▁▁▁关;3. 向量α线性无关的充要条件是▁▁▁▁;4. 若321,,ααα线性相关,则12,,...,s ααα)3(>s 线性▁▁▁▁关;5. n 维单位向量组一定线性▁▁▁▁;三、计算题 1. 设T )1,1,1(1λα+=,T )1,1,1(2λα+=,T )1,1,1(3λα+=,T),,0(2λλβ=,问1λ为何值时,β能由321,,ααα唯一地线性表示2λ为何值时,β能由321,,ααα线性表示,但表达式不唯一 3λ为何值时,β不能由321,,ααα线性表示 2. 设T )3,2,0,1(1=α,T )5,3,1,1(2=α,T a )1,2,1,1(3+=α,T a )8,4,2,1(4+=α,T b )5,3,1,1(+=β问: 1b a ,为何值时,β不能表示为4321,,,αααα的线性组合 2b a ,为何值时,β能唯一地表示为4321,,,αααα的线性组合 3. 求向量组T )4,0,1,1(1-=α,T )6,5,1,2(2=α,T )2,5,2,1(3=α,T )0,2,1,1(4--=α,T )14,7,0,3(5=α的一个极大线性无关组,并将其余向量用该极大无关组线性表示; 四、证明题1. 设2131222112,3,ααβααβααβ-=-=+=,试证321,,βββ线性相关;2. 设12,,...,n ααα线性无关,证明12231,,...,n αααααα+++在n 为奇数时线性无关;在n 为偶数时线性相关;第四章 线性方程组一、单项选择题1.设n 元齐次线性方程组0AX =的系数矩阵的秩为r ,则0AX =有非零解的充分必要条件是A r n =B r n <C r n ≥D r n >2.设A 是m n ⨯矩阵,则线性方程组AX b =有无穷解的充要条件是A ()r A m <B ()r A n <C ()()r Ab r A m =<D ()()r Ab r A n =<3.设A 是m n ⨯矩阵,非齐次线性方程组AX b =的导出组为0AX =,若m n <,则A AX b =必有无穷多解B AX b =必有唯一解C 0AX =必有非零解D 0AX =必有唯一解4.方程组1232332422(2)(3)(4)(1)x x x x x x λλλλ+-=⎧⎪+=⎨⎪-=----⎩无解的充分条件是λ=A 1B 2C 3D 45.方程组12323331224(1)(3))(1))x x x x x x x λλλλλλ++=-⎧⎪-=-⎪⎨=-⎪⎪-=---⎩有唯一解的充分条件是λ=A 1B 2C 3D 4 二、填空题1. 设A 为100阶矩阵,且对任意100维的非零列向量X ,均有0AX ≠,则A 的秩为 .2. 线性方程组1231212320200kx x x x kx x x x ++=⎧⎪+=⎨⎪-+=⎩仅有零解的充分必要条件是 .3. 设12,,s X X X 和1122s s c X c X c X +++均为非齐次线性方程组AX b =的解12,,s c c c 为常数,则12s c c c +++= .4. 若线性方程组AX b =的导出组与0(())BX r B r ==有相同的基础解系,则()r A = .5. 若线性方程组m n A X b ⨯=的系数矩阵的秩为m ,则其增广矩阵的秩为 .三、计算题1. 已知123,,ααα是齐次线性方程组0AX =的一个基础解系,问122331,,αααααα+++是否是该方程组的一个基础解系 为什么2. 设54331012263211311111A -⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦,12010560011210012320B --⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥--⎣⎦,已知B 的行向量都是线性方程组0AX =的解,试问B 的四个行向量能否构成该方程组的基础解系 为什么3. 设四元齐次线性方程组为 Ι:122400x x x x +=⎧⎨-=⎩1求Ι的一个基础解系2如果12(0,1,1,0)(1,2,2,1)T T k k +-是某齐次线性方程组II 的通解,问方程组Ι和II 是否有非零的公共解 若有,求出其全部非零公共解;若无,说明理由;第五章 特征值与特征向量一、单项选择题1. 