原核生物基因表达调控概述

合集下载

分子生物学第七章原核生物基因表达调控

分子生物学第七章原核生物基因表达调控
基因表达调控对于生物体的正常生长、发育、代谢和应激反应等 过程至关重要,是生物体适应环境变化和维持内环境稳态的重要 机制。
原核生物基因表达调控的特点
01
原核生物基因表达调控通常由特 定的转录因子、RNA聚合酶以及 其他调控蛋白介导,通过与DNA 的结合或解离来调节基因转录。
02
原核生物基因表达调控具有快速 响应环境变化的特点,能够在短 时间内调整基因表达模式,以适 应外界刺激和压力。
翻译后加工的调控
翻译后加工的调控
在翻译后加工阶段,新合成的蛋白质经过一系列修饰和加工,最终成为具有生物学活性的蛋白质。原 核生物通过控制翻译后加工酶的合成和活性来调控翻译后加工过程。此外,原核生物还可以通过控制 蛋白质的稳定性来影响其功能和表达水平。
总结
翻译后加工是基因表达调控的重要环节,原核生物通过控制翻译后加工酶的合成和活性,以及蛋白质 的稳定性来精细调控基因表达。
翻译延伸的调控
翻译延伸的调控
在翻译延伸阶段,核糖体沿着mRNA移动,将氨基酸组装成蛋白质。原核生物通过控制翻译延伸因子的合成和活 性,以及核糖体的合成和组装来调控翻译延伸。此外,原核生物还可以通过控制mRNA的结构和稳定性来影响翻 译延伸。
总结
翻译延伸是基因表达调控的重要环节,原核生物通过控制翻译延伸因子的合成和活性,以及核糖体的合成和组装, 以及mRNA的结构和稳定性来精细调控基因表达。
翻译起始的调控
原核生物通过控制翻译起始来调控基因表达。在翻译起始阶段, mRNA与核糖体结合,招募翻译所需的起始因子和其他成分。原 核生物通过控制起始因子的合成和活性,以及mRNA与核糖体的 结合来调控翻译起始。
总结
翻译起始是基因表达调控的重要环节,原核生物通过控制翻译起 始因子的合成和活性,以及mRNA与核糖体的结合来精细调控基 因表达。

6原核生物基因表达的调控

6原核生物基因表达的调控

(三)正调控系统和负调控系统
1 负调控系统:
在没有调节蛋白质存在时基因表达,加入调节蛋白后基因 表达活性被关闭。
阻遏蛋白:负调控系统中的调节蛋白。
2 正调控系统:
没有调节蛋白质存在时基因关闭,加入这种调节蛋白质后 基因活性被开启。
诱导蛋白:正调控系统中的调节蛋白。
诱导(induction) 阻遏(repression) 诱导物(inductor) 阻遏物(repressor) 辅阻遏物(corepressor) 使阻遏蛋白具有活性或使
三、基因表达的方式
按对刺激的反应性,基因表达的方式分为:
(一)组成性表达
某些基因在一个个体的几乎所有细胞中持 续表达,通常被称为管家基因(housekeeping gene)。
无论表达水平高低,管家基因较少受环境 因素影响,而是在个体各个生长阶段的大多数 或几乎全部组织中持续表达,或变化很小。区 别于其他基因,这类基因表达被视为组成性基 因表达(constitutive gene expression)。
(二)诱导和阻遏表达
在特定环境信号刺激下,相应的基因被激 活,基因表达产物增加,这种基因称为可诱导 基因。
可诱导基因在特定环境中表达增强的过程, 称为诱导(induction)。
如果基因对环境信号应答是被抑制,这种 基因是可阻遏基因。可阻遏基因表达产物水平 降低的过程称为阻遏(repression)。
DNA B
转录起始点
A
编码序列
不同真核生物的顺式作用元件中也会发现 一些共有序列 ,如TATA盒、CAAT盒等,这 些共有序列是RNA聚合酶或特异转录因子的 结合位点。
2) 真核基因的调节蛋白
反式作用因子(trans-acting factor)

第六章 原核生物表达调控

第六章 原核生物表达调控

第一节概述围绕基因表达过程中发生的各种各样的调节方式都通称为基因表达调控(gene regulation或gene control)。

几个基本概念1、顺式作用元件和反式作用因子:基因活性的调控主要通过反式作用因子(通常是蛋白质)与顺式作用元件(通常在DNA 上)相互作用而实现。

顺式作用元件是指对基因表达有调节活性的DNA序列,其活性只影响与其自身同处在一个DNA分子上的基因;同时,这种DNA序列通常不编码蛋白质,多位于基因旁侧或内含子中,如启动子和终止子,都是典型的顺式作用元件。

