原核生物基因表达与调控

合集下载

分子生物学第七章原核生物基因表达调控

分子生物学第七章原核生物基因表达调控
基因表达调控对于生物体的正常生长、发育、代谢和应激反应等 过程至关重要,是生物体适应环境变化和维持内环境稳态的重要 机制。
原核生物基因表达调控的特点
01
原核生物基因表达调控通常由特 定的转录因子、RNA聚合酶以及 其他调控蛋白介导,通过与DNA 的结合或解离来调节基因转录。
02
原核生物基因表达调控具有快速 响应环境变化的特点,能够在短 时间内调整基因表达模式,以适 应外界刺激和压力。
翻译后加工的调控
翻译后加工的调控
在翻译后加工阶段,新合成的蛋白质经过一系列修饰和加工,最终成为具有生物学活性的蛋白质。原 核生物通过控制翻译后加工酶的合成和活性来调控翻译后加工过程。此外,原核生物还可以通过控制 蛋白质的稳定性来影响其功能和表达水平。
总结
翻译后加工是基因表达调控的重要环节,原核生物通过控制翻译后加工酶的合成和活性,以及蛋白质 的稳定性来精细调控基因表达。
翻译延伸的调控
翻译延伸的调控
在翻译延伸阶段,核糖体沿着mRNA移动,将氨基酸组装成蛋白质。原核生物通过控制翻译延伸因子的合成和活 性,以及核糖体的合成和组装来调控翻译延伸。此外,原核生物还可以通过控制mRNA的结构和稳定性来影响翻 译延伸。
总结
翻译延伸是基因表达调控的重要环节,原核生物通过控制翻译延伸因子的合成和活性,以及核糖体的合成和组装, 以及mRNA的结构和稳定性来精细调控基因表达。
翻译起始的调控
原核生物通过控制翻译起始来调控基因表达。在翻译起始阶段, mRNA与核糖体结合,招募翻译所需的起始因子和其他成分。原 核生物通过控制起始因子的合成和活性,以及mRNA与核糖体的 结合来调控翻译起始。
总结
翻译起始是基因表达调控的重要环节,原核生物通过控制翻译起 始因子的合成和活性,以及mRNA与核糖体的结合来精细调控基 因表达。

分子生物学课件 第9章 原核生物基因调控

分子生物学课件 第9章 原核生物基因调控
C蛋白与Ara结合成C-Ara复合物是Ci型诱导蛋白,
结合araI时,araI作为正控制的元件,促进araBAD 基 因的表达 。
34
9.7 翻译水平的调控
9.7.1反义RNA的调控
聂理
35
反义RNA
反义RNA有多种符号 = antisense RNA = -RNA = stRNA(small temporal RNA) = micRNA( mRNA-interfering complementary RNA) 即 干扰和抑制mRNA翻译的互补RNA片段
为诱导物开启lac操纵子结构基因……。
17
9.4.2乳糖操纵子正控制机理
CRP:cyclic AMP receptor protein, =“cAMP受体蛋白”, =“降解物基因活化蛋白(CAP)” ①当环境中有葡糖时: 抑制cAMP 产生,纯CAP是失活态蛋白。 ②当环境中无葡糖时: 有利于 cAMP 产生和cAMP-CAP形成。
22
9.5.2 衰减子
衰减子也叫弱化子
attenuator
聂理
23
9.5.2.1衰减子组成
trp操纵子前导区L,转录出RNA前导序列161nt。
1~26nt翻译的 SD序列区
27~71nt含14个氨基酸 密码的前导肽区
115~159nt衰减子区
具有终止子 结构特征
24
9.5.2.2衰减子调控机制
41
9.7.3 核开关 riboswitch
核开关也叫核糖开关。 是mRNA所形成的调节基因表达的结构。 在mRNA的非翻译区(5’-UTR,3’-UTR), 与小分子效应物可逆结合而改变其结构, 根据构象特征信号来影响mRNA的表达, (如影响转录、翻译等) 从而达到调控基因开关的目的。

3原核生物基因表达与调控

3原核生物基因表达与调控
由20个氨基酸残基的小肽组成, 其中羧基端的α螺 旋为识别螺旋(由7~9个氨基酸组成), 负责识别DNA大 沟的特异碱基序列;
另一个螺旋(由7~9个氨基酸组成),没有碱基特异性, 与DNA磷酸戊糖链骨架接触。在与DNA特异结合时, 靠蛋白质的氨基酸侧链与特异碱基对之间形成氢键、 疏水键和发生静电相互作用 。
二、lac操纵子的分解代谢产物阻遏
β-半乳糖苷酶在乳糖代谢中的作用是把前者 分解成葡萄糖及半乳糖。如果将葡萄糖和乳糖 同时加入培养基中,大肠杆菌在耗尽外源葡萄 糖之前不会诱发lac操纵子,这种现象称为葡萄 糖效应(glucose effect)。
原因:是葡萄糖的某些降解产物抑制了lac
mRNA的合成,科学上把葡萄糖的这种效应 称之为分解代谢产物阻遏效应(catabolite repression)。
基因表达调控(gene regulation or gene
control):任何影响基因转录过程和翻译过程 的开启、关闭和这两个过程速率的较为直接 的因素及其作用。
第一节 细菌的转录调控
一、细菌操纵子
操纵子学说———关于原核生物基因结构及其表达 调控的学说。
操纵子(operon): 细菌基因表达和调控的单位, 包括共转录到一条mRNA上的多个结构基因和这些基 因转录所需的顺式作用元件,这些元件包括启动子、 操作子和转录调控有关的序列。
能从合成地点扩散到其它场所对其他基因的表达起 调控作用的蛋白质因子(有时为RNA)。起作用的过 程称反式作用。
二、阻遏物和激活物
阻遏物(repressor): 阻止基因表达的蛋白质,可与操 作子结合来阻止转录,为负调控蛋白。
激活物(activator):促进基因转录的蛋白质 ,为正调控 蛋白。