设001010100A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A 的特征值是 ;a -1,1,1b 0,1,1c -1,1,2d 1,1,22. 设110101011A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A 的特征值是 ;a 0,1,1b 1,1,2c -1,1,2d -1,1,1 3. 设A 为n 阶方阵, 2A I =,则 ;a ||1A =b A 的特征根都是1c ()r A n =d A 一定是对称阵4. 若12,x x 分别是方阵A 的两个不同的特征值对应的特征向量,则1122k x k x +也是A 的特征向量的充分条件是 ;a 1200k k ==且b 1200k k ≠≠且c 120k k =d 1200k k ≠=且 5. 若n 阶方阵,A B 的特征值相同,则 ;a A B =b ||||A B =c A 与B 相似d A 与B 合同二、填空题1. n 阶零矩阵的全部特征值为_______;2. 设A 为n 阶方阵,且I A =2,则A 的全部特征值为_______;3. 设A 为n 阶方阵,且0=m A m 是自然数,则A 的特征值为_______;4. 若A A =2,则A 的全部特征值为_______;5. 若方阵A 与I 4相似,则=A _______;三、计算题1. 若n 阶方阵A 的每一行元素之和都等于a ,试求A 的一个特征值及该特征值对应的一个特征向量.2. 求非奇异矩阵P ,使1P AP -为对角阵.1 2112A ⎛⎫= ⎪⎝⎭2 112131201A -⎛⎫⎪=-- ⎪ ⎪--⎝⎭四、证明题1. 设A 是非奇异阵, λ是A 的任一特征根,求证1λ是1A -的一个特征根,并且A 关于λ的特征向量也是1A -关于1λ的特征向量. 2. 设2A E =,求证A 的特征根只能是1±.3. 设n 阶方阵A 与B 中有一个是非奇异的,求证矩阵AB 相似于BA .4. 证明:相似矩阵具有相同的特征值.5. 设n 阶矩阵A E ≠,如果()()r A E r A E n ++-=,证明:-1是A 的特征值;6. 设A B ,证明kk A B ;7. 设12,αα是n 阶矩阵A 分别属于12,λλ的特征向量,且12λλ≠,证明12αα+不是A 的特征向量;概率论部分一、填空:每题3分,共15分1. 假设,A B 是两独立的事件,()0.7,()0.3P A B P A ⋃==,则()P B =_________; 2. 设A,B 是两事件,(|)1/4,()1/3P A B P B ==,则()P AB =__________; 3. 若二维随机变量(X,Y)满足()()()E XY E X E Y =,则X Y 与________; 4. 随机变量~(0,1),23,~X N Y X Y =+则_________; 5. 设总体)1,0(~N X ,1210,,,X X X 是来自总体X 的样本,则X 服从_________分布;二、选择:每题3分,共15分1. 如果成立,则事件,A B 互为对立事件....()()1A AB B AB C AB A B D P A P B =Φ=Ω=Φ⋃=Ω+=且2. 若X 的概率密度为02()4240x x f x xx ≤≤⎧⎪=-≤≤⎨⎪⎩其它,则{3}P X ≤= .3/2A .5/2B .7/2C .4D3. 设随机变量),(~p n B X ,则方差var()X =.A np .(1)B n p - 2.C np .(1)D np p -4. 下列结论正确的是A .X 与Y 相互独立,则X 与Y 不相关B .X 与Y 不独立,则X 与Y 相关C .X 与Y 不相关,则X 与Y 相互独立D .X 与Y 相关,则X 与Y 相互独立5. 