反式作用因子是能调节与它们接触的基因的表达的各种扩散分子(通常是蛋白质),如RNA聚合酶、转录因子。

2、结构基因和调节基因:结构基因(structural gene)是编码蛋白质或RNA的基因。

细菌的结构基因一般成簇排列,多个结构基因受单一启动子共同控制,使整套基因或都表达或都不表达。

调节基因(regulator gene)是编码合成那些参与其他基因表达调控的RNA或蛋白质的特异DNA 序列。

调节基因编码的调节物质通过与DNA上的特定位点结合控制转录是调控的关键。

比如:它能使结构基因在需要某种酶时就合成某种酶,不需要时,则停止合成,它对不同染色体上的结构基因有调节作用。

调节物与DNA特定位点的相互作用能以正调控的方式(启动或增强基因表达活性)调节靶基因,也能以负调控的方式(关闭或降低基因表达活性)调节靶基因。

DNA位点通常位于受调节基因的上游,但也有例外.3、操纵基因和阻遏蛋白操纵基因(operator)是操纵子中的控制基因,在操纵子上一般与启动子相邻,通常处于开放状态,使RNA聚合酶能够通过并作用于启动子启动转录。

但当它与调节基因所编码的阻遏蛋白结合时,就从开放状态逐渐转变为关闭状态,使转录过程不能发生。

阻遏蛋白(aporepressor)是负调控系统中由调节基因编码的调节蛋白,它本身或与辅阻遏物(corepressor)一起结合于操纵基因,阻遏操纵子结构基因的转录。

原核生物基因表达调控分析

原核生物基因表达调控分析

Co-repressor
(共阻遏物)
原核生物基因表达调控方式:
负控诱导调节
负控转录调 控系统
调节基因的产物是 阻遏蛋白 (repressor), 阻止了结构基因的 转录。
阻遏蛋白与效应物(诱 导物)结合,使阻遏蛋 白失活,结构基因转录; 阻遏蛋白与效应物(辅阻 遏物)结合,使阻遏蛋白 产生活性,结构基因不转 录。
operon on operon off operon off operon on
Neg.
i- or 不加入I基因产物 I+ or 加入I基因产物
(激活蛋白)
Pos.

Repressor binding on O site 阻遏蛋白 阻止转录启动
Expressor binding front p site
安慰诱导物:
如果某种物质能够诱导细菌产生某种酶而本身又不
被分解,这种物质被称为安慰诱导物,如IPTG(异
丙基- β –D-硫代半乳糖苷)。 相反,随环境条件变化而基因表达水平降低的现象 称为阻遏(repression),相应的基因被称为可阻遏的基 因(repressible gene)。 如果某种物质能够阻止细菌产生合成这种物质的酶, 这种物质就是辅阻遏物。(合成代谢)
第一讲 原核生物基因表达 调控
主要内容
一、基因表达调控的基本概念: 二、 基因表达调控的理论与模式;
一、基因表达调控的基本概念:
1、基因表达调控的意义: 原核生物对环境的适应、对营养条件改变适应的 相关应答,都是基因表达的结果;
真核生物的细胞分化, 组织特化 , 个体发育以及 环境对个体表型的影响都是通过基因表达实现的。
组成型突变: lacOc
iC mut. (iC O+P+) constitutive mut. (组成型)

分子生物学 ch7原核生物基因表达调控

分子生物学    ch7原核生物基因表达调控

调节蛋白
由调节基因lacI编码,单顺反子,有自身弱启 动子,能独立地组成型表达 阻遏蛋白一个结合位点是诱导物结合位点, 可被小分子诱导物结合,改变其构型,从而 影响与操纵基因结合的活性 阻遏蛋白一个结合位点是操纵基因结合位点, 分 调节蛋白以四聚体形式与操纵基因Olac结合, 子 阻遏结构基因的表达 生

物 学

CAP(降解物活化蛋白)或CRP(环腺苷酸受体 蛋白)是分子量为22.5kd的二聚体,CRP单体具有 DNA结合区和转录激活区,二聚体被单个cAMP活化, cAMP-CAP复合物与启动子结合,促进基因表达

葡萄糖分解代谢降低cAMP水平,使得其他分解代
谢受阻
CAP
RNA聚合酶结合
-35 cAMP

——阻遏蛋白(repressor)的结合操纵序列 当操纵序列结合有阻遏蛋白时,会阻碍
RNA聚合酶与启动序列的结合,或是RNA聚合酶
不能沿DNA向前移动 ,阻碍转录。
pol 启动序列 操纵序列 编码序列 阻遏蛋白
激活蛋白(activator)可结合启动序列邻近的
DNA序列,促进RNA聚合酶与启动序列的结合,增
无效应物(辅阻遏物)——基因表达
操纵子分类

四类: 可诱导的正调控型:(ara O): 可阻遏的正调控型 可诱导的负调控型(lac O)、 可阻遏的负调控型(trp O)
有 效 应 物 * 基 因 表 达 无 效 应 物 * 基 因 表 达
调节蛋白结合-阻遏基因表达 (阻遏蛋白)
负调控
调节蛋白结合-基因表达 (激活蛋白)
酶和转乙酰酶,结构基因由位于上游的一个lac启动子(lacP)起始
转录;lac操纵基因(lacO)位于lacP启和lacZ之间,并且和lacP有 部分重叠,其上可结合位于上游具有独立转录单位的lac调节基因

