真核生物基因表达调控

合集下载

真核生物基因表达的调控

真核生物基因表达的调控
(3)DNA甲基化导致染色质结构和DNA构象的改变
4、DNA甲基化与基因组印迹 (1)基因组印迹:来源于父母本的一对等位基因
表达不同(如X染色体失活) (2)基因组印迹的机制--DNA高度甲基化
5、DNA甲基化与X染色体的失活 X染色体DNA序列高度甲基化,基因被关闭
(1)与X染色体的失活有关的序列:
AP2
??
结合蛋白 (protein binding)
AP2 AP1
? SP1
? TF IID +
RNApol
BLE basal level element MRE metal response element AP activator protein
应答元件的特点:
1. 具有与启动子、增强子同样的一般特性. 2. 与起始点的位置不固定(多在-200以内;单个功能充分,
非洲爪蟾的卵母细胞 rDNA的拷贝数目: 500份 2×106份,可装配1012个核糖体 当胚胎期开始,增加的rDNA便失去功能并逐渐消失
二、基因丢失
有的生物在个体发育的早期在体细胞中要丢 失部分染色体,而在生殖细胞中保持全部的 基因组。
小麦瘿蚊(染色丢失了32条,只保留8条)
马蛔虫
三、基因重排(gene rearrangement)
的下游起作用。 4、与它结合的转录因子是GCN4和GAL4,识别位
点为 ATGACTCAT。
(四)绝缘子(Insulator)
阻止激活或失活效应的元件
举例:
1、当绝缘子位于增强子和启动子间时,能阻止 增强子激活启动子作用。
2、当绝缘子位于一个活化基因和异染色质之间 时,它保护基因免受由异染色质扩展造成的失 活效应影响。
Constant

真核生物的基因表达调控

真核生物的基因表达调控
并不就是所有得转录因子都能够与DNA结合, 也不就是所有得转录因子都就是激活基因得转 录。
转录因子得结构
绝大多数转录因子至少具有以下三种不同得结构域得 一种: (1)DNA结合结构域,直接与顺式作用元件结合得转录因子 都具有此结构域。转录因子通常使用此结构域之中得 特殊α-螺旋与顺式作用元件内得大沟接触,通过螺旋上 得特殊氨基酸残基得侧链基团与大沟中得特殊碱基对 之间得次级健(主要就是氢键)相互识别而产生特异性。 许多转录因子在此结构域上富含碱性氨基酸,这可能有 利于她和DNA骨架上带负电荷得磷酸根发生作用; (2)效应器结构域,这就是转录因子调节转录效率(激活或阻 遏)、产生效应得结构域; (3)多聚化结构域,此结构域得存在使得转录因子之间能够 组装成二聚体或多聚体(同源或异源)。下面将集中介绍 前两种结构域,特别就是DNA结合结构域。
在转录水平上得基因表达调控
真核生物得蛋白质基因得转录除了启动子、RNA聚合酶II和基础 转录因子以外,还需要其她顺式作用元件和反式作用因子得参与。 参与基因表达调控得主要顺式作用元件有:增强子、沉默子、绝缘 子和各种反应元件;参与基因表达调控得反式作用因子也称为转录 因子,她们包括激活蛋白、辅激活蛋白、阻遏蛋白和辅阻遏蛋白。 激活蛋白与增强子结合激活基因得表达,而阻遏蛋白与沉默子结合, 抑制基因得表达,某些转录因子既可以作为激活蛋白也可以作为阻 遏蛋白其作用,究竟就是起何种作用取决于被调节得基因。辅激活 蛋白缺乏DNA结合位点,但她们能够通过蛋白质与蛋白质得相互作 用而行使功能,作用方式包括:招募其她转录因子和携带修饰酶(如 激酶或乙酰基转移酶)到转录复合物而刺激激活蛋白得活性;辅阻 遏蛋白也缺乏DNA结合位点,但同样通过蛋白质与蛋白质得相互作 用而起作用,作用机理包括:掩盖激活蛋白得激活位点、作为负别构 效应物和携带去修饰酶去中和修饰酶(如磷酸酶或组蛋白去乙酰基 酶)得活性。