设n X X X ,,,21 为来自正态总体2~(,)X N μσ的一个样本,其中μ已知,2σ未知,则下面不是统计量的是 ()A 1X ()B 221()ni i X μσ=-∑()C 211()n i i X n μ=-∑ ()D 211()1n i i X X n =--∑ 三、计算:共70分1.15分甲乙两袋,甲袋中有两白球一个黑球,乙袋中有一个白球两个黑球;先从甲袋中取一球放到乙袋中,再从乙袋中取一球,1求从乙袋中取出的是白球的概率;2已发现从乙袋中取出的是白球,问从甲袋中取出放入乙袋中的球为白球的概率;2.10分设随机变量X 的密度函数为2,02()0,cx x f x ⎧<<=⎨⎩其它,试求:(1)常数c ;(2){11}P X -<<;3.10分设随机变量X 的密度函数为2,01;()0,x x f x <<⎧=⎨⎩其他,,求 2X Y =的概率密度;4.10分一袋中装有5只球,编码为1,2,3,4,5,在袋中同时取3只,以X 表示取出的3只球中的最小号码,求随机变量X 的分布律与数学期望.5.15分设随机变量X,Y 的概率密度为 6,01(,)0,x y x f x y <<<⎧=⎨⎩其它1试求关于X 及Y 的边缘概率密度;2判断X 与Y 是否相互独立,并说明理由.6.10分总体X 的概率密度函数为220(),00x x f x θθθ⎧<<⎪=>⎨⎪⎩其它是未知参数,求未知参数θ的矩估计量,并验证未知参数θ的矩估计量是θ的有偏还是无偏估计量;线性代数部分参考答案第一章 行列式一、单项选择题1. C .2. C .3.B.4 C .5. A 6.C二.填空题1.0;2.!)1(1n n --;3.M 3-;4.4x ;5.2-;6.3,2-≠k ;7.7=k 三.计算题 1. )(233y x +-; 2. 1,0,2-=x ;3 (2)(1)...((2))b b n b -+---;4 ∏=--nk k kna b1)()1(;5 ∏∑==-+nk k nk k a x a x 11)()(;第二章参考答案一:1. a ;2. b ;3.c ;4.d ; 5.d ; 6.d ; 7.d ; 8.c ;9.b ; 10.d.11.B 12.D13.A14.C二.1. 1或-1;2. 0; 5. 81;6. 0;三、1.1、⎪⎪⎪⎭⎫⎝⎛---016213010;2、⎪⎪⎪⎪⎪⎭⎫⎝⎛-02132121; 3、⎪⎪⎪⎭⎫⎝⎛------9122692683. 2. 0; 3.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1000210012100121; 4.⎪⎪⎪⎭⎫⎝⎛100001010;第三章向量参考答案一、 单项选择1.b2.d3.a4.b5.b 二、填空题1. 52.相关3. 0≠α4.相关三、解答题1. 解:设332211αααβx x x ++=则对应方程组为⎪⎩⎪⎨⎧=+++=+++=+++2321321321)1()1(0)1(λλλλλx x x x x x x x x其系数行列式)3(1111111112+=+++=λλλλλA1当3,0-≠≠λλ时,0≠A ,方程组有唯一解,所以β可由3,21,ααα唯一地线性表示;2当0=λ时,方程组的增广阵 ⎪⎪⎪⎭⎫ ⎝⎛=011101110111A ⎪⎪⎪⎭⎫ ⎝⎛→000000000111,31)()(<==A r A r ,方程组有无穷多解,所以β可由3,21,ααα线性表示,但表示式不唯一;3当3-=λ时,方程组的增广阵⎪⎪⎪⎭⎫ ⎝⎛----=921131210112A ⎪⎪⎪⎭⎫⎝⎛-----→18000123303121,)()(A r A r ≠,方程组无解,所以β不能由3,21,ααα线性表示; 2.解:以βαααα,,,,4321为列构造矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++58153342321211011111a b a →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--+-b a a 41000041100121101111121时,且当01≠±=b a β不能表示为4321,,,αααα的线性组合; 2任意时,当b a ,1±≠β能唯一地表示为4321,,,αααα的线性组合;3.解:=),,,,(54321ααααα⎪⎪⎪⎪⎪⎭⎫⎝⎛---140264725500121131121⎪⎪⎪⎪⎪⎭⎫⎝⎛--→000110001011020101 421,,ααα为一个极大无关组,且31240αααα=-++, 42152αααα-+=四、证明题1.