精编hypermesh与Abaqus联合仿真经典教程

合集下载

abaqus与hypermesh接口教程

abaqus与hypermesh接口教程

Consider a 96 in. x 12 in. cantilever beam as shown in the above figure. The beam is loaded at the right end by a force P = 40000 lb. The beam is isotropic with Young’s modulus E = 3x107psi and Poisson’s ratio ν= 0.3. Using Hypermesh and ABAQUS, perform the analysis outlined below. Start out by creating a relatively coarse mesh of 4-node quadrilateral elements (try a mesh of rectangular elements with 6 divisions in the x direction and 2 divisions in the y direction). Apply the appropriate boundary conditions, and run the problem assuming plane stress.Instructions for Lab#2Using Hypermesh and ABAQUS for the analysis of a beam in bending.Figure 1. Main Window in Hypermesh. Circled is the command toolbar that allows the user to access sub menus.Getting Acquainted1) Fire up Hypermesh from the menu controls.2) Familiarize yourself with the command toolbar to your right. By clicking next to eachtitle as circled above, you will be brought to several sub-menus where you may perform a variety of tasks. Click on each and analyze each sub-menu.3) Identify commands that appear self-explanatory, such as file, automesh, nodes,lines, ect....4) Notice that the file command exists in every toolbar.5) Click on the file command. This is where you name the hypermesh files you wouldlike to save using a *.hm extension. Also, this is where importing and exporting occurs.6) Also notice the template command. This is where the solvers are invoked.Hypermesh has the capability of exporting mesh information for a variety of solvers.Keep in mind, Hypermesh is purely a mesh generator and the mesh information must be translated into the format of the desired solver to be used, therefore picking the correct solver from the template is a necessary step before continuing with any other stepsGeometryIn this exercise we will generate the geometry of a beam to be deformed by applying a tip point load and by fixing one end. After completion of the geometry generation, a 3-dimensional mesh of the beam will be created and a stress analysis on the beam will be performed.1) Like all mesh generators, in order to create a mesh, some geometry must exist.Generally nodes are required from which lines are created. Surfaces must be created from a set of lines that form a closed loop. It is those surfaces that will be meshed.2) Click on the “Geom” icon to your right and notice the various menus. In particular,notice the “nodes” icon. Clicking on that will allow to create several nodes in a variety of modes. For example, by co-ordinates (most popular one), on lines, ect..3) Once the nodes exist, one can create lines from those nodes by clicking on the“line” button. Note the options available for the different type of lines that can be created. Go ahead and create lines from the existing nodes.4) With the lines created, surfaces can be generated by clicking on the “surface edit”button and by selecting the filler surface option. Create a surface using all existing lines.5) At this point the geometry has been created and mesh generation should be thenext step.Mesh generationIn this phase of the exercise the geometry created above will be meshed. The first step will be to mesh the two-dimensional surface with 2-D elements. Two meshes will be generated, a biased mesh and regular mesh. Samples can be seen in the figures below. When that is done, the two meshes will be extruded to create the three-dimensional brick element meshes.Figure 2. A simple quad mesh with no biasing.Figure 3. A biased quad mesh focused toward one end.Creating a 2-D mesh.1) With all surfaces created, it is time to mesh.2) Prior to creating elements, the concept of “collectors” must be reviewed.Hypermesh has the ability to store groups of elements under different names called collectors. In this manner, it is possible to modify parts of a mesh on a group basis.We will practice using these collectors to store the two meshes that will be generated for the same part. In one collector we will store the elements for the mesh in figure 2 and in another collector we will store the mesh for figure 3. To create collectors, click on the “collectors” button and create the two collectors using two different names and two different colors.3) You can toggle between the two collectors by using the “global button” in the righthand bottom corner and selecting the collector you wish to work in. It is important that you know which collector is being used as default and changing it will be necessary as the meshing progresses. Further you may display the desired collectors by using the “display” command in the bottom right corner and by clicking and un-clicking on each collector that is available. With that done we may proceed to create the two meshes.4) Make sure you know which collector is currently set to default. To begin meshing,click on the 2D toolbar to your right.5) There are a variety of options available. We will use the automesh option.6) By clicking on automesh, several parameters are required as well as the necessityto select the surfaces one wants to mesh.7) Select the surface by clicking on each and supply a rough idea of the element sizeand element type you would like to use. Also make sure you are in the interactive mode.8) Once that is done, clicking the mesh button will generate a tentative idea of howyour mesh will look along the geometry borders. You may enhance your mesh by improving on the coarseness, adding bias, ect... By clicking on the number of divisions for each line you may increase that value using the left button or decrease that value using the right button. Similar things can be done if one wants to change the bias or other parameters.9) With that done, clicking on the mesh button will create the mesh. Accept the meshby clicking return or reject it by clicking reject.10) T he above steps must be repeated to create a biased mesh toward the fixedlocation. To do that repeat steps 3-8, but ensuring yourself that you are in the appropriate collector. Also, when the tentative divisions on the border of your surface appear, you can add bias by clicking on the bias button and giving positive or negative bias values.Note: Your part may consist of several surfaces and you may mesh them all at once or separately. You may also allocate each meshed portion to different collectors, so as to be able to have control over your model based on the different portions meshed.Creating a 3-D mesh.1) The next step involves extruding the mesh from its 2-D version, thus creating a 3-Dmesh.2) The first step is two create two additional collectors into which the two 3-D mesheswill be saved.3) With that done, click on the “3D” button and click on the drag button.4) The drag button allows the user to drag a set of 2-dimensional elements into 3-dimensional elements so long that a drag direction and distance are supplied, as well as the intended number of divisions to be created on the way.5) Select the elements to be dragged by component and define a drag direction anddistance. Supply the intended number of divisions. With that done, click on the drag button. Your 3-dimensional mesh will be created within the chosen collector.6) Do the same for the second 2-dimensional mesh and ensure that it is put in theappropriate collector.7) With that done, it will be necessary to delete the unnecessary 2-dimensionalmeshes. To do so press the F2 key and delete elements by component and select the two components to be deleted. Click on “delete” to approve deletion of the two selected components.Boundary conditionsOnce the mesh has been created, it is necessary to create the required boundary conditions. Boundary conditions can be created within Hypermesh for use in ABAQUS, however the complexity of the steps within Hypermesh, outweighs the ease of typing in boundary conditions within the ABAQUS file, provided that the appropriate node sets and element sets are available. This is what will be done in the next steps.1) We need two sets. A node sets for those nodes that will be fixed and a node set forthose nodes onto which the load will be applied.2) To do so, click on the BCs menu. There you will create entity sets. Entity sets issimply a manner to groups nodes or elements under one common name. In ABAQUS, boundary conditions can be applied to those sets.3) Click on entity sets and create a node set called “fixed”. Select the nodes on the leftend of the beam by using the window select. When done click on create. If the set is created, click on RESET.4) Change the name to “load” and select the nodes onto which the load will be appliedand click on create.5) This will be it!With the mesh completed you may now export your file using the ABAQUS template and saving the file under a *.inp extension. You can do this by clicking on file and then selecting the export command. MAKE SURE YOU ARE USING THE “ABAQUS STANDARD” TEMPLATE. Be careful here!NOTE: Remember you have two meshes on top of each other. Before you export each mesh as *.inp file, you must create to separate Hypermesh files. In each file save only the mesh you desire. This is done by deleting the unwanted mesh and saving under a different name. Deleting elements or nodes is accomplished using the F2 command. It is also a good idea to go ahead and renumber your mesh when you are ready to finalize it. Renumbering is accomplished by clicking on the tools icon and then clicking on the renumber button. Do this for each mesh. Now we are ready for ABAQUS.IN ABAQUSThe general ABAQUS file follows your typical format for any FEA solver. It contains nodal information and connectivity as well as element type information. At the end are the boundary conditions and the solution procedure. This can be observed below.Open the *.inp file that was created. It should look as follows:**** ABAQUS Input Deck Generated by HyperMesh Version3.0**** Template: ABAQUS/STANDARD***** THIS IS THE NODAL INFORMATION*NODE1, 0.0 , 2.221825 , -7.778174: : :: : :: : :9843, 6.7033386359838, 3.648821000031 , 0.0539689803571*** THIS IS THE ELEMENT INFORMATION. C3D8= 8 noded brick element.*ELEMENT,TYPE=C3D8,ELSET= threeD1, 1858, 1857, 1878, 1879, ………….: : :: : :: : :8470, 478, 522, 9807, 9774, ……….** SECTION DEFINITION: assign material and thickness if necessary for shells.*SOLID SECTION, ELSET= threeD, MATERIAL= ALUMINUM*** HERE ARE THE ENTITY SETS TO BE USED FOR THE B.C.’s*NSET, NSET= fixed1, 2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16,*NSET, NSET= load448, 449, 450, 451, 452, 453, 454, 455,**** MATERIAL PROPERTIES*MATERIAL, NAME= MAT1*ELASTIC, TYPE = ISOTROPIC10000000.0,0.22,0.0********THIS IS WHAT YOU ADD MANUALLY LOAD STEP INFORMATION, BOUNDARY CONDITION INFORMATION, AND OUTPUT INFORMATION.******STEP*STATIC --- TYPE OF ANALYSYS*CLOAD --- TYPE OF LOADload,1,-1.0*BOUNDARY --- TYPE OF DISPLACEMENT BCfixed,1,3,0.0*EL FILE --- ELEMENT OUTPUT TO BE VIEWED IN HYPERMESHSINV*NODE FILE --- NODAL OUTPUT TO BE VIEWED IN HYPERMESHU*EL PRINT, ELSET=threeD --- ELEMENT OUTPUT TO BE LISTED IN DATA FILES11,S22,S33,S12,S13,S23E11,E22,E33,E12,E13,E23*NODE PRINT, NSET=fixed --- NODAL OUTPUT TO BE LISTED IN DATA FILEU,RF*END STEPWith this in mind, you should modify your file to include necessary analysis information and boundary conditions. When that is done, you can run your two ABAQUS filesVIEWING THE RESULTS IN HYPERMESH.Once the ABAQUS run is complete, you need to convert the *.fil into a hypermesh *.res file. Do this by using the hmabaqus command within your unix template. Now open Hypermesh.1) Retrieve one of the models and click on the global button.2) You will see a path for the results file. Enter the filename assigned above.3) Exit this menu and click on the POST icon and view your results by using thecontour button.Some contour plots of a beam in bending. You may create displacement contours, stress contours, ect…Figure 4. The displacement contour plot for a beam in bending.Figure 5. Von-Mises Stress Contour for a beam in bending.General Tips:1) When meshing a model in separate portions it is necessary to create a collector foreach portion and making sure one has selected the correct collector before meshing a surface so that those elements created are fed into the desired collector2) Also, one must always check for duplicate elements or nodes. This can be donewith appropriate commands in the tools toolbar available at your right. We will explore these commands in class.。