真核生物基因表达的调控

真核生物基因表达的调控

mRNA前体的加工、剪接、RNA编辑等。
1. 5’端加帽(cap)和3′端多聚腺苷酸化(polyA)的调控意义: 使mRNA稳定,在转录过程中不被降解;
2. mRNA的选择剪接(alternative splicing)对基因表达的调控:
外显子选择(optional exon)、内含子选择(optional intron)、互斥外显子、内部剪接位点; 3. mRNA 运输的控制。
2. 转录水平的调控
1. 顺式作用元件(cis-acting element) (1)启动子(promoter): TATA盒、CAAT盒和GC盒,3种类型;TATA盒决定转录起始的 位点,CAAT盒和GC盒决定RNA聚合酶转录基因的效率。 (2)增强子(enhancer):在真核细胞中通过启动子来增强转录的一种远端遗传性控制元件。 (3)沉默子(silencer ):负性调节元件,起阻遏作用。
(4)真核生物是多细胞的,在生物的个体发育过程中其基因表达在时间和空间上具有特异性,
即细胞特异性或组织特异性表达。
• 转录前水平调控(基因结构激活)(DNA structure level regulation)
• 转录水平调控(transcriptional regulation) • 转录后水平的调控(post transcriptional regulation) • 翻译水平调控(translational regulation) • 蛋白质加工水平的调控(regulation of protein maturation)
真核生物基因表达的调控
同原核生物一样,转录依然是真核生物基因表达调控的主要环节。但真核基因转录发生在
细胞核(线粒体基因的转录在线粒体内),翻译则多在胞浆,两个过程是分开的,因此其调控增

真核生物基因表达调控的多种方式

真核生物基因表达调控的多种方式

真核生物基因表达调控的多种方式真核生物基因表达包括转录、翻译和蛋白修饰等复杂过程,其中涉及多种调控方式。

以下是真核生物基因表达的各种表达调控方式的简述:1. 转录前调控转录前调控是指在 DNA 复制后被转录成 RNA 的过程中,通过调控 RNA 聚合酶 (RNA polymerase) 的亲和力、移动速度和活性等方式来控制基因的表达。