第十章原核生物基因表达的调控

第十章原核生物基因表达的调控
1. 在E.coli,不同类型的启动子需要不同类型的σ 因子
表 16-4 E.coliσ 因子识别不同保守序列的启动子 基因 分子量 70KD 32KD 24KD 54KD 28KD 功能 普遍 热休克 热休克 氮饥饿 产生鞭毛 -35 序列 TTGACA CCCTTGAA ? CTGGNA CTAAA 间隔(bp) 16~18 13~15 ? 6 15 -10 序列 TATAAT CCCGATNT ? TTGCA GCCGATAA

基本概念
1.操纵子(operon)
很多功能上相关的结构基因在染色体上串连排列,由 一个共同的控制区来操纵这些基因的转录。包含这些结构 基因和控制区的整个核苷酸序列就称为操纵子(operon)。
一个完整的操纵子主要包括启动子、操纵基因、结构 基因和终止子。
2. 阻遏物和激活物(reperssor and activator)
2. 基因表达的极性效应
•在正常情况下原核基因表达时,其转录出来的mRNA随 即进行翻译,这时整个mRNA都覆盖着核糖体, ρ因子 无法接近mRNA,而RNA聚合酶早已越过前面的基因的 依赖ρ因子的终止子,所以转录实际上并不停止,而是继 续转录后续基因。如果在某一基因的依赖于ρ的终止子之 前发生无义突变,核糖体便从无义密码子上解离下来,翻 译停止,于是ρ就可以自由进入RNA并移动,直到赶上停 留在终止子上的RNA聚合酶,结果使RNA聚合酶释放, 不能再转录下游基因。
第十章 原核生物基因 表达的调控

生物的遗传信息是以基因的形式储藏在细 胞内的DNA(或RNA)分子中的。随着个体 的发育,DNA有序地将遗传信息,通过转 录和翻译的过程转变成蛋白质,执行各种 生理生化功能,完成生命的全过程。从 DNA到蛋白质的过程,叫做基因表达 (gene expression),对这个过程的调节 就称为基因表达调控(gene regulation或 gene control)。

第14章 原核生物基因表达调控

第14章  原核生物基因表达调控

第14章原核生物基因的表达调控重点:操纵子的结构特点和功能;乳糖操纵子的正负调控;色氨酸操纵子的衰减作用。

难点:色氨酸操纵子的衰减作用。

第一节基因调控的基本定律一、基因调控水平二、基因和调控元件三、DNA结合蛋白一、基因调控水平基因表达的调控可以发生在DNA到蛋白质的任意节点上,如基因结构、转录、mRNA 加工、RNA的稳定性、翻译和翻译后修饰。

二、基因和调控元件基因:是指能转录成RNA的DNA序列。

结构基因:编码代谢、生物合成和细胞结构的蛋白质。

调节基因:产物是RNA或蛋白质,控制结构基因的表达。

其产物通常是DNA结合蛋白。

调控元件:不能转录但是能够调控基因表达的DNA序列。

三、DNA结合蛋白调控蛋白通常含有与DNA结合的结构域,一般由60-90个氨基酸组成。

在一个结构域中,只有少数氨基酸与DNA接触。

这些氨基酸(包括天冬氨酸、谷氨酸、甘氨酸、赖氨酸和精氨酸)常与碱基形成氢键,或者与磷酸核糖骨架结合。

根据DNA结合结构域内的模体,可以将DNA结合分成几种类型(图16.2)。

第二节大肠杆菌的乳糖操纵子一、操纵子结构二、正负调控三、乳糖操纵子四、lac突变五、正控制一、操纵子结构原核和真核生物基因调控的主要差异在于功能相关的基因的组成。

细菌的功能相关的基因常常排列在一起,并且由同一启动子控制。

一群一起转录的细菌的结构基因(包括其启动子和控制转录的额外序列)称为操纵子。

二、正负调控转录水平上的调控主要有两种类型:负调控:gene ON 阻遏蛋白 OFF正调控:gene OFF 激活蛋白 ON诱导:活性阻遏蛋白 失活诱导因子+非活性激活蛋白 活性阻遏:失活阻遏蛋白 活性共阻遏蛋白+活性激活蛋白 失活三、乳糖操纵子乳糖操纵子是诱导型操纵子,当诱导物不存在时,阻遏蛋白结合到操纵序列上并阻止转录;当诱导物存在时,阻遏蛋白与诱导物结合后失去活性,转录才得以进行。

四、lac突变为了鉴定乳糖操纵子各个成分的功能,Jacob和Monod做了细菌的接合实验,其中供体菌的F’因子上也带有乳糖操纵子。

原核生物基因表达调控

原核生物基因表达调控

Repressor
cAMP
CAP
葡萄糖不存在,乳糖存在,阻遏蛋白失活,cAMP+CAP与CAP位点结合结合,促进基因转录
The Lac Operon: III. 葡萄糖和乳糖都存在
Repressor
RNA Pol.
CAP Bindin
g
Promoter
Operator X
LacZ
Repressor负调节与正调节协调合作
• 阻遏蛋白封闭转录时,CAP不发挥作用 • 如没有CAP加强转录,即使阻遏蛋白从操作基因上解聚仍无转录活性
3)正调控和负调控
正调控(positive control)
在没有调节蛋白质存在时基因是关闭的,加入某种调节蛋白后基因活性就被开启,这样的调控为正转录 调控。
调节基因
操纵基因
结构基因
调节蛋白
mRNA 酶蛋白
负调控(negative control)
在没有调节蛋白质存在时基因是表达的,加入这种调节蛋白质后基因表达活性便被关闭,这样的调 控负转录调控。
2)结构基因和调节基因
➢ 组成基因/管家基因(constitutive gene, housekeeping gene)是指不大受环境变动而持 续表达的一类基因。如DNA聚合酶,RNA聚合酶等代谢过程中十分必需的酶或蛋白质的基因 。 ➢调节基因(regulated gene)指环境的变化容易使其表达水平变动的一类基因。如:不同生 长发育时期表达的一些基因。
• 别乳糖是lac操纵子转录的活性诱导物 • 异丙基硫代半乳糖苷(isopropyl thiogalactoside:IPTG)结构上类似于别乳糖,是乳糖操纵
子非常有效的诱导物。可诱导lac操纵子表达,但不能被β-半乳糖苷酶水解。 • 这种能诱导酶合成,但不能被酶分解的分子称为安慰诱导物(gratuitous inducer)。安慰诱导

