LLC谐振变换器与不对称半桥

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LLC谐振变换器与

不对称半桥变换器的对比

1不对称半桥变换器

图中互补控制的功率MOSFET(S1和S2),其中S1的占空比为D,S2的占空比为(1-D);隔直电容Cb,其上电压作为S2开通时的电源;中心抽头变压器Tr,其原边匝数为Np,副边匝数分别为Ns1和Ns2;半桥全波整流二级管D1和D2;输出滤波电感Ld,电容Cf。

不对称半桥(AHB)变换器的稳态工作原理如下。

1)当S1导通S2关断时,变压器原边承受正向电压,副边Ns1工作;二极管D1导通,二极管D2截止;

2)当S2导通S1关断时,隔直电容Cb上的电压加在变压器的原边,副边N s2工作,二极管D1截止。

图2中n1=N p/N s1,n2=N p/N s2,且n1=n2=n。通过对电路的分析,可以得到传统不对称半桥变换器占空比D的计算公式

2.LLC谐振变换器

图3和图4分别给出了LLC谐振变换器的电路图和工作波形。图3中包括两个功率MOSFET (S1和S2),其占空比都为0.5;谐振电容Cs,副边匝数相等的中心抽头变压器Tr,Tr的漏感Ls,激磁电感Lm,Lm在某个时间段也是一个谐振电感,因此,在LLC谐振变换器中的谐振元件主要由以上3个谐振元件构成,即谐振电容Cs,电感Ls和激磁电感Lm;半桥全波整流二极管D1和D2,输出电容Cf。

LLC变换器的稳态工作原理如下。

1)〔t1,t2〕当t=t1时,S2关断,谐振电流给S1的寄生电容放电,一直到S1上的电压为零,然后S1的体二级管导通。此阶段D1导通,Lm上的电压被输出电压钳位,因此,只有Ls和Cs参与谐振。

2)〔t2,t3〕当t=t2时,S1在零电压的条件下导通,变压器原边承受正向电压;D1继续导通,S2及D2截止。此时Cs和Ls参与谐振,而Lm不参与谐振。

3)〔t3,t4〕当t=t3时,S1仍然导通,而D1与D2处于关断状态,Tr副边与电路脱开,此时Lm,Ls和Cs一起参与谐振。实际电路中因此,在这个阶段可以认为激磁电流和谐振电流都保持不变。

4)〔t4,t5〕当t=t4时,S1关断,谐振电流给S2的寄生电容放电,一直到S2上的电压为零,然后S2的体二级管导通。此阶段D2导通,Lm上的电压被输出电压钳位,因此,只有Ls和Cs参与谐振。

5)〔t5,t6〕当t=t5时,S2在零电压的条件下导通,Tr原边承受反向电压;D2继续导通,而S1和D1截止。此时仅Cs和Ls参与谐振,Lm上的电压被输出电压箝位,而不参与谐振。

6)〔t6,t7〕当t=t6时,S2仍然导通,而D1和D2处于关断状态,Tr副边与电路脱开,

此时Lm,Ls和Cs一起参与谐振。实际电路中因此,在这个阶段可以认为激磁电流和谐振电流都保持不变。

通过上面的详细分析,对这两类软开关型变换器的工作原理及其特性有了一定的了解,下面将对它们之间的差异进行比较,进一步加深对它们的认识。

两种变换器差异的对比

不对称半桥变换器是PWM型的,而LLC谐振变换器是谐振型的,因此,它们在控制方法、副边整流管的电压应力、原边的电流应力等方面有很大的差异,

不对称半桥变换器通过调节开关管的占空比来调节输出电压,不对称半桥变换器的掉电维持时间特性比较差.

LLC谐振变换器是通过调节开关频率来调节输出电压的,也就是在不同的输入电压下它的占空比保持不变,掉电维持时间特性比较好.

副边整流管电压应力的对比

在LLC谐振变换器中副边二极管上的电压应力是输出电压的2倍

不对称半桥变换器副边整流管电压应力D1=Vin/1-D, D2=Vin/D

3副边二极管的开通对比

从对不对称半桥变换器的分析可知其副边二极管是硬开通,损耗比较大;而从对LLC 谐振变换器的分析可知其副边二极管是零电流开关,损耗比较小,这样就可以提高变换器的效率。

4其他方面

首先,在不对称半桥变换器中上下开关管的占空比是互补的,因此,不对称半桥变换器中的变压器有直流偏置现象;而在LLC谐振变换器中上下开关管的占空比是相等的,因此,LLC谐振变换器中的变压器没有直流偏置现象。

LLC谐振变换器是通过调开关管的工作频率来调节输出电压,因此,对于LLC谐振变换器来说,要实现同步整流控制比较复杂;而不对称半桥变换器是通过调开关管的占空比来调节输出电压,因此,对于不对称半桥变换器来说,要实现同步整流控制比较简单。

LLC谐振变换器的电流应力比较高;不对称半桥变换器中电流应力比较低。

1 工作原理

图1所示是半桥结构的LLC串联多谐振变换器:两个主开关S1和S2构成一个半桥结构,其驱动信号是占空比固定50%的互补信号,通过改变开关频率来实现输出电压的恒定。因此,这类谐振型变换器也可以归类于控制型软开关电路。电感Ls、电容Cs和变压器的励磁电感Lm构成一个LLC谐振网络。该谐振网络连接在半桥的中点与地之间,因此,谐振电容Cs也起到隔直电容的作用。在输出侧,整流二极管D1和D2构成中心抽头的整流电路,整流二极管直接连接到输出电容Co上。

LC的本征谐振频率定义为

本文所述的LLC串联多谐振变换器的开关频率范围为fm

在下面的分析中,Co被认为是无穷大而以恒压源Vo代替,主开关具有反向并联的二极管。该变换器的一个开关周期可以分为6个工作阶段,其等效电路如图2所示。相应的工作波形如图3所示。6个工作阶段的工作原理如下。

图2 各阶段等效电路

1)阶段1〔t0~t1〕在t0时刻S2关断,谐振电流ir对S1的输出电容放电,S1的漏-源电压vds1开始下降,当vds1下降到零,S1的体二极管导通。输入电压加在LLC串联回路上。在副边,变压器绕组的极性为上正下负,D1导通,Lm 的电压被输出电压Vo钳位,谐振实际上发生在Ls与Cs之间,Lm上的电流im 线性上升。

2)阶段2〔t1~t2〕在t1时刻S1在零电压条件下开通。im继续线性上升,ir流经S1并以正弦波形式逐渐上升。流过D1的输出电流为谐振电流与励磁电流之差。开关周期大于Ls与Cs的谐振周期,因此,在ir经过半个谐振周期后,S1仍然处于开通状态。当ir下降到与im相等时,D1电流因过零而关断。该工作阶段结束。

图3 主要工作波形

由于加在Lm上的电压为nVo,im可表示为

相关文档
最新文档