其中一些调控因子可以与启动子区域中的特定序列结合,从而抑制或增强 RNA 聚合酶的活性。

此外,一些转录因子还可以与 RNA 聚合酶结合,促进 RNA 聚合酶的移动,从而加快转录速率。

2. 转录调控转录调控是指通过调控 RNA 聚合酶结合到特定基因的启动子上,来控制基因的表达。

转录调控可以通过调节转录因子的数量、亲和力和活性等方式来实现。

一些转录因子可以与启动子区域中的特定序列结合,从而抑制或增强 RNA 聚合酶的活性。

此外,一些转录因子还可以与 RNA 聚合酶结合,促进 RNA 聚合酶的活性,从而加快转录速率。

3. 转录后调控转录后调控是指在基因被转录后,通过调控 RNA 剪接、RNA 编辑、RNA 降解等方式来控制基因的表达。

这些调控方式可以影响 RNA 的稳定性、可用性和转录本的多样性。

例如,一些调控因子可以与 RNA 剪接因子结合,从而改变 RNA 剪接的速率和方向。

一些 RNA 编辑酶可以编辑 RNA,改变基因表达。

此外,RNA 降解酶可以降解 RNA,从而抑制基因的表达。

4. 翻译调控翻译调控是指通过调控 mRNA 的稳定性、可用性和翻译速率等方式来控制基因的表达。

例如,一些调控因子可以与 RNA 聚合酶结合,从而抑制或增强 RNA 聚合酶的活性。

此外,一些翻译调控因子可以与 mRNA 结合,从而改变 mRNA 的稳定性和翻译速率。

5. 蛋白修饰调控蛋白修饰调控是指通过调控蛋白质的修饰方式来控制蛋白质的活性、稳定性和可用性等方式来控制基因的表达。

例如,一些修饰因子可以与蛋白质结合,从而改变蛋白质的修饰方式。

第十三章 真核生物基因表达调控

第十三章   真核生物基因表达调控

在染色质中的DNA潜在活性区域核小体组装较为
松弛且某些位点用DNaseⅠ处理时DNA极易断裂,
为高敏感位点(HS)
染色质上对DNaseⅠ的敏感区域有一定的界限 即使在一个基因内,各个区段对DNaseⅠ敏感
程度也不同,基因编码转录大范围表现一般 的敏感性,而在基因调控区的少数区域则显 示高度敏感性
真 核 生 物 基 因 表 达 调 控 七 个 层 次
染色质 DNA 染色质水平调控
DNA
转录调控
细胞核 细胞质
转录初产物 (RNA) 转录后加工调控
转运调控
mRNA
翻译调控
蛋白质前体
翻译后加工调控
mRNA降 解物
mRNA降解调 控
活性蛋白质
三、染色体水平上的调控
主要有:
染色质结构
DNA在染色体上的位臵

人的β-珠蛋白基因簇上、下游两个远侧区域就是 超敏感位点 LCR是一种远距离顺式调控元件(基因座调控区), 具有增强子和稳定活化染色质的功能,也是特异 性反式调控因子的结合位点
组蛋白的乙酰化能使染色质对DNaseⅠ和微球
菌核酸酶的敏感性显著增强
非组蛋白
与染色质松散结合,或者在某些条件下才能
被阻遏状态

有活性状态

被激活状态

异染色质化
— DNA结构高度致密,处于阻
遏状态,无转录活性

组成型异染色质:染色质在整个细胞周期一直
保持压缩状态,不具转录活性

兼性异染色质:只在一定的发育阶段或者生理
条件下由常染色质凝聚而成,无持久活性
组蛋白对基因活性的影响
是基因活性的重要调控因子,当与裸露DNA混

真核生物基因表达的调控

真核生物基因表达的调控

真核生物基因表达的调控09中西七2班 032009225 丁雪菲真核生物的基因表达可以随细胞内外环境条件的改变以及生长发育的不同阶段而在不同表达水平上加以精确的调节,这是真核生物基因表达调控的多层次性。

真核生物基因表达的调控可以发生在以下各个水平:1、染色质水平真核生物基因组DNA以致密的染色质形式存在,在DNA和染色质水平上发生的改变包括:染色质丢失(某些序列的删除)、基因扩增、基因重排、染色体DNA的修饰和异染色质化等。

发生在染色质水平的基因表达调控,也称转录前水平的调控。

真核生物中的基因组DNA与组蛋白形成复合物,组蛋白在细胞内含量丰富,几乎与DNA的含量相当。

真核生物中大多数编码蛋白质的基因为简单重复序列,但是组蛋白基因是中度重复序列,其中多数拷贝是完全相同的,有一些则差异较大。

导致组蛋白不均一性的另一个原因是组蛋白的修饰,最常见的组蛋白修饰是乙酰化,一般发生在N端氨基或者赖氨酸的ε-氨基上。

这种修饰可以影响染色质的结构和功能,调控基因活性。

2、转录起始水平组蛋白对基因转录活性的影响例子:爪蟾卵母细胞5SrRNA基因只在卵母细胞中转录实验证明:转录因子和组蛋白可以竞争基因的转录调控区,去过转录因子与调控区亲和力低,则基因的调控区与组蛋白形成核小体,并由H1将核小体交联成有序的紧密结构,抑制基因的转录活性;反之如果转录因子先与基因控制区结合,则不能与组蛋白形成核小体,基因具有转录活性。

3、转录后水平真核生物可以通过选择不同的5’-起始点或者3’-加尾位点产生不同的成熟mRNA,最终合成不同的蛋白;也可以进行组织特异性的选择性拼接,表达具有不同生物活性的蛋白。