hypermesh与Abaqus联合仿真经典教程ppt课件

hypermesh与Abaqus联合仿真经典教程ppt课件

.
13
8, 设置载荷步
A,选择load steps 命令,设置第一个载荷步
B,载荷步的名字应该清楚的说明加载的情况 勾选载荷步包含的载荷(loadcols)及输出设置(outputlocks),点击update
C ,点击edit ,进入载荷步参数设置页面
.
14
8, 设置载荷步
C-1,step parameter 选择
注意:刚性网格的单元类型要更新成R3D3、R3D4,普通单元类型是S3、S4。 命令是2D/elem types
.
4
4, 焊点,单元类型是1D/rigid/Beam
选择多点方式 连接焊点位置上下各一个单元的点,连接完成后,显示BEAM 单元类型
.
5
4, 焊点,一维单元类型转换1D/config edit
初始步长
最小步长 最大步长
C-3,Load_OP 选择
Load_OP用来设置是否需要保留上一步 的边界条件(Boundary)或者是载荷(集 中载荷Cload 、面载荷Dload)
OP=MOD,表示保留上一步设置 OP=NEW,表示不保留上一步设置
程序默认值是OP=MOD
.
15
8, 设置载荷步
D,第二个载荷步的设置
现在模型里面用的是单点连接,也行,但是单元类型spring不对,需要转换成Beam。 选择config edit命令
A,选择要转换的单元
B,选择新单.元类型rigid
C,转换 6
5, 边界条件及载荷设置
A, 建立约束loadcol
B, 设置约束
C, 建立加载 loadcol ,加载力或者通过约束加强迫位移
E_1a
选择单元,显示法向