生物学原核生物基因表达的调控

生物学原核生物基因表达的调控
目录
第二节
原核生物基因表达的 转录水平调控
Regulation of Prokaryotic Gene Expression at Transcription Level
目录
一、转录调控是以特定的DNA序列和蛋 白质结构为基础
(一)特定的DNA序列是转录起始调控的结构基础
在基因内和基因外都有一些特定的DNA序列,与结 构基因表达调控相关、能够被基因调控蛋白特异性识别 和结合,这些特定的DNA序列称为顺式作用元件(cisacting elements),亦称为顺式调控元件。在原核生物 中主要是启动子、阻遏蛋白结合位点、正调控蛋白结合 位点、增强子等。
transcription
RNA 5'-AGGUCCACG········-3'
启动子及其与转录的关系 ···
目录
(二)阻遏蛋白结合操纵元件对转录起 始进行负调控
阻遏蛋白是一类在转录水平对基因表达产生负 调控作用的蛋白质。阻遏蛋白主要通过抑制开放启 动子复合物的形成而抑制基因的转录。阻遏蛋白与 DNA结合后,RNA聚合酶仍有可能与启动子结合, 但不能形成开放起始复合物,不能启动转录;这种 作用称为阻遏(repression),特定的信号分子与阻 遏蛋白结合,使阻遏蛋白失活,从DNA 上脱落下来, 称为去阻遏,或脱阻遏(derepression)。
usually binds to CAAT box
目录
二、特定蛋白质与DNA结合后控制 转录起始
(一)σ因子和启动子决定转录是否能够起始
-35
-10
+1
5'-TAGTGTATTGACATGATAGAAGCACTCTACTATATTCTCAATAGGTCCACG············-·3·'

原核生物的基因表达与调控

原核生物的基因表达与调控
汇报人:
非编码RN的作用
参与基因表达调 控:非编码RN 可以调控基因的 表达影响蛋白质 的合成
参与转录后调控: 非编码RN可以 参与转录后的调 控影响mRN的 稳定性和翻译效 率
参与翻译调控: 非编码RN可以 参与翻译调控影 响蛋白质的合成 和翻译后修饰
参与表观遗传调 控:非编码RN 可以参与表观遗 传调控影响基因 的表达和功能

翻译起始调控: 包括正调控和 负调控影响翻
译效率
正调控:包括 启动子、增强 子等促进翻译
起始
负调控:包括 沉默子、终止 子等抑制翻译
起始
翻译延伸的调控
核糖体:蛋白质合成的场 所
起始密码子:蛋白质合成 的起始点
终止密码子:蛋白质合成 的终止点
延伸因子:参与蛋白质合 成的延伸过程
释放因子:参与蛋白质合 成的释放过程
时序调控机制的研究进展
发现基因表达调控的时序性
研究基因表达调控的调控网络
研究基因表达调控的机制 发现基因表达调控的调控因子
研究基因表达调控的调控机制在原核生物 中的作用
研究基因表达调控的调控机制在原核生物 中的调控机制
07
原核生物基因表达调控的应用前景
基因工程与合成生物学中的应用
基因工程:通过基因重组 技术将外源基因导入原核 生物实现基因表达调控
合成生物学:通过设计、 构建和优化基因回路实现 原核生物的基因表达调控
生物制药:利用原核生物 基因表达调控技术生产药 物、疫苗等
生物能源:利用原核生物 基因表达调控技术生产生 物燃料如乙醇、生物柴油 等
环境保护:利用原核生物 基因表达调控技术降解污 染物实现环境修复
农业:利用原核生物基因 表达调控技术改良作物品 种提高作物抗病、抗虫、 抗逆能力