3.1可变拼接mRNA前体可以选择不同的拼接途径产生不同的成熟mRNA,称为可变拼接。

例子:大鼠的免疫球蛋白μ重链基因大鼠的免疫球蛋白μ重链有两种存在形式:分泌型和膜结合型。

两种蛋白的区别在于羧基末端,膜结合型的羧基末端为疏水区,可以锚定在膜上;分泌型羧基端为亲水区,不能锚定在膜上而称为分泌型蛋白。

真核基因表达调控特点

真核基因表达调控特点
可以与mRNA结合,抑制其翻译或促进其降解,从而调控基因的表达水平。非编码 RNA在细胞生长、发育、分化以及疾病发生等过程中发挥重要作用。
05
真核基因表达调控的案例研究
肿瘤细胞中的基因表达调控
要点一
肿瘤细胞中基因表达调控的特点
要点二
肿瘤细胞中基因表达调控的案例
肿瘤细胞通过基因表达调控机制,使某些基因高表达或低 表达,以适应其生长和增殖的需要。这些调控机制包括染 色质重塑、转录因子和miRNA的调控等。
真核基因表达调控特点
• 真核基因表达调控概述 • 真核基因表达的转录水平调控 • 真核基因表达的转录后水平调控 • 真核基因表达的表观遗传调控 • 真核基因表达调控的案例研究
01
真核基因表达调控概述
真核基因表达调控的定义
真核基因表达调控是指在真核生物中,对基因表达的起始、维持和终止过程进行 的精细调节,以确保细胞在生长发育和应对环境变化时能够做出适应性反应。
例如,某些肿瘤细胞中,抑癌基因的表达受到抑制,而致 癌基因的表达则被激活,从而促进肿瘤的发生和发展。
干细胞分化过程中的基因表达调控
干细胞分化过程中基因表 达调控的特点
干细胞分化过程中,基因表达调控机制使干 细胞按照一定的程序分化为不同类型的细胞 。这些调控机制包括表观遗传学修饰、转录 因子和miRNA的调控等。
真核基因表达的转录后调控还包括mRNA的翻译。翻译是指将mRNA上的信息转变成蛋白质的过程。
后翻译修饰
蛋白质的翻译后修饰是指对已合成的蛋白质进行化学修饰,以改变其功能的过程。常见的蛋白质修饰 包括磷酸化、乙酰化、糖基化和泛素化等。这些修饰可以影响蛋白质的活性、定位和稳定性。
04
真核基因表达的表观遗传调控

真核生物基因表达调控

真核生物基因表达调控
非编码区较多 多于编码序列(9:1)
含有大量重复序列
二、真核生物基因表达调控的特点 1、多层次 2、个体发育复杂 3、正性调节占主导 4、转录与翻译间隔进行
真核生物基因表达调控的种类:
根据其性质可分为两大类: 一是瞬时调控或称为可逆性调控,它相当于原核细胞 对环境条件变化所做出的反应。瞬时调控包括某种底 物或激素水平升降时,及细胞周期不同阶段中酶活性 和浓度的调节。 二是发育调控或称不可逆调控,是真核基因调控的精 髓部分,它决定了真核细胞生长、分化、发育的全部 进程。 根据基因调控在同一事件中发生的先后次序又可分为: DNA水平调控--转录水平调控--转录后水平调 控--翻译水平调控--蛋白质加工水平的调控
三. 活泼转录区染色质的结构变化:
1. 染色质的两种状态:
① 非活性状态【inactive (silent) state 】:如异染色质 ② 活化状态【active state 】:
活泼转录区对核酸酶的敏感性提高 正在转录的DNA甲基化程度降低; 活泼转录的染色质常常缺乏组蛋白H1,其他核心组蛋白 则被乙酰化或与泛素相结合而修饰 非常活泼的转录区,如许多真核生物的rRNA基因处,没 有核小体结构
cAMP的作用机理
PKA的激活 R 调节亚基 C 催化亚基
目录
蛋白激酶A
(cAMP-dependent protein kinase,PKA)
cAMP
R R
C C
R: 调节亚基 C: 催化亚基
PKA的作用
1) 对物质代谢的调节作用 通过对效应蛋白的磷酸化作用,实现其调 节功能。
肾上腺素 +受体
二 、转录因子:
(一)、转录因子的类型: 1. 转录基础因子:basal factor