Abaqus与HyperMesh联合仿真有限元分析核心技术培训

Abaqus与HyperMesh联合仿真有限元分析核心技术培训

Hypermesh 作为目前综合能力最强的前处理平台,可以很方便的为各种大型CAE 软件完成几乎所有的常见前处理工作,操作极其灵活方便操作极其灵活方便,,例如几何清理例如几何清理、、网格划分网格划分、、材料属性建立材料属性建立、、单元赋予单元赋予、、连接关系设定连接关系设定、、边界条件设定边界条件设定、、控制参数和输出等参数和输出等,,全部都可以在Hypermesh 中高效的完成中高效的完成。

几何模型越复杂几何模型越复杂,,装配体零件越多装配体零件越多,,这种优势越明显这种优势越明显。

Abaqus 作为业内公认的最强的非线性求解软件作为业内公认的最强的非线性求解软件,,自学入门不易自学入门不易,,成为高手更加成为高手更加艰难艰难艰难。

Abaqus 行业应用广泛行业应用广泛,,最近几年在国内越来越火爆几年在国内越来越火爆,,所以掌握abaqus 势在必行势在必行。

Abaqus 行业应行业应用差异较大用差异较大用差异较大,,但基本的软件操作和软件应用技巧是大同小异的是大同小异的。

Hypermesh 中除了几何清理中除了几何清理、、网格划分外网格划分外,,其余的操作例如材料属性建立其余的操作例如材料属性建立、、单元赋予单元赋予、、连接关系设定连接关系设定、、边界条件设定边界条件设定、、控制参数和输出等全部与Abaqus 息息相关息息相关,,需要对abaqus 的一套理论有很深的认识才能更好的发挥Hypermesh 的强大前处理功能的强大前处理功能。

本人擅长在Hypermesh 中完成所有的Abaqus 前处理操作前处理操作,,然后提交计算然后提交计算,,后处理在abaqus 和hyperview 中完成。

本人领域为电子产品跌落碰撞本人领域为电子产品跌落碰撞,,例如平板电脑例如平板电脑、、台式机台式机、、移动终端等等显式动力学分移动终端等等显式动力学分析析,同时也擅长各种连接器同时也擅长各种连接器、、弹片弹片、、端子等正向力端子等正向力、、插拔力插拔力、、屈服等隐式非线性分析屈服等隐式非线性分析。

ABAQUS与Hypermesh接口流程原创

ABAQUS与Hypermesh接口流程原创

ABAQUS与Hypermesh接口流程本文分两种情况。

第一种:在HM中对几何模型全部建好网格,导入ABAQUS中分析。

第二种:在ABAQUS中已有的计算模型根底上,再导入网格部件重新整合进展分析。

第一种情况:1.在ABAQUS中建好几何模型〔如图1所示〕,如果是用其他造型软件建的模型也要先导入ABAQUS,然后对模型进展装配,为的是确定全局坐标系,在后续的操作中全局坐标系不要再改变。

图12.导出ACIS SAT文件,后缀名为.sat,如图2和图3所示。

图2 图33.翻开HM,注意设定user profiles为ABAQUS,如图4所示。

图44.导入几何模型,如图5所示。

图55.处理几何模型,例如:布尔运算,消除硬点等。

设置网格类型,画网格,将模型划分成数个网格部件。

如图6所示,几何模型被划分成了两个网格部件,根据仿真计算的需要也可对两个小块布尔求和,划分成一个网格部件。

一个网格部件就是一个网格节点相连的网格体,只含有网格节点、单元、集合信息。

图66.导出网格,文件格式为.inp,如图7所示。

图77.导入ABAQUS〔如图8,图9和图10所示〕,继续设置其他前处理。

图8 图9图10第二种情况:在已有的分析根底上添加网格部件1.首先,将需要划分网格的几何模型导入ABAQUS,进展装配,如图11所示。

该步骤为的是确定几何模型的全局坐标,方便后续的导入。

图112.导出该几何模型的.sat文件,导入HM划分网格,如图12所示。

图123.划分网格后,导出inp文件。

用记事本翻开导出的inp文件和原有分析模型的inp文件,将导出的inp文件中的一段网格单元信息粘贴进原分析模型的inp文件中,另存为一个inp文件,重新翻开该文件进展后续的处理。