原核生物基因表达的机理及其调控

原核生物基因表达的机理及其调控

原核生物基因表达的机理及其调控原核生物是一类单细胞生物,其基因组包括细胞质内的DNA和可能存在于外部的质粒DNA。

基因是生命的基本单位,通过基因表达来实现细胞内各种生物活动的调节、协调和控制。

这里将重点介绍原核生物基因表达的机理及其调控。

基因表达的三个步骤基因表达分为三个主要步骤:转录、翻译和调节。

转录是指将DNA序列转换成RNA序列的过程;翻译是指RNA序列被翻译成氨基酸序列的过程,进而合成蛋白质;调节是指生物体在不同状态下对基因表达的调整和控制。

转录的机理和调控转录是从DNA合成RNA的过程。

在细胞内,RNA聚合酶是起主导作用的酶,可以将位于DNA模板链上的核苷酸与其形成互补配对的核苷酸连接起来,从而合成RNA,这个过程是由DNA模板指导的。

在原核生物中,转录过程相对简单。

细菌细胞中,只有一个RNA聚合酶可以完成所有RNA的合成,并且细菌细胞中的大多数基因都是成串排列的,构成的连续片段被称为“操纵子”。

细菌的一个操纵子通常包含3个区域,启动子、结构基因和终止子。

其中,启动子包含一段特别的DNA序列,被RNA聚合酶认识为转录起点,使得RNA聚合酶可以将核苷酸序列转录为RNA。

结构基因由串联的核苷酸序列组成,决定了合成的RNA分子序列构建。

终止子是一些DNA序列,确定RNA聚合酶在终止转录时的位置。

转录过程中的调控非常重要。

原核生物常常通过启动子区域的开放或关闭调控基因的转录。

这可以通过转录因子的作用来实现。

例如,细菌的“cap结构”和“UTR”可以帮助细胞发现起始位置。

激活蛋白可以缠绕到基因区域,启动转录酶的工作进程。

还有其他的转录因子,他们的作用是为转录酶提供指导信号。

翻译的机理和调控翻译是在RNA模板的指导下,由核糖体将合成的氨基酸序列合成成蛋白质的过程。

在原核生物中,翻译是通过紧密联系的核糖体和RNA复合物实现的。

核糖体由大大小小两个亚基组成,并特异地识别不同氨基酸。

它通过扫描RNA序列来寻找指定的起始区域(起始密码子),并始终按照特定的氨基酸序列连接合成蛋白质。

第7章原核生物基因表达的调控

第7章原核生物基因表达的调控
④ 当阻遏物与操纵基因结合时,lac mRNA转录起始受到抑制。
Z编码β-半乳糖苷酶:将乳糖水解成葡萄糖和半乳糖。
Y编码β-半乳糖苷透过酶:使外界的β-半乳糖苷(如乳糖)能透过大肠杆
菌细胞壁和原生质膜进入细胞内。
A编码β-半乳糖苷乙酰基转移酶:乙酰辅酶A上的乙酰基转到β-半乳糖苷
上,形成乙酰半乳糖。
gene
正调控
调控蛋白
负调控
结构基因表达
▪ 负调控:抑制基因表达的调控方式 ▪ 正调控:促进基因表达的调控方式
B、特殊代谢物的调控
诱导(induction)
阻遏(repression)
inducer
gene
repressor
gene
特殊代谢物
诱导 阻遏
结构基因表达
诱导物、可诱导基因 阻遏物、可阻遏基因
无葡萄糖、 有乳糖-----cAMP水平高 (2)cAMP与CRP结合形成有活性的
CRP- cAMP 复合物 (3)CRP-cAMP 与Plac结合 (4)增强了RNA聚合酶与启动子的结合
(5)lacZ, lacY 、 lacA高表达
105
40
105
41
乳糖、G存在与否及与操纵子正、负控因素、 基因开放与关闭情况如下:
CRP
Binding
RNA
Promoter
Operator
CRP
Pol. Repressor
cAMP
LacZ
LacY
LacA
Repressor mRNA
STOP
Right there
CRP
Polymerase
cAMP
Repressor
cAMP
CRP

原核生物基因表达调控的基本结构单元

原核生物基因表达调控的基本结构单元

原核生物基因表达调控的基本结构单元(原创实用版)目录1.原核生物基因表达调控的基本概念2.原核生物基因表达调控的基本结构单元3.操纵子学说及其在原核生物基因表达调控中的作用4.调控系统的分类和特点5.原核生物基因表达调控与真核生物基因表达调控的异同正文原核生物基因表达调控的基本概念原核生物基因表达调控是指原核生物细胞内基因转录和翻译的过程,通过一系列分子机制和调控系统来实现对基因表达的控制。

基因表达调控在生物体的生长、发育、适应环境变化等过程中起着至关重要的作用。

原核生物基因表达调控的基本结构单元原核生物基因表达调控的基本结构单元包括启动子、操纵子和终止子。

这些结构单元分别位于基因的上游和下游区域,共同参与基因表达的调控。

1.启动子:启动子是基因转录的起始区域,包含一些关键的序列和元件,如识别转录因子的结合位点、RNA 聚合酶结合位点等。

启动子的作用是招募 RNA 聚合酶,从而启动基因的转录过程。

2.操纵子:操纵子是原核生物基因表达调控的核心结构单元,负责调控特定基因的表达。

操纵子通常包含一个调控序列和一组与之相互作用的转录因子。

调控序列可以分为两类:一类是诱导序列,可以与诱导型转录因子结合,从而激活基因表达;另一类是阻遏序列,可以与阻遏型转录因子结合,从而抑制基因表达。

3.终止子:终止子位于基因的下游区域,是基因转录的终止区域。

终止子包含一些特定的序列和元件,如终止子识别蛋白结合位点、RNA 聚合酶解离位点等。

终止子的作用是引导 RNA 聚合酶从 DNA 模板上脱离,从而结束基因的转录过程。

操纵子学说及其在原核生物基因表达调控中的作用操纵子学说是原核生物基因表达调控的基本理论,该学说认为,原核生物的基因表达调控主要是通过操纵子和与之相互作用的转录因子来实现的。

