判别分析的过程及结果解读

合集下载

判别分析(spss)

判别分析(spss)
判 别 分 析
判别
有一些昆虫的性别很难看出,只有通过 解剖才能够判别; 但是雄性和雌性昆虫在若干体表度量上 有些综合的差异。于是统计学家就根据 已知雌雄的昆虫体表度量(这些用作度 量的变量亦称为预测变量)得到一个标 准,并且利用这个标准来判别其他未知 性别的昆虫。 这样的判别虽然不能保证百分之百准确, 但至少大部分判别都是对的,而且用不 着杀死昆虫来进行判别了。
-4
-3
-2
-1
0
1
2
3
-4 -2 0 2 4 6
逐步判别法(仅仅是在前面的方 逐步判别法 仅仅是在前面的方 法中加入变量选择的功能) 法中加入变量选择的功能
有时,一些变量对于判别并没有什么作用, 为了得到对判别最合适的变量,可以使用 逐步判别。也就是,一边判别,一边引进 判别能力最强的变量, 这个过程可以有进有出。一个变量的判别 能力的判断方法有很多种,主要利用各种 检验,例如Wilks’ Lambda、Rao’s V、The Squared Mahalanobis Distance、Smallest F ratio 或 The Sum of Unexplained Variations等检验。其细节这里就不赘述了; 这些不同方法可由统计软件的各种选项来 实现。逐步判别的其他方面和前面的无异。
0.035IS+3.283SE+0.037SA-0.007PRR+0.068MS-0.023MSR-0.385CS-3.166 035IS+3 283SE+0 037SA- 007PRR+0 068MS- 023MSR- 385CSIS+ SE+ SA PRR+ MS MSR CS 005IS+ 567SE+ 041SA+ 012PRR+ 048MS+ 044MSR IS+0 SE+0 SA+0 PRR+0 MS+0 MSR- 159CS CS0.005IS+0.567SE+0.041SA+0.012PRR+0.048MS+0.044MSR-0.159CS-4.384

数据分析知识:数据分析中的判别分析方法

数据分析知识:数据分析中的判别分析方法

数据分析知识:数据分析中的判别分析方法判别分析(Discriminant Analysis)是一种经典的统计分析方法,常用于解决分类问题。

通过对已知分类的数据进行学习,再对未知数据进行分类。

判别分析方法的主要目标是确定一个或多个变量的线性组合,这个线性组合在不同类别中能够最大化差异,最小化类内差异。

这篇文章将介绍判别分析的基本概念、方法和应用,并对判别分析和其他分类方法进行比较。

一、判别分析的基本概念1.1判别分析的基本思想判别分析的基本思想是找到一个或多个线性组合,使得不同类别之间的差异最大化,同一类别内的差异最小化。

这个线性组合可以被用来将数据投影到一个低维空间,从而实现分类。

比如,对于二分类问题,找到一条直线将两类数据分开。

1.2判别分析的应用场景判别分析广泛应用于生物医学、社会科学、市场营销等领域。

比如,利用判别分析对患者进行分类,预测其疾病的风险;对消费者进行分类,预测其购买行为等。

1.3判别分析的假设判别分析方法通常有一些假设,比如多元正态性、同方差性和无相关性等。

如果这些假设不成立,可能会影响判别分析的结果。

二、判别分析的方法2.1线性判别分析(LDA)线性判别分析是判别分析中最常用的方法之一。

它通过找到一个或多个线性组合,使得不同类别之间的差异最大化,同一类别内的差异最小化。

在实际应用中,常常利用LDA来降维,然后使用简单的分类器进行分类。

2.2二次判别分析(QDA)二次判别分析是判别分析的一种扩展,它允许类别内的协方差不相等。

相比于LDA,QDA的分类边界更加灵活,但是通常需要更多的参数。

2.3特征抽取判别分析通常需要找到一个或多个变量的线性组合,这些变量通常被称为特征。

特征抽取是判别分析的一个重要步骤,它可以通过一些算法比如主成分分析(PCA)来实现。

特征抽取的目标是尽可能多地保留原始数据的信息,在降低维度的同时尽可能减少信息损失。

三、判别分析的应用3.1医学领域在医学领域,判别分析被广泛应用于疾病诊断、治疗方案选择等方面。

第四章 判别分析

第四章 判别分析

.04
5.06
.13
2
.04
.01
1.50
.71
待判
-.06
-.06
1.37
.40
待判
.07
-.01
1.37
.34
-.13
-.14
1.42
.44
.15
.06
2.23
.56
.16
.05
2.31
.20
.29
.06
1.84
.38
.54
.11
2.33
.48
待判 待判 待判 待判 待判 待判
企业 序号
1 2 3 4 5 6 7 8
由于判别分析是假设两组或多组样品取自不同总 体,因此要求样本各类型的均值向量在统计上具 有显著差异,如能反映出显著差异,则判别函数 显著,有能力将不同的类型区别开来。
所以对判别效果的检验即是对多元正态总体的均 值向量是否相等进行检验,利用Hotelling T2统计 量进行检验。
回代是指将训练样本依次代入判别函数,检查错 判情况,回代错判率低即是指依训练样本建立的 判别函数偏差小,建立方法可靠。
短期支付能力 1.09 1.51 1.01 1.45 1.56 .71 .22 1.31 2.15 1.19 1.88 1.99 1.51 1.68 1.26 1.14 1.27 2.49 2.01
生产效率指标 .45 .16 .40 .26 .67 .28 .18 .25 .70 .66 .27 .38 .42 .95 .60 .17 .51 .54 .53
.52
2
.15
.05
2.17
.55
2
-.10
-1.01

关于判别分析的理解

关于判别分析的理解

关于判别分析的理解判别分析⼜称“分辨法”,是在分类确定的条件下,根据某⼀研究对象的各种特征值判别其类型归属问题的⼀种多变量统计分析⽅法。

其基本原理是按照⼀定的判别准则,建⽴⼀个或多个判别函数,⽤研究对象的⼤量资料确定判别函数中的待定系数,并计算判别指标。

据此即可确定某⼀样本属于何类。

当得到⼀个新的样品数据,要确定该样品属于已知类型中哪⼀类,这类问题属于判别分析问题。

判别分析,是⼀种统计判别和分组技术,就⼀定数量样本的⼀个分组变量和相应的其他多元变量的已知信息,确定分组与其他多元变量信息所属的样本进⾏判别分组。

要解决的问题:已知某种事物有⼏种类型,现在从各种类型中各取⼀个样本,由这些样本设计出⼀套标准,使得从这种事物中任取⼀个样本,可以按这套标准判别它的类型。

分类:根据判别中的组数,可以分为两组判别分析和多组判别分析;根据判别函数的形式,可以分为线性判别和⾮线性判别;根据判别式处理变量的⽅法不同,可以分为逐步判别、序贯判别等;根据判别标准不同,可以分为距离判别、Fisher判别、Bayes判别法等。

判别分析通常都要设法建⽴⼀个判别函数,然后利⽤此函数来进⾏批判,判别函数主要有两种,即线性判别函数(Linear Discriminant Function)和典则判别函数(Canonical Discriminate Function)。

线性判别函数是指对于总体,如果各组样品互相对⽴,且服从多元正态分布,就可建⽴线性判别函数。

典则判别函数是原始⾃变量的线性组合,通过建⽴少量的典则变量可以⽐较⽅便地描述各类之间的关系,例如可以⽤画散点图和平⾯区域图直观地表⽰各类之间的相对关系等。

建⽴判别函数的⽅法⼀般由四种:全模型法、向前选择法、向后选择法和逐步选择法。

1)全模型法是指将⽤户指定的全部变量作为判别函数的⾃变量,⽽不管该变量是否对研究对象显著或对判别函数的贡献⼤⼩。

此⽅法适⽤于对研究对象的各变量有全⾯认识的情况。

第六章--判别分析

第六章--判别分析

设有两个正态总体,
现有一个样品如图所示的A点,
A
距总体X的中心
远,距总体Y的中心

若按欧氏距离来度量,A点离总体X要比离总体Y近一些。但是,从概率论的
角度看,A点位于 点离总体Y近一些。
右侧的
而位于
左侧的
处,应该认为A
样品点x到
的马氏距离为:
(一)当