说明:关于inp文件参考"ABAQUS有限元分析常见问题解答"第13章。

两个inp文件的融合方法,原已有计算模型的inp文件如下〔粗体显示的为需要添加的代码的格式〕:*Heading** Job name: 111 Model name: e*1** Generated by: Abaqus/CAE 6.9-1*Preprint, echo=NO, model=NO, history=NO, contact=NO**** PARTS***Part, name=PART-1*Node1, 20., -15., -10.2, 20., -13., -10.3, 20., -11., -10.4, 20., -9., -10.5, 20., -7., -10.……〔省略号表示省略的代码〕789, 1001, 835, 823, 1000, 1003, 836, 824, 1002790, 1003, 836, 824, 1002, 1005, 837, 825, 1004*End Part****** ASSEMBLY***Assembly, name=Assembly***Instance, name=PART-1-1, part=PART-1*End Instance**……导出的网格部件inp文件如下〔粗体为需要复制粘贴到原inp文件的容〕:****** Template: ABAQUS/STANDARD 3D***NODE1, 20.0 , -15.0 , -10.02, 20.0 , -13.0 , -10.03, 20.0 , -11.0 , -10.04, 20.0 , -9.0 , -10.05, 20.0 , -7.0 , -10.0……100, 80, 77, 143, 114, 84, 81, 144,117**HMASSEM 1 11 23**HMASSEM_ASSEM_ID 2 3 4**HMASSEM 2 11 body_0**HMASSEM 3 11 body_1**HMASSEM 4 11 body_2**HMASSEM_P_ID 3*****融合后的inp文件如下〔粗体为相对于原inp文件添加的容〕:*Heading** Job name: 111 Model name: e*1** Generated by: Abaqus/CAE 6.9-1*Preprint, echo=NO, model=NO, history=NO, contact=NO**** PARTS***Part, name=PART-2*Node1, 20.0 , -15.0 , -10.02, 20.0 , -13.0 , -10.03, 20.0 , -11.0 , -10.04, 20.0 , -9.0 , -10.05, 20.0 , -7.0 , -10.0……100, 80, 77, 143, 114, 84, 81, 144,117*End Part***Part, name=PART-1*Node1, 20., -15., -10.2, 20., -13., -10.3, 20., -11., -10.4, 20., -9., -10.5, 20., -7., -10.……789, 1001, 835, 823, 1000, 1003, 836, 824, 1002790, 1003, 836, 824, 1002, 1005, 837, 825, 1004*End Part****** ASSEMBLY***Assembly, name=Assembly***Instance, name=PART-2, part=PART-2*End Instance***Instance, name=PART-1-1, part=PART-1*End Instance**……整合的格式参照原inp文件中的代码,添加的容分两局部:〔1〕Part中的节点网格信息。

ABAQUS与Hypermesh接口流程(原创)

ABAQUS与Hypermesh接口流程(原创)

ABAQUS与Hypermesh接口流程本文分两种情况。

第一种:在HM中对几何模型全部建好网格,导入ABAQUS中分析。

第二种:在ABAQUS中已有的计算模型基础上,再导入网格部件重新整合进行分析。

第一种情况:1.在ABAQUS中建好几何模型(如图1所示),如果是用其他造型软件建的模型也要先导入ABAQUS,然后对模型进行装配,为的是确定全局坐标系,在后续的操作中全局坐标系不要再改变。

图12.导出ACIS SAT文件,后缀名为.sat,如图2和图3所示。

图2 图33.打开HM,注意设定user profiles为ABAQUS,如图4所示。

图44.导入几何模型,如图5所示。

图55.处理几何模型,例如:布尔运算,消除硬点等。

设置网格类型,画网格,将模型划分成数个网格部件。

如图6所示,几何模型被划分成了两个网格部件,根据仿真计算的需要也可对两个小块布尔求和,划分成一个网格部件。

一个网格部件就是一个网格节点相连的网格体,只含有网格节点、单元、集合信息。

图66.导出网格,文件格式为.inp,如图7所示。

图77.导入ABAQUS(如图8,图9和图10所示),继续设置其他前处理。

图8 图9图10第二种情况:在已有的分析基础上添加网格部件1.首先,将需要划分网格的几何模型导入ABAQUS,进行装配,如图11所示。

该步骤为的是确定几何模型的全局坐标,方便后续的导入。

图112.导出该几何模型的.sat文件,导入HM划分网格,如图12所示。

图123.划分网格后,导出inp文件。

用记事本打开导出的inp文件和原有分析模型的inp文件,将导出的inp文件中的一段网格单元信息粘贴进原分析模型的inp文件中,另存为一个inp文件,重新打开该文件进行后续的处理。

说明:关于inp文件参考《ABAQUS有限元分析常见问题解答》第13章。

两个inp文件的融合方法,原已有计算模型的inp文件如下(粗体显示的为需要添加的代码的格式):*Heading** Job name: 111 Model name: ex1** Generated by: Abaqus/CAE 6.9-1*Preprint, echo=NO, model=NO, history=NO, contact=NO**** PARTS***Part, name=PART-1*Node1, 20., -15., -10.2, 20., -13., -10.3, 20., -11., -10.4, 20., -9., -10.5, 20., -7., -10.……(省略号表示省略的代码)789, 1001, 835, 823, 1000, 1003, 836, 824, 1002790, 1003, 836, 824, 1002, 1005, 837, 825, 1004*End Part****** ASSEMBL Y***Assembly, name=Assembly***Instance, name=PART-1-1, part=PART-1*End Instance**……导出的网格部件inp文件如下(粗体为需要复制粘贴到原inp文件的内容):**** ABAQUS Input Deck Generated by HyperMesh Version : 11.0.0.39** Generated using HyperMesh-Abaqus Template Version : 11.0.0.39**** Template: ABAQUS/STANDARD 3D***NODE1, 20.0 , -15.0 , -10.02, 20.0 , -13.0 , -10.03, 20.0 , -11.0 , -10.04, 20.0 , -9.0 , -10.05, 20.0 , -7.0 , -10.0……100, 80, 77, 143, 114, 84, 81, 144,117**HMASSEM 1 11 23**HMASSEM_ASSEM_ID 2 3 4**HMASSEM 2 11 body_0**HMASSEM 3 11 body_1**HMASSEM 4 11 body_2**HMASSEM_COMP_ID 3*****融合后的inp文件如下(粗体为相对于原inp文件添加的内容):*Heading** Job name: 111 Model name: ex1** Generated by: Abaqus/CAE 6.9-1*Preprint, echo=NO, model=NO, history=NO, contact=NO**** PARTS***Part, name=PART-2*Node1, 20.0 , -15.0 , -10.02, 20.0 , -13.0 , -10.03, 20.0 , -11.0 , -10.04, 20.0 , -9.0 , -10.05, 20.0 , -7.0 , -10.0……100, 80, 77, 143, 114, 84, 81, 144,117*End Part***Part, name=PART-1*Node1, 20., -15., -10.2, 20., -13., -10.3, 20., -11., -10.4, 20., -9., -10.5, 20., -7., -10.……789, 1001, 835, 823, 1000, 1003, 836, 824, 1002790, 1003, 836, 824, 1002, 1005, 837, 825, 1004*End Part****** ASSEMBL Y***Assembly, name=Assembly***Instance, name=PART-2, part=PART-2*End Instance***Instance, name=PART-1-1, part=PART-1*End Instance**……整合的格式参照原inp文件中的代码,添加的内容分两部分:(1)Part中的节点网格信息。