证:∵0)2(4)(33121=--+ββββ∴0435321=++-βββ ∴321,,βββ线性相关2.证:设0)()()(1322211=++++++ααααααn n k k k则0)()()(122111=+++++-n n n n k k k k k k ααα ∵n ααα,,,21 线性无关∴⎪⎪⎩⎪⎪⎨⎧=+=+=+-0001211n n n k k k k k k 其系数行列式1100001000001100001110001 =⎩⎨⎧=-++为偶数为奇数n n n ,0,2)1(11∴当n 为奇数时,n k k k ,,,21 只能为零,n ααα,,,21 线性无关; 当n 为偶数时,n k k k ,,,21 可以不全为零,n ααα,,,21 线性相关;参考答案一、单项选择题 1.B 2.D 3.C 4.B 5.A二、填空题1.1002.23k k ≠-≠且3.14.r5.m三、计算题 1. 是 2. 不能3. 112(0,0,1,0),(1,1,0,1)T T v v ==- 2(1,1,1,1)()T k k -其中为任意非零常数第五章 参考答案一、单项选择题 1.a 2.c 3.c 4.d 5.b二、填空题1.02.1,-13.04.0,15.4I三、计算题 1.,(1,1,,1)T a2.11111-⎛⎫ ⎪⎝⎭ 2113211122-⎛⎫⎪- ⎪ ⎪⎝⎭四. 证明题 略概率论部分一、填空每题3分共15分1. 4/7;2. 1/12 ;3. 不相关;4. ~(3,4)Y N ;5. (0,1/10)N 二、选择每题3分共15分1.C ; 2. C ; 3. D ; 4. A ; 5. B 三、计算 1. 15分解:设12{}{}A A ==第一次从甲袋中摸的是黑球第一次从甲袋中摸的是白球{}B =从乙袋中摸的是白球(1) 由全概率公式11221212()(|)()(|)()31212(),(),(|)(|)3344P B P B A P A P B A P A P A P A P B A P B A =+====分所以PB=1/12+4/12=5/12 (3)分2要求2(|)P A B ,由贝叶斯公式分分25451232425)()()|()|(222 =⨯⨯==B P A P A B P B A P2. (10)分解:(1)由()1f x dx +∞-∞=⎰,得220813cx dx c ==⎰,所以38c =, ……4分 (2)11231010311{11}()888P X f x dx x dx x --<<====⎰⎰,……6分 3.10分解:1 2Y X =分别在(,0)-∞∞和(0,+)单调,所以''(|(|||,01()0,,X X Y f f y f y ⎧+<<⎪=⎨⎪⎩其他. ……4分,01,01y ⎧+=<<⎪=⎨⎪⎩其他0, ……6分,或利用分布函数法:2(){}{}{{0Y F y P Y y P X y P X P X =≤=≤=≤≤=<≤……4分20,01xdx x y y ===<<,……4分1,01()()0,Y Y y f y F y <<⎧'∴==⎨⎩其他……2分 4. 10分解:X =1,2,3 ………2分22343335556311{1},{2},{3}101010C C P X P X P X C C C ========= ,5分………6分631()123101010E X =⨯+⨯+⨯ =1.5… 12分5.15分解: 1()(,)X f x f x y dy ∞-∞=⎰06,010,x xdy x ⎧<<⎪=⎨⎪⎩⎰其它26,010,x x ⎧<<=⎨⎩其它 ………6分()(,)Y f y f x y dx ∞-∞=⎰16,010,y xdx y ⎧<<⎪=⎨⎪⎩⎰其它23(1),010,y y ⎧-<<=⎨⎩其它 ………6分2X 与Y 不相互独立,因为(,)()()X Y f x y f x f y ≠ ………3分 6.10分解:1222()3xEX xf x dx xdx θθθ+∞-∞===⎰⎰,···3分,X =θ32···2分,__^3,2X θ=所以···2分 由于__^3322E E X E X θθ===, 所以θ的矩估计量为无偏估计;···············3分。