真核基因表达调控的特点

真核基因表达调控的特点

真核基因表达调控的特点
真核基因表达调控有以下几个特点:
1. 基因组的复杂性:真核生物的基因组通常比原核生物更大且更复杂。

真核基因组包含多个非编码区域和大量的调控元件,这些元件可以影响基因的表达水平和模式。

2. 转录的调控:真核生物中的基因表达主要通过转录调控来实现。

转录调控包括转录因子的结合和调节,以及染色质状态的改变。

转录因子是一类能够结合到特定DNA序列上并调控相关基因转录的蛋白质。

它们可以增强或抑制基因的转录,从而影响基因表达。

3. 多级调控网络:真核生物中的基因表达调控是一个多级的网络系统。

这个网络包括许多调控元件、转录因子和其他调控蛋白质之间的相互作用。

这些元件和因子可以形成复杂的调控回路和信号传递路径,从而调控基因的表达。

4. 组蛋白修饰:染色质状态的改变在真核基因表达调控中起着重要作用。

染色质是DNA与蛋白质的复合物,通过不同的化学修饰可以改变染色质的结构和可及性,从而影响基因的转录。

常见的染色质修饰包括DNA甲基化、组蛋白乙酰化和甲基化等。

5. RNA后转录调控:除了转录调控外,真核生物中还存在着RNA 后转录调控机制。

这些调控机制包括RNA剪接、RNA编辑和非编码RNA 的功能等。

它们可以影响基因的转录后处理和调控基因表达的多样性。

综上所述,真核基因表达调控具有基因组的复杂性、转录的调控、多级调控网络、组蛋白修饰和RNA后转录调控等特点,这些特点共同
作用来调控基因的表达水平和模式。

真核生物基因表达调控

真核生物基因表达调控
真核生物基因表达调控,根据其性质可分为两大类。第一类是瞬时调控或称可逆调控 ,它相当于原核细胞对环境条件变化所作出的反应,包括某种底物或激素水平升降及 细胞周期不同阶段中酶活性和浓度的调节。第二类是发育调控或称不可逆调控,是真 核生物基因调控的精髓部分,它决定了真核细胞生长、分化、发育的全部进程
真核生物基因表达调控
真核生物基因表达调控
顺式作用元件
真核生物基因表达调控
反式作用因子
-
感谢您的莅临
著特征是能在 特定时间和特定细胞 中激活特定的基因, 从而实现"预定"的、 有序的、不可逆转的 分化、发育过程,并 使生物的组织和器官 在一定环境条件范围 内保持正常功能
真核生物基因表达调控
真核生物基因表达调控的特点如下
①基因表达有转录水平和转录后的调控,且以转录水平调控为主 ②在结构基因上游和下游甚至内部存在多种调控成分,并依靠特异蛋白因子与这些调控 成分结合而调控基因的转录 ③真核生物基因表达调控的环节多:转录与翻译间隔进行,个体发育复杂,具有调控基 因特异性表达的机制 ④真核生物活性染色体结构的变化对基因表达具有调控作用:DNA拓扑结构变化、DNA碱 基修饰变化、组蛋白变化等都具有调控作用 ⑤具有细胞特异性或组织特异性:在生长发育过程中,随着细胞需求的不断改变,各种 基因变得有活性或沉寂 ⑥正性调节占主导,且一个真核生物基因通常有多个调控序列,需要有多个激活物
真核生物基因表 达调控
-
1
基因表达调控
2
真核生物基因表达调控的特点
3
转录水平的调控
真核生物基因表达调控
基因表达调控
基因表达(gene expression)是基因经过转录、翻译,产生具有特异生物学功能的蛋 白质分子或RNA分子的过程。表达调控(gene regulation)是基因表达时受到内源及外 源信号调控的过程。基因表达调控大多数是对基因的转录和翻译速率的调节,从而导 致其编码产物的水平发生变化,进而影响其功能