HyperMesh+Abaqus联合仿真方法

HyperMesh+Abaqus联合仿真方法

HyperMesh+Abaqus联合仿真方法考虑到HM的Abaqus模板中Step Manager与Contact Manager操作的复杂性,以及该模板对某些Abaqus版本可能不适用,本方法用inp文件作为HM生成的FE模型转入Abaqus 的中介,HM仅负责网格划分,其他前处理工作,如装配、定义材料属性、建立载荷步、定义接触面、施加载荷和边界条件等,均在Abaqus中完成。

具体方法是:1. HM中a) 加载Abaqus Standard 3D模板;b) 为每个Part建立2D与3D两个Collector,例如有两个零件,就要建四个Collector。

c) 根据草绘图布置关键点【Geom=>create nodes=>type in】,各个部件的相对位置已体现在了在草绘图中;d) 连接这些点生成二维截面【Geom=>lines=>create line】;e) 在二维截面上划网格,例如用【2D=>spline】,生成的Element与上步生成的几何体都放入该零件的2D Collector中;f) 根据二维网格生成三维Element,例如用【3D=>spin】,生成的Element放入该零件的3D Collector中;g) 重复以上步骤为每个零件生成三维单元,并放入相应的Collector中;h) 将每个零件的Element导出为inp文件【files=>export】;2. Abaqus中a) 用import=>model导入part1.inp和part2.inp,用model=>copy object将这些inp 中的mesh part分别拷贝到一个model中;b) 完成后续处理并求解。

本方案在HM7.0+Abaqus6.5平台上通过验证。

(完整word版)利用Hypermesh对AbaqusSPH计算的建模方法

(完整word版)利用Hypermesh对AbaqusSPH计算的建模方法

近段时间一直在研究使用SPH模拟油箱流固耦合情况下,油箱的振动强度问题。

发现使用Hypermesh对SPH模型进行前处理比手工编写INP文件更方便一些。

因为ABAQUS/CAE不支持SPH建模,需要手工编写INP文件,所以在处理此类模型时,需要工程师比较熟悉ABAQUS的关键字编写规则,这无形中加大了ABAQUS模型处理的难度。

尽管目前Hypermesh也不支持SPH功能,但是利用Hypermesh强大的前处理能力,只需要对输出的INP文件中稍作修改,即可得到SPH模型。

这种方法为我们处理SPH模型提供了另一种便捷的可行方案。

本教程将以一矩形箱体为例,说明SPH建模在HM中的实现过程。

导入油箱和水的模型如图1所示。

蓝色矩形为油箱,黄色矩形为液体。

液体体积约为油箱体积的一半。

图1 几何模型1、油箱划分为S4R单元,如图2所示。

图2 油箱网格划分2、液体划分为实体单元,如图3所示。

图3 液体网格划分3、生成MASS单元(1)创建新component,命名为water,如图4所示。

图4 component创建面板(2)利用图3液体网格的节点,生成MASS单元,确认其放置在名为water 的component中,如图5~图7所示图5 mass面板图6 生成mass单元图7 放置在water中的MASS单元4、创建材料和属性(1)油箱材料为steel,属性为shell section,厚度为1.0mm。

(2)为water创建材料状态方程,并将材料赋予随后创建的实体截面属性。

图8 进入创建材料面板图9 勾选密度项图10 勾选关键字项图11 液体的材料属性参数图12 为液体创建实体截面属性4、创建相关的接触和分析步后,隐藏图3所示的液体实体单元,导出INP文件,如图13、14所示。

图13 隐藏water_C3D8R图14 以displayed 方式导出INP文件5、打开INP文件,将MASS更改为PC3D,保存,如图15所示。

HyperMesh+Abaqus联合仿真方法

HyperMesh+Abaqus联合仿真方法

HyperMesh+Abaqus联合仿真方法
考虑到HM的Abaqus模板中StepManager与ContactManager操作的复杂性,以及该模板对某些Abaqus版本可能不适用,本方法用inp文件作为HM 生成的FE模型转入Abaqus的中介,HM仅负责网格划分,其他前处理工作,如装配、定义材料属性、建立载荷步、定义接触面、施加载荷和边界条件等,均在Abaqus中完成。

具体方法是:
1.HM中
a)加载AbaqusStandard 3D模板;
b)为每个Part建立2D与3D两个Collector,例如有两个零件,就要建四个Collector。

c)根据草绘图布置关键点【Geom=>createnodes=>type in】,各个部件的相对位置已体现在了在草绘图中;
d)连接这些点生成二维截面【Geom=>lines=>createline】;
e)在二维截面上划网格,例如用【2D=>spline】,生成的Element与上步生成的几何体都放入该零件的2D Collector中;
f)根据二维网格生成三维Element,例如用【3D=>spin】,生成的Element放入该零件的3D Collector中;
g)重复以上步骤为每个零件生成三维单元,并放入相应的Collector中;
h)将每个零件的Element导出为inp文件【files=>export】;
2.Abaqus中
a)用import=>model导入part1.inp和part2.inp,用model=>copy object将这些inp中的mesh part分别拷贝到一个model中;
b)完成后续处理并求解。

内容整理自网络。

HyperMesh与Abaqus Explicit接口实例

HyperMesh与Abaqus Explicit接口实例

Altair HyperMesh与Abaqus Explicit接口实例模拟方盒跌落过程【作者formyjoy】教程: HyperMesh与Abaqus/Explicit的接口应用—— 模拟方盒跌落过程一.问题描述模型文件:box_dropdown_test.hm(模型见附件)目标:模拟内部装有1000kg重物的盒子在初始速度和重力作用下跌落到具有突起的刚性地面上的过程。

采用单位:质量 kg时间 ms长度 mm分析手段:前处理工作在HyperMesh7.0sp1中完成,运算提交采用Abaqus6.5-1,后处理采用HyperView7.0sp1。