分子生物学复习7-9

分子生物学复习7-9

第七章基因的表达与调控(上)——原核基因表达调控模式(一)基本概念1.基因表达:细胞在生命过程中,把蕴藏在DNA中的遗传信息经过转录和翻译,转变成为蛋白质或功能RNA分子的过程称为基因表达。

2.基因表达调控:围绕基因表达过程中发生的各种各样的调节方式都统称为基因表达调控。

rRNA或tRNA的基因经转录和转录后加工产生成熟的rRNA或tRNA,也是rRNA或tRNA 的基因表达,因为rRNA或tRNA就具有在蛋白质翻译方面的功能。

3.组成型表达:指不大受环境变动而变化的一类基因表达。

如DNA聚合酶,RNA聚合酶等代谢过程中十分必需的酶或蛋白质的表达。

管家基因:某些基因在一个个体的几乎所有细胞中持续表达,通常被称为管家基因。

管家基因无论表达水平高低,较少受到环境因素的影响。

在基因表达研究中,常作为对照基因适应型表达:指环境的变化容易使其表达水平变动的一类基因表达。

应环境条件变化基因表达水平增高或从无到有的现象称为诱导,这类基因被称为可诱导的基因;相反,随环境条件变化而基因表达水平降低或变为不表达的现象称为阻遏,相应的基因被称为可阻遏的基因。

4.结构基因:编码蛋白质或功能性RNA的任何基因。

所编码的蛋白质主要是组成细胞和组织基本成分的结构蛋白、具有催化活性的酶和调节蛋白等。

原核生物的结构基因一般成簇排列,真核生物独立存在。

结构基因簇由单一启动子共同调控。

调节基因:参与其他基因表达调控的RNA或蛋白质的编码基因。

①调节基因编码的调节物质通过与DNA上的特定位点结合控制转录是调控的关键。

②调节物与DNA特定位点的相互作用能以正调控的方式(启动或增强基因表达活性调节靶基因,也能以负调控的方式(关闭或降低基因表达活性)调节靶基因。

操纵子:由操纵基因以及相邻的若干结构基因所组成的功能单位,其中结构基因的转录受操纵基因的控制。

(二)原核基因调控的分类和主要特点一、原核生物的基因调控特点:(1)基因调控主要发生在转录水平上,形式主要是操纵子调控.(2)有时也从DNA水平对基因表达进行调控,实质是基因重排。

第九章:原核生物基因表达调控

第九章:原核生物基因表达调控
基因被转录成初级转录产物初级转录产物被加工成成熟的mrnamrna的稳定性mrna的翻译多肽链的加工和组装酶或者蛋白质活性控制蛋白质的降解91转录水平的调控正调控与负调控模式比较单顺反子与多顺反子mrna911转录起始调控一乳糖操纵子结构9111操纵子laca编码硫代半乳糖苷乙酰转移酶该酶的作用是消除同时被乳糖转移酶转运到细胞内的硫代半乳糖苷对细胞造成的毒性
抗σ因子与抗抗σ因子
9.1.1.3 双组分调节系统
双 组 分 调 节 系 统 的 组 成
感应激酶 应答调节子
周质结构 域、 胞质结构 域
PhoR和PhoB构成的双组分调节系统
天冬氨酸残基
9.1.2 转录终止阶段的调控
9.1.2.1 弱化子
研究表明色氨酸操纵子两种机制的调控。如果trp操纵子只受 trpR编码的阻遏物调控,那么在缺乏或存在色氨酸时,trpR 突变使trp操纵子表达的酶量应该是相同的。可是,在trpR缺
❖热激蛋白的表达调控主要发生在转录水平上。热激蛋白基 因的启动子被σ32而不是通常的σ70识别。σ32也不能识别σ70启 动子,因为这两种σ因子识别的启动子序列不一样
❖HSP的诱导合成是由于细胞内的σ32合成发 生在翻译水平。 ▪另一方面,在热激条件下σ32的稳定性也增加了。
严谨反应的分子机制
(p)ppGpp与RNA聚合酶β亚基结合,改变了RNA聚合酶对 一系列启动子的亲和力,导致细胞基因表达的整体变化,使细 胞适应新的环境。这些变化包括rRNA和tRNA的合成被抑制, 一系列参与氨基酸合成与运转的基因被激活。
人们在对大肠杆菌relA突变体进行研究时认识到是(p) ppGpp的积累引发了严紧反应。relA突变体即使在氨基酸饥饿
Fur能够感应细胞 内铁的水平。当 细胞内有充足的 铁时,Fur关闭反 义bfr基因,细胞 产生细菌铁蛋白。 在低铁条件下, 反义bfr基因被转 录,产生反义 RNA,阻止细菌 铁蛋白的合成。