真核生物基因的表达调控

真核生物基因的表达调控

细胞周期与基因表达
G1期
细胞在G1期主要合成与DNA 复制有关的蛋白质,如复制因 子等。
G2期
G2期细胞主要合成与分裂期有 关的蛋白质,如微管蛋白等。
细胞周期
真核生物细胞周期分为间期和 分裂期,不同时期基因表达DNA的复制,同 时合成组蛋白等与染色体组装 有关的蛋白质。
翻译和后翻译修饰
翻译
mRNA在细胞质中被核糖体读取并翻译成蛋白质。翻译的效率受到多种因素的 影响,包括mRNA的浓度、核糖体的数量、以及各种翻译调控因子。
后翻译修饰
新合成的蛋白质经常需要进行翻译后修饰,如磷酸化、乙酰化、糖基化等,以 增加其活性和稳定性。这些修饰通常由特定的酶催化,并受到细胞内环境和信 号通路的调节。
肾上腺素
02
03
甲状腺激素
肾上腺素可以激活糖原分解和脂 肪分解相关基因的表达,提高能 量供应。
甲状腺激素可以促进细胞代谢, 提高基础代谢率,同时还可以影 响神经系统的发育。
神经递质对基因表达的调控
多巴胺
01
多巴胺可以影响奖赏和愉悦相关基因的表达,与成瘾行为和心
理健康有关。
5-羟色胺
02
5-羟色胺可以影响情绪和行为,与抑郁症和精神分裂症等精神
染色质重塑
染色质重塑是基因表达调控的另一重要机制,通过改变染色质的结构和组成,影响转录因 子的结合和RNA聚合酶的活性。
microRNA的调节
microRNA通过与mRNA结合,调控靶基因的表达水平,参与多种生物学过程,如发育、 代谢和应激反应等。
02
转录水平的调控
转录因子
1 2 3
转录因子概述
葡萄糖
葡萄糖水平可以影响胰岛素的分 泌,进而影响与胰岛素相关的基 因表达。