二.有限元建模步骤1.打开HyperMesh。

2.在Tool页面下选择User Profile面板中选择Abaqus/explicit模板。

3.在files面板下hm file子面板中打开box_dropdown_test.hm文件。

4.建立材料。

进入collector面板,选择create子面板,将操作对象设为mats。

为材料起名为Q235,在card image中选择ABAQUS_MATERIAL,点击create/edit。

在本例中,我们要将方盒的材料设为Q235钢,对其非线性属性采用理想弹塑性。

屈服极限为235Mpa。

下图为材料编辑的界面5.在card image中激活Density、Elastic和Plastic三个选项,并在Density中输入数值7.9E-6,设定弹性模量E为210,泊松比Nu为0.3。

6.将PLASTICDATACARD设为1,输入屈服应力0.235(Gpa),相应的塑性应变设为0.0。

点击return 退出材料编辑。

7.在collector/update子面板中设定操作对象为comp,选择名为box的component,并选择材料Q235,点击update。

在下一级菜单中选择material id,点击update。

8.在card image子面板中编辑box的card image,将其为SHELLSECTION,并在二级菜单中将厚度设为4(mm)。

hm与abaqus联合仿真经典流程

hm与abaqus联合仿真经典流程

模型中考虑了材料、几何的非线性、接触和Tie连接,所有设置都在HM中完成,输出inp 文件后可以直接在Abaqus中计算。

尤其注意在HM6.0中利用宏菜单中的Abaqus Contact Manager来定义接触、Tie连接等问题。

欢迎大家批评指正。

同时该算例仅仅是一个step的,如果哪位能将其扩展到多个step,还会给以积分奖励。

再加一些步骤说明:问题描述:如下图所示模型,模型整体分为三部分,黄色的tube、深蓝色的holder和浅蓝色的welded_part。

其中tube和holder部分属于接触,而holder和welded_part两部分的连接属于焊接,这里采用Abaqus中的Tie连接方式。

最后固定welded_part的一端,而在tube的一端施加一个扭矩,为了保证不发生刚体位移,在tube的另一端施加一个止推的约束。

定义ABAQUS模板:在Geom页面上选择user prof…,从弹出菜单中选择ABAQUS,然后选择Standard 3D。

为保证问题具有一般性,对上述模型划分的网格在连接的部分均保证网格不对齐,在宽度和圆周上均采用了不同的网格密度。

单元类型的设置:因为涉及接触问题,所以模型中的实体单元均采用Abaqus中的C3D8R减缩积分单元,单元类型的选择请参考Abaqus使用手册。

在HyperMesh中改变单元类型的步骤如下:1.  在1D、2D和3D的任何一个页面中点击elem types。

2.  选择2d&3d子面板,根据单元的结构选择单元类型,在这个例子中点击hex8,从弹出菜单中选择C3D8R。

3.  选中要更新单元类型的单元,这里选择by collector(选择所有三个comps)。

4.  点击update。

5.  如果需要察看现有任意一个单元的类型,在永久菜单上点击card,将操作对象设为elem,选择单元后点击edit。

hypermesh与abaqus接口连接经典实例

hypermesh与abaqus接口连接经典实例

模型中考虑了材料、几何的非线性、接触和Tie连接,所有设置都在HM中完成,输出inp 文件后可以直接在Abaqus中计算。

尤其注意在HM6.0中利用宏菜单中的Abaqus Contact Manager来定义接触、Tie连接等问题。

欢迎大家批评指正。

同时该算例仅仅是一个step的,如果哪位能将其扩展到多个step,还会给以积分奖励。

再加一些步骤说明:问题描述:如下图所示模型,模型整体分为三部分,黄色的tube、深蓝色的holder和浅蓝色的welded_part。

其中tube和holder部分属于接触,而holder和welded_part两部分的连接属于焊接,这里采用Abaqus中的Tie连接方式。

最后固定welded_part的一端,而在tube的一端施加一个扭矩,为了保证不发生刚体位移,在tube的另一端施加一个止推的约束。

定义ABAQUS模板:在Geom页面上选择user prof…,从弹出菜单中选择ABAQUS,然后选择Standard 3D。

为保证问题具有一般性,对上述模型划分的网格在连接的部分均保证网格不对齐,在宽度和圆周上均采用了不同的网格密度。

单元类型的设置:因为涉及接触问题,所以模型中的实体单元均采用Abaqus中的C3D8R减缩积分单元,单元类型的选择请参考Abaqus使用手册。

在HyperMesh中改变单元类型的步骤如下:1.  在1D、2D和3D的任何一个页面中点击elem types。

2.  选择2d&3d子面板,根据单元的结构选择单元类型,在这个例子中点击hex8,从弹出菜单中选择C3D8R。

3.  选中要更新单元类型的单元,这里选择by collector(选择所有三个comps)。

4.  点击update。

5.  如果需要察看现有任意一个单元的类型,在永久菜单上点击card,将操作对象设为elem,选择单元后点击edit。

Hypermesh与 Abaqus614联合仿真参数设置

Hypermesh与 Abaqus614联合仿真参数设置

20
Байду номын сангаас
Hypermesh与Abaqus联合仿真过程
一 边界条件Boundary Condition
默认Ramp的含义:在整个分析步中幅值从零线性增长至给定值。例如, 如果分析步时间是1,载荷的大小是100,幅值为Ramp,则当分析步时刻 为0时,载荷的大小为0;分析步时刻为0.2时,载荷为20,以此类推。非 线性分析问题设定较小的初始增量步,因为这意味着模型上施加较小的载 荷(以及位移边界条件、过盈配合等),分析就更容易达到收敛。
Generalized Plane Strain:广义平面应变载荷,它施加在由广义平面应变单元
所构成区域的参考点上。
Rotational Body Force:由模型的旋转造成的体力,需要指定角速度或角加速
度,以及旋转轴。
Connector Force/ Moment :施加在连接单元上的力/弯矩。
4
Hypermesh与Abaqus联合仿真过程
一 关键汇总
1.平面应变单元PE假定离面应变ε33位0,用于模拟厚结构,截面属性类型是Solid (实心体);平面应力单元PS假定离面应力σ33位0,用于模拟薄结构。
5
Hypermesh与Abaqus联合仿真过程
一 关键汇总
1.Result→Options设置应力显示方法: Computer scalars before averaging(先计算应力不变量,再对插值结果进行平均), 默认的Averaging threshold(平均阈值)为75%,在单元大的时候会出现节点Mises 应力不连续现象。Averaging threshold改为100%,不会出现应力不连续现象。使用 此方法得到的节点Mises应力偏大,作为工程的结果会更安全。 Computer scalars after averaging(先进行平均,再计算应力不变量)也会出现节点 Mises应力不连续的现象,但是得到的节点Mises应力偏小,会降低工程分析的安全 系数。