(二)当

虽然在两个总体有显著差异的条件下,误判概率很小,但当这种差异不很显著时,误判的 概率就很大。因此,只有当两个总体的均值有显著差异时,做判别分析才有意义。
-7.182 -4.379 -2.144 -9.440 -6.573 -6.906 -4.245
原分类 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
新分类 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3
第二节 贝叶斯(Bayes)判别
判别分析就是在研究对象用某种方法分好若干类(组)的情况下,确定新样品属 于已知类别中哪一类的多元统计分析方法。
判别分析和聚类分析不同,判别分析是在已知研究对象分成若干类型(或 组别) 并已取得各种类型的一批已知样品的观测数据 ,在此基础上根据某种准则建立 判别函数式,然后对未知类型的样品进行判别分类。而对于聚类分析,一批给 定样品要划分的类型事先并不知道,需要通过聚类分析来确定各样品所属的类 型。所以,判别分析和聚类分析往往结合起来运用。
第六章 判别分析
第一节 什么是判别分析
在科学研究和日常生活中,往往会遇到这样的问题,即根据观测数据对所研究的对象 进行分类(组)判别。例如,在经济学中可根据人均国内生产总值、人均消费水平等 多种指标来判别一个国家的经济发展程度所属类型;在气象学中,根据已有的气象资 料(气温、气压、湿度等)来判断明天是阴天还是晴天,有雨还是无雨等。以上各方 面的问题具有一个共同特点:就是事先已有“类”的划分,或事先已对某些已知样品 分好了“类”,需要判断那些还未分好的的样品究竟属于哪一类。

判别分析法

判别分析法

判别分析判别分析又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。

其基本原理是按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标。

据此即可确定某一样本属于何类。

1:距离判别的判别准则和判别函数:设总体A 和B 的均值向量分别为1μ和2μ,协方差阵分别为1∑和2∑,今给一个样本x 要判断x 来自哪一个总体。

若协方差相同,即1212μμ∑∑∑≠==,计算x 到总体A 和B 的Mahalanobis 距离(,)d x A 和(,)d x B ,Mahalanobis 的计算有以下定义:定义5.1 设x 是从均值为μ,协方差为∑的总体A 中抽取的样本,则总体A 内两点x 与y 的Mahalanobis 距离(简称马氏距离)定义为:(,)d x y =定义样本x 与总体A 的Mahalanobis 距离为:(,)d x A =然后进行比较,若(,)(,)d x A d x B ≤,则判定x 属于A ;否则判定x 来自B 。

由此得到如下判别准则:,(,)(,),(,)(,)A d x A d x B x B d x A d x B ≤⎧∈⎨≥⎩令T 112()()()w x x μ∑μμ-=-- 称()w x 为两总体距离的判别函数,由此判别准则变为,()0,,()0.A w x x B w x ≥⎧∈⎨≤⎩在实际计算中,总体的均值和协方差阵都是未知的,由此总体的均值与协方差需要用样本的均值和协方差来代替,设1(1)(1)(1)12,,,nx x x ⋅⋅⋅是来自总体A 的1n 个样本点,2(2)(2)(2)12,,,n x x x ⋅⋅⋅是来自总体B 的2n 个样本,则样本的均值和协方差为 11ˆ,1,2in ii i j j iux x i n ====∑2()()()()T1211121211ˆ=()()()22in i i i i j ji j x x x x S S n n n n ==∑---++-+-∑∑ 其中()()()()T 1()(),1,2in i i i i i j j j S x x x x i ==--=∑对于待测样本x ,其判别函数定义为T 1(1)(2)ˆˆˆˆ()()()wx x x x x ∑-=-- 其中(1)(2)ˆˆˆ2x x x +=其判别准则为ˆ,()0,ˆ,()0.A wx x B wx ≥⎧∈⎨≤⎩ 2:若协方差不同,即1212μμ∑∑≠≠,对于样本x ,在方差不同的情况下,判别函数为 T -1T -1222111ˆˆ()()()()()W x x x x x μ∑μμ∑μ=----- 在实际计算中,总体的均值和协方差阵都是未知的,由此总体的均值与协方差需要用样本的均值和协方差来代替。

多元统计分析判别分析(方法步骤分析总结)

多元统计分析判别分析(方法步骤分析总结)

判别分析:实验步骤:1.在SPSS窗口中选择:分析-分类-判别,将变量导入自变量框中,group导入分组变量中,选择定义范围,最小为1最大为3,并选择一起输入自变量,点击继续2.点击统计量,描述性中选择“均值”,“单变量”和”Box”,选择函数系数中的“Fisher”“未标准化”,矩阵中选择“组内相关”,点击继续3.点击分类点击继续4.点击“保存”,三个框均选中,点击继续5.点击确定实验结果分析:1.表1 组统计量看各个总体在均值等指标上的值是否接近,若接近说明各类之间在该指标差异不大表2表3 汇聚的组内矩阵若自变量之间存在高度相关,则判别分析价值不大,但并不严格,允许出现一定的相关表4 协方差矩阵的均等性的箱式检验检验结果p值>0.05时,说明协方差矩阵相等,可以进行bayes检验表5表7由表7可知,两个Fisher 判别函数分别为1123456212345674.99 1.861 1.6560.8770.7980.098 1.57929.4820.867 1.1550.3560.0890.0540.69y X X XX X X y X X X X X X =--+-+++=--+--++表8 结构矩阵该表是原始变量与典型变量(标准化的典型判别函数)的相关系数,相关系数的绝对值越大,说明原始变量与这个判别函数的相关性越强由表9可知各类别重心的位置,通过计算观测值与各重心的距离,距离最小的即为该观测值的分类。

第一类:11234565317.2143.9153.190.153.011.0189.3F X X X X X X =--+-+++2. 将各样品的自变量值代入上述三个Bayes 判别函数,得到函数值。

比较函数值,哪个函数值比较大就可以判断该样品判入哪一类下面是赠送的保安部制度范本,不需要的可以编辑删除谢谢!保安部工作制度一、认真贯彻党的路线、方针政策和国家的法津法规,按照####年度目标的要求,做好####的安全保卫工作,保护全体人员和公私财物的安全,保持####正常的经营秩序和工作秩序。

多元统计分析 判别分析(方法+步骤+分析 总结)

多元统计分析 判别分析(方法+步骤+分析 总结)

判别分析:实验步骤:1.在SPSS窗口中选择:分析-分类-判别,将变量导入自变量框中,group导入分组变量中,选择定义范围,最小为1最大为3,并选择一起输入自变量,点击继续2.点击统计量,描述性中选择“均值”,“单变量”和”Box”,选择函数系数中的“Fisher”“未标准化”,矩阵中选择“组内相关”,点击继续3.点击分类点击继续4.点击“保存”,三个框均选中,点击继续5.点击确定实验结果分析:1.表1 组统计量看各个总体在均值等指标上的值是否接近,若接近说明各类之间在该指标差异不大表2表3 汇聚的组内矩阵若自变量之间存在高度相关,则判别分析价值不大,但并不严格,允许出现一定的相关表4 协方差矩阵的均等性的箱式检验检验结果p值>0.05时,说明协方差矩阵相等,可以进行bayes检验表7由表7可知,两个Fisher 判别函数分别为1123456212345674.99 1.861 1.6560.8770.7980.098 1.57929.4820.867 1.1550.3560.0890.0540.69y XX X X X X y X X X XX X =--+-+++=--+--++表8 结构矩阵该表是原始变量与典型变量(标准化的典型判别函数)的相关系数,相关系数的绝对值越大,说明原始变量与这个判别函数的相关性越强由表9可知各类别重心的位置,通过计算观测值与各重心的距离,距离最小的即为该观测值的分类。

表10 给出贝叶斯判别函数系数第一类:11234565317.2143.9153.190.153.011.0189.3F X X X X X X =--+-+++2. 将各样品的自变量值代入上述三个Bayes 判别函数,得到函数值。