生物学原核生物基因表达的调控

生物学原核生物基因表达的调控
目录
第二节
原核生物基因表达的 转录水平调控
Regulation of Prokaryotic Gene Expression at Transcription Level
目录
一、转录调控是以特定的DNA序列和蛋 白质结构为基础
(一)特定的DNA序列是转录起始调控的结构基础
在基因内和基因外都有一些特定的DNA序列,与结 构基因表达调控相关、能够被基因调控蛋白特异性识别 和结合,这些特定的DNA序列称为顺式作用元件(cisacting elements),亦称为顺式调控元件。在原核生物 中主要是启动子、阻遏蛋白结合位点、正调控蛋白结合 位点、增强子等。
transcription
RNA 5'-AGGUCCACG········-3'
启动子及其与转录的关系 ···
目录
(二)阻遏蛋白结合操纵元件对转录起 始进行负调控
阻遏蛋白是一类在转录水平对基因表达产生负 调控作用的蛋白质。阻遏蛋白主要通过抑制开放启 动子复合物的形成而抑制基因的转录。阻遏蛋白与 DNA结合后,RNA聚合酶仍有可能与启动子结合, 但不能形成开放起始复合物,不能启动转录;这种 作用称为阻遏(repression),特定的信号分子与阻 遏蛋白结合,使阻遏蛋白失活,从DNA 上脱落下来, 称为去阻遏,或脱阻遏(derepression)。
usually binds to CAAT box
目录
二、特定蛋白质与DNA结合后控制 转录起始
(一)σ因子和启动子决定转录是否能够起始
-35
-10
+1
5'-TAGTGTATTGACATGATAGAAGCACTCTACTATATTCTCAATAGGTCCACG············-·3·'

原核生物的基因表达与调控

原核生物的基因表达与调控
汇报人:
非编码RN的作用
参与基因表达调 控:非编码RN 可以调控基因的 表达影响蛋白质 的合成
参与转录后调控: 非编码RN可以 参与转录后的调 控影响mRN的 稳定性和翻译效 率
参与翻译调控: 非编码RN可以 参与翻译调控影 响蛋白质的合成 和翻译后修饰
参与表观遗传调 控:非编码RN 可以参与表观遗 传调控影响基因 的表达和功能

翻译起始调控: 包括正调控和 负调控影响翻
译效率
正调控:包括 启动子、增强 子等促进翻译
起始
负调控:包括 沉默子、终止 子等抑制翻译
起始
翻译延伸的调控
核糖体:蛋白质合成的场 所
起始密码子:蛋白质合成 的起始点
终止密码子:蛋白质合成 的终止点
延伸因子:参与蛋白质合 成的延伸过程
释放因子:参与蛋白质合 成的释放过程
时序调控机制的研究进展
发现基因表达调控的时序性
研究基因表达调控的调控网络
研究基因表达调控的机制 发现基因表达调控的调控因子
研究基因表达调控的调控机制在原核生物 中的作用
研究基因表达调控的调控机制在原核生物 中的调控机制
07
原核生物基因表达调控的应用前景
基因工程与合成生物学中的应用
基因工程:通过基因重组 技术将外源基因导入原核 生物实现基因表达调控
合成生物学:通过设计、 构建和优化基因回路实现 原核生物的基因表达调控
生物制药:利用原核生物 基因表达调控技术生产药 物、疫苗等
生物能源:利用原核生物 基因表达调控技术生产生 物燃料如乙醇、生物柴油 等
环境保护:利用原核生物 基因表达调控技术降解污 染物实现环境修复
农业:利用原核生物基因 表达调控技术改良作物品 种提高作物抗病、抗虫、 抗逆能力

第六章 原核生物基因表达调控

第六章 原核生物基因表达调控

图6-7 乳糖操纵子结构模式图
第二节 原核基因表达的调控
乳糖操纵子的上游有一个独立转录的基因lacI,其编码产物LacI 可以结合在乳糖操纵子的操纵基因(lacO)上,即转录控制区,阻抑 下游结构基因的表达。因此,乳糖操纵子是一个负调控系统(图68)。其中,LacI是具有负调控作用的反式作用因子,LacI作用的靶 DNA序列lacO是顺式作用元件。
trpB(UGA处翻译终止) -UGA -GAA-AUC- UGA-UGG-AA A UG-G AAtrpA(AUG处翻译起始)
第二节 原核基因表达的调控
3.稀有密码子对翻译的影响 DNA复制时,引物酶催化一段RNA引物的合成,引物酶 由dnaG编码。rpsU-dnaG-rpoD组成一个转录单位,产生多 顺反子转录物。细胞内三个基因的终产物的浓度相差却很 大,rpsU产物浓度为4×104个/细胞,dnaG产物50个/细胞, rpoD产物2800个/细胞。菌体通过使用稀有密码子,使转 录为一条mRNA链的三个基因的表达产物量可以有很大差异。
第二节 原核基因表达的调控
ቤተ መጻሕፍቲ ባይዱ
图6-10 色氨酸操纵子的负调控
第二节 原核基因表达的调控
4.阿拉伯糖操纵子 阿拉伯糖与乳糖一样,可替代葡萄糖作为碳源物质被 菌体利用。大肠杆菌中,阿拉伯糖(Ara)代谢所需酶的 三个基因分别是:核酮糖激酶基因( araB)、L-Ara异构 酶 基 因 ( araA)、L- 核 酮 糖 - 5 - 磷 酸 差 向 异 构 酶 基 因 ( araD),组成一个基因簇,有共同的启动子 PBAD。与其 它操纵子不同的是,操纵序列位于 PBAD 上游,操纵序列左 端有另一方向转录的启动子 PC,负责调节基因araC的转录, 其产物AraC蛋白有两种活性形式,Pr 对 PBAD 的表达起阻遏 作用,Pi对PBAD的表达起激活作用(图6-11)。