大多数调控系统是负调系统,即通过阻遏型转录因子来抑制基因表达,但也存在少数正调系统,即通过诱导型转录因子来激活基因表达。

调控系统的分类和特点原核生物基因表达调控系统可以根据调控方式和调控范围进行分类。

第六章 原核生物基因表达调控

第六章 原核生物基因表达调控

图6-7 乳糖操纵子结构模式图
第二节 原核基因表达的调控
乳糖操纵子的上游有一个独立转录的基因lacI,其编码产物LacI 可以结合在乳糖操纵子的操纵基因(lacO)上,即转录控制区,阻抑 下游结构基因的表达。因此,乳糖操纵子是一个负调控系统(图68)。其中,LacI是具有负调控作用的反式作用因子,LacI作用的靶 DNA序列lacO是顺式作用元件。
trpB(UGA处翻译终止) -UGA -GAA-AUC- UGA-UGG-AA A UG-G AAtrpA(AUG处翻译起始)
第二节 原核基因表达的调控
3.稀有密码子对翻译的影响 DNA复制时,引物酶催化一段RNA引物的合成,引物酶 由dnaG编码。rpsU-dnaG-rpoD组成一个转录单位,产生多 顺反子转录物。细胞内三个基因的终产物的浓度相差却很 大,rpsU产物浓度为4×104个/细胞,dnaG产物50个/细胞, rpoD产物2800个/细胞。菌体通过使用稀有密码子,使转 录为一条mRNA链的三个基因的表达产物量可以有很大差异。
第二节 原核基因表达的调控
ቤተ መጻሕፍቲ ባይዱ
图6-10 色氨酸操纵子的负调控
第二节 原核基因表达的调控
4.阿拉伯糖操纵子 阿拉伯糖与乳糖一样,可替代葡萄糖作为碳源物质被 菌体利用。大肠杆菌中,阿拉伯糖(Ara)代谢所需酶的 三个基因分别是:核酮糖激酶基因( araB)、L-Ara异构 酶 基 因 ( araA)、L- 核 酮 糖 - 5 - 磷 酸 差 向 异 构 酶 基 因 ( araD),组成一个基因簇,有共同的启动子 PBAD。与其 它操纵子不同的是,操纵序列位于 PBAD 上游,操纵序列左 端有另一方向转录的启动子 PC,负责调节基因araC的转录, 其产物AraC蛋白有两种活性形式,Pr 对 PBAD 的表达起阻遏 作用,Pi对PBAD的表达起激活作用(图6-11)。

原核生物基因表达调控

原核生物基因表达调控

20
同位素示踪实验
把大肠杆菌细胞放在加有放射性35S标记的氨基酸,但没 有半乳糖诱导物的培养基中繁殖几代然后再将这些带有 放射活性的细菌转移到不含35S、无放射性的培养基中 随着培养基中诱导物的加入, β-半乳糖苷酶便开始合成。 分离β-半乳糖苷酶, 发现这种酶无35S标记说明酶的合 成不是由前体转化而来的, 而是加入诱导物后新合成的。
• Jacob和Monod认为诱导酶(他们当时称为适应酶)
现象是个基因调控问题, 可以用实验方法进行研究, 因此
选为突破口, 终于通过大量实验及分析, 于1961年建立
了该操纵子的控制模型。
-
21
酶的诱导
-
22
• 酶的诱导现象是生物进化过程中出现的一种合理、 经济地利用有限资源的本能。
• 酶诱导已证明是低等生物的普遍现象。
倒位片段
鼠伤寒沙门菌鞭毛素基- 因的调节
H1鞭毛素
10
鼠伤寒沙门氏菌(S.typhimrium)的相转变(phase variation)
-
11
2.σ 因子对原核生物转录起始的调控
σ因子:原核生物RNA聚合酶的一个亚基,是转录起 始所必需的因子,主要影响RNA聚合酶对转录起始 位点的正确识别,这种σ因子称σ70,此外还有分子量 不同,功能不同的其他σ因子 。
PO
操纵子可视为原核生物的转录单位,它可以逐个
地从原核生物基因组中分离出来,对其结构功
能加以研究。
-
15
3.乳糖操纵子
1) 乳糖操纵子的结构
启动子 操纵基因
调节蛋白
(阻遏蛋白)
-
结构基因
16
3个编码的结构基因
• Z编码β-半乳糖苷酶: 将乳糖水解成葡萄糖和半乳糖,还能 将乳糖转变为异构乳糖

分子生物学第七章原核生物基因表达调控

分子生物学第七章原核生物基因表达调控
31
(三)、阻遏物 lac I 基因产物及功能
Lac 操纵子阻遏物 mRNA 是由弱启动子控制下组 成型合成的,该阻遏蛋白具有4个相同的亚基,每个亚 基均含347个氨基酸残基。
lacI 基因为组成型,通过启动子的上升突变体可获 得较多的阻遏蛋白;
阻遏物 2022/10/18
β-半乳糖苷酶 透过酶 转乙酰3酶2
2022/10/18
16
调节机理:
细胞中某一氨基酸或嘧啶的浓度发生改变
氨酰 – tRNA的浓度变化
核糖体在转录产物RNA上的结合位置不 同,使得RNA形成特定的二级结构 由RNA的二级结构判断基因能否继续转录
2022/10/18
17
3、降解物对基因活性的调节P252
葡萄糖效应或降解物抑制作用:细菌培养基中在 葡萄糖存在的情况下,即使加入乳糖、半乳糖等 诱导物,与其对应的操纵子也不会启动,这种现 象称为葡萄糖效应或降解物抑制作用。
这是通过阻止乳糖操纵子表达来完成的,这种 效应称为降解物抑制(catabolite repression)。
2022/10/18
35
(五)、cAMP与代谢物激活蛋白
葡萄糖
葡萄糖-6-磷酸
甘油 某些代谢产物抑制活性
腺苷酸环化酶
ATP
cAMP
编码
cAMP-CAP
Crp基因
代谢物激活蛋白 CAP
葡萄糖对其它糖的代谢抑制,是通过对 cAMP的抑制完成的。
2022/10/18
22
一、酶的诱导 ——
lac 体系受调控的证据
两种含硫的乳糖类似物:
异丙基巯基半乳糖苷
(IPTG)
巯甲基半乳糖苷(TMG)
E. coli 在不含乳糖的培养基生 长时,β-半乳糖苷酶含量极低;