比较函数值,哪个函数值比较大就可以判断该样品判入哪一类。

第5章判别分析

第5章判别分析

第5章判别分析判别分析(discriminantanalysis)是在已知样品分类的前提下,将给定的新样品按照某种分类准则判入某个类中,它是研究如何将个体“归类”的一种统计分析方法.这里的判别规则通常是以已有的数据资料或者现有的部分样品数据作为所谓的“训练样本”建立起来的,并用来对未知类别的新样品进行判别.这种统计方法在实际中很常用,例如医生在掌握了以往各种病症(如肺炎、肝炎、冠心病、糖尿病等)指标特点的情况下,根据一个新患者的各项检查指标来判断该病人有哪类病症;又如在天气预报中,利用已有的一段时期某地区每天气象的记录资料(阴晴雨、气温、风向、气压、湿度等),建立一种判别准则来判别(预报)明天或未来多天的天气状况;再如研究人员依照国家划分不同地区经济类型的数量标准,根据某个地区的GDP、人均收入、消费水平等相关指标判断该地区属于哪一种经济类型等.当然,我们要求判别规则在某种意义下是最优的,例如样品距所属类别的距离最短,或样品归属某个类别的概率最大,或错判平均损失最小等.判别分析与聚类分析的主要区别在于:作聚类分析时,人们事先并不知道所讨论的样品应该分成几类,完全根据样品数据的具体情况来确定;而作判别分析时,样品的分类事先已经明确,需要做的主要工作是利用训练样本建立判别准则,对新样品所属类别进行判定.判别分析的方法很多,本章主要介绍常用的三种,即距离判别、Fisher判别和Bayes判别,并介绍它们在R中的实现过程.5.1 距离判别5.1.1 距离距离是判别分析中的基本概念,距离判别法根据一个样品与各个类别距离的远近对该样品的所属类别进行判定.第4章中列举了六种距离,其中常用的是欧氏距离和马氏距离.设和是两个随机向量,有相同的协方差矩阵Σ,则α与y之间的马氏距离定义为:(5.1)特别地,当∑=I时,马氏距离就是通常的欧氏距离.在判别分析中,马氏距离更常用,这是因为欧氏距离对每一个样品同等对待,将样品x的各分量视作互不相关,而马氏距离考虑了样品数据之间的依存关系,从绝对和相对两个角度考察样品,消除了变量单位不一致的影响,更具合理性.这里以二维情形下一个简单的图形做直观的解释:如图5-1所示,设大椭圆和小椭圆分别表示两个总体G₁和G₂的置信度均为1-α的置信区域,尽管样品x到总体G₂的欧氏距离比到总体G₁的欧氏距离更短,但x却包含在总体G₁的置信椭圆内,同时位于总体G₂的置信椭圆外,说明若用马氏距离这种“标准化”距离来度量的话,样品x到总体G₁的距离更近,应该把样品x判入总体G₁.图5-1欧氏距离与马氏距离的选择示意图5.1.2 两个总体的距离判别设有两个总体G₁和G₂,其均值分别为μ₁和μ₂,有相同的协方差矩阵Σ,对于给定的一个样品x,要判断它属于哪一个总体.如果将样品x到两个总体G₁和G₂的距离d(x,G₁)和d(x,G₂)分别规定为x与μ(i=1,2)的马氏距离,那么,直观的方法i是分别计算样品x到两个总体G₁和G₂的马氏距离d(x,μ₁)和d(x,μ₂),再根据这两个距离的大小来判断x的归属:当d(x,μ₁)<d(x,μ₂)时,判x属于总体G₁;当d(x,μ₁)>d(x,μ₂)时,判α属于总体G₂;当d(x,μ₁)=d(x,μ₂)时,x可以属于总体G₁和G₂中的任何一个,通常把x判入总体G₁.因此判别准则可描述为:由于马氏距离与马氏距离的平方等价,为方便起见,以下考虑两个马氏距离的平方的差(5.2)令,并记(5.3)于是判别准则等价于这个判别准则取决于W(x)的值,通常称W(x)为判别函数,由于它是x的线性函数,又称其为线性判别函数,称a为判别系数.线性判别函数W(x)使用最方便,在实际中应用也最广泛.特别地,当p=1,G₁和G₂的分布分别为N(μ₁,o²)和N(μ₂,o²),μ₁,μ2,o²均为已知,且μ₁<μ₂时,则判别系数为,判别函数为.判别准则为:在实际应用中,总体的均值和协方差矩阵一般是未知的,可由样本均值和样本协方差矩阵分别进行估计.设是来自总体G₁的样本,是来自总体G₂的样本,μ₁和μ₂的一个无偏估计分别为:协方差矩阵Σ的一个联合无偏估计为:式中,此时,判别函数为,其中.这样,判别准则为:应该注意,当μi≠μz,Z₁≠Z₂时,我们仍可采用式(5.2)的变式作为判别函数,即(5.4)它是x的二次函数,相应的判别规则为:最后要强调的就是作距离判别时,μ₁和μ₂要有显著的差异才行,否则判别的误差较大,判别结果没有多大意义.【例5.1】已知某种昆虫的体长和翅长是表征性别的两个重要体形指标,根据以往观测值,雌虫的体型标准值为,雄虫的体型标准值,它们的共同的协方差矩阵为.现捕捉到这种昆虫一只,测得它的体长和翅长分别为7.2和5.6,即,试判断这只昆虫的性别.解:由已知条件,可由式(5.3)计算得所以可判断这只昆虫是一只雄虫.在R中可编写一个简单的程序计算W(x)(注意W(x)=[d²(x,μ₂)-d²(x,μ₁)]/2).>W2equal=function(x,mu1,mu2,S){(mahalanobis(x,mu2,S)-mahalanob is(x,mu1,S))/2}>mu1=c(6,5);mu2=c(8,6);S=matrix(c(9,2,2,4),nrow=2);x=c(7.2,5.6 )>W2equal(x,mu1,mu2,S)[1]-0.053125所以应判断这只昆虫是一只雄虫.若又捕捉到另一只同类昆虫,其体长和翅长数据为,则可继续计算如下:>x=c(6.3,4.9>W2equal(x,mu1,mu2,S)[1]0.225应将其判断为一只雌虫.当雌虫和雄虫的协方差矩阵不相同时,可由式(5.4)来计算W*(x),再根据计算结果作出判别.假定雌虫和雄虫总体数据对应的协方差矩阵分别为和那么可编写R程序如下:>W2unequal=function(x,mu1,mu2,S1,S2){mahalanobis(x,mu2,S2)-mah alanobis(x,mu1,S1)}>mu1=c(6,5);mu2=c(8,6);S1=matrix(c(9,2,2,4),nrow=2);S2=matrix( c(6,22,3),nrow=2)>x=c(7.2,5.6>W2unequal(x,mu1,mu2,S1,S2)[1]-0.07696429这里仍然用了最初那只昆虫的体长和翅长数据,结果仍然判断它是一只雄虫.两总体的距离判别还可使用自编程序“DDA2.R”,用法参见本章附录1.5.1.3 多个总体的距离判别设有k个总体G₁,G₂,…,Gk ,其均值和协方差矩阵分别是μ₁,μ₂,…,μg和Σ₁,Σ₂,…,Σk,而且Σ₁= Σ₂= … = Σk = Σ.对于一个新的样品x,要判断它来自哪个总体.该问题与两个总体的距离判别问题的解决思路一样,计算新样品x到每一个总体的距离,即式中,.故可以取线性判别函数为:相应的判别规则为:与二维情形类似,当μ₁,μ₂,…,μk和Σ均未知时,可以通过相应的样本均值和样本协方差矩阵来替代.另外,各总体的协方差矩阵Σ₁,Σ₂,…,Σk,不完全相同时也可以仿照二维情形讨论(参阅参考文献[10]).多总体的距离判别可使用本章附录所给出的R程序“DDAM.R”,使用方法可参见本章附录2后的说明.5.2 Fisher判别Fisher于1936年提出了该判别法,这是判别分析中奠基性的工作.该方法的主要思想是通过将多维数据投影到一维直线上,使得同一类别(总体)中的数据在该直线上尽量靠拢,不同类别(总体)的数据尽可能分开.从方差分析的角度来说,就是组内变差尽量小,组间变差尽量大.然后再利用前面的距离判别法来建立判别准则.Fisher判别法属于确定性判别法,有线性判别、非线性判别和典型判别等多种常用方法.以下主要介绍线性判别法.5.2.1两总体Fisher判别先考虑有两个总体G₁和G₂的情形,判别法的思想是将高维空间中的点投影到一维直线y上,使得由总体G₁和G₂产生的y尽可能分开,在此基础上再利用前面的距离判别法来建立判别准则.我们用一个简单的图形(见图5-2)来说明其原理.如图5-2所示,二维平面上有两类点,小圆点属于总体G₁,大圆点属于总体G₂,按照原来的横坐标x₁和纵坐标x₂,很难将它们区分开,但若把它们都投影到直线y上,则它们的投影点明显分为两组,同类的点聚集在一起,容易区分;又若把它们投影到与直线y垂直的直线上,则它们的投影点混杂在一起,难以分开.可见,投影直线的选取不一样,数据点的分类效果就大不相同,这提示我们要去寻找分类效果最好的投影直线y,使得在该投影直线上,同一类别的点的投影点尽量靠拢,不同类别的点的投影点尽量分开.显然,直线y是x₁和x₂的线性组合,即y=c₁x₁+c₂x₂.一般,在p维情况下,x的线性组合为:(5.5)图5-2投影直线选取示意图式中,a为p维实向量.设总体G₁和G₂的均值分别为μ₁和μ₂,它们有共同的协方差矩阵Σ,那么线性组合的均值为:(5.6)方差为:(5.7)显然,使得μ1y 与μ2y的距离越大的线性组合越好,所以考虑比值(5.8)现在的问题简化为:如何选取a,使得式(5.8)达到最大.定理5.1设x为p维随机向量,,当(c≠0为常数)时,式(5.8)达到最大.特别地,当c=1时,线性函数(5.9)称为Fisher线性判别函数(证明略).取(5.10)在μ₁≠μ₂的条件下,容易证明,于是可得Fisher判别准则如果记,则判别准则等价于需要指出的是:当总体的均值和协方差矩阵未知时,通常用样本均值和样本协方差矩阵来估计.设和,分别是来自总体G₁和G₂的样本,就可以分别用和估计μ₁和μ₂,用来估计Σ,这里.5.2.2多总体Fisher判别如果变量很多或有多个总体,通常要选择若干个投影,即若干个判别函数来进行判别.设有k个总体G₁,G ₂,…,Gx,它们有共同的协方差矩阵Σ,均值分别为μ₁,μ₂,…,μk,令(5.11)考虑p维随机向量x的线性组合,a为p维实向量,则均值和方差分别为:(5.12)注意到(5.13)考虑比值(5.14)问题等价于:如何选择a,使得式(5.14)达到最大.为了方便起见,设.