真核生物基因表达调控的层次

真核生物基因表达调控的层次

真核生物基因表达调控的层次引言:基因表达调控是指基因转录和翻译过程中的调节机制,它决定了细胞在不同时间和环境中产生不同功能的蛋白质。

真核生物基因表达调控具有多个层次,包括染色质结构调控、转录水平调控、RNA加工和转运调控、翻译调控以及蛋白质修饰和定位调控。

本文将就这些层次进行详细介绍。

一、染色质结构调控:染色质结构调控是指通过改变染色质的结构和组织方式来调控基因表达。

染色质的结构包括开放的区域和紧密的区域,开放的区域便于转录因子的结合和启动子的访问,从而促进基因的转录。

染色质结构调控包括DNA甲基化、组蛋白修饰以及非编码RNA的参与等。

DNA甲基化是一种常见的染色质结构调控方式,通过甲基化酶催化DNA上的甲基化反应,使得某些基因的启动子区域被甲基化,从而阻止转录因子的结合。

组蛋白修饰包括乙酰化、甲基化、磷酸化等,这些修饰可以改变染色质的结构,影响基因的转录水平。

非编码RNA是一类不编码蛋白质的RNA分子,它可以通过与染色质相互作用来调控基因的表达。

二、转录水平调控:转录水平调控是指在转录过程中对RNA合成的调控。

转录调控涉及到转录因子的结合、启动子的可访问性以及转录复合物的组装等。

转录因子是一类蛋白质,它们可以通过与DNA结合来调控基因的转录。

转录因子的结合位点通常位于启动子区域,它们可以通过激活或抑制转录的方式来调控基因的表达。

启动子的可访问性是指转录复合物能否顺利结合到启动子上,这涉及到染色质的开放程度以及转录因子的作用。

转录复合物的组装包括RNA聚合酶与转录因子的结合以及其他辅助因子的参与,这些因子的作用可以影响基因的转录速度和效率。

三、RNA加工和转运调控:RNA加工和转运调控是指在RNA合成后对RNA分子的修饰和定位调控。

RNA加工包括剪接、剪切和多聚腺苷酸化等过程,这些过程可以改变RNA的结构和功能。

剪接是指将RNA前体分子中的内含子剪切掉,从而形成成熟的mRNA分子。

剪切的方式和位置不同,可以产生不同的转录产物。

真核基因表达调控的五个水平

真核基因表达调控的五个水平

真核基因表达调控的五个水平真核基因表达调控是指在真核生物中,通过一系列的调控机制来控制基因的表达。

这些调控机制可以分为五个水平:染色质水平、转录水平、RNA加工水平、转运水平和翻译水平。

染色质水平是指通过改变染色质的结构和状态来调控基因表达。

在真核生物中,染色质通常会以一种紧密的形式存在,称为紧密染色质。

这种紧密染色质不容易被转录因子识别和结合,从而抑制基因的转录。

而在某些特定的时机,染色质会发生松弛,使得转录因子能够更容易地与基因的启动子结合,从而促进基因的转录。

这种染色质的结构和状态的改变可以通过DNA甲基化、组蛋白修饰和非编码RNA等机制来实现。

转录水平是指通过调控转录过程来控制基因表达。

转录是指将DNA 中的基因信息转录成RNA的过程。

在转录过程中,转录因子会结合到基因的启动子区域,通过与RNA聚合酶的相互作用来启动和调节转录过程。

转录因子的结合位置和数量可以影响基因的转录水平。

此外,还有一些转录调控因子可以通过与转录因子相互作用,调节其活性和稳定性,从而进一步调控基因的转录。

RNA加工水平是指通过对转录后的RNA分子进行剪接、修饰和降解等加工过程来调控基因表达。

在转录后,RNA分子需要经过剪接来去除其中的内含子序列,形成成熟的mRNA分子。

剪接的方式和位置可以影响基因的表达模式。

此外,还有一些修饰酶可以对RNA 分子进行修饰,如加上甲基或磷酸基团,从而影响其稳定性和功能。

另外,RNA分子还会受到RNA降解酶的作用,从而降解掉一部分RNA分子,进一步调控基因的表达水平。

转运水平是指通过调控RNA分子的运输和定位来调控基因表达。

在真核生物中,RNA分子需要通过核孔复合体来从细胞核转运到细胞质,然后再到达特定的亚细胞位置。

在细胞质中,RNA分子可以与翻译机器相互作用,从而进一步调控基因的翻译。

此外,还有一些RNA分子可以通过与RNA结合蛋白相互作用,形成RNA颗粒体或RNA复合体,从而影响RNA的稳定性和功能。

分子遗传学4章真核生物基因的表达调控

分子遗传学4章真核生物基因的表达调控

基因剪接调控
预mRNA剪接
预mRNA剪接是基因表达的重 要调控过程,通过剪接酶体复 合物对转录产物进行剪接去除 内含子。
可变剪接
可变剪接是在剪接过程中选择 性地包含或排除外显子,产生 不同的mRNA剪接异构体,从 而调控基因表达。
RNA编辑调控
RNA编辑是通过改变RNA分子 中的碱基序列,例如腺嘌呤去 氨酶(ADAR)对腺嘌呤进行 去氨基反应。
分子遗传学4章真核生物基因 的表达调控
本章将探讨真核生物基因的表达调控机制,从转录调控到表观遗传调控,深 入了解生物基因活性的细节。
分子遗传学简介
分子遗传学研究基因如何传递、表达和调控。它涉及DNA、RNA和蛋白质的 相互作用,以及遗传信息的复制和遗传变异。
真核生物基因的表达调控概述
真核生物的基因表达调控机制非常复杂而多样化,包括转录调控、基因剪接调控、RNA后转录调控、表 观遗传调控和激素调控。
RNA后转录调控
非编码RNA
非编码RNA在转录后起重要作用,如长链非 编码RNA(lncRNA)和小核RNA (snRNA)。
RNA降解和稳定性
RNA的降解和稳定性受多种因素调控,确保 RNA分子在合适的时机和地点进行降解和稳 定。
RNA剪切调控
RNA剪切调控是RNA后转录调控的一种重要 机制,通过调整可剪切RNA的相对剪切位点 来调控基因表达。
RNA编辑调整
通过RNA编辑,已转录的RNA分子的核苷酸 序列可以发生改变,扩大RNA的多样性。
表观遗传调控
表观遗传调控通过改变染色质结构和DNA甲基化状态,调节基因的可及性和 表达。
激素调控
激素在基因表达调控中起着至关重要的作用,通过与核受体结合来调节基因 表达。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