hypermesh与Abaqus联合仿真经典教程

hypermesh与Abaqus联合仿真经典教程

6, 接触对的设置
E, 调整需要添加接触的单元法向相对, 然后添加接触单元
E_1 检查并调整接触网格的单元法向
E_1a
选择单元,显示法向
E_1b
选择法向一致的参考单元
E_1c
调整法向,法向指向接触面
6, 接触对的设置
E, 调整需要添加接触的单元法向相对, 然后添加接触单元
E_2 添加接触单元到主从接触面
C-2,Analysis Procedure 选择
静力分析选择Static, 然后勾选Dataline。 模态分析选择Frequency
初始步长 最小步长 最大步长
C-3,Load_OP 选择
Load_OP用来设置是否需要保留上一步 的边界条件(Boundary)或者是载荷(集 中载荷Cload 、面载荷Dload)
B,在file文件中输出点的位移及约束反力, 单元的应力应变 (U ,RF,SINV ,PE),特殊结果输出参数,参考Abaqus手册。
8, 设置载荷步
A,选择load steps 命令,设置第一个载荷步
B,载荷步的名字应该清楚的说明加载的情况 勾选载荷步包含的载荷(loadcols)及输出设置(outputlocks),点击update
OP=MOD,表示保留上一步设置 OP=NEW,表示不保留上一步设置 程序默认值是OP=MOD
8, 设置载荷步
D,第二个载荷步的设置
跟第一个载荷步的设置一样,唯一需要理解的是Load_OP 参数的选择
下面的例子是第二步卸载unloading 程序默认延续第一步的输出设置 、边界条件、加载条件。 所以如果输出没有改变,就不用在第二步设置输出,也不用重新设置约束 条件,只需要改变加载条件
E_3 检查接触单元的法向,接触单元法向默认跟网格的法向一致

hypermesh导入abaqus问题集(绝对原创——总结各种情况)

hypermesh导入abaqus问题集(绝对原创——总结各种情况)

Hypermesh to abaqus surface研究两个PART分别是vol1和vol2,要做的任务就是在hypermesh 中完成abaqus中surface的建立过程。

首先,在hypermesh中划分好体网格,删除所有的2D网格,接下来就开始我们的主要任务。

在开始前先说几点,有好多朋友针对此问题提出过好多种方法,先简单概括一下:好多网友说在hypermesh中利用find face找到2D网格,之后基于2D网格建立set,导入到abaqus中,其中这种方法经过个人验证是行不通的,在abaqus中识别不出^face的compoent。

还有网格提出说在hypermesh分配好属性,施加载荷之后再导入anbqus中,我试验了一下也不行,大家也可以试试~~下面开始谈谈我的方法:建立好网格之后,我们把面板切换到analisys→interfaces,在name输入要建立surface的名字surf1,在type中选择SURFACE_ELEMENT,点创建。

生成一个group组集,下面包含一个空的surf1,下面为surf1添加单元。

面板设置如下图。

添加单元后vol1显示如下:Surf1按照上面的过程在vol2上建立surf2,如下图:Surf2接下来我们把vol1和vol2分别输出成两个INP文件。

找到下图中的窗口,并设置如下输出vol1.inp(注意:如果不这样设置导入abaqus报错)同理输出vol2.inp这样就生成好了两个inp文件,至此,完成了在hypermesh中的所有操作。

下面说下重点的问题,如果你的模型只有单PART,上面的操作完成后已经解决了本文的问题。

但是如果的你模型含有多个PART,导入到abaqus中会出一些问题,别着急咱们慢慢说,对于多PART我们一般有两个办法导入abaqus,一是在hypermesh中输出一个INP文件到abaqus中,由于在abaqus只生成一个PART,所以采用part copy 来实现PART的分解,如下图:但是如果采用了这个操作后我们会发现,新生成的多个PART中不包含有任何surf信息了,说明在操作的过程中我们之前在hypermesh 的设置已经丢失了,而且这个操作会丢失很多装配和其他的信息,所以我推荐如果在零件比较少的时候,可以分别生成多个PART分别到入abaqus中不会丢失装配关系。

hypermesh教程4

hypermesh教程4

hypermesh教程437710.1 在HyperMesh 环境中建⽴⼀个ABAQUS 分析本实例主要进⾏如下讲解。

●加载ABAQUS 界⾯和模型。

●定义材料和properties ,并赋予component 。

●查看实体单元卡⽚*SOLID SECTION 。

●定义弹簧单元卡⽚*SPRING ,并建⽴相应的component 。

●创建弹簧单元类型为*SPRING1的单元。

●将property 赋予指定的单元。

加载ABAQUS 界⾯和模型。

在HyperMesh 安装程序中,包含了⼀组标准的⽤户界⾯,它们包含RADIOSS (Bulk Data Format )、RADIOSS (Block Format )、ABAQUS 、Actran 、ANSYS 、LS-DYNA 、MADYMO 、Nastran 、PAM-CRASH 、PERMAS 以及CFD 等界⾯。

当ABAQUS ⽤户界⾯被加载时,HyperMesh 中相应的有⽤界⾯被加载,⽽没⽤的界⾯被去除,⼀些针对ABAQUS 的特定界⾯也被加载。

(1)打开菜单,选择Preferences >User Profiles 。

(2)选择ABAQUS 。

(3)选择Standard3D 模块。

(4)打开菜单,选择File > Open > Model 。

(5)找到⽂件ABAQUS3_0tutorial.hm 。

(6)单击Open 按钮。

定义材料。

HyperMesh 对多种ABAQUS 材料类型提供了⽀持。

在这个实例中,将在HyperMesh 中建⽴⼀个ABAQUS 的弹性材料模型,然后这个材料将被关联到property ,property 将被关联到component ,如图10-1创建材料所⽰。