定理5.2设λ₁,λ₂,…,λs(λ₁≥λ₂≥…≥λs>0)为Σ-¹G的s个非零特征值,s≤min(k-1,p),e₁,e₂,…,e为相应的特征向量且满足,那么当a₁=e₁s时,式(5.14)达到最大,称为第一判别函数,而a₂=e₂是在约束条件之下使得式(5.14)达到最大值的解,称为第二判别函数,如此下去,as =es是在约束条件之下使得式(5.14)达到最大值的解,称为第s个判别函数(证明略).当总体的均值和协方差矩阵未知时,通常用样本均值和样本协方差矩阵来估计,与两总体的Fisher判别方法类似,也可以建立多个总体的Fisher判别准则,但形式比较复杂,这里不再讨论.【例5.2】在R软件的内置档案中自带了著名的鸢尾花(iris)数据,该数据框有5列:Sepal.Length(花萼长度),Sepal.Width(花萼宽度),Petal.Length(花瓣长度),Petal.Width(花瓣宽度)和Species(品种).品种又分为setosa(刚毛鸢尾花),versicolor(变色鸢尾花)和virginica(弗吉尼亚鸢尾花).每个品种各有50行,即数据框共有150行.解:先读取iris数据,再用程序包MASS中的线性判别函数lda()作判别分析,R程序如下:>data(iris)>irisSepal.Length Sepal.Width Petal.LengthPetal.Width Species1 5.1 3.5 1.4 0.2setosa2 4.9 3.0 1.4 0.2setosa......50 5.0 3.3 1.4 0.2setosa51 7.0 3.2 4.7 1.4versicolor52 6.4 3.2 4.5 1.5versicolor......100 5.7 2.8 4.1 1.3 versicolor101 6.3 3.3 6.0 2.5 virginica102 5.8 2.7 5.1 1.9 virginica......150 5.9 3.0 5.1 1.8 virginica>attach(iris) #把数据变量的名字放入内存,这样能直接使用各列数据>library(MASS) #加载MASS程序包,这是必须的,否则找不到1da()函数>1d=lda(Species~Sepal.Length+Sepal.Width+Petal.Length+Petal.Wi dth)#也可以用命令iris.lda=lda(iris[,1:4],iris[,5]),注意第5列是品种,取作因变#量y>1dCall:lda(Species~Sepal.Length+Sepal.Width+Petal.Length+Petal.WidthPriorprobabilitiesofgroups:setosa versicolor virginica0.3333333 0.3333333 0.3333333Groupmeans:Sepal.Length Sepal.Width Petal.LengthPetal.Widthsetosa 5.006 3.428 1.4624.260Versicolor 5.936 2.770 4.2601.326Virginica 6.588 2.974 5.5522.026Coefficientsoflineardiscriminants:LD1 LD2Sepal.Length 0.8293776 0.02410215Sepal.Width 1.5344731 2.16452123Petal.Length -2.2012117 -0.93192121Petal.Width -2.8104603 2.83918785Proportionoftrace:LD1 LD20.9912 0.0088以上输出中包括lda()所用的公式、先验概率、各组均值向量、第一及第二线性判别函数的系数、两个判别式对区分各总体贡献的大小等.可以在R中使用help(lda)查看该函数的详细用法.需要指出的是,R中有内置函数predict(),可以对原始数据进行回判分类,从而可以将lda()的输出结果与原始数据真正的分类进行对比,考察误差的大小.R程序及结果如下:>Z=predict(ld)>newG=Z$class>cbind(Species,newG,Z$x) #Z$x给出了Z中两个判别函数相应的值Species new GLD1 LD21 1 1 8.0617998 0.3004206212 1 1 7.1286877 -0.786660426 ......70 2 2 -1.0904279 -1.62658349671 2 3 -3.7158961 1.04451442172 2 2 -0.9976104 -0.490530602 ......83 2 2 -0.8987038 -0.90494003484 2 3 -4.4984664 -0.88274991585 2 2 -2.9339780 0.027379106133 3 3 -6.8001500 0.580895175134 3 2 -3.8151597 -0.942985932 135 3 3 -5.1074897 -2.130589999 ......149 3 3 -5.8861454 2.345090513150 3 3 -4.6831543 0.332033811 这里Species是原始类别,newG是回判类别,LD1和LD2分别是第一和第二线性判别函数的值.我们还可以用table()函数来列表比较,R程序及结果如下:>tab=table(newG,Species)>tabSpeciesnewG setosa versicolor virginicasetosa 50 0 0Versicolor 0 48 1virginica 0 2 49由结果可以看出,对150个原始数据的预测中,只有3个错误,误差率为2%,其中有2朵versicolor鸢尾花(71号和84号)被误认为是virginica鸢尾花,有1朵virginica鸢尾花(134号)被误认为是versicolor鸢尾花.5.3 Bayes判别上面讲的几种判别分析方法计算简单,易于操作,比较实用.但是这些方法也有明显的不足之处.一是判别方法与总体各自出现的概率的大小无关;二是判别方法与错判之后所造成的损失无关.Bayes判别法就是为了解决这些问题而提出的一种判别方法,它假定对研究对象已经有了一定的认识,这种认识可以用先验概率来描述,当取得样本后,就可以利用样本来修正已有的先验概率分布,得到后验分布,再通过后验分布进行各种统计推断.Bayes判别法属于概率判别法,判别准则是以个体归属某类的概率最大或错判总平均损失最小为标准.5.3.1两总体的Bayes判别设有两个总体G₁和G₂,它们的概率密度函数分别为f₁(x)与f₂(x),其中x是一个p维随机向量,Ω为x的所有可能取值构成的样本空间,R₁为x的根据某种规则被判入总体G₁的取值全体的集合,那么R₂=Ω-R₁就为x的根据同样规则被判入总体G₂的取值全体的集合.设样本α来自总体G₁(形式记为x∈G₁),但被判入总体G₂的概率为:又记x来自总体G₂(形式记为x∈G₂),但被判入总体G₁的概率为:类似地,x来自总体G₁被判入G₁,来自总体G₂被判入G₂的概率可分别记为:又设总体G₁和G₂出现的先验概率(priorprobabilities)分别为p₁和pz,且p ₁+p₂=1,于是同理假设L(j|i)(i,j=1,2)表示x来自总体Gi而被误判入总体Gj引起的损失,显然有L(1|1)=L(2|2)=0,将上述误判概率与误判损失结合起来,可以定义所谓的平均误判损失(expected cost of misclassification,ECM)为:(5.15)一个合理的判别选择是极小化ECM.可以证明(见参考文献[10]):极小化ECM 所对应的样本空间2的划分为:(5.16)因此,可以将式(5.16)作为Bayes判别的判别准则.当两总体服从正态分布时,设,可分两种情形讨论.若Σ₁=Σ₂=Σ,则两总体的密度函数为:此时式(5.16)等价于(5.17)式中(5.18)(5.19)由此可见,对于两正态分布总体的Bayes判别,其判别式(5.17),(5.18)和(5.19)可以看成两总体距离判别的推广,当p₁=pz,L(1|2)=L(2|1)时,β=ln1=0,这正是距离判别,这里的W(x)也与两总体距离判别的W(x)完全一致,参见式(5.3).若Σ₁≠Σ₂,可仿照上面对式(5.16)作推广,参见参考文献[12].5.3.2多总体的Bayes判别从上面的讨论可知,Bayes判别的本质就是寻找一种适当的判别准则,使得平均误判损失ECM达到最小.在两总体情形下,由式(5.15)可知,若假设所有错判损失相同,即设L(2|1)=L(1|2)=C,那么要ECM尽量小,相当于要p₁P(1|1)+p₂P(2|2)尽量大,这有助于理解多总体Bayes判别所用的判别准则.设有k个总体G₁,G₂,…,Gx,其各自的分布密度函数为f(x),f2(x),…,fk(x),相应的先验概率分别为p₁,p₂,…,pk,并假设所有的错判损失相同,对待判样品x,相应的判别准则为:(5.20)以下只对G₁,G₂,…,Gk均为正态总体,即进行讨论.当k个总体的协方差矩阵都相同,即时,总体Gi 的密度函数为:计算函数在计算过程中,协方差矩阵Σ可用其估计式代替.当k个总体的协方差矩阵不全相同时,总体Gj的密度函数为:则相应计算函数在计算过程中,协方差矩阵Σj可用其估计式代替.判别准则式(5.20)等价于【例5.3】(数据文件为eg5.3)表5-1是某气象站预报有无春旱的数据资料,x₁和x₂是两个综合性预报因子.表中给出了有春旱的6个年份数据和无春旱的8个年份数据.它们的先验分布用各组数据出现的比例(6/14,8/14)来估计,并假设误判损失相等,试用Bayes判别法对数据进行分析.