分子生物学课件第十章 原核生物基因表达的调控

分子生物学课件第十章 原核生物基因表达的调控

乳糖操纵子
⑴ 乳糖操纵子的结构与功能 操纵子(operon): 结构基因(structural gene)、 操纵子(operon): 结构基因(structural gene)、启动子 (promoter,P 和操纵子(operator, (operator,O (promoter,P)和操纵子(operator,O)。阻遏物基因 (inhibitor,I),产生阻遏物(repressor)。 产生阻遏物(repressor) (inhibitor,I),产生阻遏物(repressor)。
第十章 原核生物基因表达的调控
乳糖操纵子
⑵ 乳糖操纵子调控方式 阻遏蛋白的负调节 ① 阻遏蛋白的负调节 ☆ 无乳糖:lac操纵子处于阻遏状态。 无乳糖:lac操纵子处于阻遏状态。 操纵子处于阻遏状态
1 概述 1.6 原核基因表达调控的几个基本概念 顺式作用元件 (cis-acting element ) :真核生物结构基因 (cis:真核生物结构基因 上游的调控区存在的相似或一致性的DNA序列, DNA序列 上游的调控区存在的相似或一致性的DNA序列,如 动子、增强子等。 动子、增强子等。 反式作用因子(trs-acting factor):直接或间接辨认、结合 反式作用因子(trsfactor) 直接或间接辨认、
第十章 原核生物基因表达的调控
1 概述 1.1 基因表达的时空特异性 时间特异性(temporal specificity): 时间特异性(temporal specificity): 某一基因的表达严格按特定的时间顺序发生。 某一基因的表达严格按特定的时间顺序发生。 ☆ Hb (hemoglobin) α珠蛋白基因簇:ζ(胚胎型)、α 珠蛋白基因簇: 胚胎型)、α )、 β珠蛋白基因簇:ε(胚胎型)、γ(胎儿型)、 珠蛋白基因簇: 胚胎型)、γ 胎儿型)、 )、 β、δ(成人型) 成人型) 血红蛋白: 胚胎型) 胎儿型) 血红蛋白:ζ2ε2 (胚胎型)→α2γ2(胎儿型) 成人型) →α2β2 (成人型) 第十章 原核生物基因表达的调控

原核生物的基因表达和调控机制

原核生物的基因表达和调控机制

原核生物的基因表达和调控机制原核生物是指不含细胞核和其他复杂的细胞器官的生物,包括细菌和蓝藻等。

这些生物虽然简单,但仍具有复杂的基因表达和调控机制,通过调控基因的转录和翻译来响应环境变化和完成生物学功能。

本文将探讨原核生物的基因表达和调控机制。

基因表达和调控的基本概念基因是指DNA分子上编码一个蛋白质的序列,是生物体内传递遗传信息的基本单位。

基因表达指的是将基因的信息转化为蛋白质的过程,包括转录和翻译两个步骤。

其中,转录是指将DNA序列转化为mRNA(信使RNA)的过程,而翻译是指将mRNA上的三联体密码子翻译为相应的氨基酸序列的过程。

基因表达的过程涉及到基因启动子、转录因子、RNA聚合酶等多个分子的相互作用,需要经过复杂的调控机制来保证在特定的时空条件下进行。

原核生物中基因的表达和调控原核生物虽然没有细胞核和其他复杂的细胞器官,但其基因的表达和调控机制同样有其特殊性。

以下将从基因的结构、转录、RNA的修饰和翻译等方面探讨原核生物中基因的表达和调控。

基因结构原核生物中,基因通常呈现为一条连续的DNA链,其中编码区域与非编码区域相互交错,没有剪切和剪接等后加工处理。

编码区通常以ATG作为起始密码子,以TAG、TAA或TGA作为终止密码子。

在非编码区,存在启动子、转录因子结合位点、RNA剪切位点和终止符等辅助元素,有助于调控基因的表达。

相比于真核生物中复杂的基因结构,原核生物中基因的紧凑结构为调控提供了更多的可能性。

转录的调控在原核生物中,转录的调控可以通过多种方式实现,包括转录起始的选择、负向调控和正向调控等。

转录起始的选择:在原核生物中,转录的起始位点可以在基因内或外,不同的起始位点可以产生不同长度的转录产物,从而产生不同的蛋白质或非编码RNA。

此外,在一些条件下,同一基因的多个启动子甚至可以同时被使用,进一步增加了基因表达的多样性。

负向调控和正向调控:在原核生物中,负向调控指的是一些转录抑制因子的作用,可以通过抑制转录因子的结合来阻止基因的转录。

原核生物基因表达调控概述

原核生物基因表达调控概述

原核⽣物基因表达调控概述原核⽣物基因表达调控概述基因表达调控是⽣物体内基因表达调节控制机制,使细胞中基因表达的过程在时间,空间上处于有序状态,并对环境条件的变化做出适当的反应复杂过程。