最新武汉理工大学线性代数网络满分作业

最新武汉理工大学线性代数网络满分作业

线性代数与概率第一次作业答案满分单选题1.设总体的概率密度为,其中,未知,为一样本,则的矩估计为()(A)(B)(C)(D)难度:较易分值:2.02.已知向量。

当时,是的线性组合(A)(B)(C)(D)难度:较易分值:2.03.与矩阵相似的矩阵为()(A)(B)(C)(D)难度:较易分值:2.04.使实二次型正定的参数应该是( )(A) 不存在(B)(C)(D)难度:较易分值:2.0 5.对矩阵,作乘法,必须满足()(A)(B)(C)(D)难度:较易分值:2.0 6.如果,则行列式(A)(B)(C)(D)难度:较易分值:2.07.设是来自的一个样本,则()(A)(B)(C)(D)难度:较易分值:2.08.齐次线性方程组,则该方程()(A) 无解(B)只有零解(C)有无穷多解(D)无法确定难度:较易分值:2.09.线性齐次方程组有非零解,则()。

(A)(B)(C)(D)难度:较易分值:2.0 10.矩阵的伴随矩阵为()(A)(B)(C)(D)难度:较易分值:2.0 11. 下列运算中正确的是()。

(A)(B)(C)(D)难度:较易分值:2.012.设总体服从正态分布,其中为已知,从总体中取样本,则的置信度为的置信区间为()(A)(B)(C)(D)难度:较易分值:2.013.已知,若,则()(A) 1(B) 2(C)(D)难度:较易分值:2.014.在假设检验中,用分别表示犯第一类和犯第二类错误的概率,则当样本容量一定时,下列说法正确的是()(A) 增大,也增大(B) 减小,减小(C) 和中一个增大另一个减小(D) A和B 同时成立难度:较易分值:2.015.设总体的期望未知,是来自总体的样本,则()是的无偏估计量.(A)(B)(C)(D)难度:较易分值:2.016.二维随机变量的概率密度为则()。

(A)(B)(C)(D)难度:较易分值:2.017.设随机变量与的方差分别为4和6,且,则()(A) 10 (B) 16 (C) 20 (D) 28难度:较易分值:2.018.相互独立且均服从区间(0,1)上的均匀分布,则()服从均匀分布(A)(B)(C)(D)难度:较易分值:2.019.设,是阶矩阵,是,的伴随矩阵,如果与有相同的特征值,则()(A)(B)(C)(D)难度:较易分值:2.020.设为总体的一组样本,则总体均值的最小方差的无偏估计量是()。

2016华工作业:《线性代数与概率统计》作业题(题目)

2016华工作业:《线性代数与概率统计》作业题(题目)