(1)右键单击Model Browser ,选择Create > Material 。

(2)在Name 中输⼊STEEL 。

(3)在Card Image 中选择ABAQUS_MA TERIAL 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E_3 检查接触单元的法向,接触单元法向默认跟网格的法向一致
6, 接触对的设置
F, 设置接触对
直接选择设好的接触属性和接触面
下面这些接触参数,常用的有adjust、smooth、tie、smallsliding. 如果对这些参数没有理解,可以先不选。
7, 输出设置
A,选择output block 命令
B,在file文件中输出点的位移及约束反力, 单元的应力应变 (U ,RF,SINV ,PE),特殊结果输出参数,参考Abaqus手册。
8, 设置载荷步
A,选择load steps 命令,设置第一个载荷步
B,载荷步的名字应该清楚的说明加载的情况 勾选载荷步包含的载荷(loadcols)及输出设置(outputlocks),点击update
6, 接触对的设置
E, 调整需要添加接触的单元法向相对, 然后添加接触单元
E_1 检查并调整接触网格的单元法向
E_1a
选择单元,显示法向
E_1b
选择法向一致的参考单元
E_1c
调整法向,法向指向接触面
6, 接触对的设置
E, 调整需要添加接触的单元法向相对, 然后添加接触单元 E_2 添加接触单元到主从接触面
2, 材料建立
A,选ity,输入材料密度。注意:单位制(吨t,毫米mm,牛N,兆帕MPa,秒S)
C,勾选Elastic,输入材料线性属性,弹性模量E,及泊松比NU
试验应力应变曲线值需要 转换成材料的真实应力-塑 性应变曲线。 转换公式参考相关资料。 下面的文件包含转换模板。
OP=MOD,表示保留上一步设置 OP=NEW,表示不保留上一步设置
程序默认值是OP=MOD
8, 设置载荷步
D,第二个载荷步的设置
跟第一个载荷步的设置一样,唯一需要理解的是Load_OP 参数的选择
下面的例子是第二步卸载unloading
程序默认延续第一步的输出设置 、边界条件、加载条件。 所以如果输出没有改变,就不用在第二步设置输出,也不用重新设置约束 条件,只需要改变加载条件
9, 检查模型
A,检查component厚度和重量是否正常
B,检查连接,使用F5-elment-by attached 。
看是否存在没有连接的component,如果有,这些没有连接的component是否已经约束,如果也 没有约束,模型就不会收敛,需要用弹簧单元弱连接到相邻的零件上。
C,检查加载及约束,先输出inp文件 。查找关键字*step,查看每个 step的 载荷、约束及输出是否正常,有没有漏选约束条件。
hypermesh与Abaqus联合仿真经典教程
1,检查网格,规范网格component命名 2,建立材料 3,建立component属性props,不同材料相同厚度要分开建立
(hypermesh8不需要单独建立props,直接在 component参数中写厚度,选材料)
4,零件连接 5,设置约束及加载 6,设置接触 7,设置输出参数 8,设置载荷步(load step) 9,检查模型 10,输出debug
C-2,Analysis Procedure 选择
静力分析选择Static, 然后勾选Dataline。 模态分析选择Frequency
初始步长
最小步长 最大步长
C-3,Load_OP 选择
Load_OP用来设置是否需要保留上一步 的边界条件(Boundary)或者是载荷(集 中载荷Cload 、面载荷Dload)
10, 输出DEBUG
ljtleon 第一版 2009年12月8日
1、 命名规范
任何名字都不能有特殊符号,尽量只包含字母、数字、中划线和下划线, 任何名字都不能用数字开头,只能用字母开头。 经常出错的是数字中的“点”号,用字母p代替。 Component 命名规范
零件名字或者编号_厚度_材料名字_顺序编号 (只用于前面都相同的情况) 名字太长时,可以简写。
4, 焊点,单元类型是1D/rigid/Beam
选择多点方式 连接焊点位置上下各一个单元的点,连接完成后,显示BEAM 单元类型
4, 焊点,一维单元类型转换1D/config edit
现在模型里面用的是单点连接,也行,但是单元类型spring不对,需要转换成Beam。 选择config edit命令
A,选择要转换的单元
B,选择新单元类型rigid
C,转换
5, 边界条件及载荷设置
A, 建立约束loadcol
B, 设置约束
C, 建立加载 loadcol ,加载力或者通过约束加强迫位移
不同的载荷及约束条件要放在不同的loadcol里,方便后续设load step时选用
加载集中力 强迫位移X 方向10mm
6, 接触对的设置
A,建立主接触面,注意命名,名字后面加上_M B,建立从接触面,注意命名,名字后面加上_S C,建立接触对,注意命名,名字后面加上_P,类型选 contact_pair D,建立接触属性
D_1 打开属性面板
6, 接触对的设置
D_2 建立接触属性,注意接触类型的选择
D_3 设置接触摩擦系数参数,先要勾选Friction, 在没有数值的情况下,可 以用0.2作为默认值,
C ,点击edit ,进入载荷步参数设置页面
8, 设置载荷步
C-1,step parameter 选择
一般选increment =500,设置总的迭代步数,默认是100, 有时候如果模型接触太多,可能100步不够。
另外可以勾选Nlgeom,如果模型本身包含了非线性的设 置(非线性材料,设置接触等),程序默认选择Nlgeom。
D,勾选Plastic,输入材料非线性属性:真实应力_塑性应变曲线
这里填入的是3点材料,包含 第一点,屈服应力。 第二点,极限应力应变。 第三点,延伸应力应变,应力比极限应力稍大一点,但是应 变很大,这样保持延伸应力应变曲线平直,模拟材料破坏。
3, 刚性网格的属性
只需要选择 A,刚性网格的参考点,(参考点可以设在加力点上) B,刚性网格的component 注意:刚性网格的单元类型要更新成R3D3、R3D4,普通单元类型是S3、S4。 命令是2D/elem types
相关文档
最新文档