第11章 原核生物基因表达的调控

第11章 原核生物基因表达的调控

Ø 葡萄糖代谢导致cAMP浓度下降; Ø cAMP可以活化乳糖操纵子的激活蛋白:
CRP: cAMP receptor protein(cAMP受体蛋白) CAP: catabolite gene activator protein
(代谢降解物活化蛋白)
Ø cAMP-CRP/CAP
乳糖操纵子的正调控
Ø 每个阻遏蛋白四聚体与两个 operator 结合; Ø 阻遏蛋白与Operator结合导 致DNA弯折,干扰mRNA的 合成。
p.286 图11-7
乳糖操纵子的正调控
当细菌在含有葡萄糖和乳 糖的培养基中生长时,通常 总是优先利用葡萄糖,而不 利用乳糖;只有当葡萄糖耗 尽后,细菌经过一段停滞期, 才能在乳糖的诱导下,合成 β-半乳糖苷酶等分解利用 乳糖的酶类,细菌才能利用 乳糖。
ttrrppRR
OOPPtrptrEpE trptDrpDtrpCtrpCtrpBtrpBtrpAtrpA
ttrrppRR
OOPPtrptrEpE trptDrpDtrpCtrpCtrpBtrpBtrpAtrpA
色氨酸操纵子的衰减作用
trpR
OP trpL trpE trpD trpC trpB trpA
5’
(1) 新合成的正链 RNA可以翻译A蛋白;
3’ (-) A
5’(+)
5’
但是很快形成二级结构,阻止A蛋白 的继续合成;
所以 A蛋白与C蛋白的量为1:180
Ø Rep的合成依赖于C蛋白的表达, 证据:C基因的codon6发生无义突 变:核糖体停留在该处,导致rep基 因RBS附近的二级结构无法打开, 则rep基因无法表达。
AraC既是阻遏蛋白, 又是激活蛋白;

原核生物基因表达调控

原核生物基因表达调控

20
同位素示踪实验
把大肠杆菌细胞放在加有放射性35S标记的氨基酸,但没 有半乳糖诱导物的培养基中繁殖几代然后再将这些带有 放射活性的细菌转移到不含35S、无放射性的培养基中 随着培养基中诱导物的加入, β-半乳糖苷酶便开始合成。 分离β-半乳糖苷酶, 发现这种酶无35S标记说明酶的合 成不是由前体转化而来的, 而是加入诱导物后新合成的。
• Jacob和Monod认为诱导酶(他们当时称为适应酶)
现象是个基因调控问题, 可以用实验方法进行研究, 因此
选为突破口, 终于通过大量实验及分析, 于1961年建立
了该操纵子的控制模型。
-
21
酶的诱导
-
22
• 酶的诱导现象是生物进化过程中出现的一种合理、 经济地利用有限资源的本能。
• 酶诱导已证明是低等生物的普遍现象。
倒位片段
鼠伤寒沙门菌鞭毛素基- 因的调节
H1鞭毛素
10
鼠伤寒沙门氏菌(S.typhimrium)的相转变(phase variation)
-
11
2.σ 因子对原核生物转录起始的调控
σ因子:原核生物RNA聚合酶的一个亚基,是转录起 始所必需的因子,主要影响RNA聚合酶对转录起始 位点的正确识别,这种σ因子称σ70,此外还有分子量 不同,功能不同的其他σ因子 。
PO
操纵子可视为原核生物的转录单位,它可以逐个
地从原核生物基因组中分离出来,对其结构功
能加以研究。
-
15
3.乳糖操纵子
1) 乳糖操纵子的结构
启动子 操纵基因
调节蛋白
(阻遏蛋白)
-
结构基因
16
3个编码的结构基因
• Z编码β-半乳糖苷酶: 将乳糖水解成葡萄糖和半乳糖,还能 将乳糖转变为异构乳糖

分子生物学第七章原核生物基因表达调控

分子生物学第七章原核生物基因表达调控
31
(三)、阻遏物 lac I 基因产物及功能
Lac 操纵子阻遏物 mRNA 是由弱启动子控制下组 成型合成的,该阻遏蛋白具有4个相同的亚基,每个亚 基均含347个氨基酸残基。
lacI 基因为组成型,通过启动子的上升突变体可获 得较多的阻遏蛋白;
阻遏物 2022/10/18
β-半乳糖苷酶 透过酶 转乙酰3酶2
2022/10/18
16
调节机理:
细胞中某一氨基酸或嘧啶的浓度发生改变
氨酰 – tRNA的浓度变化
核糖体在转录产物RNA上的结合位置不 同,使得RNA形成特定的二级结构 由RNA的二级结构判断基因能否继续转录
2022/10/18
17
3、降解物对基因活性的调节P252
葡萄糖效应或降解物抑制作用:细菌培养基中在 葡萄糖存在的情况下,即使加入乳糖、半乳糖等 诱导物,与其对应的操纵子也不会启动,这种现 象称为葡萄糖效应或降解物抑制作用。
这是通过阻止乳糖操纵子表达来完成的,这种 效应称为降解物抑制(catabolite repression)。
2022/10/18
35
(五)、cAMP与代谢物激活蛋白
葡萄糖
葡萄糖-6-磷酸
甘油 某些代谢产物抑制活性
腺苷酸环化酶
ATP
cAMP
编码
cAMP-CAP
Crp基因
代谢物激活蛋白 CAP
葡萄糖对其它糖的代谢抑制,是通过对 cAMP的抑制完成的。
2022/10/18
22
一、酶的诱导 ——
lac 体系受调控的证据
两种含硫的乳糖类似物:
异丙基巯基半乳糖苷
(IPTG)
巯甲基半乳糖苷(TMG)
E. coli 在不含乳糖的培养基生 长时,β-半乳糖苷酶含量极低;