《线性代数与概率统计》作业题第一部分 单项选择题1.计算11221212x x x x ++=++?(A )A .12x x -B .12x x +C .21x x -D .212x x -2.行列式111111111D =-=-- BA .3B .4C .5D .63.设矩阵231123111,112011011A B -⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB =B A .-1B .0C .1D .24.齐次线性方程组123123123000x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=?(C )A .-1B .0C .1D .25.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=67356300B ,求AB =?(D )A .1041106084⎛⎫⎪⎝⎭B .1041116280⎛⎫⎪⎝⎭C .1041116084⎛⎫⎪⎝⎭D .1041116284⎛⎫⎪⎝⎭6.设A 为m 阶方阵,B 为n 阶方阵,且A a =,B b =,00A C B⎛⎫= ⎪⎝⎭,则C =?(D )A .(1)m ab -B .(1)n ab -C .(1)n m ab +-D .(1)nm ab -7.设⎪⎪⎪⎭⎫⎝⎛=343122321A ,求1-A =?(D )A .132********⎛⎫⎪⎪-- ⎪ ⎪-⎝⎭B .13235322111-⎛⎫ ⎪⎪- ⎪⎪-⎝⎭C .13235322111-⎛⎫⎪⎪- ⎪ ⎪-⎝⎭D .13235322111-⎛⎫⎪⎪-- ⎪ ⎪-⎝⎭8.设,A B 均为n 阶可逆矩阵,则下列结论中不正确的是(B )A .111[()]()()T T T AB A B ---=B .111()A B A B ---+=+C .11()()k k A A --=(k 为正整数)D .11()(0)n kA k A k ---=≠ (k 为正整数)9.设矩阵m n A ⨯的秩为r ,则下述结论正确的是(D )A .A 中有一个r+1阶子式不等于零B .A 中任意一个r 阶子式不等于零C .A 中任意一个r-1阶子式不等于零D .A 中有一个r 阶子式不等于零10.初等变换下求下列矩阵的秩,321321317051A --⎛⎫⎪=- ⎪ ⎪-⎝⎭的秩为?(C )B .1C .2D .311.写出下列随机试验的样本空间及下列事件的集合表示:掷一颗骰子,出现奇数点。

武汉理工大学线性代数网络满分作业

武汉理工大学线性代数网络满分作业

线性代数与概率第一次作业答案满分单选题1.设总体的概率密度为,其中,未知,为一样本,则的矩估计为()(A)(B)(C)(D)难度:较易分值:2.02.已知向量。

当时,是的线性组合(A)(B)(C)(D)难度:较易分值:2.03.与矩阵相似的矩阵为()(A)(B)(C)(D)难度:较易分值:2.04.使实二次型正定的参数应该是( )(A) 不存在(B)(C)(D)难度:较易分值:2.0 5.对矩阵,作乘法,必须满足()(A)(B)(C)(D)难度:较易分值:2.0 6.如果,则行列式(A)(B)(C)(D)难度:较易分值:2.07.设是来自的一个样本,则()(A)(B)(C)(D)难度:较易分值:2.08.齐次线性方程组,则该方程()(A) 无解(B)只有零解(C)有无穷多解(D)无法确定难度:较易分值:2.09.线性齐次方程组有非零解,则()。

(A)(B)(C)(D)难度:较易分值:2.0 10.矩阵的伴随矩阵为()(A)(B)(C)(D)难度:较易分值:2.0 11. 下列运算中正确的是()。

(A)(B)(C)(D)难度:较易分值:2.012.设总体服从正态分布,其中为已知,从总体中取样本,则的置信度为的置信区间为()(A)(B)(C)(D)难度:较易分值:2.013.已知,若,则()(A) 1(B) 2(C)(D)难度:较易分值:2.014.在假设检验中,用分别表示犯第一类和犯第二类错误的概率,则当样本容量一定时,下列说法正确的是()(A) 增大,也增大(B) 减小,减小(C) 和中一个增大另一个减小(D) A和B 同时成立难度:较易分值:2.015.设总体的期望未知,是来自总体的样本,则()是的无偏估计量.(A)(B)(C)(D)难度:较易分值:2.016.二维随机变量的概率密度为则()。

(A)(B)(C)(D)难度:较易分值:2.017.设随机变量与的方差分别为4和6,且,则()(A) 10 (B) 16 (C) 20 (D) 28难度:较易分值:2.018.相互独立且均服从区间(0,1)上的均匀分布,则()服从均匀分布(A)(B)(C)(D)难度:较易分值:2.019.设,是阶矩阵,是,的伴随矩阵,如果与有相同的特征值,则()(A)(B)(C)(D)难度:较易分值:2.020.设为总体的一组样本,则总体均值的最小方差的无偏估计量是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档