表5-1某气象站有无春旱的数据资料解:先在eg5.3中选取G,x1,x₂三列数据,然后复制,回到R命令窗口中输入如下命令后再确定,就可将复制的数据读入R.R程序及结果如下:>d5.3=read.table("clipboard",header=T)>attach(d5.3)>library(MASS)>1d=1da(G~x1+x2,prior=c(6,8)/14)>1dCall:lda(G~x1+x2,prior=c(6,8)/14)Prior probabilities of groups:1 20.4285714 0.5714286#若先验概率未知,可以先设为均匀分布,即prior=c(0.5,0.5) Groupmeans:x1 x21 25.31667 -2.4166672 22.02500 -1.187500Coefficients of linear discriminants:LD1x1 -0.6312826x2 1.0020661再用函数predict()对原始数据进行回判分类,并与lda()的输出结果进行对比,R程序及结果如下:>Z=predict(1d)>newG=Z$class>cbind(G,newG,Z$x)#Z$x为判别函数的值G newG LD11 1 1 -1.14755452 1 1 -1.10648313 1 1 -3.28592944 1 2 -0.22668045 1 1 -1.68965906 1 1 -3.89116217 2 2 1.85959468 2 2 1.4737896......13 2 2 1.358561514 2 2 1.7002528>tab=table(G,newG)>tabnewgG 1 21 5 12 0 8>sum(diag(prop.table(tab)))[1] 0.9285714程序输出说明,第一组样本中只有第4号样本被误判入第二组,第二组样本回判全部正确,回判符合率为92.857%.我们还可以用命令Z$post计算后验概率:>Z$post1 21 0.9386546174 6.134538e-022 0.9303445828 6.965542e-023 0.9999448424 5.515761e-05......13 0.0038092358 9.961908e-0114 0.0012325974 9.987674e-015.4案例分析与R实现案例5.1(数据文件为case5.1)表5-2中列出了1994年我国30个省、直辖市、自治区影响各地区经济增长差异的制度变量数据,分为两组.其中,x₁为经济增长率(%);x₂为非国有化水平(%);x₃为开放度(%);x₄为市场化程度(%).借助R 软件,分别用两总体的距离判别法、Fisher判别法和Bayes判别法进行判别分析,并对江苏、安徽和陕西三个待判地区作出判定.(注:样本号为28,29,30的待判样品的类别先暂定为2,待实际判别分析后再确定,这样做的好处是录入和处理数据较为方便.)表5-2 1994年我国30个省、直辖市、自治区影响各地经济增长差异的制度变量数据解:(1)距离判别法.要读入Excel数据,先在case5.1中选取数据区域D1:H31(注意:要连待判数据一起选),然后复制,回到R命令窗口中输入如下命令后再确定,就可将复制的数据读入R.然后把本章附录中两总体距离判别程序“DDA2.R”放到当前工作目录下,再载入R并执行,还可以用var(classG1)和var(classG2)分别计算两个训练样本的协方差矩阵,结果发现它们明显不相等.R程序及结果如下:>case5.1=read.table("clipboard",header=T) #将已复制到剪贴板中的数据读入R>attach(case5.1) #把数据变量名字放入内存>classG1=case5.1[1:11,2:5] #选取训练样本1>classG2=case5.1[12:27,2:5] #选取训练样本2>newdata=case5.1[28:30,2:5] #选取待测样本用于后面判定>source("DDA2.R") #载入自编程序DDA2.R>DDA2(classG1,classG2) #执行程序DDA2.R1 2 ... 8 9 10 11 12 13 (24)25 26 27blong 1 1 ... 1 1 2 1 2 2 (2)2 2 2回代判别的结果说明只有第10号样本“广西”被错判入第二组,判别符合率为26/27=96.3%.最后对江苏、安徽和陕西三个样本进行判定(样本号为28,29,30),数据已包含在newdata中,R程序为:>DDA2(classG1,classG2,newdata)#对待判样本newdata进行判定1 2 3blong 1 2 2输出结果第一行中的1,2,3分别表示江苏、安徽和陕西三个待测样本(样本号为28,29,30),判别结果是江苏被判入第一组,安徽和陕西均被判入第二组.(2)Fisher判别法也是先要读入数据,在case5.1中选取数据区域D1:H28(注意:这里不选待判数据,因为lda()函数要使用已有的各列数据作为变量来建立判别模型),然后复制,回到R命令窗口中输入如下命令后再确定,就可将复制的数据读入R.R 程序及结果如下:>case5.1=read.table("clipboard",header=T)>attach(case5.1)>library(MASS)>1d=1da(G~x1+x2+x3+x4)>ldCalllda(G~x1+x2+x3+x4)Prior probabilities of groups:1 20.4074074 0.5925926Groupmeans:x1 x2 x3 x41 15.73636 65.02818 25.149091 74.3502 11.56250 40.10625 9.228125 58.105Coefficients of linear discriminants:LD1x1 -0.06034498x2 -0.01661878x3 -0.02532111x4 -0.08078449以上输出结果中包括lda()所用的公式、先验概率、各组均值向量、第一线性判别函数的系数.再用predict()函数对原始数据进行回判分类,将lda()判别的输出结果与原始数据真正的分类进行对比.R程序及结果如下:>Z=predict(ld) #预测判定结果>nevG=Z$class #新分类>cbind(G,newG,Z$x) #合并原分类、新分类及判别函数值G newG LD11 1 1 -0.636598122 1 1 -0.85792242....9 1 1 -3.8115753710 1 2 0.1086677611 1 1 -0.65403492....26 2 2 2.2650082627 2 2 1.52288285>tab=table(G,newG) #原分类和新分类列表比较>tabnevGG 1 21 10 12 0 1>sum(diag(prop.table(tab))) #计算判别符合率[1] 0.962963可见,只有第一组中的第10号样品“广西”被错判入第二组,与距离判别法结果一致.还可以用命令sum(diag(prop.table(tab)))计算判别符合率.最后对三个待判样本进行判定.先要读入待判样本数据,在case5.1中选取待判样本数据区域D1:H31(注意:要连待判数据一起选),然后复制,回到R命令窗口中输入如下命令后再确定,将复制的数据读入R.在其基础上选取待判样本数据.R程序及结果如下:>case5.1=read.table("clipboard",header=T)>newdata=case5.1[28:30,2:5] #选取待判样本用于下面判别>predict(ld,newdata=newdata)$class[1] 1 2 2Levels: 1 2$posterior1 228 0.87303785 0.126962229 0.48273895 0.517261130 0.01957491 0.9804251$xLD128 -1.187448129 -0.348841830 1.2655298说明:由$class可以看出28号样本被判人第一组,29,30号样本被判入第二组,结果与距离判别法一致;$x给出了线性判别函数的值.(3)Bayes判别法Bayes判别法和Fisher判别法类似,不同的是在使用函数lda()时要输入先验概率.它们的先验概率用各组数据出现的比例(11/27,16/27)来估计(默认情形),并假设误判损失相等.同Fisher判别法的分析过程一样,先复制数据,读入R,具体操作及结果如下:>case5.1=read.table("clipboard",header=T)>attach(case5.1)>library(MASS)>1d=lda(G~x1+x2+x3+x4,prior=c(11/27,16/27))>ldCall:lda(G~x1+x2+x3+x4,prior=c(11/27,16/27))Prior probabilities of groups:1 20.4074074 0.5925926Groupmeans:x1 x2 x3 x41 15.73636 65.02818 25.149091 74.3502 11.56250 40.10625 9.228125 58.105Coefficients of linear discriminants:LD1x1 -0.06034498x2 -0.01661878x3 -0.02532111x4 -0.08078449>Z=predict(ld)>newG=Z$class>cbind(G,newG,Z$x)G newG LD11 1 1 -0.636598122 1 1 -0.85792242....9 1 1 -3.8115753710 1 2 0.1086677611 1 1 -0.65403492....26 2 2 2.2650082627 2 2 1.52288285>tab=table(G,newG)>tabnewGG 1 21 10 12 0 16>sum(diag(prop.table(tab))[1] 0.962963判别结果与距离判别法、Fisher判别法一致.另外,Bayes判别法对三个样本数据的判别过程和判定结果也与Fisher判别法相同.习题5.1在定理5.1的假设下,证明:当μ₁≠μ₂时,有μ₁y-μ₂>0及μ2y-μy<0成立.5.2(数据文件为ex5.2)根据经验,今天的湿温差x₁和气温差x₂是预报明天下雨或不下雨的两个重要因子,试就表5-3中的数据建立Fisher线性判别函数进行判别.又设今天测得x₁=8.1,x₂=2.0,问:应该预报明天是雨天还是晴天?