原核生物的基因表达和调控机制

原核生物的基因表达和调控机制

原核生物的基因表达和调控机制原核生物是指不含细胞核和其他复杂的细胞器官的生物,包括细菌和蓝藻等。

这些生物虽然简单,但仍具有复杂的基因表达和调控机制,通过调控基因的转录和翻译来响应环境变化和完成生物学功能。

本文将探讨原核生物的基因表达和调控机制。

基因表达和调控的基本概念基因是指DNA分子上编码一个蛋白质的序列,是生物体内传递遗传信息的基本单位。

基因表达指的是将基因的信息转化为蛋白质的过程,包括转录和翻译两个步骤。

其中,转录是指将DNA序列转化为mRNA(信使RNA)的过程,而翻译是指将mRNA上的三联体密码子翻译为相应的氨基酸序列的过程。

基因表达的过程涉及到基因启动子、转录因子、RNA聚合酶等多个分子的相互作用,需要经过复杂的调控机制来保证在特定的时空条件下进行。

原核生物中基因的表达和调控原核生物虽然没有细胞核和其他复杂的细胞器官,但其基因的表达和调控机制同样有其特殊性。

以下将从基因的结构、转录、RNA的修饰和翻译等方面探讨原核生物中基因的表达和调控。

基因结构原核生物中,基因通常呈现为一条连续的DNA链,其中编码区域与非编码区域相互交错,没有剪切和剪接等后加工处理。

编码区通常以ATG作为起始密码子,以TAG、TAA或TGA作为终止密码子。

在非编码区,存在启动子、转录因子结合位点、RNA剪切位点和终止符等辅助元素,有助于调控基因的表达。

相比于真核生物中复杂的基因结构,原核生物中基因的紧凑结构为调控提供了更多的可能性。

转录的调控在原核生物中,转录的调控可以通过多种方式实现,包括转录起始的选择、负向调控和正向调控等。

转录起始的选择:在原核生物中,转录的起始位点可以在基因内或外,不同的起始位点可以产生不同长度的转录产物,从而产生不同的蛋白质或非编码RNA。

此外,在一些条件下,同一基因的多个启动子甚至可以同时被使用,进一步增加了基因表达的多样性。

负向调控和正向调控:在原核生物中,负向调控指的是一些转录抑制因子的作用,可以通过抑制转录因子的结合来阻止基因的转录。

原核生物基因表达调控概述

原核生物基因表达调控概述

原核⽣物基因表达调控概述原核⽣物基因表达调控概述基因表达调控是⽣物体内基因表达调节控制机制,使细胞中基因表达的过程在时间,空间上处于有序状态,并对环境条件的变化做出适当的反应复杂过程。

1.基因表达调控意义在⽣命活动中并不是所有的基因都同时表达,代谢过程中所需各种酶和蛋⽩质基因以及构成细胞化学成分的各种编码基因,正常情况下是经常表达的,⽽与⽣物发育过程有关的基因则需在特定的时空才表达,还有许多基因被暂时的或永久的关闭⽽不来表达。

2.原核基因表达调控特点原核⽣物基因表达调控存在于转录和翻译的起始、延伸和终⽌的每⼀步骤中。

这种调控多以操纵⼦为单位进⾏,将功能相关的基因组织在⼀起,同时开启或关闭基因表达即经济⼜有效,保证其⽣命活动的需要。

调控主要发⽣在转录⽔平,有正、负调控两种机制在转录⽔平上对基因表达的调控决定于DNA的结构,RNA 聚合酶的功能、蛋⽩质因⼦及其他⼩分⼦配基的相互作⽤。

细菌的转录和翻译过程⼏乎在同⼀时间内相互偶联。

细胞要控制各种蛋⽩质在不同时期的表达⽔平,有两条途径:(1)细胞控制从其DNA模板上转录其特异的mRNA的速度,这是⼀条经济的途径,可减少从mRNA合成蛋⽩质的⼩分⼦物质消耗,这是⽣物长期进化过程中⾃然选择的结果,这种控制称为转录⽔平调控。

(2)在mRNA合成后,控制从mRNA翻译肽链速度,包括⼀些与翻译有关的酶及其复合体分⼦缔合的装配速度等过程。

这种蛋⽩质合成及其基因表达的控制称为翻译⽔平的调控。

⼆.原核⽣物表达调控的概念(1)细菌细胞对营养的适应细菌必须能够⼴泛适应变化的环境条件。

这些条件包括营养、⽔分、溶液浓度、温度,pH等。

⽽这些条件须通过细胞内的各种⽣化反应途径,为细胞⽣长的繁荣提供能量和构建细胞组分所需的⼩分⼦化合物。

(2)顺式作⽤元件和反式作⽤元件基因活性的调节主要通过反式作⽤因⼦与顺式作⽤元件的相互作⽤⽽实现。

反式作⽤因⼦的编码基因与其识别或结合的靶核苷酸序列在同⼀个DNA分⼦上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章原核生物基因表达与调控一、教学目的和要求:掌握原核生物基因表达及调控机制二、教学重点:1、乳糖操纵子调控机制2、半乳糖操纵子调控机制3、色氨酸衰减子调控机制三、教学难点:1、半乳糖操纵子调控机制2、色氨酸衰减子调控机制四、教学方法:面授并辅以多媒体教学五、教学内容生物体的每个活细胞都含有相同的一整套基因。

基因表达具有高度的时空专一化:如肌红蛋白基因(肌细胞)基因表达的调控:生物有机体对其基因表达的时空程序、表达速率等所进行的调节和控制。

本底水平表达:调控处于关闭状态,只翻译极少量的蛋白质。

第一节原核生物基因的转录和翻译原核生物的DNA:单个裸露的DNA不编码占5%转录和翻译同一时间,地点进行转录水平调控(主) ,兼有翻译水平调控⏹根据基因表达产物可划分:组成型蛋白:基因表达不受时期、部位、环境影响——组成型表达。