真核生物基因表达的调控远比原核生物复杂,可以发生在DNA水平、转录水平、转录后的修饰、翻译水平和翻译后的修饰等多种不同层次。

但是,最经济、最主要的调控环节仍然是在转录水平上。

DNA水平的调控
DNA水平上的调控主要指通过染色体DNA的断裂,删除,扩增,重排,修饰(如甲基化与去甲基化,乙酰化与去乙酰化等)和染色质结构变化等改变基因的数量、结构顺序和活性而控制基因的表达。

转录水平的调控
转录水平的调控包括染色质的活化和基因的活化。

通过染色质改型,组蛋白乙酰化,染色质变得疏松化及DNA去甲基化以便被酶和调节蛋白作用,基因的表达受顺式作用元件包括启动子及应答元件,转座元件,增强子,抑制子的调控,同时受反式作用因子包括基本转录因子,上游转录因子和转录调节因子等的调控。

转录后调控
转录后调控包括hnRNA的选择性加工运输和RNA编辑
在真核生物中,蛋白质基因的转录产物统称为hn RNA,必须经过加工才能成为成熟的mRNA分子。

加工过程包括三个方面:加帽、加尾和去掉内含子。

同一初级转录产物在不同细胞中可以用不同方式剪接加工,形成不同的成熟mRNA分子,使翻译成的蛋白质都可能不同。

转录后的RNA在编码区发生碱基插入,缺失或转换的现象。

翻译水平的调控
阻遏蛋白与mRNA结合,可以阻止蛋白质的翻译并使成熟的mRNA变为失活状态贮存起来。

一些调控作用的micRNAh和siRNA 还可以与mRNA作用降解mRNA,阻止其翻译
此外,还可以控制mRNA的稳定性和有选择的进行翻译。

翻译后调控
直接来自核糖体的线状多肽链是没有功能的,必须经过加工才具有活性。

在蛋白质翻译后的加工过程中,还有一系列的调控机制。

1.蛋白质折叠
线性多肽链必须折叠成一定的空间结构,才具有生物学功能。

在细胞中,蛋白质的折叠必须有分子伴侣的作用下才能完成折叠。

2.蛋白酶切割
末端切割
有些膜蛋白、分泌蛋白,在氨基端具有一段疏水性强的氨基酸序列,称为信号肽,用于前体蛋白质在细胞中的定位。

信号肽必须切除多肽链才具有功能。

多聚蛋白质的切割
有些新合成的多肽链含有几个蛋白质分子的序列,切割以后产生具有不同功能的蛋白质分子。

3、蛋白质的化学修饰
简单的化学修饰是将一些小的化学基团,如乙酰基、甲基、磷酸基加到氨基酸侧链上,或者加到氨基端或羧基端。

复杂的修饰是蛋白质的糖基化(glycosylation),就是将一些分子量很大的碳水化合物加到多肽链上。

4、切除蛋白质内含子
有些mRNA翻译的最初产物也具有内含子(intein)序列,位于多肽链序列的中间,经剪接后,蛋白质的外显子(extein)才能连接成为成熟的蛋白质。

相关文档
最新文档