1.基因表达调控意义在⽣命活动中并不是所有的基因都同时表达,代谢过程中所需各种酶和蛋⽩质基因以及构成细胞化学成分的各种编码基因,正常情况下是经常表达的,⽽与⽣物发育过程有关的基因则需在特定的时空才表达,还有许多基因被暂时的或永久的关闭⽽不来表达。

2.原核基因表达调控特点原核⽣物基因表达调控存在于转录和翻译的起始、延伸和终⽌的每⼀步骤中。

这种调控多以操纵⼦为单位进⾏,将功能相关的基因组织在⼀起,同时开启或关闭基因表达即经济⼜有效,保证其⽣命活动的需要。

调控主要发⽣在转录⽔平,有正、负调控两种机制在转录⽔平上对基因表达的调控决定于DNA的结构,RNA 聚合酶的功能、蛋⽩质因⼦及其他⼩分⼦配基的相互作⽤。

细菌的转录和翻译过程⼏乎在同⼀时间内相互偶联。

细胞要控制各种蛋⽩质在不同时期的表达⽔平,有两条途径:(1)细胞控制从其DNA模板上转录其特异的mRNA的速度,这是⼀条经济的途径,可减少从mRNA合成蛋⽩质的⼩分⼦物质消耗,这是⽣物长期进化过程中⾃然选择的结果,这种控制称为转录⽔平调控。

(2)在mRNA合成后,控制从mRNA翻译肽链速度,包括⼀些与翻译有关的酶及其复合体分⼦缔合的装配速度等过程。

这种蛋⽩质合成及其基因表达的控制称为翻译⽔平的调控。

⼆.原核⽣物表达调控的概念(1)细菌细胞对营养的适应细菌必须能够⼴泛适应变化的环境条件。

这些条件包括营养、⽔分、溶液浓度、温度,pH等。

⽽这些条件须通过细胞内的各种⽣化反应途径,为细胞⽣长的繁荣提供能量和构建细胞组分所需的⼩分⼦化合物。

(2)顺式作⽤元件和反式作⽤元件基因活性的调节主要通过反式作⽤因⼦与顺式作⽤元件的相互作⽤⽽实现。

反式作⽤因⼦的编码基因与其识别或结合的靶核苷酸序列在同⼀个DNA分⼦上。

原核生物的基因表达调控PPT课件

原核生物的基因表达调控PPT课件
➢色氨酸操纵子的阻遏系统
Trp R基因 编码合成阻遏蛋白.当细胞中的色氨酸缺乏 时,阻遏蛋白以游离的形式存在,不能与操纵基因结 合,色氨酸基因正常表达;当细胞中的色氨酸过量时, 色氨酸与阻遏蛋白结合并形成二聚体,二聚体与操纵 基因结合,色氨酸合成被阻断(下图)。
31
色氨酸称为辅阻遏物 (Corepressor)
3. Elongation
8
3. Elongation
17bp
12bp
9
Termination (1)不依赖ρ因子的转录终止(Rho-indepent termination)
发夹结构 特点:回文 序列中富 含G.C碱 基对,在回 文序列的 下游方向 又常有6个 -8个A·T 碱基对;
10
11
5
•在论文中他们首先提出了操纵子(operon)和操纵基因 (operator)的概念,他们的操纵子学说(theory of operon) 使我们得以从分子水平认识基因表达的调控,是一个划 时代的突破。 •他们二人于1965年荣获诺贝尔生理学奖。 •目前发现的操纵子主要有:(1)乳糖操纵子 (2) 色氨酸操纵子 (3)阿拉伯糖操纵子(4) 组氨酸操纵 子
23
(2)当葡萄糖存在时, cAMP在细胞中的含量极低, 二聚体的CAP不能与DNA结合,受其调控的基因 (LacZYA)就不表达。
24
25
➢CAP的结合位点 •CAP与DNA的结合部位是一个反向重复序列,结合位点 可能有3种情况
26RNA polymerase
2
➢基因表达调控包括:基因水平、转录水平、转录后水 平、翻译水平和翻译后水平的调控。
➢原核基因表达调控的特点与方式 ▪调控主要发生在转录水平,有正负调控两种机制; ▪细胞要调控各种蛋白质在不同时期的表达水平有两条 途径: 1)DNA模板转录的速度(转录水平的调控) 2)mRNA翻译的速度(翻译水平的调控)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原核生物基因表达调控概述
基因表达调控是生物体内基因表达调节控制机制,使细胞中基因表达的过程在时间,空间上处于有序状态,并对环境条件的变化做出适当的反应复杂过程。