/适应型蛋白:基因表达受时期、部位、环境影响——非组成型表达。

⏹一种生物的整套遗传密码可以比作一本密码字典,该种生物的每个细胞中都有这本字典。

为什么基因只有在它应该发挥作用的细胞内和应该发挥作用的时间才能呈现活化状态?⏹结论:必然有一个基因调控系统在发挥作用。

⏹基因调控主要在三个水平上进行:⏹①. DNA水平⏹②. 转录水平⏹③. 翻译水平⏹一、转录的起始转录是原核生物基因表达的主要调控点,主要涉及两个方面:1、RNA合成的酶系;2、RNA合成起始和终止信号,即DNA分子上的特定序列。

通过RNA聚合酶、转录因子和启动子的相互作用实现转录调控,改变细胞的表型,从而实现细胞生理状态和环境的变化。

⏹(一)RNA聚合酶(RNA polymerase):大肠杆的的RNA聚合酶:由5个亚基组成,即α2ββ’σ,有时还有2个ω亚基。

以α2ββ’σ组成的酶称全酶。

σ亚基与其他亚基结合较松弛,易从全酶上解离;其余部分α2ββ’称为核心酶(core enzyme)。

⏹在大肠杆菌中还发现一种新的σ因子,称为σ’因子,因此将含有σ亚基的全酶称为全酶I,含有σ’亚基的称为全酶Ⅱ。

二者的不同在于:全酶Ⅱ可以利用双链DNA为模板合成po1y 〔A〕。

⏹σ亚基作用:参与启动子的识别和结合以及转录起始复合物的异构化。

细胞内哪条DNA 链被转录、转录方向与转录起点的选择都与σ亚基有关。

⏹离体实验表明:全酶所转录的RNA和细胞内所转录出的RNA,其起始点相同,序列相同,若仅用核心酶进行转录,则模扳链和起始点的选择都有很大的随意性,而且往往同一段DNA 的两条链都被转录。

⏹由此可见:σ亚基对识别DNA链上的转录信号是不可缺少的,它是核心酶和启动子之间的桥梁。

σ因子的取代在细胞发育和对环境应答的反应中起主导作用。

如在枯草杆菌中就有不同相对分子质量的σ因子(P227表9—1)⏹核心酶的β亚基作用:对RNA聚合酶的功能至关重要,参与RNA合成、终止信号的识别。

由于β亚基与RNA的前体核昔三磷酸具有很高亲和力,推测它可能参与底物的结合,以及催化磷酸二酯键的形成。

⏹β’亚基作用:可使聚合酶结合到模板DNA上。

⏹α亚基作用:游离状态,常以二聚体的形式存在,参与全酶同启动子的牢固结合。

RNA聚合酶体积很大,横跨近60个碱基,而解旋的DNA区域可能不到17个碱基。

当聚合酶按5′→3′方向延伸RNA链时,解旋的DNA区域也随之移动。

靠近3′端的DNA不断解旋。

同时在5′端重新形成DNA双链,不断将RNA-DNA杂合链中的RNA链挤出。

⏹(二)启动子(promoter):⏹转录的起始是基因表达的关键阶段,启动子就是连接在基因3’端上游的DNA序列,其长度从100 bp到200 bp不等,是转录起始时RNA聚合酶识别、结合的特定部位,但其本身并不被转录。

⏹在启动子与终止子之间是一个转录单位,通常将mRNA开始的一个核苷酸定为o点(即+1).由此向右常称为下游(downstream),其核苷酸依次编为正序号;起始点左例称为上游(upstream).其核苷酸则依次以负号表示.紧接起始点左侧的核昔酸为-1。

原核生物启动子结构含有同源序列。

整个启动子包括两个部分:其上游部分是CAP-cAMP 结合位点,下游部分是RNA聚合酶的进入位点。

⏹二、转录的终止⏹(一)终止子及其结构:⏹1、概念:DNA上提供转录停止信号的一段序列称为终止子(terminator),是一个基因的末端或是一个操纵子的末端的一段特定序列。

⏹2、类型:强终止子和弱终止子⏹强终止子:不依赖于Rho蛋白质辅助因子而能实现终止作用,这类终止子属于强终止子;⏹弱终止子:依赖于Rho蛋白糖助因子才能实现终止作用,这类终止子属于弱终止子。

蛋白质辅助因子称为释放因子,通常称为ρ因子。

⏹所有原核生物的终止子共同的序列特征:即在转录终止点之前有一段回文结构,因而所产生的mRNA可形成茎环状的发夹结构,它可使RNA聚合酶的移动停止或减缓。

回文结构中富含GC对,在回文序列的下游常有6—8个AU对,因此这段终止子转录后形成的RNA 具有与A相对应的寡聚U,是使RNA聚合酶脱离模板的信号。

依赖子ρ因子的终止子其回文序列中GC对含量较少,回文序列下方没有固定结构,其AU 对含量也较低,因而是弱终止子,必需有ρ因子存在时才发生终止作用;这也就是说依赖于ρ因子的终止子由于其茎环结构常较短,在没有ρ因子时这种茎环结构不稳定。

即如果没有ρ因子存在.RNA聚合酶会继续转录下去,这就称为通读(read through),当ρ因子存在时,转录才能终止。

⏹在强终止子中,由于其DNA模板上富含GC而使转录出的RNA上富含C 和G,于是RNA与模板之间可以形成较强的氢键,成为DNA—RNA杂合分子,从而阻碍DNA聚合酶的前进而有利于终止。

⏹(二)ρ因子辅助终止作用的机理⏹(三)基因表达的极性现象⏹在正常情况下原核基因表达时,其转录出来的mRNA随即进行翻译,这时整个mRNA 都覆盖着核糖体,ρ因子无法接近mRNA.而RNA聚合酶早已越过前面的基因的依赖ρ因子的终止子,所以转录实际上并不停止.而是继续转录后续基因。