表5-3 雨天和晴天的湿温差x₁和气温差x₂续前表5.3(数据文件为ex5.3)某企业生产的产品,其造型、性能和价位及所属级别如表5-4所示.试利用表中数据,使用Fisher判别法和Bayes判别法进行判别分析.表5-4 某企业产品的造型、性能、价位及级别等指标序号造型性能价位级别13342872286577337775614164379153446841617556827487851286562692944796021037542731188874531256733631338567631477288435.4(数据文件为ex5.4)在研究砂基液化问题中,选了七个因子.今从已液化和未液化的地层中分别抽了12个和23个样本,其中1类表示已液化类,2类表示未液化类.试用距离判别法对原来的35个样本进行回代分类并分析误判情况.表5-5 砂基液化原始分类数据编号类别x1 x2 x3 x4 x5 x6 x71 1 6.6 39 1.0 6.0 6 0.12 202 1 6.6 39 1.0 6.0 12 0.12 203 1 6.1 47 1.0 6.0 6 0.08 124 1 6.1 47 1.0 6.0 12 0.08 125 1 8.4 32 2.0 7.5 19 0.35 756 1 7.2 6 1.0 7.0 28 0.30 307 1 8.4 113 3.5 6.0 18 0.15 758 1 7.5 52 1.0 6.0 12 0.16 409 1 7.5 52 3.5 7.5 6 0.16 4010 1 8.3 113 0.0 7.5 35 0.12 180续前表编号类别T1 T2 Z3 Z4 T5 Z6 T711 1 7.8 172 1.0 3.5 14 0.21 4512 1 7.8 172 1.5 3.0 15 0.21 4513 2 8.4 32 1.0 5.0 4 0.35 7514 2 8.4 32 2.0 9.0 10 0.35 7515 2 8.4 32 2.5 4.0 10 0.35 7516 2 6.3 11 4.5 7.5 3 0.20 1517 2 7.0 8 4.5 4.5 9 0.25 3018 2 7.0 8 6.0 7.5 4 0.25 3019 2 7.0 8 1.5 6.0 1 0.25 3020 2 8.3 161 1.5 4.0 4 0.08 7021 2 8.3 161 0.5 2.5 1 0.08 7022 2 7.2 6 3.5 4.0 12 0.30 3023 2 7.2 6 1.0 3.0 3 0.30 3024 2 7.2 6 1.0 6.0 5 0.30 3025 2 5.5 6 2.5 3.0 7 0.18 1826 2 8.4 113 3.5 4.5 6 0.15 7527 2 8.4 113 3.5 4.5 8 0.15 7528 2 7.5 52 1.0 6.0 6 0.16 4029 2 7.5 52 1.0 7.5 8 0.16 4030 2 8.3 97 0.0 6.0 5 0.15 18031 2 8.3 97 2.5 6.0 5 0.15 18032 2 8.3 89 0.0 6.0 10 0.16 18033 2 8.3 56 1.5 6.0 13 0.25 18034 2 7.8 172 1.0 3.5 6 0.21 4535 2 7.8 283 1.0 4.5 6 0.18 455.5(数据文件为ex5.5)表5-6是某金融机构客户的个人资料.对一个金融机构来说,对客户信用度的了解至关重要,因为利用这些资料,可以挖掘出许多重要的信息,建立客户的信用度评价体系.所选8个指标:x₁为月收入;x₂为月生活费支出;x₃是虚拟变量,住房的所有权属于自己的为“1”,租用的为“0”;x₄为目前工作的年限;x₅为前一个工作的年限;x₆为目前住所的年限;x₇为前一个住所的年限;x₈为家庭赡养的人口数;G为信用度级别,信用度最高为“5”,信用度最低为“1”.试对表5-6中的数据进行Fisher判别分析;又若一位新客户的8个指标分别为(2500,1500,0,3,2,3,4,1),试对该客户的信用度进行评价.表 5-6某金融机构客户的个人信用度评价数据序号x1 x2 x3 x4 x5 x6 x7 x8 G1 1000 3000 0 0.1 0.3 0.1 0.3 4 12 3500 2500 0 0.5 0.5 0.5 2 1 13 1200 1000 0 0.5 0.5 1 0.5 3 14 800 800 0 0.1 15 1 3 1续前表序号x1 x2 x3 x4 x5 x6 x7 x8 G5 3000 2800 0 1 2 3 4 3 16 4500 3500 0 8 2 10 1 5 27 3000 2600 1 6 1 3 4 2 28 3000 1500 0 2 8 6 2 5 39 850 425 1 3 3 25 25 1 310 2200 1200 1 6 3 1 4 1 311 4000 1000 1 3 5 3 2 1 412 7000 3700 1 10 4 10 1 4 413 4500 1500 1 6 4 4 9 3 414 9000 2250 1 8 4 5 3 2 515 7500 3000 1 10 3 10 3 4 516 3000 1000 20 5 15 10 1 517 2500 700 10 5 15 5 3 55.6(数据文件为ex5.6)为了研究中小企业的破产模型,选定4个经济指标:x₁为总负债率(现金收益/总负债);x₂为收益性指标(纯收入/总财产);x₃为短期支付能力(流动资产/流动负债);x₄为生产效率性指标(流动资产/纯销售额).对17个破产企业(1类)和21个正常运行企业(2类)进行了调查,得如下资料(见表5-7).试对表5-7中的数据进行Bayes判别分析并对8个待判样品类别进行判定.表5-7 中小型企业破产模型经济指标续前表附录附录1(两总体G₁和G₂距离判别的R程序“DDA2.R”)DDA2<-function(TrnG1,TrnG2,TstG=NULL,var.equal=FALSE){if(is.null(TstG)==TRUE)TstG<-rbind(TrnG1,TrnG2)if(is.vector(TstG)==TRUE)TstG<-t(as.matrix(TstG))elseif(is.matrix(TstG)!=TRUE)TstG<-as.matrix(TstG)if(is.matrix(TrnG1)!=TRUE)TrnG1<-as.matrix(TrnG1)if(is.matrix(TrnG2)!=TRUE)TrnG2<-as.matrix(TrnG2);nx<-nrow(TstGblong<-matrix(rep(0,nx),nrow=1,byrow=TRUE,dimnames=list("blong ",1:nx))mu1<-colMeans(TrnG1);mu2<-colMeans(TrnG2)if(var.equal==TRUE||var.equal==T){S<-var(rbind(TrnG1,TrnG2))w<-mahalanobis(TstG,mu2,S)-mahalanobis(TstG,mu1,S)}else{S1<-var(TrnG1);S2<-var(TrnG2)w<-mahalanobis(TstG,mu2,S2)-mahalanobis(TstG,mu1,S1)}for(iin1:nx){if(w[i]>0)blong[i]<-1elseblong[i]<-2}blong在该程序中,输入变量TrnG1和TrnG2分别表示来自总体G₁和G₂的训练样本,其输入格式是数据框或矩阵(样本按行输入);输入变量TstG是待测样本,其输入格式是数据框、矩阵(样本按行输入)或向量(一个待测样本).如果不输入TstG(默认值),则待测样本为两个训练样本之和,即计算训练样本的回判情况.输入变量var.equal是逻辑变量,var.equal=TRUE表示两个总体的协方差矩阵相同,否则(默认值)为不同.函数的输出是由“1”和“2”构成的一维矩阵,“1”表示待测样本属于G₁类,“2”表示待测样本属于G₂类.当两总体样本协方差矩阵相同时,该程序的使用命令为:DDA2(classG1,classG2,var.equal=TRUE).当两总体样本协方差矩阵不相同时,该程序的使用命令为:DDA2(classG1,classG2),附录2(多总体距离判别的R程序“DDAM.R”)DDAM<-function(TrnX,TrnG,TstX=NULL,var.equal=FALSE){if(is.factor(TrnG)==FALSE){mx<-nrow(TrnX);mg<-nrow(TrnG)TrnX<-rbind(Trnx,TrnG)TrnG<-factor(rep(1:2,c(mx,mg)))}if(is.null(TstX)==TRUE)TstX<-TrnXif(is.vector(TstX)==TRUE)TstX<-t(as.matrix(TstX))elseif(is.matrix(TstX)!=TRUE)TstX<-as.matrix(TstX)if(is.matrix(TrnX)!=TRUE)TrnX<-as.matrix(TrnX)nx<-nrow(TstX)blong<-matrix(rep(0,nx),nrow=1,dimnames=list("blong",1:nx))g<-length(levels(TrnG))mu<-matrix(0,nrow=g,ncol=ncol(Trnx))for(iin1:g)mu[i,]<-colMeans(TrnX[TrnG==i,])D<-matrix(0,nrow=g,ncol=nx)if(var.equal==TRUE|var.equal==T){for(iin1:g)D[i,]<-mahalanobis(Tstx,mu[i,],var(TrnX))}else{for(iin1:g)D[i,]<-mahalanobis(Tstx,mu[i,],var(Trnx[TrnG==i,]))}。