1.基因表达调控意义
在生命活动中并不是所有的基因都同时表达,代谢过程中所需各种酶和蛋白质基因以及构成细胞化学成分的各种编码基因,正常情况下是经常表达的,而与生物发育过程有关的基因则需在特定的时空才表达,还有许多基因被暂时的或永久的关闭而不来表达。

2.原核基因表达调控特点
原核生物基因表达调控存在于转录和翻译的起始、延伸和终止的每一步骤中。

这种调控多以操纵子为单位进行,将功能相关的基因组织在一起,同时开启或关闭基因表达即经济又有效,保证其生命活动的需要。

调控主要发生在转录水平,有正、负调控两种机制在转录水平上对基因表达的调控决定于DNA的结构,RNA 聚合酶的功能、蛋白质因子及其他小分子配基的相互作用。

细菌的转录和翻译过程几乎在同一时间内相互偶联。

细胞要控制各种蛋白质在不同时期的表达水平,有两条途径:(1)细胞控制从其DNA模板上转录其特异的mRNA的速度,这是一条经济的途径,可减少从mRNA合成蛋白质的小分子物质消耗,这是生物长期进化过程中自然选择的结果,这种控制称为转录水平调控。

(2)在mRNA合成后,控制从mRNA翻译肽链速度,包括一些与翻译有关的酶及其复合体分子缔合的装配速度等过程。

这种蛋白质合成及其基因表达的控制称为翻译水平的调控。

二.原核生物表达调控的概念
(1)细菌细胞对营养的适应
细菌必须能够广泛适应变化的环境条件。

这些条件包括营养、水分、溶液浓度、温度,pH等。

而这些条件须通过细胞内的各种生化反应途径,为细胞生长
的繁荣提供能量和构建细胞组分所需的小分子化合物。

(2)顺式作用元件和反式作用元件
基因活性的调节主要通过反式作用因子与顺式作用元件的相互作用而实现。

反式作用因子的编码基因与其识别或结合的靶核苷酸序列在同一个DNA分子上。

RNA聚合酶是典型的反式作用因子。

顺式作用元件是指对基因表达有调节活性的DNA序列,其活性只影响与其
自身同处于一个DNA分子上的基因;这种基因DNA序列通常不编码蛋白质,
多位于基因旁侧或内含子中。

位于转录单位开始和结束位置上启动子和终止子,都是典型的顺式作用元件。

(3)结构基因和调节基因
结构基因是编码蛋白或RNA基因。

细菌的结构基因一般成簇排列,多个结
构基因受单一启动子共同控制,使整套基因或者都不表达。

结构基因编码大量功能各异的蛋白质,其中有组成细胞核组织器官基本成分的结构蛋白,有催化活性的酶和各种调节蛋白等。

调节基因是编码合成那些参与基因表达调控的RNA和蛋白质的特异性DNA序列。

调节基因编码的调节物通过与DNA上的特定位点
结合控制转录是调控关键。

(4)操纵基因和阻遏蛋白
操纵基因是操纵子中的控制基因,在操纵子上一般与启动子相邻,通常处于开放状态,使RNA聚合酶能够通过并作用于启动子启动转录,阻遏蛋白是负调控系统中由调节基因编码的调节蛋白,它本身或与辅阻遏蛋白物一起合成于操纵基因,阻遏蛋白操纵因子结构基因的转变,阻遏蛋白可被诱导物变构失活,从而导致不可阻遏或去阻遏。

(5)组蛋白和调节蛋白
细胞内有许多种蛋白质数量几乎不受影响,这些蛋白质称为组蛋白或特定持家蛋白。

蛋白调节是一类特殊的蛋白,它们可以调节和影响基因表达。

有两种类型的调节蛋白,即正调节蛋白和负调节蛋白,前者是激活蛋白后者是阻遏蛋白。

(6)操纵子
操纵子是原核生物在分子水平上基因表达调控的单位,由调节基因、启动子、操纵子和结构基因等序列构成。

通过调节基因编码的调节或与诱导物、辅阻遏物协同作用,开启或关闭操纵基因,对操纵子结构基因表达进行正负调控。

(7)原核生物基因对调控作用做出反应的类型
原核生物操纵子对调控蛋白及小分子调节物做出的反应分为可诱导和可抑制两类型。

①阻遏蛋白有活性
有活性的阻遏蛋白,对结构基因能够实行负调控,阻遏转录起始正常进行。

②阻遏蛋白无活性
没有活性的阻遏蛋白不能结合到靶基因上,使后者处于表达状态。

③激活蛋白有活性
有活性的激活蛋白可以使靶基因处于激活状态,属于组成型的正负调控表达。

当存在小分子辅阻遏物时,它与激活蛋白结合成为失去活性的激活蛋白复合物,后者使靶基因由于缺乏激活蛋白而不能表达。

④激活蛋白无活性
没有活性的激活蛋白不能激活靶基因,基因不转录和表达。

(8)小分子效应物
原核生物的操纵子通过调节蛋白质与小分子物质相互作用达到诱导状态,这些小分子间是代谢途径的底物或产物,属于基因表达的调节物质,称为效应物。

细菌两种效应物:A诱导物、B辅助物。

文章来源:部分信息总结于网络,如有雷同不胜荣幸。

相关文档
最新文档