如果在某一基因的依赖于ρ的终止子之前发生无义突变,核糖体便从无义密码子上解离下来,翻译停止,核糖体不再进入到mRNA上无义密码子以后的位置上。

于是ρ就可以自由进入RNA并移动,直到赶上停留在终止子上的RNA聚合酶。

结果使RNA聚合酶释放,不能再转录下游基因。

⏹概念:基因表达的极性现象:在某些情况下同一转录单位里,由于一个基因的无义突变,阻碍了其后续基因表达的效应.就称为基因表达的极性现象。

⏹除了无义突变可以导致极性现象外,插入序列IS1、IS2等DNA片段插入到操纵子的基因中也会发生极性现象。

⏹ρ因子也可发生突变,其效应的基本性质是使终止作用出现故障。

突变常可抑制极性效应,这是因为其突变很可能减弱了ρ对无义密码子后面的中间终止子的作用,这样翻译的终止并不会使转录也停顿,且远离无义突变的DNA区段还可以被重新覆盖的核糖体继续翻译⏹(四)抗终止作用⏹ρ因子的作用可以被抗终止因子所抵消,这样,RNA聚合酶便可通过终止子(依赖于ρ因子的)继续转录后面的基因。

这种现象称为抗终止作用(anti一termination)。

⏹抗终止作用最有代表性的例子见于λ噬菌体的时序控制。

λ噬菌体基因在裂解过程中的表达分前早期、晚早期和晚期3个阶段进行,其早期基因与晚期基因以终止子相隔。

λ噬菌体侵入敏感细胞,首先借助宿主的RNA聚合酶转录前早期基因,由此获得的表达产物N蛋白是一种抗终止因子,它与RNA聚合酶作用使后者越过左右两个终止子继续转录,实现晚早期基因表达。

⏹三、原核生物RNA的加工⏹四、SD序列与翻译效率⏹核糖体结合保护降解法:测定mRNA 上核糖体起始蛋白质合成的部位。

在抑制多肽链伸长的条件下,当翻译起始时,核糖体与mRNA的结合位点已形成稳定的复合体,于是加入核酸酶使未与核糖体结合的mRNA的区段降解,而有核糖体结合区域则受到保护。

⏹在细菌中受核糖体保护的起始序列约35~40个碱基长,其中包含起始密码子AUG。

在起始密码子上游约4~7个核苷酸之前还有一段富含嘌吟的5′…AGGAGG…3′短小序列,它可以与16S rRNA3′端的3′…UCCUCC…5′区段完全互补。

mRNA上的这段序列称为Shine Dalgarno 序列(简称SD序列)。

SD序列与16S rRNA序列互补的程度以及从起始密码子AUG到嘌呤片段的距离也都强烈地影响翻译起始的效率。

不同基因的mRNA有不同的SD序列,它们与16S rRNA的结合能力也不同,从而控制着单位时间内翻译过程中起始复合物形成的数目,最终控制着翻译的速度。

第二节大肠杆菌乳糖操纵子的正负调控⏹一、操纵子与操纵子模型⏹操纵子学说/操纵子模型: F.Jacob J.Mond(1960)E.coli lac operon( 1965诺贝尔医学生理学奖)⏹操纵子:核酸分子上调控基因转录活性的基本单元,由结构基因、操作子(O)和启动子(P)组成。

转录、翻译、合成蛋白结合调节蛋白结合RNA聚合酶⏹二、正调控与负调控⏹调节基因RNA 调节蛋白正调节蛋白+操作子结构基因转录、表达基因失活,结构基因不表达(正控制/正调节)负调节蛋白+基因失活,结构基因组成型表达/负调节)根据调节蛋白基因突变失活所产生的后果,可分:隐性的组成型表达——负控制系统结构基因处于不可诱导状态——正控制系统根据辅因子(小分子)结合后调控效果,可分:开启调控系统中结构基因的转录活性——诱导关闭调控系统中结构基因的转录活性——阻遏操纵子调控系统的基本类型:可诱导负控制系统可诱导正控制系统可阻遏负控制系统可阻遏正控制系统正调控与负调控并非互相排斥的两种机制,而是生物体适应环境的需要,有的系统既有正调控又有负调控;原核生物以负调控为主,真核生物以正调控为主;降解代谢途径中既有正调控又有负调控;合成代谢途径中一般以负调控来控制产物自身的合成。

⏹如:大肠杆菌乳糖代谢的调控需要三种酶参加:⏹①. β-半乳糖酶:将乳糖分解成半乳糖和葡萄糖⏹②. 渗透酶:增加糖的渗透,易于摄取乳糖和半乳糖⏹③. 转乙酰酶:β-半乳糖转变成乙酰半乳糖⏹大量乳糖时:大肠杆菌三种酶的数量急剧增加,几分钟即可达到千倍以上,这三种酶能够成比例地增加.⏹乳糖消耗完:这三种酶的合成也即同时停止.⏹三、大肠杆菌乳糖操纵子的负调控(可诱导)⏹乳糖操纵子的组成:1个启动子(promoter)、2个操作子(operator)、3个结构基因⏹诱导因子:(异乳糖、ß-半乳糖苷、异丙基硫代半乳糖苷IPDG)⏹乳糖操纵子突变类型:无诱导因子,组成型表达,突变位点位于调节基因和操作子上。

⏹A:乳糖操纵子组成部分;⏹B:野生型基因型(I+O+Z+Y+A+),无乳糖时,基因不表达;C. 野生型基因型(I+O+Z+Y+A+),有乳糖时,基因表达;D. 调节基因突变(I-O+Z+Y+A+),无乳糖时,基因组成型表达;E. 操纵基因突变型(I+O c Z+Y+A+),无乳糖时,基因组成型表达。

相关文档
最新文档