判别分析四种方法

判别分析四种方法

判别分析四种方法判别分析(Discriminant Analysis)是一种用于分类问题的统计方法, 它通过分析已知分类的样本数据,构造出一个判别函数,然后将未知类别的样本数据带入判别函数进行分类。

判别分析可以用于研究变量之间的关系以及确定分类模型等方面。

在判别分析中,有四种主要的方法,包括线性判别分析(Linear Discriminant Analysis, LDA)、二次判别分析(Quadratic Discriminant Analysis, QDA)、多重判别分析(Multiple Discriminant Analysis, MDA)和正则化判别分析(Regularized Discriminant Analysis, RDA)。

1.线性判别分析(LDA):线性判别分析是最常用的判别分析方法之一、它假设每个类别的样本数据都服从多元正态分布,并且各个类别具有相同的协方差矩阵。

基于这些假设,LDA通过计算类别间离散度矩阵(Sb)和类别内离散度矩阵(Sw),然后求解广义瑞利商的最大化问题,得到最佳的线性判别函数。

线性判别分析适用于样本类别数量较少或样本维度较高的情况。

2.二次判别分析(QDA):二次判别分析是基于类别的样本数据服从多元正态分布的假设构建的。

与LDA不同的是,QDA没有假设各个类别具有相同的协方差矩阵。

相反,QDA为每个类别计算一个特定的协方差矩阵,并将其带入到判别函数中进行分类。

由于QDA考虑了类内协方差矩阵的差异,因此在一些情况下可以提供比LDA更好的分类效果。

3.多重判别分析(MDA):4.正则化判别分析(RDA):正则化判别分析是近年来提出的一种改进的判别分析方法。

与LDA和QDA不同的是,RDA通过添加正则化项来解决维度灾难问题,以及对输入数据中的噪声进行抑制,从而提高分类的准确性。

正则化项的引入使得RDA可以在高维数据集上进行有效的特征选择,并获得更鲁棒的判别结果。

解读SPSS判别分析的计算过程

解读SPSS判别分析的计算过程

+
⎛ ⎜ ⎝
1 −1
−1⎞
4
⎟ ⎠
+
⎛1 ⎜⎝1
1 4
⎞⎤ ⎟⎥ ⎠⎦
=
1 3
⎛ ⎜ ⎝
3 −1
−1⎞
12
⎟ ⎠
=
⎛ ⎜ ⎝
1 −0.333
−0.333⎞
4
⎟ ⎠
a b 其中 S1, S2 , S3 分别为 5 各组的协方差阵。注意,SPSS 没有列出组内 SSCP 阵W ,要经
过换算才能能到组内W ,即将上述矩阵乘以自由度 6 便可得到W 。

=
1 2
⎡⎛ ⎢⎜ ⎣⎝
1 −2
−2 4
⎞ ⎟ ⎠
+
⎛ ⎜ ⎝
1 0
0 0
⎞ ⎟ ⎠
+
⎛ ⎜ ⎝
0 0
0⎞⎤
4
⎟⎥ ⎠⎦
=
1 2
⎛ ⎜ ⎝
2 −2
−2 8
⎞ ⎟ ⎠
=
⎛ ⎜ ⎝
1 −1
−1⎞
4
⎟ ⎠
其余各组内方差矩阵计算同上。在计算总体协方差矩阵时要使用总体均值向量。如果想省事 也可以用 Bivariate 过程直接验证。
Valid N (listwise)
Unweighted Weighted
3
3.000
3
3.000
3
3.000
3
3.000
3
3.000
3
3.000
9
9.000
9
9.000
Group Statistics 是各组和总体的每个变量的描述统计分析。其中值得关注的是均值一栏, 它是后面计算的基础

第八章 判别分析

第八章  判别分析


例 在企业的考核中,可以根据企业的生产经营情 在企业的考核中,
况把企业分为优秀企业和一般企业。 况把企业分为优秀企业和一般企业。考核企业经营状 况的指标有: 况的指标有: 资金利润率=利润总额 资金占用总额 资金利润率 利润总额/资金占用总额 利润总额 劳动生产率=总产值 职工平均人数 劳动生产率 总产值/职工平均人数 总产值 产品净值率=净产值 总产值 产品净值率 净产值/总产值 净产值 三个指标的均值向量和协方差矩阵如下。 三个指标的均值向量和协方差矩阵如下。现有二个 企业, 企业,观测值分别为 ),问这 (7.8,39.1,9.6)和(8.1,34.2,6.9),问这 , , ) , , ), 两个企业应该属于哪一类? 两个企业应该属于哪一类?
L x1 p L x2 p M M L xnp
x12 − x2 x22 − x2 M xn 2 − x2 L x1 p − x p L x2 p − x p M M L xnp − x p
离差阵(协方差阵): 离差阵(协方差阵):
x11 − x1 x −x 12 2 S1 = M x1P − xP L xn1 − x1 x11 − x1 L xn 2 − x2 x21 − x1 M M M L xnp − x p xn1 − x1
2 R = x:D ( x G) ≤m D x G , i =1Lm , i in 2 , j , , i j≠ i
{
(
)}
x 和总体 G 之间的马氏距离为: 之间的马氏距离为:
D ( x i ) =( x−µ ) V ,G i
2 i

− 1
( x−µ ) , i
i =12 ,m , L

判别分析

判别分析

P273
• 4、classify的设定
用于分类的先 验概率
选择计算时的 协方差矩阵 输出判别分析正确 或错误分组的个数 交叉验证
• 结果:
标准化的典型判别函数的系数
Fisher线性判别函数
关于不同判别函 数的作用
• 例:有一个样本,四个自变量的取值分别为 50、33、14,2,判定它到底归属于哪一类。 • 第一种:非标准化的辨别函数: • Step1: • D1=-2.526-0.063 x50-0.155 x33+0.196 x 14+0.299 x2=-7.499 • D2=-6.987+0.007 x50+0.218 x33-0.089 x 14+0.271 x2=-0.147 • Step2:领域图
逐步分析方法。当认为不是 所有自变量都能对观测量特 性提供信息时,选择该项, 因此需要判别贡献的大小再 进行选择。选中该单选按钮 时,“Method”按钮被激活, 可以进一步选择判别分析方 法。
• 3、statistic的设定
自变量的分组及平均数 与标准差 自变量的单因素方差分析 组间协方差矩阵的检验
判别分析
• §1. 基本原理 • §2. 基本步骤 • §3. 实例分析
§1. 基本原理
• 定义:判别分析先根据已知类别的事物的性质 (自变量),建立函数式(自变量的线性组合, 即判别函数),然后对未知类别的新事物进行 判断以将之归入已知的类别中。 • 判别分析是一种有效的对个案进行分类分析的 方法。和聚类分析不同的是,判别分析时,组 别的特征已知。 有学者在研究中提出,可以利 用判别分析来对聚类分析结果的准确性进行检 验。聚类
• 练习:iris.Sav
• 作业:4-26.sav

判别分析(共27张PPT)

判别分析(共27张PPT)

w11 w12 w1 p w1r
w
21
w22
w2p
w2r
Qw=
w
p1
w p2 w pp
w
pr
wr1 wr 2 wrp wrr
使其中虚线左上部分便是只含 p 个变量的模型中的
类内离均差平方和矩阵Q( p ),而整个矩阵则是含p+1
w
个变量的模型中的类内离均差平方和矩阵Q ( p 1) 。
第12章 判别分析Discrimination Analysis
判别分析
:从反映个体性质各个侧面的P个变量出发,通过
定量分析,最终将其判归某一已知总体,从而将 对个体的研究置于更为广泛的总体研究背景上。
各种判别分析都是按照某种判别原则(视判别方
法不同而不同),在e
对变量进行剔除和引进的方法 差异显著地大于类内差异呢?还需进行测验。
第三节 逐步判别分析方法
Stepwise Discrimination Analysis
Wilk’s Λ统计量 何分类”、“某一个事例(或样品)属于那一类”等问题是并不知晓;
如果已知将原应属于Gi的样品误判为属于Gj所造成
第二节 贝叶斯判别分析
|Q | |Q |w 设叶X斯,判Y别是法从的均判值别向函量数为)μ,,协按方判差别阵函为数wΣ值的的总大体小G来中抽取的两个样品,定义X,Y之间的马氏距离平方为:
= ──── =── 用 F 测验可以检验增长是否显著。
|Q +Q | |Q | h 第与五多步 元、回如归果分有析待相判似数,据在,进将行其判代别入分,析并时判,别并e归不类是。
统计量为p,增加一个变
量 (x ) 后的 Bayes Discrimination Analysis

第二节判别分析

第二节判别分析

判别式系数
确定的原则:使两组间的组
间离差最大,而每个组的组内离差最小。
(二)费歇判别的数学原理
假设线性判别函数: 把两个总体的所有样品代入上面的判别式
分别对上面两式左右相加,再除以样品个数, 可得两个总体的重心:
最佳的线性判别函数:两个重心的距离越 大越好,两个组内的离差平方和越小越好。
组间差异为:
16.7
22.8
29.3 3.017 26.6
7
22.0
7.8
9.9
10.2
12.6
17.6 0.847 10.6
8
48.4
13.4
10.9
9.9
10.9
13.9 1.772 17.8
9
40.6
19.1
19.8
19.0
29.7
39.6 2.449 35.8
10
24.8
8.0
9.8
8.9
11.9
16.2 0.789 13.7
(
)
41
XTX是对称矩阵,线性代数理论告诉我们,对于一个 实对称矩阵,必 存 在一个正交矩阵A,能够将该矩 阵化成标准型,即:
42
正交矩阵A的第 i 列向量刚好可取为主成分向量 线性表达式系数:
那么矩阵
的特征向量和特征值分别为
挑选主要向量的标准:向量的大小,即向量的模作 为衡量依据。
43
由线性代数知:
33
如果这些数据形成一个椭圆形状的点阵(这在变量的
二维正态的假定下是可能的),那么这个椭圆有一个
长轴和一个短轴。
x2
F 1
F2
•• •••
•• •• •
•• • • •

判别分析的原理及其操作

判别分析的原理及其操作

判别分析的原理及其操作1 判别分析的原理1.1 判别分析的涵义判别分析(Discriminant Analysis,简称DA)技术是由费舍(R.A.Fisher)于1936年提出的。

它是根据观察或测量到的若干变量值判断研究对象如何分类的方法。

具体地讲,就是已知一定数量案例的一个分组变量(grouping variable)和这些案例的一些特征变量,确定分组变量和特征变量之间的数量关系,建立判别函数(discriminant function),然后便可以利用这一数量关系对其他已知特征变量信息、但未知分组类型所属的案例进行判别分组。

沿用多元回归模型的称谓,在判别分析中称分组变量为因变量,而用以分组的其他特征变量称为判别变量(discriminant variable)或自变量。

判别分析技术曾经在许多领域得到成功的应用,例如医学实践中根据各种化验结果、疾病症状、体征判断患者患的是什么疾病;体育选材中根据运动员的体形、运动成绩、生理指标、心理素质指标、遗传因素判断是否选入运动队继续培养;还有动物、植物分类,儿童心理测验,地理区划的经济差异,决策行为预测等。

1.2 判别分析的假设条件判别分析的基本条件是:分组变量的水平必须大于或等于2,每组案例的规模必须至少在一个以上;各判别变量的测度水平必须在间距测度等级以上,即各判别变量的数据必须为等距或等比数据;各分组的案例在各判别变量的数值上能够体现差别。

判别分析对判别变量有三个基本假设。

其一是每一个判别变量不能是其他判别变量的线性组合。

否则将无法估计判别函数,或者虽然能够求解但参数估计的标准误很大,以致于参数估计统计性不显著。

其二是各组案例的协方差矩阵相等。

在此条件下,可以使用很简单的公式来计算判别函数和进行显著性检验。

其三是各判别变量之间具有多元正态分布,即每个变量对于所有其他变量的固定值有正态分布。

1.3 判别分析的过程1.3.1 对已知分组属性案例的处理此过程为判别分析的第一阶段,也是建立判别分析基本模型的阶段,即分析和解释各组指标特征之间的差异,并建立判别函数。

08_判别分析

08_判别分析


判别分析的正确应用

理论上,类间分得越开,判别效果越好, 类间距离越近,判别效果就越差。 不同的判别方法间是个参照,大多情况 下,效果近似。 关键是指标是否具有判别价值。


距离判别

基本思想:首先根据已知分类的数据, 分别计算各类的重心即分组(类)的均值, 判别准则是对任给的一次观测,若它与 第i类的重心距离最近,就认为它来自第i 类。距离判别法,对各类(或总体)的分 布,并无特定的要求。

Fisher判别

用p维向量x=(x1,x2,…,xp)/的少数几个线性 组合(称为判别式或典型变量),y2=a2/x,…,yr =ar/x(r应明显小于p)来代替原始的p个变量x1, x2,…,xp,以达到降维的目的,并根据这r个判别 式y1,…,yr对样品的归属作出判别

现将k组p维数据投影到某一个最佳方向,使它们的投 影组与组之间尽可能分开,即表示投影到该方向的线 性组合y=a/x能最大限度地表现出各组之间的差异。
可供选择的逐步判别分析法
4.Smallest F ratio最小F值方法。该项表示每步都 使任何两类间的最小F值最大变量进入判别函数。 5.Rao’s V Rao V统计量。选择该项,表示每步都 使Rao V统计量产生最大增量的变量进入判别函数, 可以对一个要加入到模型中的变量的V值指定一个 最小增量。选择该方法时需要在该项下面的“Vto-enter”(输入V值)文本框中输入这个增量的 指定值,当某变量导致的V值增量大于指定值的变 量进入判别函数。
事先总体分类明确 (训练样本) 根据训练样本建立判别 直接对样本分类 函数和判别准则,再对 新样本进行分类
定义和计算公式

定义:判别分析先根据已知类别的事物 的性质(自变量),建立函数式(自变 量的线性组合,即判别函数),然后对 未知类别的新事物进行判断以将之归入 已知的类别中。

判别分析-四种方法

判别分析-四种方法

第六章判别分析§6.1 什么是判别分析判别分析是判别样品所属类型的一种统计方法,其应用之广可与回归分析媲美。

在生产、科研和日常生活中经常需要根据观测到的数据资料,对所研究的对象进行分类。

例如在经济学中,根据人均国民收入、人均工农业产值、人均消费水平等多种指标来判定一个国家的经济发展程度所属类型;在市场预测中,根据以往调查所得的种种指标,判别下季度产品是畅销、平常或滞销;在地质勘探中,根据岩石标本的多种特性来判别地层的地质年代,由采样分析出的多种成份来判别此地是有矿或无矿,是铜矿或铁矿等;在油田开发中,根据钻井的电测或化验数据,判别是否遇到油层、水层、干层或油水混合层;在农林害虫预报中,根据以往的虫情、多种气象因子来判别一个月后的虫情是大发生、中发生或正常;在体育运动中,判别某游泳运动员的“苗子”是适合练蛙泳、仰泳、还是自由泳等;在医疗诊断中,根据某人多种体验指标(如体温、血压、白血球等)来判别此人是有病还是无病。

总之,在实际问题中需要判别的问题几乎到处可见。

判别分析与聚类分析不同。

判别分析是在已知研究对象分成若干类型(或组别)并已取得各种类型的一批已知样品的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分类.对于聚类分析来说,一批给定样品要划分的类型事先并不知道,正需要通过聚类分析来给以确定类型的。

正因为如此,判别分析和聚类分析往往联合起来使用,例如判别分析是要求先知道各类总体情况才能判断新样品的归类,当总体分类不清楚时,可先用聚类分析对原来的一批样品进行分类,然后再用判别分析建立判别式以对新样品进行判别。

判别分析内容很丰富,方法很多。

判别分析按判别的组数来区分,有两组判别分析和多组判别分析;按区分不同总体的所用的数学模型来分,有线性判别和非线性判别;按判别时所处理的变量方法不同,有逐步判别和序贯判别等。

判别分析可以从不同角度提出的问题,因此有不同的判别准则,如马氏距离最小准则、Fisher准则、平均损失最小准则、最小平方准则、最大似然准则、最大概率准则等等,按判别准则的不同又提出多种判别方法。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

给出贝叶斯判别函数系数和未标准化的费希尔判别函数系数(即典型判别函数系数)
定义判别分组参数和选择输出结果,判别分析输出结果表包含每个样品的判别分数、后验概率、实际组和预测组编号
指在数据文件中生成代表判别分组结果和判别得分的新变量:判别样品所属组别、费希尔判别的分(几个判别函数就几个判别的分)、样品属于各组的贝叶斯后验概率
分类函数系数
类别
1
2
标准化的典型判别式函数系数
函数
1
经济增长率 .361 非国有化水平 .182
开放度 市场化程度
.691
经济增长率
非国有化水平
开放度.078.090
市场化程度
(常量)
Fisher 的线性判别式函数
得出贝叶斯判别函数,哪个数值大就属于哪一组
在数据编辑窗口可以观测到产生的新变量
分别是:判别样品所属组别、将样品各变量值代入判别函数得到的判别分数、样
品分别属于各组的贝叶斯后验概率值。

相关文档
最新文档